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APPROXIMATE MATRIX AND TENSOR DIAGONALIZATION
BY UNITARY TRANSFORMATIONS:

CONVERGENCE OF JACOBI-TYPE ALGORITHMS∗

KONSTANTIN USEVICH† , JIANZE LI‡ , AND PIERRE COMON§

Abstract. We propose a gradient-based Jacobi algorithm for a class of maximization problems
on the unitary group, with a focus on approximate diagonalization of complex matrices and tensors
by unitary transformations. We provide weak convergence results, and prove local linear convergence
of this algorithm. The convergence results also apply to the case of real-valued tensors.

Key words. optimization on manifolds, unitary group, Givens rotations, approximate tensor
diagonalization,  Lojasiewicz gradient inequality, local convergence
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1. Introduction. In this paper, we consider the following optimization problem

(1.1) U∗ = arg max
U∈Un

f(U),

where Un ⊆ Cn×n is the unitary group and

(1.2) f : Un → R
+

is a real differentiable function. An important class of such optimization problems
stems from approximate matrix and tensor diagonalization problems in numerical
linear and multilinear algebra, that are relevant in signal processing [17] and machine
learning [5].

Jacobi-type algorithms are widely used for maximization of these cost functions.
Inspired by the classic Jacobi algorithm [22] for the symmetric eigenvalue problem,
these algorithms proceed by successive Givens transformations that update only a pair
of columns of U . The popularity of these approaches is explained by simplicity of the
updates, which in many cases are very cheap. Although the Jacobi-type algorithms
are similar in spirit to block-coordinate descent, they enjoy quadratic convergence for
the classic matrix case [22] and the case of a pair of commuting matrices [12].

Despite their popularity, the convergence of these algorithms has not yet been
studied thoroughly, except the cases listed above. For the real-valued case (orthog-
onal group), a gradient-based Jacobi-type algorithm (which we call Jacobi-G) was
proposed in [26] and its weak convergence was proved. Global (single-point) conver-
gence of this algorithm was proved for simultaneous real third-order tensor or matrix
diagonalization in [30]; the proof in [30] based on the  Lojasiewicz gradient inequality,
that became a very popular tool for studying convergence properties of nonlinear op-
timization algorithms [2, 29, 36, 6], including various tensor approximation problems
[37, 25].
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In this paper, we address the complex-valued (the unitary group), and focus on
a number of tensor and matrix approximate diagonalization problems [17] (although
the results are applicable to other instances of problem (1.1) ). Unlike the real case,
where the Givens transformations are univariate (“line-search” type), in the complex
case the updates correspond to maximization on a sphere (similar in spirit to subspace
methods). The main contributions of the paper are: (i) we generalize the Jacobi-G
algorithm to the complex case, namely to the unitary group, and prove its weak con-
vergence (to stationary points) and global rates of convergence based on the results
of [9]; (ii) for the case of matrix and tensor diagonalization, we show that the local
convergence can be studied by combining the tools of  Lojasiewicz gradient inequality,
geodesic convexity and recent results on  Lojasiewicz exponent for Morse-Bott func-
tions. In particular, local linear convergence takes place for local maxima satisfying
second order regularity conditions. One of the motivations for this work was that the
case of the unitary group is not common in the optimization literature, unlike the
case of orthogonal group and other matrix manifolds [3].

The structure of the paper is as follows. In section 2, we recall the cost func-
tions of main interest, the principle of Jacobi-type algorithms, and expressions for
the updates in these algorithms. In section 3, we recall all the necessary facts for
differentiation on the unitary group, formulate the abstract Jacobi-G algorithm and
prove its correctness. Section 4 contains the expressions of the first- and second-order
derivatives of various cost functions listed in section 2. In section 5, we present the
result on weak convergence (to stationary points) and global convergence rates for the
Jacobi-G algorithm. The general results of [9] are summmarized in the same section.
In section 6, we recall general results on convergence of descent algorithms on mani-
folds that are based on the  Lojasiewicz gradient inequality, we also recall the notions
of geodesic convexity and Morse-Bott functions, that will be used later on. Section 7
contains main results. While subsection 7.1 is devoted to checking the decrease con-
ditions, subsection 7.2 contains the results on local linear convergence of Jacobi-G
algorithm to local maxima satisfying the Morse-Bott property. We eventually provide
in subsection 7.3 some examples of tensor and matrix diagonalization problems where
these properties are satisfied.

2. Background and problem statement.

2.1. Main notation. For a matrix X ∈ Cm×n, we denote by X
T its transpose,

by X
∗ its elementwise conjugate, and by X

H the Hermitian transpose, respectively.
We will also frequently use the notation X = X

ℜ + iXℑ for the real and imaginary
parts of X, and ℜ(a), ℑ(a) for the real and imaginary part of a ∈ C. Moreover, Un

and SUn denote the unitary and special unitary groups in Cn×n, whereas On and SOn

denote the orthogonal and special orthogonal groups in Rn×n, respectively.
In this paper, we make no distinction between tensors and multi-way arrays; for

simplicity, we consider only fully contravariant tensors [32]. For a tensor or a matrix
A ∈ Cn×···×n, we denote by diag{A} ∈ Cn the vector containing all the diagonal
elements Aii···i We denote by ‖ · ‖ the Frobenius norm of a tensor or a matrix, or the
Euclidean norm of a vector. By A •k v we denote the contraction on the kth index of
A with vector v. By writing multiple contractions A •k1 v1 . . . •kℓ

vℓ we assume that
they are performed simultaneously, i.e. the indexing of the tensor does not change
before contractions are complete.

For a pair i 6= j we introduce the projection operator Pi,j : Cn×n → C2×2 that
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extracts the submatrix of X ∈ Cn×n as follows:

(2.1) Pi,j(X) =

[
Xii Xij

Xji Xjj

]
.

Its adjoint operator is PT

i,j : C2×2 → Cn×n , i.e.

(2.2) PT

i,j

([
a c
b d

])
=




i j

0
...

... 0
i · · · a c

j · · · b d
0 0



.

2.2. Cost functions under consideration. In this paper, we mainly consider
the following three cost functions from Un to R+. But, whenever possible, we formu-
late our results in full generality

(i) Approximate diagonalization of a set of matrices. Let A
(ℓ) = A

(ℓ,ℜ) + iA(ℓ,ℑ) ∈
Cn×n, 1 ≤ ℓ ≤ L, be Hermitian matrices. The cost function is defined as

(2.3) f(U) =
L∑

ℓ=1

‖ diag{W (ℓ)}‖2,

where W
(ℓ) = U

H
A

(ℓ)
U .

(ii) Approximate diagonalization of a partially symmetric 3rd order tensor. Let A ∈
Cn×n×n be a tensor satisfying the partial symmetry condition:

(2.4) Aijk = Aikj

for any 1 ≤ i, j, k ≤ n. The cost function is defined as:

(2.5) f(U) = ‖ diag{W}‖2,

where Wijk =
∑

p,q,r Apqr U∗
piUqjUrk.

(iii) Approximate diagonalization of a 4th order tensor. Let B ∈ Cn×n×n×n be a
tensor satisfying the following partial symmetry conditions

(2.6) Bijkl = Bjikl and Bijkl = B∗
klij

for any 1 ≤ i, j, k, l ≤ n. The cost function is defined as

(2.7) f(U) =

n∑

p=1

Vpppp,

where Vijkℓ =
∑

p,q,r,s Bpqrs U
∗
piU

∗
qjUrkUsℓ.

Remark 2.1. As in (2.3), the simultaneous diagonalization problem of several 3rd
and 4th order tensors can be considered. In this paper however, we prefer to consider
the single tensor case in (2.5) and (2.7) for simplicity of presentation.

The motivation behind these cost functions comes from blind source separation.
(i) The cost function (2.3) is used for diagonalization of covariance matrices [13, 14].
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(ii) An example of the 3rd order tensor satisfying property (2.4) is the cumulant
tensor with Aijk = Cum(vi, v

∗
j , v

∗
k), where v is a complex random vector [18].

(iii) An example of the 4th order tensor satisfying property (2.6) is the cumulant
tensor Aijkl = Cum(vi, vj , v

∗
k, v

∗
l ), of a complex random vector v [15], which

may itself stem from a Fourier transform [20].

Remark 2.2. Some symmetries in problems considered above can be dropped.
(i) The matrices A

(ℓ) in (2.3) do not need to be Hermitian (as shown in [14]).
Indeed, for W = U

H
AU

|Wjj | = |uH

j Auj | = |uH

j A
H
uj | = |uH

j

(
A + A

H

2

)
uj |,

i.e., we can always substitute A
(ℓ) with their Hermitian symmetrizations in (2.3).

