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Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution [START_REF] Stephen A Cook | The P versus NP Problem[END_REF]. It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency [1]. However, the precise statement of the P = NP problem was introduced in 1971 by Stephen Cook in a seminal paper [START_REF] Stephen A Cook | The P versus NP Problem[END_REF].

In 1936, Turing developed his theoretical computational model [START_REF] Michael Sipser | Introduction to the Theory of Computation[END_REF]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation [START_REF] Michael Sipser | Introduction to the Theory of Computation[END_REF]. A deterministic Turing machine has only one next action for each step defined in its program or transition function [START_REF] Michael Sipser | Introduction to the Theory of Computation[END_REF]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [START_REF] Michael Sipser | Introduction to the Theory of Computation[END_REF].

Another relevant advance in the last century has been the definition of a complexity class. A language over an alphabet is any set of strings made up of symbols from that alphabet [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF].

In the computational complexity theory, the class P contains those languages that can be decided in polynomial time by a deterministic Turing machine [START_REF] Oded Goldreich: P | NP-Completeness: The basics of computational complexity[END_REF]. The class NP consists in those languages that can be decided in polynomial time by a nondeterministic Turing machine [START_REF] Oded Goldreich: P | NP-Completeness: The basics of computational complexity[END_REF]. The biggest open question in theoretical computer science concerns the relationship between these classes: Is P equal to NP?

A logarithmic Turing machine has a read-only input tape, a write-only output tape, and a read/write work tape [START_REF] Michael Sipser | Introduction to the Theory of Computation[END_REF]. The work tape may contain O(log n) symbols [START_REF] Michael Sipser | Introduction to the Theory of Computation[END_REF]. LOGSPACE is the complexity class containing those decision problems that can be decided by a deterministic logarithmic Turing machine [START_REF] Michael Sipser | Introduction to the Theory of Computation[END_REF]. The LOGSPACE versus P problem is another of the most remarkable problems in complexity theory which remains unsolved [1]. In this work, we prove the complexity class LOGSPACE is equal to P.

On the other hand, LOGSPACE is a subclass of NLOGSPACE, which is the class of languages decidable in a nondeterministic logarithmic Turing machine [START_REF] Michael Sipser | Introduction to the Theory of Computation[END_REF]. It is known LOGSPACE ⊆ NLOGSPACE ⊆ P [START_REF] Papadimitriou | Computational complexity[END_REF]. In this way, our proof implies the complexity class LOGSPACE is equal to NLOGSPACE which was a problem that remained open for a long time [START_REF] Papadimitriou | Computational complexity[END_REF].

Basic Definitions

Let Σ be a finite alphabet with at least two elements, and let Σ * be the set of finite strings over Σ [2]. A Turing machine M has an associated input alphabet Σ [2]. For each string w in Σ * there is a computation associated with M on input w [2]. We say that M accepts w if this computation terminates in the accepting state, that is M(w) = "yes" [2]. Note that M fails to accept w either if this computation ends in the rejecting state, that is M(w) = "no", or if the computation fails to terminate [2].

The language accepted by a Turing machine M, denoted L(M), has an associated alphabet Σ and is defined by

L(M) = {w ∈ Σ * : M(w) = "yes"}.
We denote by t M (w) the number of steps in the computation of M on input w [2]. For n ∈ N we denote by T M (n) the worst case running time of M; that is

T M (n) = max{t M (w) : w ∈ Σ n } FOR REVIEW ONLY
where Σ n is the set of all strings over Σ of length n [2]. The notations we use to describe the asymptotic running time of an algorithm are defined in terms of functions whose domains are the set of natural numbers [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. Such notations are convenient for describing the worst and better case running time functions, which is usually defined only on integer input sizes [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. For a given function g(n), we denote by O(g(n)) the set of functions

O(g(n)) = { f (n) : There exist positive constants c and n 0 such that 0 ≤ f (n) ≤ c × g(n) for all n ≥ n 0 }
where O-notation provides an asymptotic upper bound [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. We say that M runs in polynomial time if there is a constant k such that for all n, T M (n

