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Introduction

Frog models are simple but well-known models in the study of the spread of infection. In these models, individuals (also called frogs) move on the integer lattice Z d , which have one of two states infected (active) and healthy (passive). We assume that at the beginning, there is only one infected frog at the origin, and there are healthy frogs at other sites of Z d . When a healthy frog encounters with an infected one, it becomes infected forever. While the healthy frogs do not move, the infected ones perform independent simple random walks once they get infected. The object we are interested in is the long time behavior of the infected individuals.

To the best of our knowledge, the first result on frog models is due to Tecls and Wormald [START_REF] Telcs | Branching and tree indexed random walks on fractals[END_REF], where they proved the recurrence of the model (more precisely, they showed that the origin is visited infinitely often a.s.). Since then, there are numerous results on the behavior of the model under various settings of initial configurations, mechanism of walks, or underlying graphs, see [START_REF] Alves | The shape theorem for the frog model[END_REF][START_REF] Beckman | Asymptotic behavior of the brownian frog model[END_REF][START_REF] Bérard | Large deviations of the front in a one-dimensional model of X + Y → 2X[END_REF][START_REF] Döbler | Recurrence for the frog model with drift on Z d[END_REF][START_REF] Gantert | Recurrence for the frog model with drift on Z. Markov Process[END_REF][START_REF] Hoffman | From transience to recurrence with Poisson tree frogs[END_REF][START_REF] Hoffman | Recurrence and transience for the frog model on trees[END_REF][START_REF] Kosygina | A zero-one law for recurrence and transience of frog processes[END_REF]. In particular, Popov and some authors study the phase transition of the recurrence vs transience for the model with Bernoulli initial configurations and for the model with drift, see [START_REF] Alves | Phase transition for the frog model[END_REF][START_REF] Döbler | Recurrence and transience of frogs with drift on Z d[END_REF][START_REF] Gantert | Recurrence for the frog model with drift on Z. Markov Process[END_REF][START_REF] Popov | Frogs in random environment[END_REF]. Another interesting feature in the frog model is that it can be described in the first passage percolation contexts, which is explained below. In fact, Alves, Machado and Popov used this property to prove a shape theorem [START_REF] Alves | The shape theorem for the frog model[END_REF]. Moreover, the large deviation estimates for the passage time are derived in [START_REF] Can | Large deviations for the passage time in frog models[END_REF][START_REF] Kubota | Deviation bounds for the first passage time in the frog model[END_REF] recently.

The frog model can be defined formally as follows. Let d ≥ 2 and {(S x j ) j∈N , x ∈ Z d } be independent SRWs such that S x 0 = x for any x ∈ Z d . For x, y ∈ Z d , let t(x, y) = inf{j : S x j = y}. The first passage time from x to y is defined by T (x, y) = inf k i=1 t(x i-1 , x i ) : x = x 0 , . . . , x k = y for some k .

The quantity T (x, y) can be seen as the first time when the frog at y becomes infected assuming that the frog at x was the only infected one at the beginning. For the simplicity of notation, we write T (x) instead of T (0, x).

It has been shown in [START_REF] Alves | The shape theorem for the frog model[END_REF] that the passage time is subadditive, i.e. for any x, y, z ∈ Z d (1.1)

T (x, z) ≤ T (x, y) + T (y, z).

The authors of [START_REF] Alves | The shape theorem for the frog model[END_REF] also show that the sequence {T ((k -1)z, kz)} k≥1 is stationary and ergodic for any z ∈ Z d . As a consequence of Kingman's subadditive ergodic theorem (see [START_REF] Kingman | Subadditive ergodic theorem[END_REF] or [ n .

Furthermore, a shape theorem for the set of active frogs has been also proved, see [START_REF] Alves | The shape theorem for the frog model[END_REF]Theorem 1.1].

The convergence (1.2), which can be seen as a law of large numbers, implies that for any x ∈ Z d the passage time T (x) grows linearly in |x| 1 . A natural question is whether the standard central limit theorem hold for T (x). The first task is to understand the behavior of variance of T (x). In [START_REF] Kubota | Deviation bounds for the first passage time in the frog model[END_REF], the author proves some large deviation estimates for T (x), see in particular Lemma 2.2 below.

As a consequence, one can show that Var(T (x)) = O(|x| 1 (1 + log |x| 1 ) 2A ), for some constant A, see Corollary 2.3. However, this result is not enough to answer the question on standard central limit theorem.

Our main result is to show that the passage time has sublinear variance and thus the standard central limit theorem is not true.

Theorem 1.1. There exists a positive constant C = C(d), such that for any x ∈ Z d ,

Var(T (x)) ≤ C|x| 1 log |x| 1 .
The sublinearity of variance as in Theorem 1.1, which is also called the superconcentration [START_REF] Sourav | Superconcentration and Related Topics[END_REF], was first discovered in the classical first passage percolation by Benjamini, Kali and Schram [START_REF] Benjamini | First-passage percolation has sublinear distance variance[END_REF]. Hence, this result is sometimes called BKS-inequality. Chatterjee found the connection of superconcentration with chaos and multiple valleys in the gaussian polymer and SK model. This relation is expected to hold in general models. Therefore, the superconcentration is not only an interesting property itself but also an important object to study the structure of optimal paths and the energy landscape.

The superconcentration has been proved for several models such as the classical first passage percolation and the gaussian polymer model. In these proofs, one usually has to estimate the martingale difference carefully, which needs the model-dependent arguments. In the frog model, the correlation between passage times is problematic for this kind of estimate. A key observation to pass this difficulty is that the passage times are locally-dependent. Indeed, by large deviation estimates (see Lemma 2.1), T (x, y) ≤ C|x -y| 1 for some C > 0 with very high probability. Thus T (x, y) mainly depends on SRWs (S z

• ) with |z -x| 1 ≤ C|x -y| 1 . Therefore, if the two pairs (x, y) and (u, v) are far enough from each other, the passage times T (x, y) and T (u, v) are weakly dependent. From this observation, using tessellation arguments, we decompose the martingale difference to some groups of the independent passage times. After that, we apply the percolation estimate to get the desired bound. This approach seems to be useful for other problems. Indeed, we also prove the linearity of the length of optimal path by using a similar method. Given x, y ∈ Z d , let us denote by O(x, y) the set of all optimal paths from x to y. We simply write O(x) for O(0, x). For any path γ = (y i ) i=1 ⊂ Z d , we denote l(γ) = the number of vertices in this path, and call it the length of γ. We will prove that the length of optimal paths from 0 to x grows linearly in |x| 1 .

Proposition 1.2. There exist positive constants ε, c and C, such that for any x ∈ Z

d P c|x| 1 ≤ min γ∈O(x) l(γ) ≤ max γ∈O(x) l(γ) ≤ C|x| 1 ≥ 1 -e -|x| ε 1 . 1.1. Notation. • If x = (x 1 , . . . , x d ) ∈ Z d , we denote |x| 1 = |x 1 | + . . . + |x d |. • For any n ≥ 1, we denote by B(n) = [-n, n] d .
• For any ≥ 1, we call a sequence of distinct vertices γ = (y i ) i=1 in Z d a path of length , we denote

|γ| 1 = |y 2 -y 1 | 1 + . . . + |y -y -1 | 1 . • Given y = y i ∈ γ,
we define ȳ = y i+1 the next point of y in γ with the convention that ȳ = y .