(ii) For the same reason, the tensor in (2.5) does not need to be symmetric, because
for any third-order tensor A ∈ Cn×n×n

|A •1u∗ •2u •3u| = |B •1 u∗ •2u •3u|,

where B ∈ Cn×n×n is defined as Bijk =
Aijk+Aikj

2
(iii) Similarly, in (2.7) almost all symmetries required in (2.6) can be dropped, except

Bijkl = B∗
klij ,

which is needed to ensure that the cost function f(U) is real-valued.

2.3. Jacobi-type methods. Fix an index pair (i, j) that satisfies 1 ≤ i < j ≤ n.
Then, for a matrix Ψ ∈ U2, we define the complex Givens transformation in Un as:

G
(i,j,Ψ) =



























i j

1
. . . 0

i Ψ1,1 Ψ1,2

. . .

j Ψ2,1 Ψ2,2

0
. . .

1



























,

i.e., the matrix with the same elements as In except that

Pi,j(G
(i,j,Ψ)) = Ψ.

The set of matrices G(i,j,Ψ) is a subgroup of Un that is canonically isomorphic to U2.

In addition, any matrix in Un is a product of at most n(n−1)
2 Givens transformations.

Jacobi-type methods aim at maximizing the functional by applying successive
Givens transformations. The sequence of iterations {Uk} is generated multiplicatively

Uk = Uk−1G
(ik,jk,Ψk),

where the pair (ik, jk) is chosen according to a certain rule, and Ψk is chosen to
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maximize the restriction h(ik,jk),Uk−1
of (1.2) defined as

h(i,j),U : U2 −→ R
+

Ψ 7−→ f(UG
(i,j,Ψ)).(2.8)

An advantage of the Jacobi-type methods is that in many cases the maximizers of
h(ik,jk),Uk−1

can be found in a closed form, and the updates are very cheap.
A typical choice of pairs (ik, jk) is cyclic, e.g.,

(1, 2) → (1, 3) → · · · → (1, n) → (2, 3) → · · · → (2, n) → · · · → (n− 1, n) →
(1, 2) → (1, 3) → · · · ,

which appears in the classic Jacobi algorithm for the symmetric eigenvalue problem,
and is used for maximizing the cost functions in Subsection 2.2 .

The convergence of the iterations for cyclic algorithms is unknown, except in the
single matrix case [22]. Recently, a gradient-based Jacobi algorithm (Jacobi-G) [26]
was proposed in a context of optimization on orthogonal group for low multilinear rank
approximation. Weak convergence was shown in [26] and global convergence for real
matrix and 3rd order tensor case was proved in [30]. In this paper, we extend Jacobi-G
to the case of the unitary group, but we postpone its formulation to Section 3.

2.4. Jacobi rotations for scale-invariant functions. First of all, consider
the cost functions in (1.1) that are invariant under permutations of columns of U and
multiplications of columns of U by complex scalars of modulus 1, i.e.

(2.9) f(U) = f(US)

for any matrix of the form

(2.10) S =

[
eiα1 0

. . .
0 eiαn

]
.

In this case, we see that the restriction (2.8) satisfies

(2.11) h(i,j),U (Ψ) = h(i,j),U

(
Ψ
[
z1 0
0 z2

])

for any |z1| = |z2| = 1. Hence, to maximize h(i,j),U (Ψ), we can set

Ψ = Ψ(c, s1, s2) =

[
c −s
s∗ c

]
=

[
c −(s1 + is2)

s1 − is2 c

]

=

[
cos θ − sin θeiφ

sin θe−iφ cos θ

]
=

1√
1 + |z|2

[
1 −z
z∗ 1

]
∈ SU2,(2.12)

where c ∈ R
+, s = s1 + is2 = sin θeiφ ∈ C satisfy c2 + |s|2 = 1. We also denote

h(c, s1, s2) = h(i,j),U (c, s1, s2) = h(i,j),U

([
c −s
s∗ c

])
.

Similarly to the single matrix case [22], we will refer to the maximizers of h(i,j),U as
Jacobi rotations.
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2.5. Jacobi rotations for matrix/tensor diagonalization. In this subsec-
tion, we consider the cost functions in subsection 2.2, which obviously satisfy the
satisfy the invariance property (2.9). We recall how Jacobi rotations can be com-
puted by finding an eigenvector of a 3 × 3 real matrix.

Lemma 2.3. For all U ∈ Un, the cost functions in Subsection 2.2 have the form

(2.13) h(i,j),U (c, s1, s2) = r
TΓ(i,j,U)

r + C,

where , r = r(c, s1, s2)
def
=

(2.14)
def
= (cos 2θ,− sin 2θ sinφ,− sin 2θ cosφ)T = (2c2 − 1,−2cs1,−2cs2)

T,

the constant C does not depend on (c, s1, s2), and Γ(i,j,U) ∈ R3×3 is a symmetric
matrix defined as follows:

(i) for the cost function (2.3), we have C = 1
2

L∑
ℓ=1

(W
(ℓ)
jj + W

(ℓ)
ii )2 and

Γ(i,j,U) =
1

2

L∑

ℓ=1




(W
(ℓ)
jj −W

(ℓ)
ii )

2W
(ℓ,ℜ)
ij

2W
(ℓ,ℑ)
ij



[
(W

(ℓ)
jj −W

(ℓ)
ii ) 2W

(ℓ,ℜ)
ij 2W

(ℓ,ℑ)
ij

]
;

(ii) for the cost function (2.5), we have C = 0 and Γ = Γ(i,j,U) (see [18, (9.29)] and
[17, Section 5.3.2]) is:

Γ11 = a1, Γ22 = v4 −ℜ(v3), Γ33 = v4 + ℜ(v3),

Γ12 = ℑ(v1) + ℑ(v2), Γ13 = ℜ(v1) −ℜ(v2), Γ23 = ℑ(v3),

a1 = |W111|2 + |W222|2, a2 = |W112|2 + |W212|2, a3 = |W211|2 + |W122|2,
a4 = W111W112, a5 = W111W211, a6 = W222W122, a7 = W222W212,

a8 = W111W212 + W222W112, a9 = W111W122 + W222W211,

a10 = W211W112 + W122W212,

v1 = a7 −
a5
2
, v2 = a4 −

a6
2
, v3 =

a9
2

+ a10, v4 =
a1 + a3

4
+ a2 + ℜ(a8).

(iii) for the cost function (2.7), we have C = 0 and Γ = Γ(i,j,U) [15] is

Γ11 = Viiii + Vjjjj , Γ12 = Vℜ
ijjj − Vℜ

iiij , Γ13 = Vℑ
ijjj − Vℑ

iiij , Γ23 = Vℑ
iijj ,

Γ22 =
1

2
(Viiii + Vjjjj) + 2Vijij + Vℜ

iijj , Γ33 =
1

2
(Viiii + Vjjjj ) + 2Vijij − Vℜ

iijj .

Remark 2.4. (i) By Lemma 2.3, the maximization of h(i,j),U (c, s1, s2) is equivalent

to maximization of the quadratic form rTΓ(i,j,U)
r on the unit sphere ‖r‖ = 1. Thus,

the maximizer Ψ of h(i,j),U can be obtained from an eigenvector corresponding to the

maximal eigenvalue of Γ(i,j,U) denoted by w.
(ii) Even if the maximal eigenvalue is simple, w is defined up to a sign change. We
choose the sign such that w1 = cos 2θ = 2c2 − 1 ≥ 0 in (2.14). Hence, we can take

θ ∈
[
0, π

4

]
and c >

√
2
2 (by setting θ = arccos(w1)

2 ∈
[
0, π4

]
, s1 = − w2

2 cos θ , s2 = − w3

2 cos θ ).

3. Jacobi-G algorithm for Un. Before formulating the Jacobi-G algorithm,
we recall some facts on complex derivatives and functions on manifolds.

6



3.1. Wirtinger calculus. First, we introduce the following real-valued inner
product on Cm×n. For X = X

ℜ + iXℑ,Y = Y
ℜ + iY ℑ ∈ Cm×n, we introduce

(3.1) 〈X,Y 〉ℜ
def
= 〈Xℜ,Y ℜ〉 + 〈Xℑ,Y ℑ〉 = ℜ

(
trace{XH

Y }
)
.

