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PASSAGE TIME OF THE FROG MODEL HAS A SUBLINEAR VARIANCE

VAN HAO CAN AND SHUTA NAKAJIMA

Abstract. In this paper, we show that the passage time in the frog model on Zd with d ≥ 2
has a sublinear variance. The proof is based on the method introduced in [8] combining with

tessellation arguments to estimate the martingale difference. We also apply this method to get

the linearity of the lengths of optimal paths.

1. Introduction

Frog models are simple but well-known models in the study of the spread of infection. In these
models, individuals (also called frogs) move on the integer lattice Zd, which have one of two states
infected (active) and healthy (passive). We assume that at the beginning, there is only one in-
fected frog at the origin, and there are healthy frogs at other sites of Zd. When a healthy frog
encounters with an infected one, it becomes infected forever. While the healthy frogs do not move,
the infected ones perform independent simple random walks once they get infected. The object we
are interested in is the long time behavior of the infected individuals.

To the best of our knowledge, the first result on frog models is due to Tecls and Wormald [19],
where they proved the recurrence of the model (more precisely, they showed that the origin is
visited infinitely often a.s.). Since then, there are numerous results on the behavior of the model
under various settings of initial configurations, mechanism of walks, or underlying graphs, see
[1, 3, 5, 10, 11, 12, 13, 14]. In particular, Popov and some authors study the phase transition of
the recurrence vs transience for the model with Bernoulli initial configurations and for the model
with drift, see [2, 9, 11, 18]. Another interesting feature in the frog model is that it can be described
in the first passage percolation contexts, which is explained below. In fact, Alves, Machado and
Popov used this property to prove a shape theorem [1]. Moreover, the large deviation estimates
for the passage time are derived in [7, 16] recently.

The frog model can be defined formally as follows. Let d ≥ 2 and {(Sxj )j∈N, x ∈ Zd} be

independent SRWs such that Sx0 = x for any x ∈ Zd. For x, y ∈ Zd, let

t(x, y) = inf{j : Sxj = y}.
The first passage time from x to y is defined by

T (x, y) = inf
{ k∑
i=1

t(xi−1, xi) : x = x0, . . . , xk = y for some k
}
.

The quantity T (x, y) can be seen as the first time when the frog at y becomes infected assuming
that the frog at x was the only infected one at the beginning. For the simplicity of notation, we
write T (x) instead of T (0, x).

It has been shown in [1] that the passage time is subadditive, i.e. for any x, y, z ∈ Zd

(1.1) T (x, z) ≤ T (x, y) + T (y, z).

The authors of [1] also show that the sequence {T ((k − 1)z, kz)}k≥1 is stationary and ergodic for
any z ∈ Zd. As a consequence of Kingman’s subadditive ergodic theorem (see [15] or [1, Theorem
3.1]), one has

lim
n→∞

T (nz)

n
→ κz a.s.,(1.2)
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with

κz = inf
n≥1

E(T (nz))

n
.

Furthermore, a shape theorem for the set of active frogs has been also proved, see [1, Theorem 1.1].
The convergence (1.2), which can be seen as a law of large numbers, implies that for any x ∈ Zd
the passage time T (x) grows linearly in |x|1. A natural question is whether the standard central
limit theorem hold for T (x). The first task is to understand the behavior of variance of T (x). In
[16], the author proves some large deviation estimates for T (x), see in particular Lemma 2.2 below.
As a consequence, one can show that Var(T (x)) = O(|x|1(1 + log |x|1)2A), for some constant A,
see Corollary 2.3. However, this result is not enough to answer the question on standard central
limit theorem.

Our main result is to show that the passage time has sublinear variance and thus the standard
central limit theorem is not true.

Theorem 1.1. There exists a positive constant C = C(d), such that for any x ∈ Zd,

Var(T (x)) ≤ C|x|1
log |x|1

.

The sublinearity of variance as in Theorem 1.1, which is also called the superconcentration
[6], was first discovered in the classical first passage percolation by Benjamini, Kali and Schram
[4]. Hence, this result is sometimes called BKS-inequality. Chatterjee found the connection of
superconcentration with chaos and multiple valleys in the gaussian polymer and SK model. This
relation is expected to hold in general models. Therefore, the superconcentration is not only an
interesting property itself but also an important object to study the structure of optimal paths
and the energy landscape.

The superconcentration has been proved for several models such as the classical first passage
percolation and the gaussian polymer model. In these proofs, one usually has to estimate the
martingale difference carefully, which needs the model-dependent arguments. In the frog model,
the correlation between passage times is problematic for this kind of estimate. A key observation
to pass this difficulty is that the passage times are locally-dependent. Indeed, by large deviation
estimates (see Lemma 2.1), T (x, y) ≤ C|x− y|1 for some C > 0 with very high probability. Thus
T (x, y) mainly depends on SRWs (Sz· ) with |z − x|1 ≤ C|x− y|1. Therefore, if the two pairs (x, y)
and (u, v) are far enough from each other, the passage times T (x, y) and T (u, v) are weakly depen-
dent. From this observation, using tessellation arguments, we decompose the martingale difference
to some groups of the independent passage times. After that, we apply the percolation estimate
to get the desired bound. This approach seems to be useful for other problems. Indeed, we also
prove the linearity of the length of optimal path by using a similar method.

Given x, y ∈ Zd, let us denote by O(x, y) the set of all optimal paths from x to y. We simply
write O(x) for O(0, x). For any path γ = (yi)

`
i=1 ⊂ Zd, we denote l(γ) = ` the number of vertices

in this path, and call it the length of γ. We will prove that the length of optimal paths from 0 to
x grows linearly in |x|1.

Proposition 1.2. There exist positive constants ε, c and C, such that for any x ∈ Zd

P
(
c|x|1 ≤ min

γ∈O(x)
l(γ) ≤ max

γ∈O(x)
l(γ) ≤ C|x|1

)
≥ 1− e−|x|

ε
1 .

1.1. Notation.

• If x = (x1, . . . , xd) ∈ Zd, we denote |x|1 = |x1|+ . . .+ |xd|.
• For any n ≥ 1, we denote by B(n) = [−n, n]d.
• For any ` ≥ 1, we call a sequence of ` distinct vertices γ = (yi)

`
i=1 in Zd a path of length

`, we denote |γ|1 = |y2 − y1|1 + . . .+ |y` − y`−1|1.
• Given y = yi ∈ γ, we define ȳ = yi+1 the next point of y in γ with the convention that
ȳ` = y`.
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• We write y ∼ ȳ ∈ γ if ȳ is the next point of y in γ.
• For L ≥ 1, we write

PL = {γ = (yi)
`
i=1 ⊂ B(L), |γ|1 ≤ L}.

• If f and g are two functions, we write f = O(g) if there exists a positive constant C = C(d),
such that f(x) ≤ Cg(x) for any x.
• We use C > 0 for a large constant and ε for a small constant. Note that they may change

from line to line.

1.2. Organization of this paper. The paper is organized as follows. In Section 2, we present
some preliminary results including large deviation estimates on the passage time, a lemma to
control the tail distribution of maximal weight of paths in site-percolation, the introduction and
properties of entropy. In Sections 3 and 4, we prove the main theorem 1.1 and Proposition 1.2.

