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On convergence of matrix and tensor approximate
diagonalization algorithms by unitary transformations

Konstantin Usevich, Jianze Li, Pierre Comon

January 29, 2019

Abstract

In this paper, we propose a gradient-based Jacobi algorithm for approximate diag-
onalization of complex matrices and tensors by unitary transformations. We provide
global and local convergence results for this algorithm. The convergence results also
apply to the case of real-valued tensors.

1 Introduction

In this paper, we consider the following optimization problem

U ∗ = arg max
U∈Un

f(U), (1)

where Un ⊆ Cn×n is the unitary group and

f : Un → R+ (2)

is a differentiable function. In particular, we focus on several cost functions that are motivated
by blind source separation problems. Jacobi-type algorithms are widely used for maximization
of these cost functions, due to the simplicity of Jacobi rotations. Nevertheless, the convergence
of these algorithms was not well-studied so far.

In the real-valued case (for the orthogonal group), a gradient-based Jacobi-type algorithm
(which we call Jacobi-G) was proposed in [22], and the global/local convergence of this algo-
rithm was proved [22, 25]. In this paper, we show that it is possible to extend the Jacobi-G
algorithm to the case of Un for any differentiable function (2), and prove convergence properties
similar to those in [22, 25] under some conditions.

The main contributions of the paper are:

• We generalize the Jacobi-G algorithm to the complex case, namely to the unitary group,
and prove its convergence to stationary points and global rates of convergence.

• For the case of matrix and tensor diagonalization, we obtain local linear convergence to
local maxima satisfying second order regularity conditions. These results also apply to
the real-valued case (orthogonal diagonalization) considered in [25].
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The structure of the paper is as follows. In Section 2, we recall the basic cyclic Jacobi
method, and several cost functions that we will be mostly interested in: for joint diagonaliza-
tion of matrices, diagonalization of 3rd order and 4th order tensors. Section 2 also contains
the closed-form solutions for Jacobi updates for these cost functions (see also [15, Chapter 5]).
In Section 3, we introduce the abstract Jacobi-G algorithm for optimization on the unitary
group, which generalizes the algorithm introduced in [22, 25], and is applicable to arbitrary
cost functions. Section 4 contains the expressions for the derivatives of the cost functions
listed in Section 2; Section 4 also contains expressions for finding the gradient of functions
given by arbitrary multilinear forms. In section 5, we present the result on weak convergence
(convergence of gradient to 0) of Jacobi-G. This is a corollary of the general results on conver-
gence of [8] for descent algorithms on manifolds, which are summmarized in the same section.
In section 6, we recall general results on convergence of descent algorithms on manifolds that
are based on the  Lojasiewicz gradient inequality, we also recall the notions of geodesic con-
vexity, Riemannian Hessian and Morse-Bott functions, that will be used later on. Section 7
contains main results. While the beginning of Section 7 is devoted to preliminary lemmas,
Section 7.4 contains the results on local linear convergence of Jacobi-G algorithm to local
maxima satisfying the Morse-Bott property.

Main notation. For a matrix X ∈ Cm×n, we denote by XT its transpose, by X∗ its ele-
mentwise conjugate, and by XH the Hermitian transpose, respectively. We will also frequently
use the notation X = X< + iX= for the real and imaginary parts of X. Moreover, Un and
SUn denote the unitary and special unitary groups in Cn×n, whereas On and SOn denote
the orthogonal and special orthogonal groups in Rn×n, respectively. We denote by ‖ · ‖ the
Frobenius norm of a tensor or a matrix, or the Euclidean norm of a vector.

2 Jacobi-C algorithm and matrix/tensor diagonaliza-

tion

2.1 Complex Givens rotation and Jacobi-C algorithm

Fix an index pair (i, j) that satisfies 1 ≤ i < j ≤ n. We first introduce the projection operator
Pi,j : Cn×n → C2×2 that extracts the submatrix of X ∈ Cn×n as follows:

Pi,j(X) =

[
Xii Xij

Xji Xjj

]
. (3)

Then, for a matrix Ψ ∈ U2, we define the complex Givens rotation in Un as:

G(i,j,Ψ) =



i j

1
. . . 0

i Ψ1,1 Ψ1,2

. . .

j Ψ2,1 Ψ2,2

0
. . .

1


,
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i.e., the matrix with the same elements as In except that

Pi,j(G(i,j,Ψ)) = Ψ.