Since a nonconstant function f : Cm×n → R is never holomorphic, we use a shorthand
notation ∂f

∂Xℜ ,
∂f

∂Xℑ ∈ Rm×n for the matrix derivatives with respect to the real and

imaginary parts of X ∈ Cm×n. The Wirtinger derivatives [1, 11, 28] ∂f
∂X

, ∂f
∂X∗ ∈ Cm×n

are standardly defined as

∂f

∂X
:=

1

2

(
∂f

∂Xℜ − i
∂f

∂Xℑ

)
,

∂f

∂X∗ :=
1

2

(
∂f

∂Xℜ + i
∂f

∂Xℑ

)
.

The matrix Euclidean gradient of f with respect to (3.1) becomes

∇f(X) =
∂f

∂Xℜ + i
∂f

∂Xℑ = 2
∂f

∂X∗ (X).

3.2. Riemannian gradient. Recall that Un ⊆ Cn×n can be viewed as an em-
bedded real submanifold of Cn×n with the inner product induced by (3.1). By [3,
Section 3.5.7], the tangent space to Un can be associated with an n2-dimensional
R-linear subspace of Cn×n:

TUUn = {X ∈ C
n×n : XH

U + U
H
X = 0}.

Alternatively, it is the transformed set of skew-Hermitian matrices:

TUUn = {X ∈ C
n×n : X = UZ, Z + Z

H = 0}.

Then for f : C
n×n → R differentiable in a neighborhood of Un, the Riemannian

gradient is just the orthogonal projection of the Euclidean gradient ∇f(U) on TUUn:

gradf(U) = UΛ(U) ∈ TUUn,(3.2)

where

(3.3) Λ(U) =
U

H∇f(U) − (∇f(U))HU

2
= U

H ∂f

∂U∗ (U) − (
∂f

∂U∗ (U))HU .

Note that Λ(U ) is a skew-Hermitian matrix, i.e.,

(3.4) Λ(U)i,j = −(Λ(U)j,i)
∗, 1 ≤ i, j ≤ n.

In what follows, we will use the exponential map [3, p.102] ExpU : TUUn → Un,
which maps 1-dimensional lines in the tangent space to geodesics and is given by

(3.5) ExpU (UΩ) = U exp(Ω),

where exp(·) is the matrix exponential. We will frequently use the following relation
between ExpU and the Riemannian gradient. For any ∆ ∈ TUUn, we have

(3.6) 〈∆, grad f(U)〉ℜ =

(
d

dt
f(ExpU (t∆))

)∣∣∣∣
t=0

.
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3.3. Riemannian Hessian and stationary points. This subsection is not
mandatory to formulate the Jacobi-G algorithm, but we keep it here for convenience.
For a Riemannian manifold M and a C2 function f : M → R, the Riemannian
Hessian at x ∈ M is either defined as a linear map TxM → TxM or as a bilinear
form on TxM; the usual definition is based on the Riemannian connection [3, p.105].

For our purposes, for simplicity, we assume that the exponential map Expx :
TxM → M is given, and adopt the following definition based on [3, Proposition
5.5.4]. The Riemannian Hessian Hessxf is the linear map TxM → TxM defined by

Hessxf = Hess0x
(f ◦ Expx),

where 0x is the origin in the tangent space, and Hess0x
g is the Euclidean Hessian of

g : TxM → R. Hence, similarly to (3.6), there is the following expression for the
values of Riemannian Hessian as a quadratic form at ∆ ∈ TxM:

(3.7) 〈Hessxf [∆],∆〉ℜ =

(
d2

dt2
f(Expx(t∆))

)∣∣∣∣
t=0

.

The Riemannian Hessian gives well-known necessary and sufficient conditions of
local extrema (see, for example, [35, Theorem 4.1]).

• If x is a local maximum of f on M, then Hessxf � 0 (negative semidefinite);
• If gradf(x) = 0 and Hessxf ≺TxM 0 (i.e., Hessxf � 0 and rank{Hessxf} =

dim(M)), then f has a strict local maximum at x.
Finally, we distinguish stationary points with nonsingular Riemannian Hessian.

Definition 3.1. A stationary point (x ∈ M, gradf(x) = 0) is called non-
degenerate if Hessxf is nonsingular on TxM.

3.4. Jacobi-G algorithm. We are now in a position to formulate a general-
purpose Jacobi-G algorithm, which is a generalization of the algorithm proposed in
[26]. The main ideas behind the algorithm are:

• optimize the cost function by successive Givens transformations;
• choose a gradient based order of pairs (well-aligned with gradf(·)).

Algorithm 3.1 General Jacobi-G algorithm

Input: A differentiable function f : Un → R+ defined in a neighorhood of Un, a
positive constant 0 < δ <

√
2/n, a starting point U0.

Output: Sequence of iterations Uk.
• For k = 1, 2, . . . until a stopping criterion is satisfied do
• Choose an index pair (ik, jk) satisfying

(3.8) ‖ gradh(ik,jk),Uk−1
(I2)‖ ≥ δ‖ gradf(Uk−1)‖.

• Find Ψk that maximizes hk(Ψ)
def
= h(ik,jk),Uk−1

(Ψ).

• Update Uk = Uk−1G
(ik,jk,Ψk).

• End for

Now we show that it is always possible to choose the index pair such that the
inequality (3.8) is satisfied. For this, we first show how to compute the Riemannian
gradient of h(i,j),U based on that of f .
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Lemma 3.2. The Riemannian gradient of h(i,j),U at the identity matrix I2 is a
submatrix of the matrix Λ(U) defined in (3.3):

gradh(i,j),U (I2) = Pi,j(Λ(U)) =

[
Λ(U)ii Λ(U)ij
Λ(U)ji Λ(U)jj

]
.(3.9)

Proof. Denote h = h(i,j),U for simplicity. For any ∆ ∈ TI2
U2, by (3.6)

〈∆, gradh(I2)〉ℜ =

(
d

dt
h(ExpI2

(t∆))

)∣∣∣∣
t=0

=

(
d

dt
f(UG

(i,j,Exp
I2

(∆t)))

)∣∣∣∣
t=0

=

(
d

dt
f(ExpU (UPT

i,j(∆)t))

)∣∣∣∣
t=0

=
〈
UPT

i,j(∆), grad f(U)
〉
ℜ = 〈∆,Pi,j(Λ(U))〉ℜ ,

which completes the proof.

Corollary 3.3. Let f and h(i,j),U be as in Lemma 3.2. Then

max
1≤i<j≤n

‖ gradh(i,j),U (I2)‖ ≥
√

2

n
‖ gradf(U)‖.

Proof. By (3.2) and Lemma 3.2, we see that

‖ gradf(U)‖2 = ‖Λ(U)‖2 =

n,n∑

i,j=1

|Λ(U)i,j |2 ≤ n2

2
max

1≤i<j≤n
‖ gradh(i,j),U (I2)‖2.

4. Finding Jacobi rotations and derivatives.

4.1. Derivatives for scale-invariant functions. In this section, we consider
the functions f : Un → R that are invariant with respect to scaling of columns of U .

Lemma 4.1. For f satisfying (2.9) and all U the main diagonal of Λ(U) is zero.

Proof. For the matrix

(4.1) Ωk =







k

0

... 0

k · · · i

0 0






.

we have that

〈Ωk,Λ(U)〉ℜ = 〈UΩk, grad f(U)〉ℜ =

(
d

dt
f(UetΩk)

)∣∣∣∣
t=0

= 0.

Since Λ(U) is skew-Hermitian, the proof is complete.

Next we show that the Riemannian Hessian of functions satisfying invariance
property (2.9) (with matrix S given in (2.10)) is rank-deficient at stationary points.

Lemma 4.2. Assume that f : Un → R satifies the invariance property (2.9).
(i) For any U , Λ = Λ(U) and

(4.2) Zk =
[
0 · · · 0 iuk 0 · · · 0

]
= UΩk ∈ TUUn,
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we have that

HessUf [Zk] =
iU

2




0 ··· 0 Λ1,k 0 ··· 0

...
...

...
...

...
0 ··· 0 Λk−1,k 0 ··· 0

−Λk,1 ··· −Λk,k−1 0 −Λk,k+1 ··· Λk,n

0 ··· 0 Λk+1,k 0 ··· 0

...
...

...
...

...
0 ··· 0 Λn,k 0 ··· 0



,

(ii) If, in addition, U is a stationary point of f , then rank{HessUf} ≤ n(n − 1),
and HessUf [Zk] = 0 i.e., all the matrices Zk are in the kernel of HessUf .

Proof. (i) Recall that the parallel transport on Un along the geodesic in the
direction Z = UΩ ∈ TUUn is given [19, (2.18)]1, [23, Chap. 2, Ex. A.6] by

τtZk
: TUUn → TExp

U
(tZk)Un, τtZ(Y ) = Ue

tΩ
2 U

H
Y e

tΩ
2 ,

and its inverse is then given by

τ−1
tZ (V ) = Ue

−tΩ
2 U

H
V e

−tΩ
2 .