2. Preliminaries

2.1. Large deviation estimates on passage time. We present here some useful estimates on
the deviation of passage time.

Lemma 2.1. [1, Lemma 4.2] There exist a positive integer number C1 and a positive constant ε1,
such that for any x, y ∈ Zd and k ≥ 0,

P (T (x, y) ≥ C1|x− y|1 + k) ≤ e−(C1|x−y|1+k)ε1 .

Notice that in [1], the authors only prove Lemma 2.1 for the case k = 0. However, we can easily
generalize their arguments to all k ≥ 1. We safely leave the proof of this lemma to the reader. It
follows from Lemma 2.1 that there exists C > 0 such that for any x ∈ Zd,

ET (x) ≤ C|x|1.(2.1)

The following concentration inequality is derived in [16].

Lemma 2.2. [16, Theorem 1.4] For any C > 0, there exist positive constants a, b and A, such that

for any x ∈ Zd and (2 + log |x|1)A ≤ t ≤ C
√
|x|1,

P(|T (x)− ET (x)| ≥ t
√
|x|1) ≤ e−bt

a

.

As a direct consequence of Lemmas 2.1 and 2.2, we have

Corollary 2.3. There exists positive constant A, such that

Var(T (x)) = O(|x|1(1 + log |x|1)2A).

Proof. We take a positive constant C sufficiently large such that Lemma 2.1 and (2.1) hold. By
using the fact E(X2) =

∫∞
0

2tP(X ≥ t)dt for any non-negative random variable X, we get

Var(T (x)) =

∫ ∞
0

2tP(|T (x)− ET (x)| ≥ t)dt

=

(∫ (2+log |x|1)A
√
|x|1

0

+

∫ 2C|x|1

(2+log |x|1)A
√
|x|1

+

∫ ∞
2C|x|1

)
2tP(|T (x)− ET (x)| ≥ t)dt.(2.2)

The first term of the right hand side (2.2) can be bounded from above by∫ (2+log |x|1)A
√
|x|1

0

2tdt ≤ (2 + log |x|1)2A|x|1.

By Lemma 2.2, the second term is bounded from above by

2C|x|1
∫ ∞

0

2te−bt
a

dt = O(|x|1).
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Finally, by (2.1) and Lemma 2.1, the third term is bounded from above by∫ ∞
2C|x|1

2tP(T (x) ≥ t/2)dt ≤
∫ ∞

2C|x|1
2te−(t/2)ε1dt = O(1).

Combining these estimates, we get the conclusion. �

Lemma 2.4. There exists a positive constant ε2, such that for any x, y ∈ Zd, and M ≥ 1

P(T (x, y) = t(x, y) = M) ≤ e−M
ε2
.

Proof. If |x− y|1 ≤M2/3, then the result follows from Lemma 2.1. Assume that |x− y|1 ≥M2/3.
Then a well-known estimate for the trajectory of random walk (see [17, Proposition 2.1.2]) shows
that for some positive constants c and C,

P
(

max
0≤j≤k

|Sxj − x|1 ≥ r
)
≤ Ce−cr

2/k.(2.3)

Therefore,

P(t(x, y) = M) ≤ P
(

max
0≤j≤M

|Sxj − x|1 ≥M2/3

)
≤ Ce−cM

1/3

,

for some c, C > 0. �

2.2. A result on the maximal weight of paths in site-percolation. Let P̃L be the set of
self-avoiding nearest-neighbor paths in B(L) whose length is bounded by L, i.e.,

P̃L =
{

(yi)
`
i=1 ⊂ B(L) ∩ Zd| ` ≤ L, |yi − yi−1|1 = 1 for 2 ≤ i ≤ `, yi 6= yj if i 6= j

}
.

Let {Xx}x∈Zd be a collection of independent and identical distribution random variables such
that P(Xx = 1) = 1 − P(Xx = 0) = p with a parameter p ∈ [0, 1]. For any path γ, we define

X(γ) =
∑
x∈γ Xx the weight of γ. The maximal weight of paths in P̃L and PL are defined

respectively as

X̃L = max
γ∈P̃L

X(γ), XL = max
γ∈PL

X(γ).

Note that for any γ ∈ PL, there exists γ̃ ∈ P̃L such that γ ⊂ γ̃. This implies XL ≤ X̃L.

The tail distribution and expectation of X̃L can be controlled as in the following lemma.

Lemma 2.5. [8, Lemma 6.8] There exist positive constants A1 and A2, such that for any p ∈ (0, 1)
and L ≥ 1, the following statements hold.

(i) For any s ≥ A1,

P
(
X̃L ≥ sLp1/d

)
≤ exp

(
−sLp1/d/2

)
.

(ii) We have

E
(
X̃L

)
≤ A2Lp

1/d.

In particular, the above estimates hold if we replace X̃L by XL.

We notice that in [8], the authors prove these results for the edge-percolation, i.e. for the setting
where (Xe)e∈Ed (with Ed the edge set of Zd) are the edge-indexed i.i.d. Bernoulli random variables
and QL is the set of edge-paths in B(L). However, their proof can be easily adapted to the case
of site-percolation as in Lemma 2.5. We also remark that in Lemma 6.8 of [8], the authors only
stated Part (ii), but in fact, they have proved (i) and derived (ii) from (i).
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2.3. Entropy. We first recall the definition of entropy with respect to a probability measure. Let
(Ω,F , µ) be a probability space and X ∈ L1(Ω, µ) be a non-negative. Then

Entµ(X) = Eµ(X logX)− Eµ(X) logEµ(X).

Note that by Jensen’s inequality, Entµ(X) ≥ 0. The following tensorization property of entropy is
proved in [8].

Lemma 2.6. [8, Theorem 2.3] Let X be a nonnegative L2 random variable on a product space( ∞∏
i=1

Ωi,F , µ =

∞∏
i=1

µi

)
,

where F =
∨∞
i=1 Gi, and each triple (Ωi,Gi, µi) is a probability space. Then

Entµ(X) ≤
∞∑
i=1

EµEnti(X),

where Enti(X) is the entropy of X(ω) = X((ω1, . . . , ωi, . . .)) with respect to µi, as a function of
the i-th coordinate (with all other values fixed).

In the following lemma, we prove a generalization of Bonami inequality for simple random
variables.

Lemma 2.7. Assume that k ≥ 2. Let f : {1, . . . , k} 7→ R be a function and ν be the uniform
distribution on {1, . . . , k}. Then

Entν(f2) ≤ kE((f(U)− f(Ũ))2),

where E is the expectation with respect to two independent random variables U, Ũ , which have the
same distribution ν.