• We write y ∼ ȳ ∈ γ if ȳ is the next point of y in γ.

• For L ≥ 1, we write

P L = {γ = (y i ) i=1 ⊂ B(L), |γ| 1 ≤ L}.
• If f and g are two functions, we write f = O(g) if there exists a positive constant C = C(d), such that f (x) ≤ Cg(x) for any x. • We use C > 0 for a large constant and ε for a small constant. Note that they may change from line to line.

1.2. Organization of this paper. The paper is organized as follows. In Section 2, we present some preliminary results including large deviation estimates on the passage time, a lemma to control the tail distribution of maximal weight of paths in site-percolation, the introduction and properties of entropy. In Sections 3 and 4, we prove the main theorem 1.1 and Proposition 1.2.

Preliminaries

2.1. Large deviation estimates on passage time. We present here some useful estimates on the deviation of passage time.

Lemma 2.1. [1, Lemma 4.2] There exist a positive integer number C 1 and a positive constant ε 1 , such that for any x, y ∈ Z d and k ≥ 0,

P (T (x, y) ≥ C 1 |x -y| 1 + k) ≤ e -(C1|x-y|1+k) ε 1 .
Notice that in [START_REF] Alves | The shape theorem for the frog model[END_REF], the authors only prove Lemma 2.1 for the case k = 0. However, we can easily generalize their arguments to all k ≥ 1. We safely leave the proof of this lemma to the reader. It follows from Lemma 2.1 that there exists C > 0 such that for any x ∈ Z d ,

ET (x) ≤ C|x| 1 . (2.1)
The following concentration inequality is derived in [START_REF] Kubota | Deviation bounds for the first passage time in the frog model[END_REF]. 

P(|T (x) -ET (x)| ≥ t |x| 1 ) ≤ e -bt a .
As a direct consequence of Lemmas 2.1 and 2.2, we have Corollary 2.3. There exists positive constant A, such that

Var(T (x)) = O(|x| 1 (1 + log |x| 1 ) 2A ).
Proof. We take a positive constant C sufficiently large such that Lemma 2.1 and (2.1) hold. By using the fact E(X 2 ) = ∞ 0 2tP(X ≥ t)dt for any non-negative random variable X, we get

Var(T (x)) = ∞ 0 2tP(|T (x) -ET (x)| ≥ t)dt = (2+log |x|1) A √ |x|1 0 + 2C|x|1 (2+log |x|1) A √ |x|1 + ∞ 2C|x|1 2tP(|T (x) -ET (x)| ≥ t)dt. (2.2)
The first term of the right hand side (2.2) can be bounded from above by

(2+log |x|1) A √ |x|1 0 2tdt ≤ (2 + log |x| 1 ) 2A |x| 1 .
By Lemma 2.2, the second term is bounded from above by

2C|x| 1 ∞ 0 2te -bt a dt = O(|x| 1 ).
Finally, by (2.1) and Lemma 2.1, the third term is bounded from above by

∞ 2C|x|1 2tP(T (x) ≥ t/2)dt ≤ ∞ 2C|x|1 2te -(t/2) ε 1 dt = O(1).
Combining these estimates, we get the conclusion.

Lemma 2.4. There exists a positive constant ε 2 , such that for any x, y ∈ Z d , and M ≥ 1 

P(T (x, y) = t(x, y) = M ) ≤ e -M ε 2 . Proof. If |x -y| 1 ≤ M 2/3 ,
P max 0≤j≤k |S x j -x| 1 ≥ r ≤ Ce -cr 2 /k . (2.3) Therefore, P(t(x, y) = M ) ≤ P max 0≤j≤M |S x j -x| 1 ≥ M 2/3 ≤ Ce -cM 1/3 ,
for some c, C > 0.

2.2.

A result on the maximal weight of paths in site-percolation. Let PL be the set of self-avoiding nearest-neighbor paths in B(L) whose length is bounded by L, i.e.,

PL = (y

i ) i=1 ⊂ B(L) ∩ Z d | ≤ L, |y i -y i-1 | 1 = 1 for 2 ≤ i ≤ , y i = y j if i = j .
Let {X x } x∈Z d be a collection of independent and identical distribution random variables such that P(X x = 1) = 1 -P(X x = 0) = p with a parameter p ∈ [0, 1]. For any path γ, we define X(γ) = x∈γ X x the weight of γ. The maximal weight of paths in PL and P L are defined respectively as XL = max

γ∈ PL X(γ), X L = max γ∈P L X(γ).
Note that for any γ ∈ P L , there exists γ ∈ PL such that γ ⊂ γ. This implies X L ≤ XL .

The tail distribution and expectation of XL can be controlled as in the following lemma.

Lemma 2.5. [8, Lemma 6.8] There exist positive constants A 1 and A 2 , such that for any p ∈ (0, 1) and L ≥ 1, the following statements hold.

(i) For any s ≥ A 1 ,

P XL ≥ sLp 1/d ≤ exp -sLp 1/d /2 .
(ii) We have

E XL ≤ A 2 Lp 1/d .
In particular, the above estimates hold if we replace XL by X L .

We notice that in [START_REF] Damron | Sublinear variance in first-passage percolation for general distributions[END_REF], the authors prove these results for the edge-percolation, i.e. for the setting where (X e ) e∈E d (with E d the edge set of Z d ) are the edge-indexed i.i.d. Bernoulli random variables and Q L is the set of edge-paths in B(L). However, their proof can be easily adapted to the case of site-percolation as in Lemma 2.5. We also remark that in Lemma 6.8 of [START_REF] Damron | Sublinear variance in first-passage percolation for general distributions[END_REF], the authors only stated Part (ii), but in fact, they have proved (i) and derived (ii) from (i).

Entropy.

We first recall the definition of entropy with respect to a probability measure. Let (Ω, F, µ) be a probability space and X ∈ L 1 (Ω, µ) be a non-negative. Then

Ent µ (X) = E µ (X log X) -E µ (X) log E µ (X).
Note that by Jensen's inequality, Ent µ (X) ≥ 0. The following tensorization property of entropy is proved in [START_REF] Damron | Sublinear variance in first-passage percolation for general distributions[END_REF].

Lemma 2.6. [8, Theorem 2.3] Let X be a nonnegative L 2 random variable on a product space

∞ i=1 Ω i , F, µ = ∞ i=1 µ i , where F = ∞ i=1 G i , and each triple (Ω i , G i , µ i ) is a probability space. Then Ent µ (X) ≤ ∞ i=1 E µ Ent i (X),
where Ent i (X) is the entropy of X(ω) = X((ω 1 , . . . , ω i , . . .)) with respect to µ i , as a function of the i-th coordinate (with all other values fixed).