It is obvious that the set of matrices G(i,j,Ψ) is canonically isomorphic to U2, and it defines a
subgroup of Un. Now, for a fixed unitary matrix U ∈ Un, we define the restriction of (2) to
rotations in the (i, j)-th plane as:

h(i,j),U : U2 −→ R+

Ψ 7−→ f(UG(i,j,Ψ)). (4)

The classic Jacobi-C algorithm can be formulated as follows.

Algorithm 1. (General Jacobi-C algorithm)
Input: A differentiable function f : Un → R+ defined in a neighorhood of Un, a starting point
U 0.
Output: Sequence of iterations U k.

• For k = 1, 2, . . . until a stopping criterion is satisfied do

• Choose an index pair (ik, jk) in the following cyclic order:

(1, 2)→ (1, 3)→ · · · → (1, n)→
(2, 3)→ · · · → (2, n)→
· · · → (n− 1, n)→
(1, 2)→ (1, 3)→ · · · .

(5)

• Find Ψk that maximizes hk(Ψ)
def
= h(ik,jk),Uk−1

(Ψ).

• Update U k = U k−1G
(ik,jk,Ψk).

• End for

2.2 Cost functions under consideration

In this paper, we mainly consider the following three cost functions from Un to R+.

(i) Approximate diagonalization of a set of matrices. Let A(`) = A(`,<) + iA(`,=) ∈ Cn×n, 1 ≤
` ≤ L, be a set of Hermitian1 matrices. The cost function is defined as

f(U) =
L∑
`=1

‖ diag{W (`)}‖2, (6)

where W (`) = UHA(`)U .

1In fact, it is easy to consider also non-Hermitian matrices, as shown in [12].
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(ii) Approximate diagonalization of a partially symmetric 3rd order tensor. Let A ∈ Cn×n×n

be a tensor satisfying the partial symmetry condition:

Aijk = Aikj (7)

for any 1 ≤ i, j, k ≤ n. The cost function is defined as:

f(U) = ‖ diag{W}‖2, (8)

where Wijk =
∑

p,q,rApqr U∗piUqjUrk.

(iii) Approximate diagonalization of a partially symmetric 4th order tensor. Let B ∈ Cn×n×n×n

be a tensor satisfying
Bijkl = Bjilk and Bijkl = B∗klij (9)

for any 1 ≤ i, j, k, l ≤ n. The cost function is defined as

f(U) =
n∑
p=1

Vpppp, (10)

where Vijk` =
∑

p,q,r,s Bpqrs U∗piU∗qjUrkUs`.

Remark 2.1. As in (6), the simultaneous diagonalization problem can be also considered for
3rd and 4th order tensors. In this paper however, we prefer to consider the single tensor case
in (8) and (10) (for simplicity).

The motivation behind these cost functions comes from blind source separation.

(i) The cost function (6) is used for joint diagonalization of covariance matrices [11, 12].

(ii) An example of the 3rd order tensor satisfying property (7) is the cumulant tensor with
Aijk = Cum(vi, v

∗
j , v
∗
k), where v is a complex random vector [16].

(iii) An example of the 4th order tensor satisfying property (9) is the cumulant tensor with
Aijkl = Cum(vi, vj, v

∗
k, v
∗
l ), where v is a complex random vector [13].

Note that many other differentiable functions may be used in this framework [14].

Remark 2.2. For simplicity, we consider in this paper only fully contravariant tensors [27].

2.3 Elementary rotations

In this paper, we assume that the cost function (1) satisfies that f(U) is invariant under
permutations of columns of U and multiplications of columns of U by complex scalars of
modulus 1. It can be seen that the cost functions in Section 2.2 satisfy this condition. In this
case, we see that the restriction (4) satisfies

h(i,j),U (Ψ) = h(i,j),U

(
Ψ
[
z1 0
0 z2

])
(11)
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for any |z1| = |z2| = 1. Hence, to maximize hk(Ψ) in Algorithm 1, we can set

Ψ = Ψ(c, s1, s2) =

[
c −s
s∗ c

]
=

[
c −(s1 + is2)

s1 − is2 c

]
=

[
cos θ − sin θeiφ

sin θe−iφ cos θ

]
=

1√
1 + |z|2

[
1 −z
z∗ 1

]
∈ SU2, (12)

with c ∈ R+ and s = s1 + is2 = sin θeiφ ∈ C satisfying c2 + |s|2 = 1. In this sense, we will
often use the notations

h(c, s1, s2) = h(i,j),U (c, s1, s2) = h(i,j),U ([ c −ss∗ c ]) ,

alternatively. Also denote

r = r(c, s1, s2)
def
= (cos 2θ,− sin 2θ sinφ,− sin 2θ cosφ)T = (2c2 − 1,−2cs1,−2cs2)T. (13)

Now, we show that, for the cost functions in Section 2.2, the Jacobi rotations can be computed
in a unified way, by finding an eigenvector of a 3× 3 real matrix.