From the link between parallel transport [3, (8.1)] and Riemannian connection,

HessUf [Zk] =

(
d

dt
τ−1
tZ (gradf(ExpU (tZk)))

)∣∣∣∣
t=0

=

(
d

dt
Ue−

tΩk
2 U

H gradf(UetΩk)e−
tΩk
2

)∣∣∣∣
t=0

=
U

2
(−ΩkΛ(U) + Λ(U )Ωk) .

(ii) Since U is a stationary point Λ(U) = 0, and HessUf [Zk] = 0. Finally, since
{Zk}nk=1, are linearly independent, rank{HessUf} ≤ n(n− 1).

Finally, we show that the Riemannian Hessian for the Givens transformations can
be computed as a submatrix of the Riemannian Hessian.

Proposition 4.3. Let h(i,j),U be as in (2.8), the projection operator Pi,j be as

in (2.1), and PT
i,j be its adjoint operator. Then

HessI2
h(i,j),U = Pi,j ◦ ((In ⊗U

H)HessUf(In ⊗U)) ◦ PT

i,j.

Proof. We denote h = h(i,j),U for simplicity. We need to check the equation only
for the elements of the form (3.7). Similarly to the proof of Lemma 3.2, we have

〈HessI2
h[∆],∆〉ℜ =

(
d2

dt2
h(ExpI2

(t∆))

)∣∣∣∣
t=0

=

(
d2

dt2
f(UG

(i,j,Exp
I2

(∆t)))

)∣∣∣∣
t=0

=

(
d2

dt2
f(ExpU (UPT

i,j(∆)t))

)∣∣∣∣
t=0

=
〈
UPT

i,j(∆),HessUf [UPT

i,j(∆)]
〉
ℜ ,

which completes the proof.

1Note that [19, (2.18)] was given for On, but it is straighforward to show that the same expression
is valid for Un, following [23, Chap. 2, Ex. A.6].
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4.2. Derivatives for cost functions expressed via quadratic forms. In
this subsection, we find the directional derivatives of the cost functions expressed via
quadratic forms (2.13), as well as the cost functions in Subsection 2.2.

Lemma 4.4. Let h(i,j),U be as in (2.13) and satisfy (2.11). Then

gradh(i,j),U (I2) = 2

[
0 Γ

(i,j,U)
12 + iΓ

(i,j,U)
13

−Γ
(i,j,U)
12 + iΓ

(i,j,U)
13 0

]
.

Proof. Denote h = h(i,j),U and Γ = Γ(i,j,U). By (3.4) and Lemma 4.1, we see
that gradh(I2) is skew-Hermitian, i.e., it can be decomposed as

gradh(I2) = 2ω1∆1 + 2ω2∆2,

where {∆k}4k=1 is the following orthogonal basis of TI2U2:

(4.3) ∆1 =

[
0 − 1

2
1
2 0

]
, ∆2 =

[
0 − i

2

− i
2 0

]
, ∆3 =

[
i 0
0 0

]
, ∆4 =

[
0 0
0 i

]
.

Since ‖∆1‖2 = ‖∆2‖2 = 1/2 and ‖∆3‖ = ‖∆4‖ = 1, we have

ωk = 〈∆k, gradh(I2)〉ℜ =

(
d

dt
h(et∆k)

)∣∣∣∣
t=0

for 1 ≤ k ≤ 4. On the other hand, we have

h(et∆1) = h

([
cos t

2 − sin t
2

sin t
2 cos t

2

])
= h̃(cos t,− sin t, 0),

h(et∆2) = h

([
cos t

2 −i sin t
2

−i sin t
2 cos t

2

])
= h̃(cos t, 0,− sin t),

where h̃(v) = vTΓv. Since ∇h̃(v) = 2Γv, we have

ω1 = − ∂h̃

∂v2
(1, 0, 0) = −2Γ21, ω2 = − ∂h̃

∂v3
(1, 0, 0) = −2Γ31,

which completes the proof.

Next, we find the expressions of the Riemannian Hessians in the case of Jacobi
rotations. For each pair of indices (i, j), we define a 2 × 2 matrix as follows:

D
(i,j)
U = 2

([
Γ2,2 Γ2,3

Γ3,2 Γ3,3

]
− Γ1,1I2

)
.

Lemma 4.5. Let h(i,j),U and Γ = Γ(i,j,U) be as in (2.13) satisfying (2.11). Take
the basis in TI2

U2 as in (4.3). Then
(i) The 2 × 2 leading principal submatrix of the Riemannian Hessian of h(i,j),U is

(HessI2
h(i,j),U )1:2,1:2 = D

(i,j)
U .

(ii) If, in addition gradh(i,j),U (I2) = 0, then the Riemannian Hessian becomes

HessI2
h(i,j),U =

[
D

(i,j)
U 0
0 0

]
.
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Proof. (i) We denote h = h(i,j),U for simplicity. Take Ω = α1∆1 + α2∆2,
where α1, α2 ∈ R satisfy α2

1 + α2
2 = 1. By [3, (5.32)], we have that

〈Ω,HessI2
h[Ω]〉ℜ =

(
d2

dt2
h(etΩ)

)∣∣∣∣
t=0

.

Note that

(4.4) h(etΩ) = h̃(cos t,−α1 sin t,−α2 sin t).

It follows that

d

dt
h(etΩ) = −2

[
sin t α1 cos t α2 cos t

]
Γ
[
cos t −α1 sin t −α2 sin t

]T
,

and thus

(
d2

dt2
h(etΩ)

)∣∣∣∣
t=0

=
[
α1 α2

]
D

(i,j)
U

[
α1

α2

]
,

which completes the proof.
(ii) Follows from (i) and Lemma 4.2, since HessI2

h(i,j),U [∆k] = 0 for k = 3, 4.

Corollary 4.6. If I2 is a local maximizer of h(i,j),U , then D
(i,j)
U � 0.

Remark 4.7. The matrix D
(i,j)
U is negative definite if and only if

Γ11 > λmax

([
Γ22 Γ23

Γ23 Γ33

])
.

If, in addition, gradh(i,j),U (I2) = 0, this is equivalent to saying that λ1(Γ) > λ2(Γ)
(i.e., the first two eigenvalues are separated) and Γ11 = λ1(Γ).

4.3. Riemannian gradients for cost functions of interest. Lemma 2.3 and
Lemma 3.2 allow us to find immediately the Riemannian gradients of all the cost
functions in Subsection 2.2.

Corollary 4.8. (i) For the cost function in (2.3), we have that

(4.5) Λ(U) = 2

L∑

ℓ=1




0 W
(ℓ)
12 (W

(ℓ)
22 −W

(ℓ)
11 ) ··· W

(ℓ)
1n (W (ℓ)

nn−W
(ℓ)
11 )

−W
(ℓ)
21 (W

(ℓ)
22 −W

(ℓ)
11 ) 0 ··· W

(ℓ)
2n (W (ℓ)

nn−W
(ℓ)
22 )

...
...

...
...

−W
(ℓ)
n1 (W (ℓ)

nn−W
(ℓ)
11 ) −W

(ℓ)
n2 (W (ℓ)

nn−W
(ℓ)
22 ) ··· 0


 .

(ii) For the cost function in (2.5), we have that for 1 ≤ i, j ≤ n

(4.6) Λ(U)ij = 2(WjjjW∗
jji +

1

2
W∗

jjjWijj −W∗
iiiWiij −

1

2
WiiiW∗

jii).

(iii) For the cost function in (2.7), we have that

Λ(U) = 2




0 V1222−V∗

2111 ··· V1nnn−V∗

n111

V2111−V∗

1222 0 ··· V2nnn−V∗

n222

...
...

...
...

Vn111−V∗

1nnn Vn222−V∗

2nnn ··· 0


 .(4.7)
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In fact, the form of the Riemannian gradient can be also derived for other cost
functions, which can also be called contrast functions [15, 16], and that have the form

(4.8) f(U) =

n∑

k=1

γ(uk),

where γ(u) are real-valued.

Remark 4.9. For constrast-like functions, if

(4.9) γ(zu) = γ(u) for any u ∈ C
n, z ∈ C, |z| = 1,

then f satisfies the property (2.9) and Λ(U) has zeros on its diagonal by Lemma 4.1.

Next, we show how to find Riemannian gradients for contrast-like functions. Since

(4.10)
∂f

∂U∗ (U) =

(
∂γ

∂u∗ (u1), · · · , ∂γ

∂u∗ (un)

)
,

we just need to compute derivatives for γ, which is easy to do for multilinear forms.