In the following lemma, we prove a generalization of Bonami inequality for simple random variables.

Lemma 2.7. Assume that k ≥ 2. Let f : {1, . . . , k} → R be a function and ν be the uniform distribution on {1, . . . , k}. Then

Ent ν (f 2 ) ≤ kE((f (U ) -f ( Ũ )) 2 ),
where E is the expectation with respect to two independent random variables U, Ũ , which have the same distribution ν.

Proof. Let us denote a

i = f (i). Then Ent ν (f 2 ) = E(f 2 (U ) log f 2 (U )) -E(f 2 (U )) log E(f 2 (U )) = 1 k k i=1 a 2 i log a 2 i - 1 k k i=1 a 2 i log k j=1 a 2 j k = k j=1 a 2 j k k i=1 a 2 i k j=1 a 2 j log ka 2 i k j=1 a 2 j ≤ k j=1 a 2 j k log k i=1 ka 4 i ( k j=1 a 2 j ) 2
, where we have used Jensen's inequality in the last inequatliy. Moreover,

log k i=1 ka 4 i ( k j=1 a 2 j ) 2 = log 1 + i<j (a 2 i -a 2 j ) 2 ( k j=1 a 2 j ) 2 ≤ i<j (a 2 i -a 2 j ) 2 ( k j=1 a 2 j ) 2 , since log(1 + x) ≤ x for any x ≥ 0. Therefore, Ent ν (f 2 ) ≤ 1 k i<j (a 2 i -a 2 j ) 2 k j=1 a 2 j .
On the other hand,

kE((f (U ) -f ( Ũ )) 2 ) = 1 k i,j (a i -a j ) 2 = 2 k i<j (a i -a j ) 2 .
Hence,

Ent ν (f 2 ) -kE((f (U ) -f ( Ũ )) 2 ) ≤ 1 k k j=1 a 2 j   i<j (a i -a j ) 2 (a i + a j ) 2 -2 k =1 a 2   ≤ - 1 k k j=1 a 2 j   i<j (a i -a j ) 4   ≤ 0,
which proves Lemma 2.7.

3. Proof of Theorem 1.1

3.1. Spatial average of the passage time. We consider a spatial average of T (x) defined by

F m = 1 #B(m) z∈B(m) T (z, z + x), where m = [|x| 1/4 1 ]. Proposition 3.1. For any ε > 0, it holds that |Var(T (x)) -Var(F m )| = O(|x| 3/4+ε 1
).

Proof. For any variables X and Y , by writing X = X -E(X) and ||X|| 2 = (E(X 2 )) 1/2 and using Cauchy-Schwartz inequality, we get

|Var(X) -Var(Y )| = |E( X2 -Ŷ 2 )| ≤ || X + Ŷ || 2 || X -Ŷ || 2 ≤ (|| X|| 2 + || Ŷ || 2 )|| X -Ŷ || 2 . (3.1)
We aim to apply (3.1) for T (x) and F m . Observe that

|| Fm || 2 ≤ 1 #B(m) z∈Bm || T (z, z + x)|| 2 = || T (0, x)|| 2 , (3.2)
by translation invariance. By Corollary 2.3,

|| T (0, x)|| 2 = Var(T (x)) = O(|x| 1/2 1 (1 + log |x| 1 ) A ). (3.3) Using the subadditivity (1.1), || T (0, x) -Fm || 2 = ||T (x) -F m || 2 = 1 #B(m) z∈B(m) (T (x) -T (z, z + x)) 2 ≤ 1 #B(m) z∈B(m) (T (z) + T (x, z + x)) 2 .
Using Cauchy-Shwartz inequality and the translation invariance, this is further bounded from above by

1 #B(m)   z∈B(m) T (z) 2 + z∈B(m) T (x, x + z) 2   = 2 #B(m) z∈B(m) T (z) 2 ≤2 max z∈B(m) T (z) 2 .
Using Lemma 2.1 and the union bound, we have

P max z∈B(m) T (z) ≥ C 1 |x| 1/4 1 + k ≤ (#B(m))e -(C1|x| 1/4 1 +k) ε 1 .
Therefore, by a similar argument as in Corollary 2.3, we have 

E max z∈B(m) T (z) 2 ≤ C 2 1 |x| 1/2 1 + (#B(m)) k≥0 (C 1 |x| 1/4 1 + k) 2 e -(C1|x| 1/4 1 +k) -ε 1 = O(|x|
F m -E(F m ) = ∞ k=1 ∆ k , where ∆ k = E(F m | F k ) -E(F m | F k-1 ),
with F k the sigma-algebra generated by SRWs {(S xi j ) j∈N , i = 1, . . . , k} and F 0 the trivial sigmaalgebra. In [START_REF] Damron | Sublinear variance in first-passage percolation for general distributions[END_REF], using Falik-Samorodnitsky lemma, the authors give an upper bound for variance of F m in term of Ent(∆ 2 k ), and

E(|∆ k |). Lemma 3.2. [8, Lemma 3.3] We have k≥1 Ent(∆ 2 k ) ≥ Var(F m ) log Var(F m ) k≥1 (E(|∆ k |)) 2 .
Now, our main task is to estimate Ent(∆ 2 k ) and E(|∆ k |). Proposition 3.3. As |x| 1 tends to infinity, (i)

k≥1 Ent(∆ 2 k ) = O(|x| 1 ). (ii) k≥1 (E(|∆ k |)) 2 = O |x| 5-d 4 1 . 3.2.1. Proof of Theorem 1.1 assuming Proposition 3.3. Since d ≥ 2, Proposition 3.3 (ii) implies that k≥1 (E(|∆ k |)) 2 = O |x| 3/4 1
. Therefore, using Propositions 3.1, 3.3 and Lemma 3.2, for any ε > 0, there exists a positive constant C, such that 

Var(T (x)) ≤ Var(F m ) + C|x| 3/4+ε 1 ≤ C   |x| 3/4+ε 1 + |x| 1 log Var(F m ) |x| 3/4 1 -1   . (3.5) If Var(F m ) ≤ |x|
|∆ k | = 1 #B(m) E   z∈B(m) T (z, z + x) | F k   -E   z∈B(m) T (z, z + x) | F k-1   ≤ 1 #B(m) z∈B(m) E [T (z, z + x) | F k ] -E [T (z, z + x) | F k-1 ] . (3.6)
We precise the dependence of passage time on trajectories of SRWs by writing

T (u, v) = T (u, v, (S xi . ) i∈N ).
For any k, let us define

X k (u, v) = E(T (u, v) | F k ).
Then X k (u, v) is a function of trajectories of (S xi . ) i≤k , so we write

X k (u, v) = X k (u, v)((S xi . ) i<k , (S x k . )).
Let ( Sx . ) x∈Z d be an independent copy of (S x . ) x∈Z d . We observe that