Proof. Let us denote ai = f(i). Then

Entν(f2) = E(f2(U) log f2(U))− E(f2(U)) logE(f2(U))

=
1

k

k∑
i=1

a2
i log a2

i −
1

k

k∑
i=1

a2
i log

(∑k
j=1 a

2
j

k

)

=

∑k
j=1 a

2
j

k

k∑
i=1

a2
i∑k

j=1 a
2
j

log

(
ka2

i∑k
j=1 a

2
j

)

≤
∑k
j=1 a

2
j

k
log

(
k∑
i=1

ka4
i

(
∑k
j=1 a

2
j )

2

)
,

where we have used Jensen’s inequality in the last inequatliy. Moreover,

log

(
k∑
i=1

ka4
i

(
∑k
j=1 a

2
j )

2

)
= log

(
1 +

∑
i<j(a

2
i − a2

j )
2

(
∑k
j=1 a

2
j )

2

)

≤
∑
i<j(a

2
i − a2

j )
2

(
∑k
j=1 a

2
j )

2
,

since log(1 + x) ≤ x for any x ≥ 0. Therefore,

Entν(f2) ≤ 1

k

∑
i<j(a

2
i − a2

j )
2∑k

j=1 a
2
j

.

On the other hand,

kE((f(U)− f(Ũ))2) =
1

k

∑
i,j

(ai − aj)2 =
2

k

∑
i<j

(ai − aj)2.



6 VAN HAO CAN AND SHUTA NAKAJIMA

Hence,

Entν(f2)− kE((f(U)− f(Ũ))2) ≤ 1

k
∑k
j=1 a

2
j

∑
i<j

(ai − aj)2

(
(ai + aj)

2 − 2

k∑
`=1

a2
`

)
≤ − 1

k
∑k
j=1 a

2
j

∑
i<j

(ai − aj)4


≤ 0,

which proves Lemma 2.7. �

3. Proof of Theorem 1.1

3.1. Spatial average of the passage time. We consider a spatial average of T (x) defined by

Fm =
1

#B(m)

∑
z∈B(m)

T (z, z + x),

where
m = [|x|1/41 ].

Proposition 3.1. For any ε > 0, it holds that

|Var(T (x))−Var(Fm)| = O(|x|3/4+ε
1 ).

Proof. For any variables X and Y , by writing X̂ = X − E(X) and ||X||2 = (E(X2))1/2 and using
Cauchy-Schwartz inequality, we get

|Var(X)−Var(Y )| = |E(X̂2 − Ŷ 2)| ≤ ||X̂ + Ŷ ||2||X̂ − Ŷ ||2
≤ (||X̂||2 + ||Ŷ ||2)||X̂ − Ŷ ||2.(3.1)

We aim to apply (3.1) for T (x) and Fm. Observe that

||F̂m||2 ≤
1

#B(m)

∑
z∈Bm

||T̂ (z, z + x)||2 = ||T̂ (0, x)||2,(3.2)

by translation invariance. By Corollary 2.3,

||T̂ (0, x)||2 =
√

Var(T (x)) = O(|x|1/21 (1 + log |x|1)A).(3.3)

Using the subadditivity (1.1),

||T̂ (0, x)− F̂m||2 = ||T (x)− Fm||2

=
1

#B(m)

∥∥∥∥∥∥
∑

z∈B(m)

(T (x)− T (z, z + x))

∥∥∥∥∥∥
2

≤ 1

#B(m)

∥∥∥∥∥∥
∑

z∈B(m)

(T (z) + T (x, z + x))

∥∥∥∥∥∥
2

.

Using Cauchy-Shwartz inequality and the translation invariance, this is further bounded from
above by

1

#B(m)

∥∥∥∥∥∥
∑

z∈B(m)

T (z)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

z∈B(m)

T (x, x+ z)

∥∥∥∥∥∥
2


=

2

#B(m)

∥∥∥∥∥∥
∑

z∈B(m)

T (z)

∥∥∥∥∥∥
2

≤2

∥∥∥∥ max
z∈B(m)

T (z)

∥∥∥∥
2

.
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Using Lemma 2.1 and the union bound, we have

P
(

max
z∈B(m)

T (z) ≥ C1|x|1/41 + k

)
≤ (#B(m))e−(C1|x|1/41 +k)ε1 .

Therefore, by a similar argument as in Corollary 2.3, we have

E
(

max
z∈B(m)

T (z)2

)
≤ C2

1 |x|
1/2
1 + (#B(m))

∑
k≥0

(C1|x|1/41 + k)2e−(C1|x|1/41 +k)−ε1

= O(|x|1/21 ).(3.4)

Combining (3.1)–(3.4), we get the desired result. �

3.2. Martingale decomposition of Fm and the proof of Theorem 1.1. Enumerate the
vertices of Zd as x1, x2, . . .. We consider the martingale decomposition of Fm as follows

Fm − E(Fm) =

∞∑
k=1

∆k,

where

∆k = E(Fm | Fk)− E(Fm | Fk−1),

with Fk the sigma-algebra generated by SRWs {(Sxi
j )j∈N, i = 1, . . . , k} and F0 the trivial sigma-

algebra. In [8], using Falik-Samorodnitsky lemma, the authors give an upper bound for variance
of Fm in term of Ent(∆2

k), and E(|∆k|).

Lemma 3.2. [8, Lemma 3.3] We have∑
k≥1

Ent(∆2
k) ≥ Var(Fm) log

[
Var(Fm)∑

k≥1(E(|∆k|))2

]
.

Now, our main task is to estimate Ent(∆2
k) and E(|∆k|).

Proposition 3.3. As |x|1 tends to infinity,

(i) ∑
k≥1

Ent(∆2
k) = O(|x|1).

(ii) ∑
k≥1

(E(|∆k|))2 = O
(
|x|

5−d
4

1

)
.

3.2.1. Proof of Theorem 1.1 assuming Proposition 3.3. Since d ≥ 2, Proposition 3.3 (ii) implies

that
∑
k≥1(E(|∆k|))2 = O

(
|x|3/41

)
. Therefore, using Propositions 3.1, 3.3 and Lemma 3.2, for any

ε > 0, there exists a positive constant C, such that

Var(T (x)) ≤ Var(Fm) + C|x|3/4+ε
1 ≤ C

|x|3/4+ε
1 + |x|1

[
log

[
Var(Fm)

|x|3/41

]]−1
 .(3.5)

If Var(Fm) ≤ |x|7/81 then Var(T (x)) = O(|x|7/81 ) and Theorem 1.1 follows. Otherwise, if Var(Fm) ≥
|x|7/81 , using (3.5) we get that Var(T (x)) = O(|x|1/ log |x|1) and Theorem 1.1 follows. �

3.2.2. Proof of Proposition 3.3. By the definition of ∆k, we have

|∆k| =
1

#B(m)

∣∣∣E
 ∑
z∈B(m)

T (z, z + x) | Fk

− E

 ∑
z∈B(m)

T (z, z + x) | Fk−1

 ∣∣∣
≤ 1

#B(m)

∑
z∈B(m)

∣∣∣E [T (z, z + x) | Fk]− E [T (z, z + x) | Fk−1]
∣∣∣.(3.6)
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We precise the dependence of passage time on trajectories of SRWs by writing

T (u, v) = T (u, v, (Sxi
. )i∈N).

For any k, let us define

Xk(u, v) = E(T (u, v) | Fk).

Then Xk(u, v) is a function of trajectories of (Sxi
. )i≤k, so we write

Xk(u, v) = Xk(u, v)((Sxi
. )i<k, (S

xk
. )).