Proposition 4.10. Let A ∈ C
n×···×n be of order d, and consider the form

(4.11) gA(u) = A •1u∗ · · · •d1 u
∗ •d1+1 u · · · •d u.

Then it holds that

∂gA
∂u∗ (u) =

d1∑

k=1

A •1u∗ · · ·✘✘✘❳
❳❳•k u∗ · · · •d1 u

∗ •d1+1 u · · · · · · · · · · · · •d u,

∂gA
∂u

(u) =

d2∑

k=1

A •1u∗ · · · · · · · · · · · · •d1 u
∗ •d1+1 u · · ·

✘
✘
✘✘❳

❳
❳❳

•d1+k u · · · •d u.

Proof. The result follows by product differentiation and identities [24, Table IV]

∂uH
a

∂u
(u) = 0,

∂uH
a

∂u∗ = a,
∂uT

a

∂u
= a,

∂uT
a

∂u∗ = 0.

Proposition 4.11. For γ(u) = |gA(u)|2, with gA as in (4.11), it holds that

∂γ

∂u∗ = (gA(u))∗
d1∑

k=1

A •1u∗ · · ·✘✘✘❳
❳❳•k u∗ · · · •d1 u

∗ •d1+1 u · · · · · · · · · · · · •d u

+ (gA(u))

d2∑

k=1

A
∗ •1 u · · · · · · · · · · · · · •d1 u •d1+1 u

∗ · · ·
✘
✘
✘
✘❳

❳
❳
❳

•d1+k u
∗ · · · •d u∗.

Proof. The result follows2 from Proposition 4.10 and the fact that

γ(u) = (A⊗A
∗) •1 u∗ · · · •d1 u

∗ •d1+1 u · · · •d+d1 u •d+d1+1 u
∗ · · · •2d u∗.

2An alternative proof can be derived by combining Proposition 4.10, the rule of differentiation
of composition [24, Theorem 1], and the fact that d|z|2 = z∗dz + zdz∗.
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Remark 4.12. Proposition 4.11 can be used as an alternative (and simpler) way to
derive the gradients in Corollary 4.8. For example, cost function (2.5) is a contrast-like
function (4.8) for γ(u) = |A •1 u∗ •2 u •3 u|2. By Proposition 4.11, we have that

∂γ

∂u∗ (u) = 2(A •1 u∗ •2 u •3 u)A∗ •1 u •2 u∗ + (A •1u∗ •2u •3u)∗A •1u∗ •2u.

Then by (4.10), we get

(
U

H ∂f

∂U∗ (U)

)

ij

= u
H

i

∂γ

∂u∗ (uj) = 2(A •1 u∗
j •2 uj •3 uj)(A •1 u∗

j •2 uj •3 ui)
∗

+ (A •1 u∗
j •2 uj •3 uj)

∗
A •1 u∗

j •2 uj •3 ui.

= 2WjjjW∗
jji + W∗

jjjWjji.

Finally, from the definition (3.3) of Λ(U) we get the expression in (4.6).
The same reasoning applies to cost functions (2.3) and (2.7).

• The cost function (2.3) corresponds to γ(u) =
L∑

ℓ=1

|uHA
(ℓ)

u|2, for which

∂γ

∂u∗ (u) =
L∑

ℓ=1

2|uH
A

(ℓ)
u|A(ℓ)

u, and

(
U

H ∂f

∂U∗ (U)

)

ij

=
L∑

ℓ=1

2W
(ℓ)
ii W

(ℓ)
ij ,

by Proposition 4.11, which agrees with (4.5).
• The function (2.7) corresponds to γ(u) = B •1u∗ •2u∗ •3u •4u, for which

∂γ

∂u∗ (u) = 2B •2 u∗ •3u •4u and

(
U

H ∂f

∂U∗ (U)

)

ij

= Wijjj

by Proposition 4.10, which agrees with Equation (4.7).

5. Weak convergence results.

5.1. Global rates of convergence of descent algorithms on manifolds.
We first recall the result presented in [9] on convergence of descent algorithms. Al-
though stated initially for retraction-based algorithms, it is valid for any descent
algorithms (we provide the sketch of the proof for completeness).

Theorem 5.1 ( [9, Theorem 2.5]). Let f : M → R be bounded from below by
f∗. Suppose that, for a sequence of3 xk, there exists c > 0 such that

(5.1) f(xk−1) − f(xk) ≥ c‖ gradf(xk)‖2.

Then
(i) ‖ gradf(xk)|‖ → 0 as k → ∞;

(ii) We can find an xk with ‖ gradf(xk)‖ < ε and f(xk) ≤ f(x0) in at most

Kε =

⌈
f(x0) − f∗

c

1

ε2

⌉

iterations; i.e., there exists k ≤ Kε such that ‖ gradf(xk)|‖ < ε.

3Note that in the original formulation of [9, Theorem 2.5] xk were chosen as retractions of some
vectors in Txk−1 . However, it is easy to see that this condition is not needed in the proof.
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Sketch of the proof. The proof follows from an inequality for telescopic sums

f(x0) − f∗ ≥ f(x0) − f(xK) =

K∑

k=1

f(xk−1) − f(xk) ≥ cK min
1≤k≤K

‖ gradf(xk)‖2.

In order to check the descent condition (5.1), the following lemma about retrac-
tions is often useful (we will also use it in this paper).

Definition 5.2. ([3, Definition 4.4.1]) A retraction on a manifold M is a smooth
mapping Retr from the tangent bundle TM to M with the following properties. Let
Retrx : TxM → M denote the restriction of Retr to the tangent vector space TxM.
(i) Retrx(0x) = x, where 0x is the zero vector in TxM;
(ii) The differential of Retrx at 0x, DRetrx(0x), is the identity map.

Lemma 5.3 ([9, Lemma 2.7]). Let M ⊆ Rn be a compact Riemannian sub-
manifold. Let Retr be a retraction on M. Suppose that f : M → R has Lipschitz
continuous gradient in the convex hull of M. Then there exists L ≥ 0 such that for
all x ∈ M and η ∈ TxM, it holds that

(5.2)
∣∣f(Retrx(η)) −

(
f(x) + 〈η, grad f(x)〉

)∣∣ ≤ L

2
‖η‖2,

i.e., f(Retrx(η)) is uniformly well approximated by its first order approximation.

5.2. Convergence of Jacobi-G algorithm to stationary points. We will
show in this subsection that the iterations in Algorithm 3.1 are a special case of the
iterations in Theorem 5.1, and the convergence results of Theorem 5.1 apply.

Proposition 5.4. Let f : Un → R+ have Lipschitz continuous gradient in the
convex hull of Un. and L ≥ 0 is such that (5.2) holds. For Algorithm 3.1, we have:

(i) ‖ gradf(Uk)‖ → 0 in Algorithm 3.1; in particular, every accumulation point in
Algorithm 3.1 is a stationary point.

(ii) For δ as in (3.8), Algorithm 3.1 needs at most

⌈
2L(f∗ − f(x0))

δ2
1

ε2

⌉

iterations to reach an ε-optimal solution (‖ gradf(Uk)‖ ≤ ε).

In order to prove Proposition 5.4, we show that the descent conditions are satisfied.

Lemma 5.5. Let f : Un → R+ have Lipschitz continuous gradient in the convex
hull of Un. Then there exists L ≥ 0 such that (5.2) holds by Lemma 5.3. Let h(i,j),U

be as in (2.8) and Ψopt be its maximizer. Then

h(i,j),U (Ψopt) − h(i,j),U (I2) ≥ ‖ gradh(i,j),U (I2)‖2
2L

.

Proof. Denote h = h(i,j),U for simplicity. We set

∆ = UPT

i,jPi,j(Λ(U)) ∈ TUUn.
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Then

∆ = U ·















i j

0

...
... 0

i · · · Λ(U)ii Λ(U)ij

j · · · Λ(U)ji Λ(U)jj
0 0















,

which is a projection of gradf(U) onto the tangent space to the submanifold of the

matrices of type UG
(i,j,Ψ).

Next, note that the exponential map (3.5) is a retraction (see [3, Proposition
5.4.1]). Denote Ψ1 = ExpI2

( 1
L

gradh(I2)). Then, by Lemma 5.3, we have that

h(Ψ1) − h(I2) = f

(
ExpU

(
∆

L

))
− f(U)

≥
〈

∆

L
, gradf(U)

〉

ℜ
− L

2

∥∥∥∥
∆

L

∥∥∥∥
2

=
‖ gradh(I2)‖2

2L
.

Since h(Ψopt) − h(I2) ≥ h(Ψ1) − h(I2), the proof is complete.