E(|X k (u, v) -E k (X k (u, v))|) ≤ E <k E k Ẽk (|X k (u, v) -Xk (u, v)|), (3.7) where Xk (u, v) = X k (u, v)((S xi . ) i<k , ( Sx k .
)), and E <k , E k , and Ẽk denote the expectations with respect to SRWs (S xi . ) i<k , (S x k . ) and ( Sx k . ) respectively. Then the inequality (3.7) becomes

E E [T (z, z + x) | F k ] -E [T (z, z + x) | F k-1 ] ≤ E Ẽk T (z, z + x) -Tx k (z, z + x) , (3.8) where for u, v ∈ Z d and k ≥ 1 Tx k (u, v) = T (u, v)((S xi . ) i<k , ( Sx k . ), (S xi . ) i>k ).
By symmetry,

E Ẽk T (z, z + x) -Tx k (z, z + x) = 2E Ẽk [ Tx k (z, z + x) -T (z, z + x)]I( Tx k (z, z + x) ≥ T (z, z + x)) . (3.9)
For any u, v ∈ Z d , we choose an optimal path for T (u, v) with a deterministic rule breaking ties and denote it by γ u,v . We observe that if

x k ∈ γ u,v then Tx k (u, v) ≤ T (u, v). Otherwise, if x k ∈ γ u,v , then (3.10) T (u, v) = T (u, x k ) + T (x k , xk ) + T (x k , v),
with xk the next point of x k in γ u,v (recall also that we denote by y ∼ ȳ ∈ γ if ȳ is the next point of y in γ). Due to the subadditivity,

Tx k (u, v) ≤ Tx k (u, x k ) + Tx k (x k , xk ) + Tx k (x k , v). (3.11)
It is clear that the optimal path for T (u, x k ) does not use the simple random walk (S x k • ). Hence,

(3.12) Tx k (u, x k ) ≤ T (u, x k ).
In addition, since xk is the next point of x k in γ u,v , the optimal path for T (x k , v) does not use the simple random walk (S x k • ). Thus

(3.13) Tx k (x k , v) ≤ T (x k , v).
It follows from (3.10)-(3.13) that

Tx k (u, v) -T (u, v) ≤ Tx k (x k , xk ).
Therefore, we have

( Tx k (z, z + x) -T (z, z + x))I( Tx k (z, z + x) ≥ T (z, z + x)) ≤ Tx k (x k , xk )I(x k ∈ γ z,z+x ). (3.14)
Combining (3.6), (3.8), (3.9) and (3.14), we get

E(|∆ k |) ≤ 2 #B(m) E ⊗2   z∈B(m) Tx k (x k , xk )I(x k ∈ γ z,z+x )   = 2 #B(m) E ⊗2   z∈B(m) Tx k -z (x k -z, x k -z)I(x k -z ∈ γ 0,x )   = 2 #B(m) E ⊗2   y∈x k -B(m)
Ty (y, ȳ)I(y ∈ γ 0,x )

  = 2 #B(m) L≥0 E ⊗2   y∈x k -B(m) Ty (y, ȳ)I(y ∈ γ 0,x )I(E k,L )   , (3.15)
where E ⊗2 is the expectation with respect to two independent collections of SRWs (S xi . ) i∈N and ( Sxi . ) i∈N and let

E k,L =    y∈γ0,x∩x k -B(m) |y -ȳ| 1 = L    .
Notice that for the second equation, we have used the invariant translation. Let us define

T [z] (u, v) = inf k l=1 t(y l-1 , y l ) : u = y 0 , . . . , y k = v, y l = z ∀ l ≥ 1, for some k ,
as the passage time from u to v not using the frog at z, and set

T 1 (u, v) = max z: |z-u|1=1 T [u] (z, v) + 1.
Then, it holds that

(3.16) Tu (u, v) ≤ T 1 (u, v).
Using (3.16), we obtain

y∈x k -B(m) Ty (y, ȳ)I(y ∈ γ 0,x )I(E k,L ) ≤ max γ=(yi) i=1 ⊂x k -B(m) |γ|1≤L -1 i=1 Tyi (y i , y i+1 )I(E k,L ) ≤ max γ=(yi) i=1 ⊂x k -B(m) |γ|1≤L -1 i=1 T 1 (y i , y i+1 )I(E k,L ). Therefore, 2dC1m L=0 E ⊗2   y∈x k -B(m) Ty (y, ȳ)I(y ∈ γ 0,x )I(E k,L )   ≤ E    max γ=(yi) i=1 ⊂x k -B(m) |γ|1≤2dC1m -1 i=1 T 1 (y i , y i+1 )    = E    max γ=(yi) i=1 ⊂B(m) |γ|1≤2dC1m -1 i=1 T 1 (y i , y i+1 )    ≤ E max γ=(yi) i=1 ∈P 2dC 1 m -1 i=1 T 1 (y i , y i+1 ) , (3.17) and L≥2dC1m+1 E ⊗2   y∈x k -B(m) Ty (y, ȳ)I(y ∈ γ 0,x )I(E k,L )   ≤ L≥2dC1m+1 E    max γ=(yi) i=1 ⊂x k -B(m) |γ|1≤L -1 i=1 T 1 (y i , y i+1 )I(E k,L )    ≤ L≥2dC1m+1   E    max γ=(yi) i=1 ⊂x k -B(m) |γ|1≤L -1 i=1 T 1 (y i , y i+1 )    2    1/2 P(E k,L ) 1/2 ≤ L≥2dC1m+1   E max γ=(yi) i=1 ∈P L -1 i=1 T 1 (y i , y i+1 ) 2   1/2 P(E k,L ) 1/2 , (3.18)
where we have used the Cauchy-Schwartz inequality in the second inequality.

These yield that

E|∆ k | ≤ E max γ=(yi) i=1 ∈P 2dC 1 m -1 i=1 T 1 (y i , y i+1 ) + L≥2dC1m+1   E max γ=(yi) i=1 ∈P L -1 i=1 T 1 (y i , y i+1 ) 2   1/2 P(E k,L ) 1/2 . (3.19) 
Using similar arguments for (3.15), (3.17) and (3.18), we can show that

∞ k=1 E(|∆ k |) ≤ 2 #B(m) ∞ k=1 z∈B(m) E ⊗2 Tx k (x k , xk )I(x k ∈ γ z,z+x ) = 2E ⊗2   y∈Z d Ty (y, ȳ)I(y ∈ γ 0,x )   ≤ 2E max γ=(yi) i=1 ∈P C 1 |x| 1 -1 i=1 T 1 (y i , y i+1 ) +2 L≥C1|x|1+1   E max γ=(yi) i=1 ∈P L -1 i=1 T 1 (y i , y i+1 ) 2   1/2 P(E L ) 1/2 , (3.20) with E L = {|γ 0,x | 1 = L}.
Lemma 3.4. There exists a positive constant C, such that for all L ≥ 1, (i)

E max γ=(yi) i=1 ∈P L -1 i=1 T 1 (y i , y i+1 ) ≤ CL. (ii) E max γ=(yi) i=1 ∈P L -1 i=1 T 1 (y i , y i+1 ) 2 ≤ CL 4 .
We postpone the proof of this lemma for a while.

