
HAL Id: hal-01999029
https://hal.science/hal-01999029

Preprint submitted on 30 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LOGSPACE vs P
Frank Vega

To cite this version:

Frank Vega. LOGSPACE vs P. 2019. �hal-01999029�

https://hal.science/hal-01999029
https://hal.archives-ouvertes.fr

FOR REVIEW ONLY
Computational Complextiy

LOGSPACE vs P
Frank Vega

January 29, 2019

Abstract: P versus NP is considered as one of the most important open problems in
computer science. This consists in knowing the answer of the following question: Is P equal
to NP? A precise statement of the P versus NP problem was introduced independently by
Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem
have failed. Given a positive integer x and a collection S of positive integers, MAXIMUM is
the problem of deciding whether x is the maximum of S where S is represented by an array.
We prove this problem is complete for P. Another major complexity classes are LOGSPACE
and coNP. Whether LOGSPACE = P is a fundamental question that it is as important as
it is unresolved. We show the problem MAXIMUM can be decided in logarithmic space.
Consequently, we demonstrate the complexity class LOGSPACE is equal to P. We define
a problem called CIRCUIT-MAXIMUM. CIRCUIT-MAXIMUM is nothing else but the
instances of MAXIMUM represented by a positive integer x and a Boolean circuit C which
represents the collection S. We show this version of MAXIMUM is in coNP-complete.
In addition, CIRCUIT-MAXIMUM contains the instances of MAXIMUM that can be
represented by an exponentially more succinct way. In this way, we show the succinct
representation of a P-complete problem is indeed in coNP-complete.

1 Introduction

The P versus NP problem is a major unsolved problem in computer science [3]. This is considered by
many to be the most important open problem in the field [3]. It is one of the seven Millennium Prize

ACM Classification: F.1.3.3, F.1.3.2

AMS Classification: 68Q15, 68Q17

Key words and phrases: complexity classes, polynomial time, logarithmic space, complete problem,
boolean circuit, succinct representation

https://www.reddit.com/r/compsci/comments/ad21ux/requestreview_for_logspace_vs_p_paper/

FRANK VEGA

Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct
solution [3]. It was essentially mentioned in 1955 from a letter written by John Nash to the United States
National Security Agency [1]. However, the precise statement of the P = NP problem was introduced in
1971 by Stephen Cook in a seminal paper [3].

In 1936, Turing developed his theoretical computational model [8]. The deterministic and nondeter-
ministic Turing machines have become in two of the most important definitions related to this theoretical
model for computation [8]. A deterministic Turing machine has only one next action for each step defined
in its program or transition function [8]. A nondeterministic Turing machine could contain more than one
action defined for each step of its program, where this one is no longer a function, but a relation [8].

Another relevant advance in the last century has been the definition of a complexity class. A language
over an alphabet is any set of strings made up of symbols from that alphabet [4]. A complexity class is a
set of problems, which are represented as a language, grouped by measures such as the running time,
memory, etc [4].

In the computational complexity theory, the class P contains those languages that can be decided in
polynomial time by a deterministic Turing machine [5]. The class NP consists in those languages that
can be decided in polynomial time by a nondeterministic Turing machine [5]. The biggest open question
in theoretical computer science concerns the relationship between these classes: Is P equal to NP?

A logarithmic Turing machine has a read-only input tape, a write-only output tape, and a read/write
work tape [8]. The work tape may contain O(logn) symbols [8]. LOGSPACE is the complexity class
containing those decision problems that can be decided by a deterministic logarithmic Turing machine
[8]. The LOGSPACE versus P problem is another of the most remarkable problems in complexity theory
which remains unsolved [1]. In this work, we prove the complexity class LOGSPACE is equal to P.

On the other hand, LOGSPACE is a subclass of NLOGSPACE, which is the class of languages decid-
able in a nondeterministic logarithmic Turing machine [8]. It is known LOGSPACE ⊆ NLOGSPACE ⊆ P
[7]. In this way, our proof implies the complexity class LOGSPACE is equal to NLOGSPACE which was
a problem that remained open for a long time [7].