Let (S̃x. )x∈Zd be an independent copy of (Sx. )x∈Zd . We observe that

E(|Xk(u, v)− Ek(Xk(u, v))|) ≤ E<kEkẼk(|Xk(u, v)− X̃k(u, v)|),(3.7)

where

X̃k(u, v) = Xk(u, v)((Sxi
. )i<k, (S̃

xk
. )),

and E<k,Ek, and Ẽk denote the expectations with respect to SRWs (Sxi
. )i<k, (Sxk

. ) and (S̃xk
. )

respectively. Then the inequality (3.7) becomes

E
∣∣∣E [T (z, z + x) | Fk]− E [T (z, z + x) | Fk−1]

∣∣∣ ≤ EẼk
∣∣∣T (z, z + x)− T̃xk

(z, z + x)
∣∣∣,(3.8)

where for u, v ∈ Zd and k ≥ 1

T̃xk
(u, v) = T (u, v)((Sxi

. )i<k, (S̃
xk
. ), (Sxi

. )i>k).

By symmetry,

EẼk
∣∣∣T (z, z + x)− T̃xk

(z, z + x)
∣∣∣

= 2EẼk
(

[T̃xk
(z, z + x)− T (z, z + x)]I(T̃xk

(z, z + x) ≥ T (z, z + x))
)
.(3.9)

For any u, v ∈ Zd, we choose an optimal path for T (u, v) with a deterministic rule breaking ties and

denote it by γu,v. We observe that if xk 6∈ γu,v then T̃xk
(u, v) ≤ T (u, v). Otherwise, if xk ∈ γu,v,

then

(3.10) T (u, v) = T (u, xk) + T (xk, x̄k) + T (x̄k, v),

with x̄k the next point of xk in γu,v (recall also that we denote by y ∼ ȳ ∈ γ if ȳ is the next point
of y in γ). Due to the subadditivity,

T̃xk
(u, v) ≤ T̃xk

(u, xk) + T̃xk
(xk, x̄k) + T̃xk

(x̄k, v).(3.11)

It is clear that the optimal path for T (u, xk) does not use the simple random walk (Sxk
· ). Hence,

(3.12) T̃xk
(u, xk) ≤ T (u, xk).

In addition, since x̄k is the next point of xk in γu,v, the optimal path for T (x̄k, v) does not use the
simple random walk (Sxk

· ). Thus

(3.13) T̃xk
(x̄k, v) ≤ T (x̄k, v).

It follows from (3.10)–(3.13) that

T̃xk
(u, v)− T (u, v) ≤ T̃xk

(xk, x̄k).

Therefore, we have

(T̃xk
(z, z + x)− T (z, z + x))I(T̃xk

(z, z + x) ≥ T (z, z + x))

≤ T̃xk
(xk, x̄k)I(xk ∈ γz,z+x).(3.14)
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Combining (3.6), (3.8), (3.9) and (3.14), we get

E(|∆k|) ≤ 2

#B(m)
E⊗2

 ∑
z∈B(m)

T̃xk
(xk, x̄k)I(xk ∈ γz,z+x)


=

2

#B(m)
E⊗2

 ∑
z∈B(m)

T̃xk−z(xk − z, xk − z)I(xk − z ∈ γ0,x)


=

2

#B(m)
E⊗2

 ∑
y∈xk−B(m)

T̃y(y, ȳ)I(y ∈ γ0,x)


=

2

#B(m)

∑
L≥0

E⊗2

 ∑
y∈xk−B(m)

T̃y(y, ȳ)I(y ∈ γ0,x)I(Ek,L)

 ,(3.15)

where E⊗2 is the expectation with respect to two independent collections of SRWs (Sxi
. )i∈N and

(S̃xi
. )i∈N and let

Ek,L =

 ∑
y∈γ0,x∩xk−B(m)

|y − ȳ|1 = L

 .

Notice that for the second equation, we have used the invariant translation. Let us define

T [z](u, v) = inf
{ k∑
l=1

t(yl−1, yl) : u = y0, . . . , yk = v, yl 6= z ∀ l ≥ 1, for some k
}
,

as the passage time from u to v not using the frog at z, and set

T1(u, v) = max
z: |z−u|1=1

T [u](z, v) + 1.

Then, it holds that

(3.16) T̃u(u, v) ≤ T1(u, v).

Using (3.16), we obtain

∑
y∈xk−B(m)

T̃y(y, ȳ)I(y ∈ γ0,x)I(Ek,L) ≤ max
γ=(yi)

`
i=1⊂xk−B(m)
|γ|1≤L

`−1∑
i=1

T̃yi(yi, yi+1)I(Ek,L)

≤ max
γ=(yi)

`
i=1⊂xk−B(m)
|γ|1≤L

`−1∑
i=1

T1(yi, yi+1)I(Ek,L).

Therefore,

2dC1m∑
L=0

E⊗2

 ∑
y∈xk−B(m)

T̃y(y, ȳ)I(y ∈ γ0,x)I(Ek,L)

 ≤ E

 max
γ=(yi)

`
i=1⊂xk−B(m)
|γ|1≤2dC1m

`−1∑
i=1

T1(yi, yi+1)


= E

 max
γ=(yi)

`
i=1⊂B(m)

|γ|1≤2dC1m

`−1∑
i=1

T1(yi, yi+1)


≤ E

(
max

γ=(yi)`i=1∈P2dC1m

`−1∑
i=1

T1(yi, yi+1)

)
,(3.17)
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and ∑
L≥2dC1m+1

E⊗2

 ∑
y∈xk−B(m)

T̃y(y, ȳ)I(y ∈ γ0,x)I(Ek,L)


≤

∑
L≥2dC1m+1

E

 max
γ=(yi)

`
i=1⊂xk−B(m)
|γ|1≤L

`−1∑
i=1

T1(yi, yi+1)I(Ek,L)



≤
∑

L≥2dC1m+1

E
 max
γ=(yi)

`
i=1⊂xk−B(m)
|γ|1≤L

`−1∑
i=1

T1(yi, yi+1)


2

1/2

P(Ek,L)1/2

≤
∑

L≥2dC1m+1

E( max
γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1)

)2
1/2

P(Ek,L)1/2,(3.18)

where we have used the Cauchy-Schwartz inequality in the second inequality.

These yield that

E|∆k| ≤ E

(
max

γ=(yi)`i=1∈P2dC1m

`−1∑
i=1

T1(yi, yi+1)

)

+
∑

L≥2dC1m+1

E( max
γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1)

)2
1/2

P(Ek,L)1/2.

(3.19)

Using similar arguments for (3.15), (3.17) and (3.18), we can show that

∞∑
k=1

E(|∆k|) ≤ 2

#B(m)

∞∑
k=1

∑
z∈B(m)

E⊗2T̃xk
(xk, x̄k)I(xk ∈ γz,z+x)

= 2E⊗2

∑
y∈Zd

T̃y(y, ȳ)I(y ∈ γ0,x)


≤ 2E

(
max

γ=(yi)`i=1∈PC1|x|1

`−1∑
i=1

T1(yi, yi+1)

)

+2
∑

L≥C1|x|1+1

E( max
γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1)

)2
1/2

P(EL)1/2,(3.20)

with

EL = {|γ0,x|1 = L}.