) ≤ n k + k [2].
In other words, this means the language L(M) can be accepted by the Turing machine M in polynomial time or more specific in a running time O(n k ) for some constant k [2]. Therefore, P is the complexity class of languages that can be accepted in polynomial time by deterministic Turing machines [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. A verifier for a language L is a deterministic Turing machine M, where L = {w : M(w, c) = "yes" for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w [2]. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L. This information is called certificate. NP is also the complexity class of languages defined by polynomial time verifiers [START_REF] Papadimitriou | Computational complexity[END_REF]. If NP is the class of problems that have succinct certificates, then the complexity class coNP must contain those problems that have succinct disqualifications [START_REF] Papadimitriou | Computational complexity[END_REF]. That is, a "no" instance of a problem in coNP possesses a short proof of its being a "no" instance [START_REF] Papadimitriou | Computational complexity[END_REF].

A logarithmic space transducer is a Turing machine with a read-only input tape, a write-only output tape, and a read/write work tape [2]. The work tapes must contain at most O(log n) symbols [2]. A logarithmic space transducer M computes a function f : Σ * → Σ * , where f (w) is the string remaining on the output tape after M halts when it is started with w on its input tape [2]. We call f a logarithmic space computable function [2]. We say that a language L 1 ⊆ {0, 1} * is logarithmic space reducible to a language L 2 ⊆ {0, 1} * , written L 1 ≤ l L 2 , if there exists a logarithmic space computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * ,

x ∈ L 1 if and only if f (x) ∈ L 2 .
An important complexity class is P-complete [START_REF] Raymond Greenlaw | A Compendium of Problems Complete for P[END_REF]. A language L ⊆ {0, 1} * is P-complete if • L ∈ P, and

• L ≤ l L for every L ∈ P.
If L is a language such that L ≤ l L for some L ∈ P-complete, then L is P-hard [START_REF] Papadimitriou | Computational complexity[END_REF]. Moreover, if L ∈ P, then L ∈ P-complete [START_REF] Papadimitriou | Computational complexity[END_REF]. A Boolean formula φ is composed of 1. Boolean variables: x 1 , x 2 , . . . , x n ; 2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as ∧(AND), ∨(OR), (NOT), ⇒(implication), ⇔(if and only if);

and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ . We define a CNF Boolean formula using the following terms. A literal in a Boolean formula is an occurrence of a variable or its negation [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. A Boolean formula is in conjunctive normal form, or CNF, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. A Boolean formula is in 3-conjunctive normal form or 3CNF, if each clause has exactly three distinct literals [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF].

For example, the Boolean formula:

(x 1 ∨ x 1 ∨ x 2 ) ∧ (x 3 ∨ x 2 ∨ x 4 ) ∧ ( x 1 ∨ x 3 ∨ x 4 )
is in 3CNF. The first of its three clauses is The collection S could not be a set, since by the definition of a collection, this can contain repeated elements. We will represent the collection S as an array of positive integers A such that some positive integer i is in S if and only if i is an element of A. Moreover, the amount of times which is repeated a positive integer in S is the same number of times where this one is contained in A.

(x 1 ∨ x 1 ∨ x 2 ),
QUESTION: Is x the maximum number in S? Lemma 3.2. MAXIMUM ∈ P.

Proof. How many comparisons are necessary to determine whether a positive integer x is the maximum of a collection of n positive integers? We can easily obtain an upper bound of n comparisons: examine each element of the collection in turn and keep track of the largest element seen so far and finally, we compare the ultimate result with x. In the following procedure, we assume that the collection resides in an array A of length n. Is this the best amount of comparisons we can do? Yes, since we can obtain a lower bound of n -1 comparisons for the problem of determining the maximum and one another comparison to check whether this is equal to x [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. Think of any algorithm that determines the maximum as a tournament among the elements [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. Each comparison is a match in the tournament in which the larger of the two elements wins [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. The key observation is that every element except the winner must lose at least one match [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. Finally, we compare the winner with x [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. Hence, n comparisons are necessary to determine whether x is the maximum of the collection of positive integers, and the algorithm MAXIMUM is optimal with respect to the number of comparisons performed [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. QUESTION: Is the truth assignment T the maximum cost assignment of φ over all neighbors of T ? The cost of the assignment is the sum of the weights of the clauses it satisfies. The neighbors of T are truth assignments that differ from T in one bit position.