2 Basic Definitions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings over Σ [2]. A
Turing machine M has an associated input alphabet Σ [2]. For each string w in Σ∗ there is a computation
associated with M on input w [2]. We say that M accepts w if this computation terminates in the accepting
state, that is M(w) = “yes” [2]. Note that M fails to accept w either if this computation ends in the
rejecting state, that is M(w) = “no”, or if the computation fails to terminate [2].

The language accepted by a Turing machine M, denoted L(M), has an associated alphabet Σ and is
defined by

L(M) = {w ∈ Σ
∗ : M(w) = “yes”}.

We denote by tM(w) the number of steps in the computation of M on input w [2]. For n ∈ N we denote by
TM(n) the worst case running time of M; that is

TM(n) = max{tM(w) : w ∈ Σ
n}

FOR REVIEW ONLY 2

https://www.reddit.com/r/compsci/comments/ad21ux/requestreview_for_logspace_vs_p_paper/

LOGSPACE VS P

where Σn is the set of all strings over Σ of length n [2]. The notations we use to describe the asymptotic
running time of an algorithm are defined in terms of functions whose domains are the set of natural
numbers [4]. Such notations are convenient for describing the worst and better case running time functions,
which is usually defined only on integer input sizes [4]. For a given function g(n), we denote by O(g(n))
the set of functions

O(g(n)) = { f (n) : There exist positive constants c and n0 such that 0≤ f (n)≤ c×g(n) for all n≥ n0}

where O-notation provides an asymptotic upper bound [4]. We say that M runs in polynomial time if
there is a constant k such that for all n, TM(n)≤ nk + k [2]. In other words, this means the language L(M)
can be accepted by the Turing machine M in polynomial time or more specific in a running time O(nk) for
some constant k [2]. Therefore, P is the complexity class of languages that can be accepted in polynomial
time by deterministic Turing machines [4]. A verifier for a language L is a deterministic Turing machine
M, where

L = {w : M(w,c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs
in polynomial time in the length of w [2]. A verifier uses additional information, represented by the
symbol c, to verify that a string w is a member of L. This information is called certificate. NP is also the
complexity class of languages defined by polynomial time verifiers [7]. If NP is the class of problems
that have succinct certificates, then the complexity class coNP must contain those problems that have
succinct disqualifications [7]. That is, a “no” instance of a problem in coNP possesses a short proof of its
being a “no” instance [7].

A logarithmic space transducer is a Turing machine with a read-only input tape, a write-only output
tape, and a read/write work tape [2]. The work tapes must contain at most O(logn) symbols [2]. A
logarithmic space transducer M computes a function f : Σ∗→ Σ∗, where f (w) is the string remaining
on the output tape after M halts when it is started with w on its input tape [2]. We call f a logarithmic
space computable function [2]. We say that a language L1 ⊆ {0,1}∗ is logarithmic space reducible
to a language L2 ⊆ {0,1}∗, written L1 ≤l L2, if there exists a logarithmic space computable function
f : {0,1}∗→{0,1}∗ such that for all x ∈ {0,1}∗,

x ∈ L1 if and only if f (x) ∈ L2.

An important complexity class is P–complete [6]. A language L⊆ {0,1}∗ is P–complete if

• L ∈ P, and

• L′ ≤l L for every L′ ∈ P.