Lemma 3.4. There exists a positive constant C, such that for all L ≥ 1,

(i)

E

(
max

γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1)

)
≤ CL.

(ii)

E

(
max

γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1)

)2

≤ CL4.

We postpone the proof of this lemma for a while.
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Lemma 3.5. Given a path γ = (yi)
`
i=1 ⊂ Zd, we define the maximal jump

M(γ) = max
1≤i≤`−1

|yi − yi+1|1.

Then, for any L ≥ m = |x|1/41 ,

P(M(γ0,x) ≥ L) ≤ e−L
ε

,

with some ε > 0.

Proof. We write γ0,x = (yi)
`
i=1. If |yi − yi+1|1 ≥ L, then T (yi, yi+1) = t(yi, yi+1) ≥ L. By the

union bound, Lemma 2.1 and Lemma 2.4, we have

P(M(γ0,x) ≥ L) ≤ P(∃u, v ∈ B(C1|x|1) s.t. T (u, v) = t(u, v) ≥ L) + P(|γ0,x|1 ≥ C1|x1|)
≤ [#B(C1|x|1)]2P(T (u, v) = t(u, v) ≥ L) + P(T (0, x) ≥ C1|x1|)

≤ e−L
ε

,

(3.21)

for some constant ε > 0. �

Proof of Proposition 3.3 (ii). Fix k ≥ 1. We first estimate P(Ek,L). Assume that Ek,L occurs and
γ0,x ∩ (xk −B(m)) = (yi)

`
i=1. Then

L =
∑

y∈γ0,x∩xk−B(m)

|y − ȳ|1 ≤
`−1∑
i=1

t(yi, yi+1) + t(y`, ȳ`) = T (y1, ȳ`).

Moreover, ȳ` ∈ xk −B(m+M(γ0,x)), since |y` − ȳ`|1 ≤M(γ0,x) and y` ∈ xk −B(m). Therefore,
using the union bound, Lemma 2.1 and Lemma 3.5,

P(Ek,L) ≤ P (∃u, v ∈ xk −B(m+M(γ0,x)) such that T (u, v) ≥ L)

≤ P (∃u, v ∈ B(m+ L) such that T (u, v) ≥ L) + P(M(γ0,x) ≥ L)

≤ (2(m+ L))2de−L
ε

+ e−L
ε

≤ (4(m+ L))2de−L
ε

.

Combining this inequality with (3.15), (3.17), (3.18) and Lemma 3.4, we obtain that there exists
C > 0 such that for any k ≥ 1

E(|∆k|) ≤ C

#B(m)

m+
∑

L≥2dC1m

L2(4(m+ L))de−L
ε/2


= O(m1−d) = O(|x|(1−d)/4

1 ).(3.22)

Since T (x) ≥ |γ0,x|1, by using Lemma 2.1, for any L ≥ C1|x|1
P(EL) ≤ P(T (x) ≥ L) ≤ e−L

ε1
.(3.23)

Using this inequality, (3.20) and Lemma 3.4, we get

∑
k≥1

E(|∆k|) ≤ C

|x|1 +
∑

L≥C1|x|1

L2e−L
ε/2


= O(|x|1).(3.24)

Now, Proposition 3.3 (ii) follows from (3.22) and (3.24). �

We now turn to prove Proposition 3.3 (i). To estimate Ent(∆k), we decompose the simple random
walks (Sxi

. ) into the sum of i.i.d. random variables. More precisely, for any xi ∈ Zd and j ≥ 1, we
write

Sxi
j = xi +

j∑
r=1

ωi,r,

where (ωi,r)i,r≥1 is an array of i.i.d. uniform random variables taking value in the set of canonical
coordinates in Zd, denoted by

Bd = {e1, . . . , e2d}.
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Therefore, we can view T (u, v) and Fm as a function of (ωi,r), and hence we sometimes write
T (u, v) = T (u, v, ω) to precise the dependence of T (u, v) on ω. We define

Ω =
∏
i,j∈N

Ωi,j ,

where Ωi,j is a copy of Bd. The measure on Ω is π =
∏
i,j∈N πi,j , where πi,j is the uniform measure

on Ωi,j . Then we can consider Fm as a random variable on the probability space (Ω, π). Given
ω ∈ Ω, e ∈ Bd and i, j ∈ N, we define a new configuration ωi,j,e as

ωi,j,ek,r =

{
ωk,r if (k, r) 6= (i, j)

e if (k, r) = (i, j).

We define

∆i,jf =
[
E
(
|f(ωi,j,U )− f(ωi,j,Ũ )|2

)]1/2
,(3.25)

where the expectation runs over two independent random variables U and Ũ , with the same law
as the uniform distribution on Bd.

Lemma 3.6. We have
∞∑
k=1

Ent(∆2
k) ≤ 2d

∞∑
i=1

∞∑
j=1

Eπ[(∆i,jFm)2].

Proof. We recall that ∆k = E(Fm | Fk), where

Fk = σ((Sxi
j ), i ≤ k, j ≥ 1) = σ(ωi,j , i ≤ k, j ≥ 1).

Notice that ∆2
k ∈ L2, since T (x) ∈ L4 by Lemma 2.1. Hence, using the tensorization of entropy

(Lemma 2.6), we have for k ≥ 1,

Ent(∆2
k) = Entπ(∆2

k) ≤ Eπ
∞∑
i=1

∞∑
j=1

Entπi,j
∆2
k.

By Lemma 2.7,

Entπi,j∆2
k ≤ 2d(∆i,j∆k)2.

Thus
∞∑
k=1

Ent(∆2
k) ≤ 2d

∞∑
j=1

∞∑
i=1

∞∑
k=1

Eπ[(∆i,j∆k)2].(3.26)

Now using the same arguments as in Lemma 6.3 in [8], we can show that

∞∑
k=1

Eπ[(∆i,j∆k)2] = Eπ[(∆i,jFm)2],

for any i, j. Combining this equation with (3.26), we get the desired result. �

Proof of Proposition 3.3 (i). Using Lemma 3.6 and the Cauchy-Schwartz inequality, we get

∞∑
i=1

∞∑
j=1

Eπ[(∆i,jFm)2] ≤ 1

#B(m)

∑
z∈B(m)

∞∑
i=1

∞∑
j=1

Eπ[(∆i,jT (z, z + x))2].(3.27)

On the other hand,

Eπ[(∆i,jT (z, z + x))2] = Eπ[(E|T (z, z + x, ωi,j,U )− T (z, z + x, ωi,j,Ũ )|)2]

≤ EπE[|T (z, z + x, ωi,j,U )− T (z, z + x, ωi,j,Ũ )|2]

= EπE[|T (z, z + x, ωi,j,U )− T (z, z + x)|2]

= 2EπE[(T (z, z + x, ωi,j,U )− T (z, z + x))2I(T (z, z + x, ωi,j,U ) ≥ T (z, z + x))].
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We observe that if xi 6∈ γz,z+x, or xi ∈ γz,z+x but T (xi, x̄i) < j, then

T (z, z + x, ωi,j,U ) ≤ T (z, z + x).