Lemma 2.3. Let U ∈ Un. Then all the cost functions in Section 2.2 have the form

h(i,j),U (c, s1, s2) = rTΓ(i,j,U)r + C, (14)

where the constant C does not depend on (c, s1, s2), and Γ(i,j,U) is a symmetric matrix in R3×3

defined as follows:

(i) for the cost function (6), we have C = 1
2

L∑̀
=1

(W
(`)
jj +W

(`)
ii )2 and

Γ(i,j,U) =
L∑
`=1


1
2
(W

(`)
jj −W

(`)
ii )2 (W

(`)
jj −W

(`)
ii )W

(`,<)
ij (W

(`)
jj −W

(`)
ii )W

(`,=)
ij

(W
(`)
jj −W

(`)
ii )W

(`,<)
ij 2

(
W

(`,<)
ij

)2

2W
(`,<)
ij W

(`,=)
ij

(W
(`)
jj −W

(`)
ii )W

(`,=)
ij 2W

(`,<)
ij W

(`,=)
ij 2

(
W

(`,=)
ij

)2


=

1

2

L∑
`=1

(W
(`)
jj −W

(`)
ii )

2W
(`,<)
ij

2W
(`,=)
ij

[(W (`)
jj −W

(`)
ii ) 2W

(`,<)
ij 2W

(`,=)
ij

]
;

(ii) for the cost function (8), we have C = 0 and Γ = Γ(i,j,U) (see [16, (9.29)] and [15,
Section 5.3.2]) is:

Γ11 = a1, Γ12 = =(v1) + =(v2), Γ13 = <(v1)−<(v2), Γ22 = v4 −<(v3),

Γ23 = =(v3), Γ33 = v4 + <(v3),

a1 = |W111|2 + |W222|2, a2 = |W112|2 + |W212|2, a3 = |W211|2 + |W122|2,
a4 =W111W112, a5 =W111W211, a6 =W222W122, a7 =W222W212,

a8 =W111W212 +W222W112, a9 =W111W122 +W222W211,

a10 =W211W112 +W122W212,

v1 = a7 − a5/2, v2 = a4 − a6/2, v3 = a9/2 + a10,

v4 = (a1 + a3)/4 + a2 + <(a8).

5



(iii) for the cost function (10), we have C = 0 and Γ = Γ(i,j,U) [13] is

Γ11 = Viiii + Vjjjj, Γ12 = V<ijjj − V<iiij, Γ13 = V=ijjj − V=iiij, Γ23 = V=iijj,

Γ22 =
1

2
(Viiii + Vjjjj) + 2Vijij + V<iijj, Γ33 =

1

2
(Viiii + Vjjjj) + 2Vijij − V<iijj.

Remark 2.4. (i) By Lemma 2.3, the maximization of h(i,j),U (c, s1, s2) is equivalent to maxi-

mization of the quadratic form rTΓ(i,j,U)r on the unit sphere ‖r‖ = 1. Thus, in the iteration
of Algorithm 2, r can be taken as the eigenvector corresponding to the maximal eigenvalue of
Γ(i,j,U) (or an eigenvector if the two leading eigenvalues are equal), in which case, we denote
this eigenvector by w.
(ii) Even if the eigenvector is unique, it is defined up to a sign change. We choose the sign
such that w1 = cos 2θ = 2c2 − 1 ≥ 0 in (13). Hence, we can guarantee that θ ∈

[
0, π

4

]
and

c >
√

2
2

. More precisely, we set θ = arccos(w1)/2 ∈
[
0, π

4

]
and s1 = − w2

2 cos θ
, s2 = − w3

2 cos θ
.

3 Jacobi-G algorithm for unitary matrices Un

Before we formulate the Jacobi-G algorithm, it is necessary to recall some facts about deriva-
tives of functions defined on manifolds and complex derivatives.