Proof of Proposition 5.4. We apply Theorem 5.1 to the function −f(U) (since
we are interested in the maximization of f(U)). By Lemma 5.5, we have that

f(Uk) − f(Uk−1) = hk(Ψk) − hk(I2) ≥ 1

2L
‖ gradhk(I2)‖2 ≥ δ2

2L
‖ gradf(Uk−1)‖2,

and thus the descent condition (5.1) holds with the constant δ2

2L .

Corollary 5.6. Proposition 5.4 applies to cost functions from Subsection 2.2.

6.  Lojasiewicz inequality and geodesic convexity. In this section, we recall
known results and preliminaries that are needed for the main results in Section 7.

6.1.  Lojasiewicz gradient inequality and speed of convergence. Here we
recall the results on convergence of descent algorithms on analytic submanifolds that
use  Lojasiewicz gradient inequality [31], as presented in [37]. These results were used
in [30] to prove the global convergence of Jacobi-G on the orthogonal group.

Definition 6.1 ( Lojasiewicz gradient inequality, [36, Definition 2.1]). Let M ⊆
Rn be a Riemannian submanifold of Rn. The function f : M → R satisfies a
 Lojasiewicz gradient inquality at a point x ∈ M, if there exist δ > 0, σ > 0 and
ζ ∈ (0, 1

2 ] such that for all y ∈ M with ‖y − x‖ < δ, it holds that

(6.1) |f(x) − f(y)|1−ζ ≤ σ‖ gradf(x)‖.

The following lemma guarantees that (6.1) is satisfied for the real analytic func-
tions defined on an analytic manifold.

Lemma 6.2 ([36, Proposition 2.2 and Remark 1 ]). Let M ⊆ R
n be an analytic

submanifold4 and f : M → R be a real analytic function. Then for any x ∈ M, f
satisfies a  Lojasiewicz gradient inequality (6.1) for some5 δ, σ > 0 and ζ ∈ (0, 1

2 ].

4See [27, Definition 2.7.1] or [30, Definition 5.1] for a definition of an analytic submanifold.
5The values of δ, σ, ζ depend on a specific point.
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 Lojasiewicz gradient inequality allows for proving convergence of optimization
algorithms to a single limit point.

Theorem 6.3 ([36, Theorem 2.3]). Let M ⊆ Rn be an analytic submanifold and
{xk : k ∈ N} ⊆ M. Suppose that f is real analytic and, for large enough k,
(i) there exists σ > 0 such that

(6.2) |f(xk+1) − f(xk)| ≥ σ‖ grad f(xk)‖‖xk+1 − xk‖;

(ii) gradf(xk) = 0 implies that xk+1 = xk.
Then any accumulation point x∗ of {xk : k ∈ N} ⊆ M is the only limit point.

If, in addition, for some κ > 0 and for large enough n it holds that

(6.3) ‖xk+1 − xk‖ ≥ κ‖ gradf(xk)‖,

then the following convergence rates apply

‖xk − x∗‖ ≤ C

{
e−ck, if ζ = 1

2 (for some c > 0),

k−
ζ

1−2ζ , if 0 < ζ < 1
2 ,

where ζ is the parameter in (6.1).

Remark 6.4. We can relax the conditions of Theorem 6.3 as follows. We can
require just that (6.2) holds for all k such that ‖xk − x∗‖ < ε, where x∗ is an ac-
cumulation point of the sequence and ε > 0 is some radius. This can be verified by
inspecting the proof of Theorem 6.3 (see also the proof of [2, Theorem 3.2])

In the case ζ = 1
2 , according to Theorem 6.3, the convergence is linear (simi-

larly to the classic results on local convergence of the gradient descent [34, 10]). In
the optimization literature, the inequality (6.1) with ζ = 1

2 is often called Polyak-
 Lojasiewicz6 inequality. In the next subsection, we recall some sufficient conditions
for Polyak- Lojasiewicz inequality to hold.

6.2.  Lojasiewicz inequality at stationary points. It is known, and widely
used in optimization (especially in the Euclidean case), that around a strong local
maximum the function satisfies the Polyak- Lojasiewicz inequality. In fact, it is also
valid for non-degenerate stationary points, as shown in [25]. Here we recall the most
general recent result on possibly degenerate stationary points that satisfy the so-called
Morse-Bott property (see also [8, p.248]).

Definition 6.5 ([21, Definition 1.5]). Let M be a C∞ submanifold and f :
M → R be a C2 function. Denote the set of stationary points as

Critf = {x ∈ M : grad f(x) = 0}.

The function f is said to be Morse-Bott at x0 ∈ M if there exists an open neighborhood
U ⊆ M of x0 such that

(i) C = U ∩ Critf is a relatively open, smooth submanifold of M;
(ii) Tx0C = Ker Hessx0f .

Remark 6.6. (i) If x0 ∈ M is a non-degenerate stationary point, then f is Morse-
Bott at x0, since {x0} is a zero-dimensional manifold in this case.

6The inequality (6.1) with ζ = 1

2
goes back to Polyak [34], who used it for proving linear

convergence of the gradient descent.
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(ii) If x0 ∈ M is a degenerate stationary point, then condition (ii) in Definition 6.5
can be rephrased7 as

(6.4) rank{Hessx0f} = dimM− dimC.

For the functions that satisfy the Morse-Bott property, it was recently shown that
the Polyak- Lojasiewicz inequality holds true.

Theorem 6.7 ([21, Theorem 3, Corollary 5]). If U ⊆ Rn is an open subset and
f : U → R is Morse-Bott at a stationary point x, then there exist δ, σ > 0 such that

|f(y) − f(x)| ≤ σ‖∇f(y)‖2,

for any y ∈ U satisfying ‖y − x‖ ≤ δ.

We can also easily deduce the same result on a smooth manifold M.

Proposition 6.8. If U ⊆ M is an open subset and a C2 function f : U → R is
Morse-Bott at a stationary point x, then there exist an open neighborhood V ⊆ U of
x and σ > 0 such that for all y ∈ V it holds that

|f(y) − f(x)| ≤ σ‖ gradf(y)‖2.

Proof. Consider the exponential map Expx : TxM → M, which is a local dif-
feomorphism. Let W ⊆ TxM be an open subset such that Expx(W) = U. Let

f̂ = f ◦ Expx be the composite map from W to R. Then

(6.5) ∇f̂(y′) = JT

Expx
(y′) gradf(y),

where y′ ∈ W and y = Expx(y′). It follows that Expx gives a diffeomorphism between

Critf and Critf̂ . Since Hessxf = H
f̂
(0) by [3, Proposition 5.5.5], we have that f̂ is

Morse-Bott at 0. Therefore, by Theorem 6.7, there exist σ′ > 0, σ > 0 and an open
neighborhood V ⊆ U of x such that

|f(y) − f(x)| = |f̂(y′) − f̂(0)| ≤ σ′‖∇f̂(y′)‖2 ≤ σ‖ gradf(y)‖2,

for any y ∈ V, where the last inequality holds because JExpx
is nonsingular in a

neighborhood of x.

Remark 6.9. For the case of non-degenerate stationary points and C∞ functions,
Proposition 6.8 is proved in [25, Lemma 4.1], which is a simple corollary of Morse
Lemma [33, Lemma 2.2]. For C∞ functions and Morse-Bott functions, Proposition 6.8
(as noted in [21]) is also a simple corollary of Morse-Bott Lemma [7].

6.3. Geodesic convexity. We recall the notion of a geodesic convexity [35],
which is a generalization of the notion of convexity of sets and functions. In particular,
we relate the definiteness of Riemannian Hessians with local convexity/concavity. In
this subsection, we assume that M ⊆ Rn is a connected Riemannian manifold.

Definition 6.10 ([35, Definition 2.1]). A set A ⊆ M is called geodesically con-
vex, if any two points x, y ∈ A are joined by a geodesic lying in A.

7due to the fact that Tx0C ⊆ Ker Hessx0f .
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Definition 6.11 ([35, Definition 2.2]). Let A ⊆ M be geodesically convex. A
function f : A → R is called geodesically convex (resp. concave) on A, if it is
convex8 (resp. concave) when restricted to geodesics.

We will later on use a lemma that ensures the geodesic convexity of sublevel sets.

Lemma 6.12 ([35, Lemma 2.1]). Let A ⊆ M and f : A → R be geodesically
convex. Then for any x0 ∈ A, the level set

{x|f(x) ≤ f(x0), x ∈ A}

is geodesically convex.

The following two characterizations of geodesic convexity/concavity will be useful
for analysis of the convergence properties in Section 7.