If L is a language such that L′ ≤l L for some L′ ∈ P–complete, then L is P–hard [7]. Moreover, if
L ∈ P, then L ∈ P–complete [7]. A Boolean formula φ is composed of

1. Boolean variables: x1,x2, . . . ,xn;

2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as
∧(AND), ∨(OR), ⇁(NOT),⇒(implication),⇔(if and only if);

FOR REVIEW ONLY 3

https://www.reddit.com/r/compsci/comments/ad21ux/requestreview_for_logspace_vs_p_paper/

FRANK VEGA

3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ . We define a
CNF Boolean formula using the following terms. A literal in a Boolean formula is an occurrence of a
variable or its negation [4]. A Boolean formula is in conjunctive normal form, or CNF , if it is expressed
as an AND of clauses, each of which is the OR of one or more literals [4]. A Boolean formula is in
3-conjunctive normal form or 3CNF , if each clause has exactly three distinct literals [4].

For example, the Boolean formula:

(x1∨⇁ x1∨⇁ x2)∧ (x3∨ x2∨ x4)∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains the three literals x1, ⇁ x1,
and ⇁ x2.

For every n,m ∈ N a Boolean circuit C with n inputs and m outputs is a directed acyclic graph [2]. It
contains n nodes with no incoming edges; called the input gates and m nodes with no outgoing edges,
called the output gates [2]. All other nodes are labeled with one of ∨, ∧ or ⇁ (in other words, the logical
operations OR, AND, and NOT) [2]. The ∨ and ∧ nodes have fanin (i.e., number of incoming edges) of 2
and the ⇁ nodes have fanin 1. The size of C is the number of nodes in it [2].

3 Results

Definition 3.1. MAXIMUM
INSTANCE: A positive integer x and a collection S of positive integers. The collection S could not be

a set, since by the definition of a collection, this can contain repeated elements. We will represent the
collection S as an array of positive integers A such that some positive integer i is in S if and only if i is an
element of A. Moreover, the amount of times which is repeated a positive integer in S is the same number
of times where this one is contained in A.

QUESTION: Is x the maximum number in S?

Lemma 3.2. MAXIMUM ∈ P.

Proof. How many comparisons are necessary to determine whether a positive integer x is the maximum
of a collection of n positive integers? We can easily obtain an upper bound of n comparisons: examine
each element of the collection in turn and keep track of the largest element seen so far and finally, we
compare the ultimate result with x. In the following procedure, we assume that the collection resides in
an array A of length n.

Is this the best amount of comparisons we can do? Yes, since we can obtain a lower bound of n−1
comparisons for the problem of determining the maximum and one another comparison to check whether
this is equal to x [4]. Think of any algorithm that determines the maximum as a tournament among the
elements [4]. Each comparison is a match in the tournament in which the larger of the two elements wins
[4]. The key observation is that every element except the winner must lose at least one match [4]. Finally,
we compare the winner with x [4]. Hence, n comparisons are necessary to determine whether x is the
maximum of the collection of positive integers, and the algorithm MAXIMUM is optimal with respect to
the number of comparisons performed [4].

FOR REVIEW ONLY 4

https://www.reddit.com/r/compsci/comments/ad21ux/requestreview_for_logspace_vs_p_paper/

LOGSPACE VS P

Algorithm 1 MAXIMUM’s Polynomial Time Algorithm
1: procedure MAXIMUM(x,A)
2: // Assign the first element
3: max← A[0]
4: // Iterate for the elements of the collection
5: for i← 1 to n−1 do
6: // When the element A[i] is greater than max
7: if max < A[i] then
8: // Update the new value of max
9: max← A[i]

10: end if
11: end for
12: // If the number x is equal to the maximum of the collection
13: if max = x then
14: // Accept
15: return “yes”
16: else
17: // Otherwise reject
18: return “no”
19: end if
20: end procedure

FOR REVIEW ONLY 5

https://www.reddit.com/r/compsci/comments/ad21ux/requestreview_for_logspace_vs_p_paper/

FRANK VEGA

Definition 3.3. Unweighted, Not–All–Equal Clauses, 3SAT/FLIP
INSTANCE: A Boolean formula φ in 3CNF and a truth assignment T . Each clause has a weight of 1.

The clauses are not–all–equals clauses with positive literals. A truth assignment satisfies a clause c under
the not–all–equals criterion if it is such that c has at least one true and one false literal.