Otherwise, assume that xi ∈ γz,z+x and T (xi, x̄i) ≥ j. Then for any e ∈ Bd,

T (xi, x̄i) ≥ T (xi, x̄i − e+ ωi,j , ω
i,j,e),

since if we only replace ωi,j by e, after t(xi, x̄i) (also equals to T (xi, x̄i), as xi ∼ x̄i ∈ γ0,x) steps,
the simple random walk (Sxi

. ) arrives at x̄i − e+ ωi,j . Moreover,

T (z, xi, ω
i,j,e) = T (z, xi), T (x̄i, z + x, ωi,j,e) ≤ T (x̄i, z + x),

and

T (z, z + x) = T (z, xi) + T (xi, x̄i) + T (x̄i, z + x)

T (z, z + x, ωi,j,e) ≤ T (z, xi, ω
i,j,e) + T (xi, x̄i − e+ ωi,j , ω

i,j,e)

+T (x̄i − e+ ωi,j , x̄i, ω
i,j,e) + T (x̄i, z + x, ωi,j,e).

Hence, we reach

T (z, z + x, ωi,j,U )− T (z, z + x) ≤ T (x̄i − U + ωi,j , x̄i, ω
i,j,U ) ≤ max

y:|y−x̄i|≤2
T (y, x̄i, ω

i,j,U ).

Furthermore, since ω differs from ωi,j,U only in the trajectory of (Sxi
. ), for any u, v ∈ Zd,

T (u, v, ωi,j,U ) ≤ T [xi](u, v) ≤ T2(u, v),(3.28)

where we define

T2(u, v) = sup
z∈Zd

T [z](u, v).

Therefore, we have

Eπ[(∆i,jT (z, z + x))2] ≤ 2E
[

max
y:|y−x̄i|≤2

T2(y, x̄i)
2I(xi ∼ x̄i ∈ γz,z+x, T (xi, x̄i) ≥ j)

]
,

and thus
∞∑
j=1

Eπ(∆i,jT (z, z + x))2

≤ 2E
[ ∞∑
j=1

max
y:|y−x̄i|≤2

T2(y, x̄i)
2I(xi ∼ x̄i ∈ γz,z+x, T (xi, x̄i) ≥ j)

]
= 2E

[
T (xi, x̄i) max

y:|y−x̄i|≤2
T2(y, x̄i)

2I(xi ∼ x̄i ∈ γz,z+x)
]

≤ E
[
(T (xi, x̄i)

2 + max
y:|y−x̄i|≤2

T2(y, x̄i)
4)I(xi ∼ x̄i ∈ γz,z+x)

]
.

This yields that

∞∑
i=1

∞∑
j=1

Eπ(∆i,jT (z, z + x))2

≤ E
[ ∞∑
i=1

(T (xi, x̄i)
2 + max

y:|y−x̄i|≤2
T2(y, x̄i)

4)I(xi ∼ x̄i ∈ γz,z+x)
]

= E
[ ∞∑
i=1

(T (xi, x̄i)
2 + max

y:|y−x̄i|≤2
T2(y, x̄i)

4)I(xi ∼ x̄i ∈ γ0,x)
]

= E

 ∑
y∈γ0,x

T (y, ȳ)2

+ E

 ∑
y∈γ0,x

max
u:|u−y|1≤2

T2(u, y)4

 .(3.29)
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Now using the same arguments for (3.18) and (3.20), we get

E

 ∑
y∈γ0,x

max
|u−y|1≤2

T2(u, y)4

(3.30)

≤ E

(
max

γ=(yi)`i=1∈PC1|x|1

∑̀
i=1

max
|u−yi|1≤2

T2(u, yi)
4

)

+
∑

L≥C1|x|1+1

E( max
γ=(yi)`i=1∈PL

`−1∑
i=1

max
|u−yi|1≤2

T2(u, yi)
4

)2
1/2

P(EL)1/2.(3.31)

Lemma 3.7. As |x|1 tends to infinity,

E

 ∑
y∈γ0,x

T (y, ȳ)2

 = O(|x|1).

Lemma 3.8. There exists a positive constant C, such that for any L ≥ 1,

(i)

E

(
max

γ=(yi)`i=1∈PL

∑̀
i=1

max
u:|u−yi|1≤2

T2(u, yi)
4

)
≤ CL.

(ii)

E

(
max

γ=(yi)`i=1∈PL

`−1∑
i=1

max
u:|u−yi|1≤2

T2(u, yi)
4

)2

≤ CL10.

We postpone the proofs of the above two lemmas for a while and first complete the proof of
Proposition 3.3. Combining (3.23), (3.29), (3.30) and Lemmas 3.7 and 3.8, we get

∞∑
i=1

∞∑
j=1

Eπ(∆i,jT (z, z + x))2 = O(1)

|x|1 +
∑

L≥C1|x|1

L2e−L
ε1/2

 = O(|x|1).

This estimate holds with all z ∈ B(m), so we can conclude the proof of Proposition 3.3 by using
(3.27) and Lemma 3.6. �

3.3. Tessellation estimates. In this section, we will prove Lemmas 3.4, 3.7 and 3.8. We first
observe that the simple union bound is not sharp enough to prove the lemmas and that the
main difficulty comes from the correlations of passage times. To overcome this, we establish new
techniques combining tessellation arguments and percolation estimates (Lemma 2.5).

Proof of Lemma 3.7. For any γ = (yi)
`
i=1, we define

AγM = {yi ∈ γ : T (yi, yi+1) = M}.

Then, we can express

`−1∑
i=1

T (yi, yi+1)2 =
∑
k≥1

M2#AγM .(3.32)

We decompose

E

 ∑
y∈γ0,x

T (y, ȳ)2

 = E

 ∑
y∈γ0,x

T (y, ȳ)2; T (x) ≤ C|x|1

+ E

 ∑
y∈γ0,x

T (y, ȳ)2; T (x) > C|x|1

 .
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By a similar argument as in Lemma 2.2, the second term can be bounded from above byE


 ∑
y∈γ0,x

T (y, ȳ)2

2



1/2

P(|γ0,x|1 > C|x|1|)1/2

≤
(
E
[
T (x)4

])1/2 P(T (x) > C|x|1|)1/2

≤C|x|21e−|x|
ε
1/2,

(3.33)

which goes to 0 as |x|1 →∞.

To estimate the first term, under the condition T (x) ≤ C|x|1, we will show that for any M ≥ 1,

(3.34) E(#A
γ0,x
M ) ≤ C|x|1Md+1e−M

ε/d,

with some constants ε > 0 and C > 0. Then it follows from (3.32) that the first term can be
bounded from above by

C|x|1
∑
M≥1

Md+3e−M
ε/d = O(|x|1).

which proves Lemma 3.7.

Now it remains to prove (3.34). The general idea is to cover Zd by groups of boxes such that
in each group the numbers of two consecutive points in the optimal path having distance M in
different boxes are dominated by independent random variables. Then we will apply Lemma 2.5
to get the desired estimate.

We note that

(a) if T (u, v) = M then |u− v|1 ≤M ,
(b) if d1({u, v}, {x, y}) ≥ 2M , then the two events {T (u, v) = M} and {T (x, y) = M} are

independent.

In fact, (a) follows from the fact that T (u, v) ≥ |u− v|1 and (b) holds since the event T (u, v) = M
depends only on simple random walks (Sw. ) with |w − u|1 ≤M .