REMARKS: We denote this language as U3NSAT FLIP [START_REF] Raymond Greenlaw | A Compendium of Problems Complete for P[END_REF].

Theorem 3.4. U3NSAT FLIP ≤ l MAXIMUM.

Proof. Given a Boolean formula φ in 3CNF and a truth assignment T , we can calculate the cost assignment of T based on the not-all-equals criterion in a logarithmic space algorithm. In the following function COST , we assume the truth assignment T is a dictionary that maps every variable in φ to 1 or 0 (true or false).

Algorithm 2 COST's Logarithmic space algorithm 1: function COST(φ , T )

// Initialize the cost assignment to 0 for all c ∈ φ do 6:

// The clause c is equal to (p ∨ q ∨ r) return num 14: end function This function uses logarithmic space in its work tapes and assumes the clauses contain only positive literals. Certainly, the calculation of T [p] + T [q] + T [r] can be made storing a constant amount of space where p, q and r are the positive literals of each clause c in φ . In addition, if m is the number of clauses in φ , then the number num will not exceed the number m and thus, the work tapes will contain at most O(log m) space.

7: if 0 < T [p] + T [q] + T [r] <
On the other hand, we can reduce an instance of U3NSAT FLIP into another of MAXIMUM in logarithmic space. For this purpose, we are going to use the function COST into a new algorithm. In the following function REDUCE, we represent the input instance as a given Boolean formula φ in 3CNF of n -1 variables with a truth assignment T and the output instance as a positive integer x with an array A filled with n elements of a collection of positive integers. We will assume the truth assignment T given in the input is a dictionary that maps every variable in φ to 1 or 0 (true or false) as well. // Calculate the cost of T based on the not-all-equals criterion 20:

x ← COST (φ , T ) 21:

// Assign the cost assignment of the original T without flipping any bit position 22:

A[i] ← x 23:
// Return the reduction 24:

return (x, A) 25: end function Is this a logarithmic space reduction from U3NSAT FLIP to MAXIMUM? Given a Boolean formula φ in 3CNF and a truth assignment T , we will obtain the positive integer x as the cost assignment of φ in T and in the array A the cost assignment of φ from all the neighbors of T included the cost assignment of T . In this way, if x is the maximum in the collection of positive integers represented by A, then φ , T belongs to U3NSAT FLIP. However, if x is the maximum in the collection of positive integers represented by A (remember that A contains x), then this will be an element of the language MAXIMUM as well. Certainly, φ , T is in U3NSAT FLIP if and only if x is the maximum in the collection of positive integers in A. The function REDUCE uses logarithmic space since the bit-length of the index i is O(log n) because there are n -1 variables and thus, there are at most n costs assignments that we need to calculate which is the cost of the original truth assignment T and the n -1 truth assignment after flipping one bit position in T . Moreover, the bit position that we flip in T will use at most two symbols encoded in binary over the work tapes: the new bit value and the variable. In addition, the algorithm COST runs in logarithmic space in relation to φ and the truth assignment T with at most one bit flipped. The algorithm COST will take into account the original truth assignment T which remains in the input tape and the changed bit position which is stored in the work tapes. After the computation of COST over each iteration, we will erase from the work tapes the at most O(log m) space that could contain those tapes where m is the number of clauses in φ . Furthermore, we do not need to store the value of the elements of A in the work tapes since they can be written directly to the output tape. The array A can be written to the output tape as the pairs (i, v i ) where i is an index between 0 and n -1 and v i is equal to the positive integer A[i]. We also write the binary string of the number x to the output tape where this string contains at most O(log m) space. Consequently, we demonstrate U3NSAT FLIP ≤ l MAXIMUM. Theorem 3.5. MAXIMUM ∈ P-complete.