QUESTION: Is the truth assignment T the maximum cost assignment of φ over all neighbors of T ?
The cost of the assignment is the sum of the weights of the clauses it satisfies. The neighbors of T are
truth assignments that differ from T in one bit position.

REMARKS: We denote this language as U3NSAT FLIP [6].

Theorem 3.4. U3NSAT FLIP≤l MAXIMUM.

Proof. Given a Boolean formula φ in 3CNF and a truth assignment T , we can calculate the cost
assignment of T based on the not–all–equals criterion in a logarithmic space algorithm. In the following
function COST , we assume the truth assignment T is a dictionary that maps every variable in φ to 1 or 0
(true or false).

Algorithm 2 COST’s Logarithmic space algorithm
1: function COST(φ ,T)
2: // Initialize the cost assignment to 0
3: num← 0
4: // For each clause in φ

5: for all c ∈ φ do
6: // The clause c is equal to (p∨q∨ r)
7: if 0 < T [p]+T [q]+T [r]< 3 then
8: // Increment num because c complies with the not–all–equals criterion
9: num← num+1

10: end if
11: end for
12: // Return the cost assignment
13: return num
14: end function

This function uses logarithmic space in its work tapes and assumes the clauses contain only positive
literals. Certainly, the calculation of T [p]+T [q]+T [r] can be made storing a constant amount of space
where p, q and r are the positive literals of each clause c in φ . In addition, if m is the number of clauses
in φ , then the number num will not exceed the number m and thus, the work tapes will contain at most
O(logm) space.

On the other hand, we can reduce an instance of U3NSAT FLIP into another of MAXIMUM in
logarithmic space. For this purpose, we are going to use the function COST into a new algorithm. In the
following function REDUCE, we represent the input instance as a given Boolean formula φ in 3CNF of
n−1 variables with a truth assignment T and the output instance as a positive integer x with an array A
filled with n elements of a collection of positive integers. We will assume the truth assignment T given in
the input is a dictionary that maps every variable in φ to 1 or 0 (true or false) as well.

FOR REVIEW ONLY 6

https://www.reddit.com/r/compsci/comments/ad21ux/requestreview_for_logspace_vs_p_paper/

LOGSPACE VS P

Algorithm 3 REDUCE’s Logarithmic space algorithm
1: function REDUCE(φ ,T)
2: // Create an empty array A
3: A← [. . .]
4: // Initialize the index of A in 0
5: i← 0
6: // For each variable y in φ

7: for all y ∈ φ do
8: // Flip the value of T [y] (0 to 1 or 1 to 0)
9: T [y]← (T [y]−1)× (−1)

10: // Calculate the cost of the flipped T based on the not–all–equals criterion
11: num←COST (φ ,T)
12: // Assign the cost assignment of the neighbor of T after flipping over T
13: A[i]← num
14: // Increment the index to store the new neighbor cost assignment of T
15: i← i+1
16: // Return the value of T [y] to the original bit number
17: T [y]← (T [y]−1)× (−1)
18: end for
19: // Calculate the cost of T based on the not–all–equals criterion
20: x←COST (φ ,T)
21: // Assign the cost assignment of the original T without flipping any bit position
22: A[i]← x
23: // Return the reduction
24: return (x,A)
25: end function

FOR REVIEW ONLY 7

https://www.reddit.com/r/compsci/comments/ad21ux/requestreview_for_logspace_vs_p_paper/