To each M , we divide Zd to 4d groups of boxes of size 2M , noted by {(BMi,z)z∈Zd , i = 1, . . . , 4d},
satisfying the following conditions:

(c) For any u, v ∈ Zd with |u− v|1 ≤M , there exists a boxes BMi,z containining u and v.

(d) For any i = 1, . . . , 4d, the boxes in the i-th group, (BMi,· ) are totally disjoint, i.e. the
distance between two arbitrary boxes is larger than 2M .

In fact, there are many covers satisfying (c) and (d), and here we choose a simple one defined as
follows. To each x ∈MZd, we define

BMx = x+ [0, 2M)d.

We enumerate {0, 1, 2, 3}d by {wi}4
d

i=1. Given i ∈ {1, · · · , 4d} and z ∈ Zd, we denote

BMi,z = BMM(wi+4z).

Lemma 3.9. The groups of boxes that we have constructed above satisfy (c) and (d).

Proof. The condition (d) is trivial by construction. We will prove that (c) holds. Assume that
u, v ∈ Zd and |u−v|1 ≤M . We consider x = (x1, . . . , xd), with xj = min {M [uj/M ],M [vj/M ]} for
j = 1, . . . , d. Since |uj−vj | ≤M , it holds that |uj−xj | < 2M and |vj−xj | < 2M . Thus u, v ∈ BMx .
In addition, since all the coordinates of x are multiple of M , there exists (wi, z) ∈ {0, 1, 2, 3}d×Zd,
such that x = M(wi + 4z), so u, v ∈ BMi,z. �

Given i = 1, . . . , 4d, we define

A
γ0,x
M,i,z = A

γ0,x
M ∩BMi,z.



16 VAN HAO CAN AND SHUTA NAKAJIMA

Then by (a) and (c),

#A
γ0,x
M ≤

4d∑
i=1

∑
z∈Zd

#A
γ0,x
M,i,z.(3.35)

Notice that if y ∼ ȳ ∈ γ0,x, then T (y, ȳ) = t(y, ȳ). Thus for any (i, z),

#A
γ0,x
M,i,z ≤ (2M)dY iz I(A

γ0,x
M,i,z 6= ∅),(3.36)

where

Y iz = I( ∃u, v ∈ BMi,z such that T (u, v) = t(u, v) = M).

Thus for each i = 1, . . . , 4d, ∑
z∈Zd

#A
γ0,x
M,i,z ≤ (2M)d

∑
z∈ηi,M0,x

Y iz ,(3.37)

where ηi,M0,x is the projected path of γ0,x defined by

ηi,M0,x = {z ∈ Zd : A
γ0,x
M,i,z 6= ∅}.

Since we assume that T (x) ≤ C1|x|1, we have γ0,x ∈ PC1|x|1 , which implies

ηi,M0,x ∈ PC1|x|1/M .

Hence, ∑
z∈ηM0,x

Y iz ≤ max
η∈PC1|x|1/M

∑
z∈η

Y iz =: Xi
C1|x|1,M .(3.38)

Combining this inequality with (3.36) and (3.37) yields that

4d∑
i=1

∑
z∈Zd

#A
γ0,x
M,i,z ≤ (2M)d

4d∑
i=1

Xi
C1|x|1,M .(3.39)

By (b) and (d), (Y iz )z∈Zd are i.i.d. Bernoulli random variables. Let pM = E(Y iz ). Then, it follows
from the union bound and Lemma 2.4 that

pM = P(∃u, v ∈ BMi,z : T (u, v) = t(u, v) = M)

≤ (2M)2de−M
ε

,
(3.40)

with some ε > 0. Now applying Lemma 2.5 to the set of random variables (Y iz )z∈Zd and the set of
paths PC1|x|1/M , we get

E(Xi
C1|x|1,M ) ≤ C(C1|x|1/M)p

1/d
M .(3.41)

Combining (3.35), (3.39) (3.40) and (3.41) gives that

E(#A
γ0,x
M ) ≤ C8d(C1|x|1)Md−1p

1/d
M(3.42)

≤ C8d+1(C1|x|1)Md+1e−M
ε/d,

which proves (3.34). �

Before going into the rest of the proofs, we will prove the same estimates as in Lemma 2.1 for
T1 and T2. By repeating the arguments of the proof of Lemma 2.1 ([1, Lemma 4.2]), we can show
that there exist positive constants C and ε, such that for any y, z ∈ Zd, and k ≥ C|y|1,

P
(
T [z](0, y) ≥ k

)
≤ e−k

ε

.(3.43)

By the union bound, for k ≥ C2|y|1 with C2 = 2C, we have

P(T1(0, y) ≥ k) ≤
∑

z∈Zd:|z|1=1

P(T [0](z, y) ≥ k − 1)

≤ 2de−(k−1)ε ≤ e−k
ε2
,

(3.44)
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with some ε2 > 0, where we have used (3.43) for k − 1 ≥ 2C|y|1 − 1 ≥ C|z − y|1.

We observe also that if T (y) ≤ k then T [z](0, y) = T (y) for z 6∈ B(k). Therefore, for k ≥ C3|y|1
with C3 = max{C1, C2},

P (T2(0, y) ≥ k) ≤ P(T (y) ≥ k) + P(T (y) < k, T2(0, y) ≥ k)

≤ P(T (y) ≥ k) +
∑

z∈B(k)

P
(
T [z](0, y) ≥ k

)
≤ e−k

ε1
+ (2k)de−k

ε2 ≤ e−k
ε3
,(3.45)

with some ε3 > 0. From now on, for simplicity of notation we use C1 for all C1, C2, C3, and ε1 for
all ε1, ε2, ε3. It means that for k ≥ C1|y|1,

(3.46) max{P(T (0, y) ≥ k),P(T1(0, y) ≥ k),P(T2(0, y) ≥ k)} ≤ e−k
ε1
.

Proof of Lemma 3.4. We begin with Part (ii), which is easier than (i). Observe that

max
γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1) ≤ L max
u,v∈B(L)

T1(u, v)

Using the union bound and (3.46), for any k ≥ 2dC1L,

P
(

max
u,v∈B(L)

T1(u, v) ≥ k
)
≤ (2L)2de−k

ε1
.

The last two inequalities yield that

E

(
max

γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1)

)2

≤ CL4

1 + (2L)2d
∑

k≥2dC1L

k2e−k
ε1


= O(L4).