Lemma 3.5. Given a path γ = (y i ) i=1 ⊂ Z d , we define the maximal jump

M(γ) = max 1≤i≤ -1 |y i -y i+1 | 1 .
Then, for any L ≥ m = |x| 1/4 1 , P(M(γ 0,x ) ≥ L) ≤ e -L ε , with some ε > 0.

Proof. We write γ 0,x = (y i ) i=1 . If |y i -y i+1 | 1 ≥ L, then T (y i , y i+1 ) = t(y i , y i+1 ) ≥ L. By the union bound, Lemma 2.1 and Lemma 2.4, we have

P(M(γ 0,x ) ≥ L) ≤ P(∃u, v ∈ B(C 1 |x| 1 ) s.t. T (u, v) = t(u, v) ≥ L) + P(|γ 0,x | 1 ≥ C 1 |x 1 |) ≤ [#B(C 1 |x| 1 )] 2 P(T (u, v) = t(u, v) ≥ L) + P(T (0, x) ≥ C 1 |x 1 |) ≤ e -L ε , (3.21) 
for some constant ε > 0.

Proof of Proposition 3.3 (ii). Fix k ≥ 1. We first estimate P(E k,L ). Assume that E k,L occurs and

γ 0,x ∩ (x k -B(m)) = (y i ) i=1 . Then L = y∈γ0,x∩x k -B(m) |y -ȳ| 1 ≤ -1 i=1 t(y i , y i+1 ) + t(y , ȳ ) = T (y 1 , ȳ ). Moreover, ȳ ∈ x k -B(m + M(γ 0,x )), since |y -ȳ | 1 ≤ M(γ 0,x
) and y ∈ x k -B(m). Therefore, using the union bound, Lemma 2.1 and Lemma 3.5,

P(E k,L ) ≤ P (∃u, v ∈ x k -B(m + M(γ 0,x )) such that T (u, v) ≥ L) ≤ P (∃u, v ∈ B(m + L) such that T (u, v) ≥ L) + P(M (γ 0,x ) ≥ L) ≤ (2(m + L)) 2d e -L ε + e -L ε ≤ (4(m + L)) 2d e -L ε .
Combining this inequality with (3.15), (3.17), (3.18) and Lemma 3.4, we obtain that there exists C > 0 such that for any k ≥ 1 We now turn to prove Proposition 3.3 (i). To estimate Ent(∆ k ), we decompose the simple random walks (S xi . ) into the sum of i.i.d. random variables. More precisely, for any x i ∈ Z d and j ≥ 1, we write

E(|∆ k |) ≤ C #B(m)   m + L≥2dC1m L 2 (4(m + L)) d e -L ε /2   = O(m 1-d ) = O(|x|
S xi j = x i + j r=1 ω i,r ,
where (ω i,r ) i,r≥1 is an array of i.i.d. uniform random variables taking value in the set of canonical coordinates in Z d , denoted by

B d = {e 1 , . . . , e 2d }.
Therefore, we can view T (u, v) and F m as a function of (ω i,r ), and hence we sometimes write T (u, v) = T (u, v, ω) to precise the dependence of T (u, v) on ω. We define

Ω = i,j∈N Ω i,j ,
where Ω i,j is a copy of B d . The measure on Ω is π = i,j∈N π i,j , where π i,j is the uniform measure on Ω i,j . Then we can consider F m as a random variable on the probability space (Ω, π). Given ω ∈ Ω, e ∈ B d and i, j ∈ N, we define a new configuration ω i,j,e as

ω i,j,e k,r = ω k,r if (k, r) = (i, j) e if (k, r) = (i, j).
We define

∆ i,j f = E |f (ω i,j,U ) -f (ω i,j, Ũ )| 2 1/2 , (3.25)
where the expectation runs over two independent random variables U and Ũ , with the same law as the uniform distribution on B d . Lemma 3.6. We have

∞ k=1 Ent(∆ 2 k ) ≤ 2d ∞ i=1 ∞ j=1 E π [(∆ i,j F m ) 2 ]. Proof. We recall that ∆ k = E(F m | F k ),
where

F k = σ((S xi j ), i ≤ k, j ≥ 1) = σ(ω i,j , i ≤ k, j ≥ 1). Notice that ∆ 2 k ∈ L 2 , since T (x) ∈ L 4 by Lemma 2.1.
Hence, using the tensorization of entropy (Lemma 2.6), we have for k ≥ 1,

Ent(∆ 2 k ) = Ent π (∆ 2 k ) ≤ E π ∞ i=1 ∞ j=1 Ent πi,j ∆ 2 k . By Lemma 2.7, Ent πi,j ∆ 2 k ≤ 2d(∆ i,j ∆ k ) 2 . Thus ∞ k=1 Ent(∆ 2 k ) ≤ 2d ∞ j=1 ∞ i=1 ∞ k=1 E π [(∆ i,j ∆ k ) 2 ]. (3.26)
Now using the same arguments as in Lemma 6.3 in [START_REF] Damron | Sublinear variance in first-passage percolation for general distributions[END_REF], we can show that

∞ k=1 E π [(∆ i,j ∆ k ) 2 ] = E π [(∆ i,j F m ) 2 ],
for any i, j. Combining this equation with (3.26), we get the desired result.

Proof of Proposition 3.3 (i). Using Lemma 3.6 and the Cauchy-Schwartz inequality, we get

∞ i=1 ∞ j=1 E π [(∆ i,j F m ) 2 ] ≤ 1 #B(m) z∈B(m) ∞ i=1 ∞ j=1 E π [(∆ i,j T (z, z + x)) 2 ]. (3.27)
On the other hand,

E π [(∆ i,j T (z, z + x)) 2 ] = E π [(E|T (z, z + x, ω i,j,U ) -T (z, z + x, ω i,j, Ũ )|) 2 ] ≤ E π E[|T (z, z + x, ω i,j,U ) -T (z, z + x, ω i,j, Ũ )| 2 ] = E π E[|T (z, z + x, ω i,j,U ) -T (z, z + x)| 2 ] = 2E π E[(T (z, z + x, ω i,j,U ) -T (z, z + x)) 2 I(T (z, z + x, ω i,j,U ) ≥ T (z, z + x))]. We observe that if x i ∈ γ z,z+x , or x i ∈ γ z,z+x but T (x i , xi ) < j, then T (z, z + x, ω i,j,U ) ≤ T (z, z + x).
Otherwise, assume that x i ∈ γ z,z+x and T (x i , xi ) ≥ j. Then for any e ∈ B d , T (x i , xi ) ≥ T (x i , xi -e + ω i,j , ω i,j,e ), since if we only replace ω i,j by e, after t(x i , xi ) (also equals to T (x i , xi ), as x i ∼ xi ∈ γ 0,x ) steps, the simple random walk (S xi . ) arrives at xi -e + ω i,j . Moreover, T (z, x i , ω i,j,e ) = T (z, x i ), T (x i , z + x, ω i,j,e ) ≤ T (x i , z + x), and

T (z, z + x) = T (z, x i ) + T (x i , xi ) + T (x i , z + x)
T (z, z + x, ω i,j,e ) ≤ T (z, x i , ω i,j,e ) + T (x i , xi -e + ω i,j , ω i,j,e ) +T (x i -e + ω i,j , xi , ω i,j,e ) + T (x i , z + x, ω i,j,e ).