Proof. We prove U3NSAT FLIP can be logarithmic reduced to MAXIMUM and U3NSAT FLIP is in P-complete under logarithmic space reductions [START_REF] Raymond Greenlaw | A Compendium of Problems Complete for P[END_REF], thus MAXIMUM belongs to P-hard. Moreover, since MAXIMUM ∈ P, then MAXIMUM is in P-complete. Theorem 3.6. MAXIMUM ∈ LOGSPACE.

Proof. Given a positive integer x and a collection S of positive integers, we are going to demonstrate we can decide this problem in logarithmic space. In the following procedure, we assume that the collection resides in array A of length n. Besides, we assume the function length calculates the bit-length of a binary string and uses a logarithmic space for the calculation.

Is this a logarithmic space algorithm? Yes, since we compare the value of the functions length(x) and length(A[i]) (the i th element of A) using a logarithmic space although we could partially calculate the length(A[i]). In addition, the calculated bit-length of x only uses at most O(log x) space. Besides, in the comparison with the bit-length of A[i] and x we halt and reject immediately when length(A[i]) exceeds length(x) at least in one digit and thus, we do not need to calculate completely the length(A[i]) to reject. In this way, we just keep at most O(log x) space in the calculation of length(A[i]). Finally, when both bit-lengths are equal, then we compare the elements A[i] and x bit by bit. For this purpose, we compare only two bits in the input tape over the same position j from x and A[i] in a descending order for each step. Notice, that we start to compare from the last bit position in a descending order. For example, in the binary string 100 which represents the number 4, we start iterating from the last bit element, that is the bit 1. Moreover, we store the position j in the work tapes and this value has at most O(log x) space. If it would be the case that A[i] and x have the same bit-length, but A[i] is greater than x, then we reject. We continue the iteration with the next value i while the property that x is the maximum number in the array remains as true. However, we only accept when the value of the variable answer is "yes" when initially has the value of "no" by default. The value will be "yes" in the variable answer after the whole iteration for each element in the array if and only if there is at least one element A[i] that is equal to x. Furthermore, if the iteration is completed until the last item, then x is greater than or equal to every element in the array A. To sum up, we show we can decide whether x is the maximum of the collection represented by the array A in logarithmic space and thus, MAXIMUM ∈ LOGSPACE. Proof. The language of CIRCUIT-MAXIMUM is in coNP. Certainly, we can check in polynomial time a disqualification from an instance x,C of this language that is a positive integer y where x < y and y is in S or we can simply verify in polynomial time when x is not in S where . . . is the binary encoding. Indeed, we can check whether the both evaluations of y and x in C accept and check later whether x < y or we can just verify when C(x) does not accept. Certainly, we can polynomially make the verification when x,C is a "no" instance of the problem CIRCUIT-MAXIMUM, because the evaluation in the Boolean circuit can be done in polynomial time as well.

Given a Boolean circuit C, the problem coCIRCUIT-SAT consists in deciding whether there is not any input such that C accepts [START_REF] Papadimitriou | Computational complexity[END_REF]. Theorem 3.10. CIRCUIT-MAXIMUM ∈ coNP-complete.