FRANK VEGA

Is this a logarithmic space reduction from U3NSAT FLIP to MAXIMUM? Given a Boolean formula
φ in 3CNF and a truth assignment T , we will obtain the positive integer x as the cost assignment of φ in
T and in the array A the cost assignment of φ from all the neighbors of T included the cost assignment of
T . In this way, if x is the maximum in the collection of positive integers represented by A, then 〈φ ,T 〉
belongs to U3NSAT FLIP. However, if x is the maximum in the collection of positive integers represented
by A (remember that A contains x), then this will be an element of the language MAXIMUM as well.
Certainly, 〈φ ,T 〉 is in U3NSAT FLIP if and only if x is the maximum in the collection of positive integers
in A. The function REDUCE uses logarithmic space since the bit-length of the index i is O(logn) because
there are n−1 variables and thus, there are at most n costs assignments that we need to calculate which is
the cost of the original truth assignment T and the n−1 truth assignment after flipping one bit position in
T . Moreover, the bit position that we flip in T will use at most two symbols encoded in binary over the
work tapes: the new bit value and the variable. In addition, the algorithm COST runs in logarithmic space
in relation to φ and the truth assignment T with at most one bit flipped. The algorithm COST will take
into account the original truth assignment T which remains in the input tape and the changed bit position
which is stored in the work tapes. After the computation of COST over each iteration, we will erase
from the work tapes the at most O(logm) space that could contain those tapes where m is the number of
clauses in φ . Furthermore, we do not need to store the value of the elements of A in the work tapes since
they can be written directly to the output tape. The array A can be written to the output tape as the pairs
(i,vi) where i is an index between 0 and n−1 and vi is equal to the positive integer A[i]. We also write
the binary string of the number x to the output tape where this string contains at most O(logm) space.
Consequently, we demonstrate U3NSAT FLIP≤l MAXIMUM.

Theorem 3.5. MAXIMUM ∈ P–complete.

Proof. We prove U3NSAT FLIP can be logarithmic reduced to MAXIMUM and U3NSAT FLIP is in
P–complete under logarithmic space reductions [6], thus MAXIMUM belongs to P–hard. Moreover,
since MAXIMUM ∈ P, then MAXIMUM is in P–complete.

Theorem 3.6. MAXIMUM ∈ LOGSPACE.

Proof. Given a positive integer x and a collection S of positive integers, we are going to demonstrate we
can decide this problem in logarithmic space. In the following procedure, we assume that the collection
resides in array A of length n. Besides, we assume the function length calculates the bit-length of a binary
string and uses a logarithmic space for the calculation.

Is this a logarithmic space algorithm? Yes, since we compare the value of the functions length(x) and
length(A[i]) (the ith element of A) using a logarithmic space although we could partially calculate the
length(A[i]). In addition, the calculated bit-length of x only uses at most O(logx) space. Besides, in the
comparison with the bit-length of A[i] and x we halt and reject immediately when length(A[i]) exceeds
length(x) at least in one digit and thus, we do not need to calculate completely the length(A[i]) to reject.
In this way, we just keep at most O(logx) space in the calculation of length(A[i]). Finally, when both
bit-lengths are equal, then we compare the elements A[i] and x bit by bit. For this purpose, we compare
only two bits in the input tape over the same position j from x and A[i] in a descending order for each
step. Notice, that we start to compare from the last bit position in a descending order. For example, in the
binary string 100 which represents the number 4, we start iterating from the last bit element, that is the

FOR REVIEW ONLY 8

https://www.reddit.com/r/compsci/comments/ad21ux/requestreview_for_logspace_vs_p_paper/

LOGSPACE VS P

Algorithm 4 MAXIMUM’s Logarithmic space algorithm
1: procedure MAXIMUM(x,A)
2: // Initialize the variable answer
3: answer← “no”
4: // Iterate for each element of the collection
5: for i← 0 to n−1 do
6: // If the bit-length of x is lesser than the bit-length of element A[i]
7: if length(x)< length(A[i]) then
8: // Reject because A[i] is greater than x
9: return “no”