We now prove (i). For any γ = (yi)
`
i=1 ∈ PL, we define

ĀγM = {yi ∈ γ : |yi − yi+1|1 = M},
ĀγM,0 = {yi ∈ ĀγM : T1(yi, yi+1) ≤ C1M},
ĀγM,k = {yi ∈ ĀγM : T1(yi, yi+1) = C1M + k},

with C1 as in (3.46). Then

#ĀγM =
∑
k≥0

#ĀγM,k,
∑
M≥1

M#ĀγM = |γ|1 ≤ L.(3.47)

Therefore,

`−1∑
i=1

T1(yi, yi+1) ≤
∑
M≥1

C1M#ĀγM,0 +
∑
k≥1

(C1M + k)#ĀγM,k


≤ C1L+

∑
M≥1

∑
k≥1

k#ĀγM,k.(3.48)

We shall apply the same arguments as in the proof of Lemma 3.7 to deal with the sum above.
For each M,k we tessellate Zd to groups of boxes whose size equals 2(C1M + k). Using analogous
arguments to prove (3.41) and (3.42), we can show that

E
(

max
γ∈PL

#ĀγM,k

)
≤ CL(C1M + k)d−1p

1/d
M,k,(3.49)

where

pM,k = P (∃u, v ∈ B(C1M + k) : |u− v|1 ≤M,T1(u, v) = C1M + k)

≤ (2(C1M + k))2de−(C1M+k)ε1 ,
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by using the union bound and (3.46). Combining (3.48) and (3.49), we have

E

(
max

γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1)

)
≤ C1L+

∑
M≥1

∑
k≥1

kE
(

max
γ∈PL

#ĀγM,k

)

≤ CL

1 +
∑
M≥1

∑
k≥1

(C1M + k)d+2e−(C1M+k)ε1/d


= O(L),

which proves (i). �

Proof of Lemma 3.8. To show (ii), we notice that

(3.50) max
γ=(yi)`i=1∈PL

`−1∑
i=1

max
u:|u−yi|1≤2

T2(u, yi)
4 ≤ L max

u,v∈B(L+2)
T2(u, v)4.

Now part (ii) follows from (3.46) and (3.50) by using the same arguments as in Lemma 3.4 (ii).

The proof of (i) is similar to that of Lemma 3.7. For any M ≥ 1, using (3.46) and the union
bound,

p′M = P
(
∃y ∈ B(M), max

u:|u−y|1≤2
T2(u, y)4 = M

)
≤ (2M)dP

(
max
|u|1≤2

T2(u, 0)4 = M

)
≤ e−M

ε

,(3.51)

for some ε > 0 small. As in Lemma 3.7, we define for γ ∈ PL, and M ≥ 1

A′γM = {y ∈ γ : max
u:|u−y|1≤2

T2(u, y)4 = M}.

We also cover Zd by groups of boxes whose size equals to 2M as in the proof of Lemma 3.7 to
verify conditions (c) and (d). Repeating the arguments as in the proof of Lemma 3.7, with A′γM , p

′
M

replacing AγM , pM , we can show that

E

(
max

γ=(yi)`i=1∈PL

∑̀
i=1

max
u:|u−yi|1≤2

T2(u, yi)
4

)
= O(L)

∑
M≥1

Md−1e−M
ε/d

 = O(L),

which proves (i). �

4. Proof of Proposition 1.2

Proof. The upper bound on the length of optimal paths is a consequence of Lemma 2.1. Indeed,
if γ ∈ O(x), then l(γ) ≤ T (x). Hence, by Lemma 2.1,

P
(

max
γ∈O(x)

l(γ) > C1|x|1
)
≤ P(T (x) > C1|x|1)(4.1)

≤ e−|x|
ε1
1 ,(4.2)

with ε1 and C1 positive constants as in Lemma 2.1. To show the lower bound, we first recall the
definition of AγM as in the proof of Lemma 3.7:

AγM = {yi ∈ γ : T (yi, yi+1) = t(yi, yi+1) = M}.

Then since l(γ) =
∑
M≥1 #AγM , for any γ ∈ O(x), and K ≥ 1

|x|1 ≤ T (x) =
∑
M≥1

M#AγM ≤ K

K∑
M=1

#AγM +
∑
M≥K

M#AγM

≤ Kl(γ) +
∑
M≥K

M#AγM .(4.3)
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Rearranging it, we obtain that for any K ≥ 1,

min
γ∈O(x)

l(γ) ≥ 1

K

|x|1 − max
γ∈O(x)

∑
M≥K

M#AγM


≥ 1

K

|x|1 − ∑
M≥K

M max
γ∈O(x)

#AγM

 .(4.4)

Note that if T (x) ≤ C1|x|1, then γ ∈ PC1|x|1 for any γ ∈ O(x), and thus

(4.5)
∑
M≥K

M max
γ∈O(x)

#AγM ≤
∑
M≥K

M max
γ∈PC1|x|1

#AγM .

We define

Mx = [|x|1/2(d+3)
1 ],

and

E = {∀M ≥Mx, ∀γ ∈ PC1|x|1 , #AγM = 0}.

Then, by using the union bound and Lemma 2.4, we get

P(Ec) ≤ P(∃u, v ∈ B(C1|x|1) such that T (u, v) = t(u, v) ≥M)

≤ (2C1|x|1)2d
∑

M≥Mx

e−M
ε1 ≤ Ce−|x|

ε
1 ,(4.6)

for some positive constants C and ε. We recall the tessellation as in the proof of Lemma 3.7. Based
on the groups of boxes {(BMi,z)z∈Zd , i = 1, . . . , 4d} whose size equals to 2M , we have defined

AηM,i,z = BMi,z ∩A
η
M .

Moreover,

#AηM ≤
4d∑
i=1

∑
z∈Zd

#AηM,i,z.(4.7)

Using Lemma 2.5 (i) and the same arguments as in Lemma 3.7, we can show that for any i =
1, . . . , 4d, K ≤M ≤Mx, and s ≥ A1 (with A1 as in Lemma 2.5 (i)),

P

 max
γ∈PC1|x|1

∑
z∈Zd

#AγM,i,z ≥ s
(
C1|x|1
M

)
(2M)dp

1/d
M

 ≤ exp
(
−s
(
C1|x|1
M

)
p

1/d
M /2

)
,

with pM as in (3.40). Let s = sM = p
−1/d
M M−(d+1). Then

P

 max
γ∈PC1|x|1

4d∑
i=1

∑
z∈Zd

#AγM,i,z ≥ Cd|x|1M
−2

 ≤ 4d exp
(
−(C1|x|1)/(2Md+2)

)
,

with Cd = 22d−2C1. Notice that by (3.40), sM →∞ as M →∞, so the condition sM ≥ A1 holds
for any M ≥ K with K large enough. It follows from (4.7) that

P

(
Mx∑
M=K

M max
γ∈PC1|x|1

#AγM ≥ Cd|x|1
Mx∑
M=K

M−2

)
≤ 4d

Mx∑
M=K

M exp
(
− C1|x|1

2Md+2

)
.

Therefore,

P

(
Mx∑
M=K

M max
γ∈PC1|x|1

#AγM ≥
Cd|x|1
K

)
≤ 4dM2

x exp
(
− C1|x|1

2Md+2
x

)
≤ e−|x|

ε
1 ,(4.8)
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for some ε > 0. We now only need to take K large enough such that Cd/K < 1/2 and sM ≥ A1

for any M ≥ K. Then by (4.4), (4.5), (4.6) and (4.8), if we take c > 0 sufficiently small so that
1− cK ≥ Cd/K, we get

P
(

min
γ∈O(x)

l(γ) < c|x|1
)
≤ P(T (x) > C1|x|1) + P(Ec) + P

(
Mx∑
M=K

M max
γ∈PC1|x|1

#AγM > (1− cK)|x|1

)
≤ Ce−|x|

ε
1 ,

which completes the proof of Proposition 1.2. �
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