Hence, we reach

T (z, z + x, ω i,j,U ) -T (z, z + x) ≤ T (x i -U + ω i,j , xi , ω i,j,U ) ≤ max y:|y-xi|≤2
T (y, xi , ω i,j,U ). Furthermore, since ω differs from ω i,j,U only in the trajectory of (S xi . ), for any u, v ∈ Z d ,

T (u, v, ω i,j,U ) ≤ T [xi] (u, v) ≤ T 2 (u, v), (3.28)
where we define

T 2 (u, v) = sup z∈Z d T [z] (u, v).
Therefore, we have

E π [(∆ i,j T (z, z + x)) 2 ] ≤ 2E max y:|y-xi|≤2 T 2 (y, xi ) 2 I(x i ∼ xi ∈ γ z,z+x , T (x i , xi ) ≥ j) ,
and thus

∞ j=1 E π (∆ i,j T (z, z + x)) 2 ≤ 2E ∞ j=1 max y:|y-xi|≤2 T 2 (y, xi ) 2 I(x i ∼ xi ∈ γ z,z+x , T (x i , xi ) ≥ j) = 2E T (x i , xi ) max y:|y-xi|≤2 T 2 (y, xi ) 2 I(x i ∼ xi ∈ γ z,z+x ) ≤ E (T (x i , xi ) 2 + max y:|y-xi|≤2 T 2 (y, xi ) 4 )I(x i ∼ xi ∈ γ z,z+x ) .
This yields that

∞ i=1 ∞ j=1 E π (∆ i,j T (z, z + x)) 2 ≤ E ∞ i=1 (T (x i , xi ) 2 + max y:|y-xi|≤2 T 2 (y, xi ) 4 )I(x i ∼ xi ∈ γ z,z+x ) = E ∞ i=1 (T (x i , xi ) 2 + max y:|y-xi|≤2 T 2 (y, xi ) 4 )I(x i ∼ xi ∈ γ 0,x ) = E   y∈γ0,x T (y, ȳ) 2   + E   y∈γ0,x max u:|u-y|1≤2 T 2 (u, y) 4   . (3.29)
Now using the same arguments for (3.18) and (3.20), we get

E   y∈γ0,x max |u-y|1≤2 T 2 (u, y) 4   (3.30) ≤ E max γ=(yi) i=1 ∈P C 1 |x| 1 i=1 max |u-yi|1≤2 T 2 (u, y i ) 4 + L≥C1|x|1+1   E max γ=(yi) i=1 ∈P L -1 i=1 max |u-yi|1≤2 T 2 (u, y i ) 4 2   1/2 P(E L ) 1/2 . (3.31) Lemma 3.7. As |x| 1 tends to infinity, E   y∈γ0,x T (y, ȳ) 2   = O(|x| 1 ).
Lemma 3.8. There exists a positive constant C, such that for any L ≥ 1, (i)

E max γ=(yi) i=1 ∈P L i=1 max u:|u-yi|1≤2 T 2 (u, y i ) 4 ≤ CL. (ii) E max γ=(yi) i=1 ∈P L -1 i=1 max u:|u-yi|1≤2 T 2 (u, y i ) 4 2 ≤ CL 10 .
We postpone the proofs of the above two lemmas for a while and first complete the proof of Proposition 3.3. Combining (3.23), (3.29), (3.30) and Lemmas 3.7 and 3.8, we get

∞ i=1 ∞ j=1 E π (∆ i,j T (z, z + x)) 2 = O(1)   |x| 1 + L≥C1|x|1 L 2 e -L ε 1 /2   = O(|x| 1 ).
This estimate holds with all z ∈ B(m), so we can conclude the proof of Proposition 3.3 by using (3.27) and Lemma 3.6.

Tessellation estimates.

In this section, we will prove Lemmas 3.4, 3.7 and 3.8. We first observe that the simple union bound is not sharp enough to prove the lemmas and that the main difficulty comes from the correlations of passage times. To overcome this, we establish new techniques combining tessellation arguments and percolation estimates (Lemma 2.5).

Proof of Lemma 3.7. For any γ = (y i ) i=1 , we define

A γ M = {y i ∈ γ : T (y i , y i+1 ) = M }.
Then, we can express

-1 i=1 T (y i , y i+1 ) 2 = k≥1 M 2 #A γ M . (3.32) We decompose E   y∈γ0,x T (y, ȳ) 2   = E   y∈γ0,x T (y, ȳ) 2 ; T (x) ≤ C|x| 1   + E   y∈γ0,x T (y, ȳ) 2 ; T (x) > C|x| 1   .
By a similar argument as in Lemma 2.2, the second term can be bounded from above by

  E      y∈γ0,x T (y, ȳ) 2   2       1/2 P(|γ 0,x | 1 > C|x| 1 |) 1/2 ≤ E T (x) 4 1/2 P(T (x) > C|x| 1 |) 1/2 ≤C|x| 2 1 e -|x| ε 1 /2 , (3.33) 
which goes to 0 as |x| 1 → ∞.

To estimate the first term, under the condition T (x) ≤ C|x| 1 , we will show that for any M ≥ 1,

(3.34) E(#A γ0,x M ) ≤ C|x| 1 M d+1 e -M ε /d
, with some constants ε > 0 and C > 0. Then it follows from (3.32) that the first term can be bounded from above by C|x| 1

M ≥1 M d+3 e -M ε /d = O(|x| 1 ).
which proves Lemma 3.7.

Now it remains to prove (3.34). The general idea is to cover Z d by groups of boxes such that in each group the numbers of two consecutive points in the optimal path having distance M in different boxes are dominated by independent random variables. Then we will apply Lemma 2.5 to get the desired estimate. To each M , we divide Z d to 4 d groups of boxes of size 2M , noted by {(B M i,z ) z∈Z d , i = 1, . . . , 4 d }, satisfying the following conditions:

(c) For any u, v ∈ Z d with |u -v| 1 ≤ M , there exists a boxes B M i,z containining u and v. (d) For any i = 1, . . . , 4 d , the boxes in the i-th group, (B M i,• ) are totally disjoint, i.e. the distance between two arbitrary boxes is larger than 2M . In fact, there are many covers satisfying (c) and (d), and here we choose a simple one defined as follows. To each x ∈ M Z d , we define

B M x = x + [0, 2M ) d . We enumerate {0, 1, 2, 3} d by {w i } 4 d i=1 . Given i ∈ {1, • • • , 4 d } and z ∈ Z d , we denote B M i,z = B M M ( 
wi+4z) . Lemma 3.9. The groups of boxes that we have constructed above satisfy (c) and (d).