Proposition 6.13 ([35, Corollary 4.1]). For any C2 function f : M → R, if
gradf(x) = 0 and Hessxf ≻TxM 0 (resp. ≺TxM 0), then there exists a neighorhood
U of x, such that f is geodesically convex (resp. concave) on U.

7. Convergence results based on  Lojasiewicz inequality.

7.1. Preliminary lemmas: checking the decrease conditions. In this sub-
section, we are going to find some sufficient conditions for (6.2) and (6.3) to hold in
Algorithm 3.1, which will allow us to use Theorem 6.3.

Let Uk = Uk−1G
(ik,jk,Ψk) be the iterations in Algorithm 3.1. Obviously,

‖Uk −Uk−1‖ = ‖Ψk − I2‖.

Assume that Ψk is obtained as in Subsection 2.5, i.e., by taking w as the leading
eigenvector of Γ(ik,jk,Uk−1) (normalized so that w1 = cos 2θ = 2c2 − 1 > 0 in (2.14))
as in Remark 2.4, and retrieving Ψk from w according to (2.12) and (2.14). We first
express ‖Ψk − I2‖ through w1.

Lemma 7.1. For the iterations Ψk obtained as in Subsection 2.5, it holds that

(7.1) 2‖Ψk − I2‖ ≥
√

1 − w2
1 ≥ 0.65‖Ψk − I2‖

Proof. Note that

‖Ψk − I2‖ =
√

2(1 − c)2 + 2|s|2 = 2
√

1 − c.

By (2.14) and Remark 2.4, we see that

√
1 − w2

1 = 2c
√

1 − c2 ≥ 1.3
√

1 − c and 2c
√

1 − c2 ≤ 2 · 2
√

1 − c.

Since we are looking at Algorithm 3.1, we can replace in both inequalities of (7.1)
gradf(Uk−1) with gradh(i,j),U (I2) . Next, we prove a result for condition (6.3).

Lemma 7.2. Let f : Un → R+ be a C3 function. Then there exists a universal
constant κ > 0 such that

‖Ψk − I2‖ ≥ κ‖ gradhk(I2)‖.
8with respect to the arc length parameters.

19



Proof. We denote Γ = Γ(ik,jk,Uk−1) as in (2.13). By Lemma 4.4, we have that

‖ gradhk(I2)‖ = 2
√

2
√

Γ2
12 + Γ2

13.

By Lemma 7.1, it is sufficient to prove that

1 − w2
1 ≥ κ′(Γ2

12 + Γ2
13)

for a universal constant κ′ > 0. Let λ1 ≥ λ2 ≥ λ3 be the eigenvalues of Γ. Without
loss of generality, we set Γ′ = Γ − λ3I3, µ1 = λ1 − λ3 and µ2 = λ2 − λ3. Then

(7.2) Γ′ = µ1ww
T + µ2vv

T,

where v is the second eigenvector of Γ. It follows that

Γ2
12 + Γ2

13 = (Γ′
12)2 + (Γ′

13)2 = (µ1w1w2 + µ2v1v2)2 + (µ1w1w3 + µ2v1v3)2

= µ2
1w

2
1(1 − w2

1) − 2µ1µ2w
2
1v

2
1 + µ2

2v
2
1(1 − v21).

(7.3)

Since v21 ≤ 1−w2
1 (due to orthonormality of v and w) and µ2, µ1 ≤ 2‖Γ‖, we get that

Γ2
12 + Γ2

13 ≤ (1 − w2
1)4‖Γ‖2.

By Lemma 4.4, Lemma 4.5 and C3 smoothness of f , Γ continuously depends on
U ∈ Un. Therefore, ‖Γ‖ is bounded from above, and thus the proof is completed.

We are ready to check the sufficient decrease condition (6.2).

Lemma 7.3. Let Γ = Γ(ik,jk,Uk−1) be as in (2.13). Let λ1 ≥ λ2 ≥ λ3 be the
eigenvalues of Γ, and η = λ2−λ3

λ1−λ3
. Suppose that 1 − η ≥ ε for some ε > 0. Then

|hk(Ψk) − hk(I2)| ≥ ε

4
‖ gradhk(I2)‖

√
1 − w2

1 .

Proof. Define the ratio

(7.4) q(Γ,w) =
(wTΓw − Γ11)2

(Γ2
12 + Γ2

13)(1 − w2
1)
.

It is sufficient to prove that q(Γ,w) ≥ ε/2. Denote

ρ = 1 − w2
1, τ =

v21
ρ

∈ [0, 1],

where v is as in the proof of Lemma 7.2. From (7.2) and (7.3) we immediately have

w
TΓw − Γ11 = µ1 − (µ1w

2
1 + µ2v

2
1) = µ1ρ(1 − τη),(7.5)

Γ2
12 + Γ2

13 = ρµ2
1((1 − τ) + τ(1 − η)2 − ρ(1 − τη)2).(7.6)

By substituting (7.5) and (7.6) into (7.4), we get

1

q(Γ,w)
=

ρ2µ2
1((1 - τ) + τ(1 - η)2 − ρ(1 - τη)2)

µ2
1ρ

2(1 - τη)2
≤ 1 − 2τη + τη2

(1 − τη)2
≤ 1+

τη2

(1 - η)
≤ 2

ε
.

The proof is complete.
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7.2. Main results.

Theorem 7.4. Suppose that f : Un → R+ has Lipschitz continuous gradient in
the convex hull of Un, and U is an accumulation point of Algorithm 3.1, where the
restrictions to Givens transformations are given by (2.13) (and gradf(U) = 0 by

Proposition 5.4). Assume that all D
(i,j)

U
are negative definite for all pairs (i, j). Then

(i) U is the only limit point and convergence rates in Theorem 6.3 apply.
(ii) If the rank of Riemannian Hessian is maximal at U (i.e., rank{HessUf} =

n2 − n), then the speed of convergence is linear.

Proof. (i) Since D
(i,j)
U is negative definite for any i 6= j, the two top eigenvalues

of Γ(i,j,U) are separated by Remark 4.7. Therefore, there exists ε > 0 such that

λ2(Γ(i,j,U)) − λ3(Γ(i,j,U))

λ1(Γ(i,j,U)) − λ3(Γ(i,j,U))
< 1 − ε.

By the continuity of Γ(i,j,U) with respect to U , the conditions of Lemma 7.3 are
satisfied in a neighborhood of U . Therefore, there exists c > 0 such that

|f(Uk) − f(Uk−1)| ≥ c‖ gradhk(I2)‖‖Uk −Uk−1‖,

in a neighborhood of U . By Remark 6.4, it is enough to use Theorem 6.3, hence
U is the only limit point. Moreover, by Lemma 7.2, the convergence rates apply.

(ii) Due to the scaling invariance, U belongs to an n-dimensional submanifold of
stationary points defined by US, where S is as in (2.10). Since rank{HessUf} =
n2 − n, f is Morse-Bott at U by Remark 6.6. Therefore, by Proposition 6.8,
ζ = 1/2 in (6.1) at U , and thus the convergence is linear by Theorem 6.3.

Theorem 7.5. Let U∗ be a semi-strict local maximum of f (i.e. rank{HessU∗
f} =

n2 − n). Then there exists a neighborhood W of U∗, such that for any U0 ∈ W, Al-
gorithm 3.1 converges linearly to U∗S, where S is of the form (2.10).

Proof. Let T be the unit circle in C. Consider the action of Tn on Un defined as

U · (t1, . . . , tn) = U



t1 0

. . .

0 tn


 .

Since the action of Tn on Un is free and proper, the quotient manifold Ũn = Un/T
n is

well-defined. In order to define the gradient and Hessians on Ũn, we use the standard
splitting into horizontal and vertical space

TUUn = VUUn ⊕HUUn,

where HUUn contains the skew-symmetric matrices with zero diagonal:

HUUn = {X ∈ C
n×n : X = UZ, Z + Z

H = 0, diag{Z} = 0}.

In this case, an element Ũ ∈ Ũn can be represented as its representative U and the

tangent space T
Ũ
Ũn is identified with HU Ũn, see [3, Section 3.5.8]. Moreover, the
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Riemannian metric on Ũn can be defined as

〈ξ̃, η̃〉
T

Ũ
Ũn

= 〈ξ, η〉TUUn
,

because the inner product is invariant with respect to the choice of representative U ,

see [3, Section 3.6.2]. This makes Ũn a Riemannian manifold; the natural projection

π : U 7→ Ũ then becomes a Riemannian submersion.
Due to the invariance property (2.9), the function f is, in fact, defined on Ũn (we

will denote the corresponding function f̃ : Ũn → R). Obviously, gradf(U) ∈ HUUn;
moreover, the Riemannian Hessian is given by

Hess
Ũ
f̃ [Z] = PHUUn

HessUf [Z],

see [3, Section 5.3.4].