10: // If the bit-length of x is greater than the bit-length of element A[i]
11: else if length(x)> length(A[i]) then
12: // Continue to the next iteration on i
13: continue
14: // If the bit-length of x is equal to the bit-length of element A[i]
15: else
16: // Assign the index to the last bit element
17: j← length(x)−1
18: // While there are bits to compare
19: while j ≥ 0 do
20: // Compare the bit in the position j of x with the bit in the position j of A[i]
21: if x[j]< A[i][j] then
22: // Reject because A[i] is greater than x
23: return “no”
24: else if x[j]> A[i][j] then
25: // Continue to the next iteration on i
26: break
27: else
28: // Decrement the bit position j of x and A[i]
29: j← j−1
30: end if
31: end while
32: // After iterating from all the bits of x and A[i]
33: if j < 0 then
34: // x is equal to A[i]
35: answer← “yes”
36: end if
37: end if
38: end for
39: // Accept if answer = “yes” and reject when answer = “no”
40: return answer
41: end procedure

FOR REVIEW ONLY 9

https://www.reddit.com/r/compsci/comments/ad21ux/requestreview_for_logspace_vs_p_paper/

FRANK VEGA

bit 1. Moreover, we store the position j in the work tapes and this value has at most O(logx) space. If it
would be the case that A[i] and x have the same bit-length, but A[i] is greater than x, then we reject. We
continue the iteration with the next value i while the property that x is the maximum number in the array
remains as true. However, we only accept when the value of the variable answer is “yes” when initially
has the value of “no” by default. The value will be “yes” in the variable answer after the whole iteration
for each element in the array if and only if there is at least one element A[i] that is equal to x. Furthermore,
if the iteration is completed until the last item, then x is greater than or equal to every element in the array
A. To sum up, we show we can decide whether x is the maximum of the collection represented by the
array A in logarithmic space and thus, MAXIMUM ∈ LOGSPACE.

Theorem 3.7. LOGSPACE = P.

Proof. As result of Theorems 3.5 and 3.6 we obtain LOGSPACE = P, because the complexity class
LOGSPACE is closed under logarithmic space reductions [7].

Definition 3.8. CIRCUIT–MAXIMUM
INSTANCE: A positive integer x and a collection S of positive integers such that the collection S is

represented by a Boolean circuit C where some positive integer i belongs to S if and only if C(i) accepts.
QUESTION: Is x the maximum number in S?

Theorem 3.9. CIRCUIT–MAXIMUM ∈ coNP.

Proof. The language of CIRCUIT–MAXIMUM is in coNP. Certainly, we can check in polynomial time a
disqualification from an instance 〈x,C〉 of this language that is a positive integer y where x < y and y is
in S or we can simply verify in polynomial time when x is not in S where 〈. . .〉 is the binary encoding.
Indeed, we can check whether the both evaluations of y and x in C accept and check later whether x < y or
we can just verify when C(x) does not accept. Certainly, we can polynomially make the verification when
〈x,C〉 is a “no” instance of the problem CIRCUIT–MAXIMUM, because the evaluation in the Boolean
circuit can be done in polynomial time as well.

Given a Boolean circuit C, the problem coCIRCUIT–SAT consists in deciding whether there is not
any input such that C accepts [7].

Theorem 3.10. CIRCUIT–MAXIMUM ∈ coNP–complete.

Proof. Given a Boolean circuit C we can check whether C(0) does not accept. In that case, we create a
succinct Boolean circuit C′ which only accepts the input string 0 and has the same number of input gates
of C. We combine C with C′ through the input gates into a new Boolean circuit C′′ which accepts only
when C or C′ accept. This is possible just adding a gate OR between the output gates of C and C′. The
instance of the positive integer 0 and the final Boolean circuit C′′ belongs to CIRCUIT–MAXIMUM if
and only if C is in coCIRCUIT–SAT. Certainly, 0 is the maximum of the collection that represents C′′ if
there is not any other input which C′′ accepts. In addition, C′′ accepts the positive integer 0 because of the
construction of C′ on C. Since we can create the succinct Boolean circuit C′ and evaluate C on the input 0
in polynomial time, then we can reduce coCIRCUIT–SAT to CIRCUIT–MAXIMUM in polynomial time.
coCIRCUIT–SAT is a known coNP–complete problem [7]. Hence, the language CIRCUIT–MAXIMUM
is in coNP–hard [7]. As result of Theorem 3.9, we obtain CIRCUIT–MAXIMUM is also in coNP and
thus, the proof is completed.