Proof. The condition (d) is trivial by construction. We will prove that (c) holds. Assume that u, v ∈ Z d and |u-v| 1 ≤ M . We consider x = (x 1 , . . . , x d ), with

x j = min {M [u j /M ], M [v j /M ]} for j = 1, . . . , d. Since |u j -v j | ≤ M , it holds that |u j -x j | < 2M and |v j -x j | < 2M . Thus u, v ∈ B M
x . In addition, since all the coordinates of x are multiple of M , there exists (w i , z) ∈ {0, 1, 2, 3} d × Z d , such that x = M (w i + 4z), so u, v ∈ B M i,z .

Given i = 1, . . . , 4 d , we define

A γ0,x M,i,z = A γ0,x M ∩ B M i,z .
Then by (a) and (c),

#A γ0,x M ≤ 4 d i=1 z∈Z d #A γ0,x M,i,z . (3.35)
Notice that if y ∼ ȳ ∈ γ 0,x , then T (y, ȳ) = t(y, ȳ). Thus for any (i, z),

#A γ0,x M,i,z ≤ (2M ) d Y i z I(A γ0,x
M,i,z = ∅), (3.36) where

Y i z = I( ∃u, v ∈ B M i,z such that T (u, v) = t(u, v) = M ). Thus for each i = 1, . . . , 4 d , z∈Z d #A γ0,x M,i,z ≤ (2M ) d z∈η i,M 0,x Y i z , (3.37)
where η i,M 0,x is the projected path of γ 0,x defined by

η i,M 0,x = {z ∈ Z d : A γ0,x
M,i,z = ∅}. Since we assume that T (x) ≤ C 1 |x| 1 , we have γ 0,x ∈ P C1|x|1 , which implies

η i,M 0,x ∈ P C1|x|1/M . Hence, z∈η M 0,x Y i z ≤ max η∈P C 1 |x| 1 /M z∈η Y i z =: X i C1|x|1,M . (3.38)
Combining this inequality with (3.36) and (3.37) yields that 

E(#A γ0,x M ) ≤ C8 d (C 1 |x| 1 )M d-1 p 1/d M (3.42) ≤ C8 d+1 (C 1 |x| 1 )M d+1 e -M ε /d , which proves (3.34).
Before going into the rest of the proofs, we will prove the same estimates as in Lemma 2.1 for T 1 and T 2 . By repeating the arguments of the proof of Lemma 2.1 ([1, Lemma 4.2]), we can show that there exist positive constants C and ε, such that for any y, z ∈ Z d , and k ≥ C|y| 1 ,

P T [z] (0, y) ≥ k ≤ e -k ε . (3.43)
By the union bound, for k ≥ C 2 |y| 1 with C 2 = 2C, we have

P(T 1 (0, y) ≥ k) ≤ z∈Z d :|z|1=1 P(T [0] (z, y) ≥ k -1) ≤ 2de -(k-1) ε ≤ e -k ε 2 , (3.44) 
with some ε 2 > 0, where we have used (3.43) for k

-1 ≥ 2C|y| 1 -1 ≥ C|z -y| 1 .
We observe also that if T (y) ≤ k then T

[z] (0, y) = T (y) for z ∈ B(k). Therefore, for k ≥ C 3 |y| 1 with C 3 = max{C 1 , C 2 }, P (T 2 (0, y) ≥ k) ≤ P(T (y) ≥ k) + P(T (y) < k, T 2 (0, y) ≥ k) ≤ P(T (y) ≥ k) + z∈B(k) P T [z] (0, y) ≥ k ≤ e -k ε 1 + (2k) d e -k ε 2 ≤ e -k ε 3 , (3.45)
with some ε 3 > 0. From now on, for simplicity of notation we use C 1 for all C 1 , C 2 , C 3 , and

ε 1 for all ε 1 , ε 2 , ε 3 . It means that for k ≥ C 1 |y| 1 , (3.46) max{P(T (0, y) ≥ k), P(T 1 (0, y) ≥ k), P(T 2 (0, y) ≥ k)} ≤ e -k ε 1 .
Proof of Lemma 3.4. We begin with Part (ii), which is easier than (i). Observe that

max γ=(yi) i=1 ∈P L -1 i=1 T 1 (y i , y i+1 ) ≤ L max u,v∈B(L) T 1 (u, v)
Using the union bound and (3.46), for any k ≥ 2dC 1 L,

P max u,v∈B(L) T 1 (u, v) ≥ k ≤ (2L) 2d e -k ε 1 .
The last two inequalities yield that

E max γ=(yi) i=1 ∈P L -1 i=1 T 1 (y i , y i+1 ) 2 ≤ CL 4   1 + (2L) 2d k≥2dC1L k 2 e -k ε 1   = O(L 4 ).
We now prove (i). For any γ = (y i ) i=1 ∈ P L , we define Āγ

M = {y i ∈ γ : |y i -y i+1 | 1 = M }, Āγ M,0 = {y i ∈ Āγ M : T 1 (y i , y i+1 ) ≤ C 1 M }, Āγ M,k = {y i ∈ Āγ M : T 1 (y i , y i+1 ) = C 1 M + k}, with C 1 as in (3.46). Then # Āγ M = k≥0 # Āγ M,k , M ≥1 M # Āγ M = |γ| 1 ≤ L. (3.47) Therefore, -1 i=1 T 1 (y i , y i+1 ) ≤ M ≥1   C 1 M # Āγ M,0 + k≥1 (C 1 M + k)# Āγ M,k   ≤ C 1 L + M ≥1 k≥1 k# Āγ M,k . (3.48)
We shall apply the same arguments as in the proof of Lemma 3.7 to deal with the sum above. For each M, k we tessellate Z d to groups of boxes whose size equals 2(C 1 M + k). Using analogous arguments to prove (3.41) and (3.42), we can show that

E max γ∈P L # Āγ M,k ≤ CL(C 1 M + k) d-1 p 1/d M,k , (3.49) where p M,k = P (∃u, v ∈ B(C 1 M + k) : |u -v| 1 ≤ M, T 1 (u, v) = C 1 M + k) ≤ (2(C 1 M + k)) 2d e -(C1M +k) ε 1 ,
by using the union bound and (3.46). Combining (3.48) and (3.49), we have

E max γ=(yi) i=1 ∈P L -1 i=1 T 1 (y i , y i+1 ) ≤ C 1 L + M ≥1 k≥1 kE max γ∈P L # Āγ M,k ≤ CL   1 + M ≥1 k≥1 (C 1 M + k) d+2 e -(C1M +k) ε 1 /d   = O(L),
which proves (i).

Proof of Lemma 3.8. To show (ii), we notice that

(3.50) max γ=(yi) i=1 ∈P L -1 i=1 max u:|u-yi|1≤2 T 2 (u, y i ) 4 ≤ L max u,v∈B(L+2) T 2 (u, v) 4 .
Now part (ii) follows from (3.46) and (3.50) by using the same arguments as in Lemma 3.4 (ii).