Proof. Given a Boolean circuit C we can check whether C(0) does not accept. In that case, we create a succinct Boolean circuit C which only accepts the input string 0 and has the same number of input gates of C. We combine C with C through the input gates into a new Boolean circuit C which accepts only when C or C accept. This is possible just adding a gate OR between the output gates of C and C . The instance of the positive integer 0 and the final Boolean circuit C belongs to CIRCUIT-MAXIMUM if and only if C is in coCIRCUIT-SAT. Certainly, 0 is the maximum of the collection that represents C if there is not any other input which C accepts. In addition, C accepts the positive integer 0 because of the construction of C on C. Since we can create the succinct Boolean circuit C and evaluate C on the input 0 in polynomial time, then we can reduce coCIRCUIT-SAT to CIRCUIT-MAXIMUM in polynomial time. coCIRCUIT-SAT is a known coNP-complete problem [START_REF] Papadimitriou | Computational complexity[END_REF]. Hence, the language CIRCUIT-MAXIMUM is in coNP-hard [START_REF] Papadimitriou | Computational complexity[END_REF]. As result of Theorem 3.9, we obtain CIRCUIT-MAXIMUM is also in coNP and thus, the proof is completed. Theorem 3.11. CIRCUIT-MAXIMUM is a succinct representation of the language MAXIMUM. Proof. Every Boolean circuit C could always be a succinct representation of some collection of positive integers S. Indeed, this will happen since there is always a collection S which could contain more than or approximately to 2 m elements (remember that a collection could contain repeated elements) if we represent it by a Boolean circuit of m input gates. In addition, since a collection could contain any amount of repeated elements, then every instance of CIRCUIT-MAXIMUM is a succinct representation of another instance of MAXIMUM. Certainly, CIRCUIT-MAXIMUM is nothing else but a language that contains the instances of the problem MAXIMUM which could be represented by an exponentially more succinct input in relation to S [START_REF] Papadimitriou | Computational complexity[END_REF].

  INSTANCE: A positive integer x and a collection S of positive integers.

Definition 3 . 3 .

 33 Unweighted, Not-All-Equal Clauses, 3SAT/FLIP INSTANCE: A Boolean formula φ in 3CNF and a truth assignment T . Each clause has a weight of 1. The clauses are not-all-equals clauses with positive literals. A truth assignment satisfies a clause c under the not-all-equals criterion if it is such that c has at least one true and one false literal.

Algorithm 3 each variable y in φ 7 :

 37 REDUCE's Logarithmic space algorithm 1: function REDUCE(φ , T ) for all y ∈ φ do 8: // Flip the value of T [y] (0 to 1 or 1 to 0) 9: T [y] ← (T [y] -1) × (-1) 10: // Calculate the cost of the flipped T based on the not-all-equals criterion 11: num ← COST (φ , T ) 12: // Assign the cost assignment of the neighbor of T after flipping over T the index to store the new neighbor cost assignment of T the value of T [y] to the original bit number 17: T [y] ← (T [y] -1) × (-1)

Theorem 3 . 7 .

 37 LOGSPACE = P. Proof. As result of Theorems 3.5 and 3.6 we obtain LOGSPACE = P, because the complexity class LOGSPACE is closed under logarithmic space reductions [7]. Definition 3.8. CIRCUIT-MAXIMUM INSTANCE: A positive integer x and a collection S of positive integers such that the collection S is represented by a Boolean circuit C where some positive integer i belongs to S if and only if C(i) accepts. QUESTION: Is x the maximum number in S? Theorem 3.9. CIRCUIT-MAXIMUM ∈ coNP.

  which contains the three literals x 1 , x 1 , and x 2 . It contains n nodes with no incoming edges; called the input gates and m nodes with no outgoing edges, called the output gates [2]. All other nodes are labeled with one of ∨, ∧ or (in other words, the logical operations OR, AND, and NOT) [2]. The ∨ and ∧ nodes have fanin (i.e., number of incoming edges) of 2 and the nodes have fanin 1. The size of C is the number of nodes in it [2].

For every n, m ∈ N a Boolean circuit C with n inputs and m outputs is a directed acyclic graph [2].

FOR REVIEW ONLY

Algorithm 4 MAXIMUM's Logarithmic space algorithm 1: procedure MAXIMUM(x, A) 2:

// Initialize the variable answer 3:

answer ← "no" 4:

// Iterate for each element of the collection 5:

for i ← 0 to n -1 do 6:

// If the bit-length of x is lesser than the bit-length of element A[i] // Accept if answer = "yes" and reject when answer = "no"

40:

return answer 41: end procedure FOR REVIEW ONLY