FOR REVIEW ONLY 10

https://www.reddit.com/r/compsci/comments/ad21ux/requestreview_for_logspace_vs_p_paper/

LOGSPACE VS P

Theorem 3.11. CIRCUIT–MAXIMUM is a succinct representation of the language MAXIMUM.

Proof. Every Boolean circuit C could always be a succinct representation of some collection of positive
integers S. Indeed, this will happen since there is always a collection S which could contain more than
or approximately to 2m elements (remember that a collection could contain repeated elements) if we
represent it by a Boolean circuit of m input gates. In addition, since a collection could contain any amount
of repeated elements, then every instance of CIRCUIT–MAXIMUM is a succinct representation of another
instance of MAXIMUM. Certainly, CIRCUIT–MAXIMUM is nothing else but a language that contains
the instances of the problem MAXIMUM which could be represented by an exponentially more succinct
input in relation to S [7].

References

[1] SCOTT AARONSON: P ? NP. Electronic Colloquium on Computational Complexity, Report No. 4,
2017. 2

[2] SANJEEV ARORA AND BOAZ BARAK: Computational complexity: a modern approach. Cambridge
University Press, 2009. 2, 3, 4

[3] STEPHEN A COOK: The P versus NP Problem, April 2000. at http://www.claymath.org/
sites/default/files/pvsnp.pdf. 1, 2

[4] THOMAS H CORMEN, CHARLES E LEISERSON, RONALD L RIVEST, AND CLIFFORD STEIN:
Introduction to Algorithms. The MIT Press, 3rd edition, 2009. 2, 3, 4

[5] ODED GOLDREICH: P, NP, and NP-Completeness: The basics of computational complexity. Cam-
bridge University Press, 2010. 2

[6] RAYMOND GREENLAW, H. JAMES HOOVER, AND WALTER L. RUZZO: A Compendium of Problems
Complete for P. Oxford University Press, 1993. 3, 6, 8

[7] CHRISTOS H PAPADIMITRIOU: Computational complexity. Addison-Wesley, 1994. 2, 3, 10, 11

[8] MICHAEL SIPSER: Introduction to the Theory of Computation. Volume 2. Thomson Course
Technology Boston, 2006. 2

FOR REVIEW ONLY 11

http://www.claymath.org/sites/default/files/pvsnp.pdf
http://www.claymath.org/sites/default/files/pvsnp.pdf
https://www.reddit.com/r/compsci/comments/ad21ux/requestreview_for_logspace_vs_p_paper/

FRANK VEGA

AUTHOR

Frank Vega
Computational Researcher
Joysonic
Belgrade, Serbia
vega frank gmail com
https://uh-cu.academia.edu/FrankVega

ABOUT THE AUTHOR

FRANK VEGA is essentially a back-end programmer graduated in Computer Science since
2007. In August 2017, he was invited as a guest reviewer for a peer-review of a manuscript
about Theory of Computation in the flagship journal of IEEE Computer Society. In
October 2017, he contributed as co-author with a presentation in the 7th International
Scientific Conference on economic development and standard of living (“EDASOL 2017
- Economic development and Standard of living”). In February 2017, his book “Protesta”
(a book of poetry and short stories in Spanish) was published by the Alexandria Library
Publishing House. He was also Director of two IT Companies (Joysonic and Chavanasoft)
created in Serbia.

FOR REVIEW ONLY 12

https://uh-cu.academia.edu/FrankVega
https://www.reddit.com/r/compsci/comments/ad21ux/requestreview_for_logspace_vs_p_paper/

	Introduction
	Basic Definitions
	Results
	References