The proof of (i) is similar to that of Lemma 3.7. For any M ≥ 1, using (3.46) and the union bound,

p M = P ∃y ∈ B(M ), max u:|u-y|1≤2 T 2 (u, y) 4 = M ≤ (2M ) d P max |u|1≤2 T 2 (u, 0) 4 = M ≤ e -M ε , (3.51) 
for some ε > 0 small. As in Lemma 3.7, we define for γ ∈ P L , and M ≥ 1 #A γ M .

We define

M x = [|x| 1/2(d+3) 1
],

and E = {∀ M ≥ M x , ∀γ ∈ P C1|x|1 , #A γ M = 0}. Then, by using the union bound and Lemma 2.4, we get

P(E c ) ≤ P(∃u, v ∈ B(C 1 |x| 1 ) such that T (u, v) = t(u, v) ≥ M ) ≤ (2C 1 |x| 1 ) 2d M ≥Mx e -M ε 1 ≤ Ce -|x| ε 1 , (4.6) 
for some positive constants C and ε. We recall the tessellation as in the proof of Lemma 3. Therefore,

P Mx M =K M max γ∈P C 1 |x| 1 #A γ M ≥ C d |x|1 K ≤ 4 d M 2 x exp -C1|x|1 2M d+2
x ≤ e -|x| ε 1 , (4.8) for some ε > 0. We now only need to take K large enough such that C d /K < 1/2 and s M ≥ A 1 for any M ≥ K. Then by (4.4), (4.5), (4.6) and (4.8), if we take c > 0 sufficiently small so that 1 -cK ≥ C d /K, we get P min 
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  1)-(3.4), we get the desired result. 3.2. Martingale decomposition of F m and the proof of Theorem 1.1. Enumerate the vertices of Z d as x 1 , x 2 , . . .. We consider the martingale decomposition of F m as follows

then 8 1 8 1

 88 Var(T (x)) = O(|x| 7/) and Theorem 1.1 follows. Otherwise, if Var(F m ) ≥ |x| 7/, using (3.5) we get that Var(T (x)) = O(|x| 1 / log |x| 1 ) and Theorem 1.1 follows. 3.2.2. Proof of Proposition 3.3. By the definition of ∆ k , we have

E

  T (x) ≥ |γ 0,x | 1 , by using Lemma 2.1, for any L ≥ C 1 |x| 1 P(E L ) ≤ P(T (x) ≥ L) ≤ e -L ε 1 . (3.23) Using this inequality, (3.20) and Lemma 3.4, we get k≥1 3.3 (ii) follows from (3.22) and (3.24).

  We note that (a) if T (u, v) = M then |u -v| 1 ≤ M , (b) if d 1 ({u, v}, {x, y}) ≥ 2M , then the two events {T (u, v) = M } and {T (x, y) = M } are independent. In fact, (a) follows from the fact that T (u, v) ≥ |u -v| 1 and (b) holds since the event T (u, v) = M depends only on simple random walks (S w . ) with |w -u| 1 ≤ M .

  ) and (d), (Y i z ) z∈Z d are i.i.d. Bernoulli random variables. Let p M = E(Y i z ). Then, it follows from the union bound and Lemma 2.4 thatp M = P(∃ u, v ∈ B M i,z : T (u, v) = t(u, v) = M ) ≤ (2M ) 2d e -M ε , (3.40)with some ε > 0. Now applying Lemma 2.5 to the set of random variables (Y i z ) z∈Z d and the set of paths P C1|x|1/M , we getE(X i C1|x|1,M ) ≤ C(C 1 |x| 1 /M )p35), (3.39) (3.40) and (3.41) gives that

=

  {y ∈ γ : max u:|u-y|1≤2 T 2 (u, y) 4 = M }.We also cover Z d by groups of boxes whose size equals to 2M as in the proof of Lemma 3.7 to verify conditions (c) and (d). Repeating the arguments as in the proof of Lemma 3.7, with A γ M , p M replacing A γ M , p M , we can show thatE max γ=(yi) i=1 ∈P L i=1 max u:|u-yi|1≤2 T 2 (u, y i ) 4 = O(L)   M ≥1 M d-1 e -M ε /d   = O(L),which proves (i).

4 . 2 Proof. 4 )

 424 Proof of Proposition 1.The upper bound on the length of optimal paths is a consequence of Lemma 2.1. Indeed, if γ ∈ O(x), then l(γ) ≤ T (x). Hence, by Lemma 2.1,P max γ∈O(x) l(γ) > C 1 |x| 1 ≤ P(T (x) > C 1 |x| 1 ) (4.1) ≤ e -|x| ε 1 1 , (4.2)with ε 1 and C 1 positive constants as in Lemma 2.1. To show the lower bound, we first recall the definition of A γ M as in the proof of Lemma 3.7:A γ M = {y i ∈ γ : T (y i , y i+1 ) = t(y i , y i+1 ) = M }. Then since l(γ) = M ≥1 #A γM , for any γ ∈ O(x), and K ≥ 1|x| 1 ≤ T (x) =Note that if T (x) ≤ C 1 |x| 1 , then γ ∈ P C1|x|1 for any γ ∈ O(x),

M / 2 , 2  ≤ 4 d

 224 [START_REF] Can | Large deviations for the passage time in frog models[END_REF]. Based on the groups of boxes {(B M i,z ) z∈Z d , i = 1, . . . , 4 d } whose size equals to 2M , we have definedA η M,i,z = B M i,z ∩ A η M . Lemma 2.5 (i) and the same arguments as in Lemma 3.7, we can show that for any i = 1, . . . , 4 d , K ≤ M ≤ M x , and s ≥ A 1 (with A 1 as in Lemma 2.5 (i)), with p M as in(3.40). Let s = s M = p ,z ≥ C d |x| 1 M -exp -(C 1 |x| 1 )/(2M d+2 ) , with C d = 2 2d-2 C 1 .Notice that by (3.40), s M → ∞ as M → ∞, so the condition s M ≥ A 1 holds for any M ≥ K with K large enough. It follows from (4.7) thatP Mx M =K M max γ∈P C 1 |x| 1 #A γ M ≥ C d |x| 1 Mx M =K M -2 ≤ 4 d Mx M =K M exp -C1|x|1 2M d+2 .

1 ≤

 1 γ∈O(x) l(γ) < c|x| 1 ≤ P(T (x) > C 1 |x| 1 ) + P(E c ) + P Mx M =K M max γ∈P C 1 |x| 1 #A γ M > (1 -cK)|x| Ce -|x| ε 1 ,which completes the proof of Proposition 1.2.

  then the result follows from Lemma 2.1. Assume that |x -y| 1 ≥ M 2/3 .

	Then a well-known estimate for the trajectory of random walk (see [17, Proposition 2.1.2]) shows
	that for some positive constants c and C,
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