By Lemma 4.2 have that rank{Hess
Ũ∗

f̃} = rank{HessU∗
f} = n(n − 1), and

therefore it is negative definite. Hence, by Proposition 6.13 there exists an open

neigborhood Ũ of Ũ∗ where f̃ is geodesically concave. For simplicity assume that
f(U∗) = 0. Without loss of generality, by Lemma 6.12 we can take W̃ such that its

boundary δ(W̃) is a level set for a < 0, i.e.

f(Ũ) = a, ∀Ũ ∈ δ(W̃).

Moreover, for any a < b < 0 we have that the level set

W̃b = {f(Ũ) ≥ b, Ũ ∈ W̃}

is a geodesically convex neigbourhood of Ũ∗.
Next, assume that Ũk−1 ∈ W̃, and consider the Uk = Uk−1G

(i,j,Ψ) with Ψ given
as the maximizer of (2.13). Define b = f(Uk−1). In what follows, we are going to

prove that Ũk−1 ∈ W̃b, so that the sequence Ũk never leaves the set W̃.
Recall that Ψ is computed as follows (see (2.4)): take the vector w as in (2.14).

Take α1 = −w2/
√

1 − w2
1 , α2 = −w3/

√
1 − w2

1 (we can assume w1 6= 1 because
otherwise Ψ = I2 and this case is trivial), and consider the following geodesic in Un:

γ(t) = Uk−1PT

i,j

([
cos t

2 −(α1 + iα2) sin t
2

(α1 − iα2) sin t
2 cos t

2

])
,

which starts at γ(0) = Uk−1. Note that at each point t1, d
dt
γ(t1) ∈ Vγ(t1)Un, hence

the corresponding curve γ̃ is a geodesic in the quotient manifold Ũn.
Next, as in (4.4), we have that

f(γ(t)) =
[
cos t −α1 sin t −α2 sin t

]
Γ
[
cos t −α1 sin t −α2 sin t

]T
+ C,

hence

f(γ(t)) = A cos(2(t− t∗)) + C,

where t∗ = arccos(w1) ∈ [0, π
2 ] and γ(t∗) = Uk. Note that by geodesic concavity

of f at Uk−1 we have d
dt2

f(γ(0)) = −4A cos(−2t∗) < 0 and therefore cos(2t∗) > 0

and t∗ ∈ [0, π4 ]. Hence we have that d
dt
f(γ(t)) = −4A sin(2(t − t∗)) > 0 for any
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t ∈ [0, t∗), the cost function is decreasing; note that d
dt
f(γ(t∗)) = 0 and there are no

other stationary points in t ∈ [0, t∗).

Next, by continuity and because W̃ is open, there exist a small ε > 0 such that
γ̃(ǫ) is in the interior of Wb. By periodicity of f(γ(t)) and continuity, we have that

there exists t2 such that γ(t2) ∈ δW̃b and γ̃(t) ∈ W̃b for all t ∈ [0, t2]. By Rolle’s
theorem, there exists a local maximum of f(γ(t)) in [0, t2]. Note that by construction,

the closest positive local maximum to 0 is at t∗, therefore Ũk = γ̃(t∗) ∈ W̃b, hence

we stay in the same neigbourhood W̃.
Finally, as a neigborhood of U∗ ∈ Un, we can take the preimage W = π−1(W̃);

also linear convergence rate follows from Theorem 7.4.

7.3. Examples of cost functions satisfying regularity conditions. In this
subsection, that the regularity conditions are satisfied for diagonalizable tensors and
matrices. Recall that A ∈ Cn×···×n is a diagonal tensor if all the elements are zero
except the ones on the diagonal (Ai...i).

Proposition 7.6. (i) For a set of jointly orthogonally diagonalisable matrices

A
(ℓ) = U0




µ
(ℓ)
1 0

...
0 µ(ℓ)

n


U

H

0 ,

such that for any pair i 6= j

m∑

ℓ=1

(µ
(ℓ)
i − µ

(ℓ)
j )2 > 0

the matrix U0 is a semi-strict local maximum (as in conditions of Theorem 7.5).
(ii) For an orthogonally diagonalizable 3rd order tensor

A = D •1 U0 •2UH

0 •3UH

0 ,

where D is a diagonal tensor with at most one zero element on the diagonal, the
matrix U0 is a semi-strict local maximum of f (as in Theorem 7.5).

(iii) For an orthogonally diagonalizable tensor

A = D •1 U0 •2U0 •3 UH

0 •4UH

0 ,

where the values on the diagonals are either (a) all positive or (b) there is at
most one i with Diiii ≤ 0, for which Diiii + Djjjj > 0 for all j 6= i.

For proving Proposition 7.6, we need a lemma about Hessians of multilinear forms.

Lemma 7.7. Let γ(u) be a real-valued function that is either γ(u) = gA(u) or
γ(u) = |gA(u)|2, where A is a d-th order diagonal tensor and gA is defined as in
(4.11). Then for any distinct indices 1 ≤ i 6= j 6= k ≤ n it holds that

e
⊤
i

(
∂2γ

∂u∗∂u∗ (ek)

)
ej = 0, e

⊤
i

(
∂2γ

∂u∗∂u
(ek)

)
ej = 0.

Proof. Consider the case γ(u) = gA(u) and the derivative ∂2γ
∂u∗∂u∗ . By continuing
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the differentiation as in (4.10), we get that

e
⊤
i

(
∂2γ

∂u∗∂u∗ (es)

)
ej =

∑

s6=t
1≤s,t≤d1

(A •s ei •t ej)k...k = 0,

e
⊤
i

(
∂2γ

∂u∗∂u
(es)

)
ej =

d1∑

s=1

d∑

t=d1+1

(A •s ei •t ej)k...k = 0,

because the offdiagonal elements are zero. Similarly, for γ(u) = |gA(u)|2, we get

e
⊤
i

(
∂2γ

∂u∗∂u∗ (ek)

)
ej

= (gA(u))∗
∑

s6=t
1≤s,t≤d1

(A •s ei •s ej)k...k +

(
d∑

t=d1+1

(A∗ •t ej)k...k

)
d1∑

s=1

(A •s ei)k...k,

+ (gA(u))
∑

s6=t
d1+1≤s,t≤d

(A∗ •s ei •t ej)k...k) +

(
d1∑

t=1

(A •t ej)k...k

)
d∑

s=d1+1

(A∗ •s ei)k...k,

by Proposition 4.11, where each term is equal to zero, because there are at least two
different indices, hence the off-diagonal elements are taken.

Proof of Proposition 7.6. Without loss of generality, we can consider only the
case U0 = In, so that all the matrices/tensors are diagonal. Due to diagonality of
matrices/tensors (the off-diagonal elements are zero) from Remark 4.12 we have that
Euclidean gradients vanish, i.e., ∂f

∂U∗ (In) = 0. Hence In is a stationary point (see also
Corollary 4.8), and moreover, by [4, Eq. (7)] (see also [35]) the Riemannian Hessian
is just the projection of the Euclidean Hessian on the tangent space

(7.7) HessIn
f [η] = ΠTInUn

H
f̃
(In)[η],

where f̃(U) is the Euclidean extension of f̃ (which has vanishing gradient at In).
Next, we show that the Hessian does not contain off-diagonal blocks. From (7.7),

we just need to look at the Euclidean Hessian. Take two pairs of indices (i, k) and
(j, l) and look at the Hessian terms

∂2f

∂U∗
i,k∂U j,l

and
∂2f

∂U∗
i,k∂U

∗
j,l

.

Since by (4.10), ( ∂f
∂U∗ )i,k is a function of uk only, the Hessian terms can only be

nonzero if j = k or l = k. Let us choose l = k. In that case,

∂2f

∂U∗
i,k∂U j,k

(In) =
∂2γ

∂u∗
iuj

(ek) = e
⊤
i

(
∂2γ

∂u∗∂u∗ (ek)

)
ej = 0

by Lemma 7.7. Similarly, the second Hessian term is also equal to zero. Thus the
Hessian is block-diagonal with the terms given in Lemma 4.5.

Finally, we apply Lemma 2.3 and get that for each cost function
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(i) D
(i,j)
U = −I2

m∑
ℓ=1

(µ
(ℓ)
i − µ

(ℓ)
j )2;

(ii) D
(i,j)
U = − 3

2I2(|Diii|2 + |Djjj |2);

(iii) D
(i,j)
U = −I2(Diiii + Djjjj );

which are negative definite if and only if the conditions of the proposition are satisfied.
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