3.1 Riemannian gradient for embedded submanifolds of RN

We recall some basics on real manifolds that are submanifolds of an Euclidean space (the
reader is invited to consult [6] if needed). Consider an m-dimensional submanifold M ⊆ E
of the N -dimensional Euclidean space E ' RN (in what follows we will assume E = RN for
simplicity). Then the tangent space on the manifold can be associated with an m-dimensional
subspace TxM ⊆ E . We will assume that TxM is equipped with the Riemannian metric
induced by the ambient space, i.e.,

〈η, ξ〉 = 〈η, ξ〉E ,

i.e., it is just the inner product of vectors in E .
Consider the function f : M → R that admits a differentiable extension2 f̃ : M̃ → R,

where M̃ is a neighborhood of M. Then the Riemannian (or projected) gradient simply
becomes the orthogonal projection onto TxM:

grad f(x)
def
= ΠTxM∇f̃ . (15)

In what follows we will often use f instead of f̃ , when it doesn’t lead to any confusion.

3.2 Wirtinger calculus and Riemannian gradient

First, we introduce the following real-valued inner product on Cm×n. For two matricesX,Y ∈
Cm×n, we introduce

〈X,Y 〉<
def
= 〈X<,Y <〉+ 〈X=,Y =〉 = <

(
trace{XHY }

)
, (16)

2i.e., f is a restriction of f̃ on M.
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where X<,Y < and X=,Y = are the real and imaginary parts, respectively.
Since a nonconstant function f : Cm×n → R is never holomorphic, we use a shorthand

notation ∂f

∂X<
, ∂f

∂X=
∈ Rm×n for the matrix derivatives with respect to the real and imaginary

parts of X = X<+ iX= ∈ Cm×n. Then the Wirtinger derivatives [1, 10, 24] ∂f
∂X
, ∂f
∂X∗
∈ Cm×n

are standardly defined as

∂f

∂X
:=

1

2

(
∂f

∂X<
− i ∂f

∂X=

)
,

∂f

∂X∗
:=

1

2

(
∂f

∂X<
+ i

∂f

∂X=

)
.

The matrix Euclidean gradient of f with respect to (16) becomes

∇f(X) =
∂f

∂X<
+ i

∂f

∂X=
= 2

∂f

∂X∗
(X).

Recall that the unitary group Un ⊆ Cn×n can be considered as an embedded real subman-
ifold of Cn×n with the inner product induced by (16). By [3, Section 3.5.7], the tangent space
to Un can be associated with an n2-dimensional R-linear subspace of Cn×n:

TUUn = {X ∈ Cn×n : XHU +UHX = 0}.

Alternatively, it is the rotated set of skew-Hermitian matrices:

TUUn = {X ∈ Cn×n : X = UZ, Z +ZH = 0}.

Then for a function f : Cn×n → R, that is differentiable in a neighborhood of Un ⊆ Cn×n, by
(15), the Riemannian gradient of f becomes.

grad f(U) = UΛ(U), (17)

where

Λ(U) =
UH∇f(U)− (∇f(U))HU

2
= UH ∂f

∂U ∗
(U)− (

∂f

∂U ∗
(U))HU . (18)

Note that Λ(U ) is a skew-Hermitian matrix, i.e.,

Λ(U)i,j = −(Λ(U)j,i)
∗, 1 ≤ i, j ≤ n. (19)

3.3 Jacobi rotations and directional derivatives

Let f be as in (17) and h(i,j),U : U2 → R be as in (4). Now we compute a “directional
derivative” of f corresponding to a Givens transformation.

Lemma 3.1. The Riemannian gradient of h(i,j),U at the identity matrix I2 is a submatrix of
the matrix Λ(U) defined in (18):

gradh(i,j),U (I2) = Pi,j(Λ(U)) =

[
Λ(U)ii Λ(U)ij
Λ(U )ji Λ(U)jj

]
. (20)

Proof. We denote h = h(i,j),U for simplicity. Assume (i, j) = (1, 2) such that

G(1,2,Ψ) =

[
Ψ

In−2

]
7



for Ψ ∈ U2. Define g(Z) = f(UZ) for Z ∈ Un. By the composition rule, we have

∂g

∂Z∗
(Z) = UH ∂f

∂U ∗
(UZ).

Note that the matrix complex differential [20, Section II] is the first-order approximation, i.e.,

h(I2 + ∆Ψ) = h(I2) +

〈
∂h

∂Ψ
(I2),∆Ψ

〉
<

+

〈
∂h

∂Ψ∗
(I2),∆Ψ∗

〉
<

+ o(∆Ψ,∆Ψ∗).

On the other hand, for ∆G(1,2,Ψ), we get that

h(I2 + ∆Ψ) = g(In +

[
∆Ψ

0n−2

]
) =

= g(In) +

〈
∂g

∂Z
(In),

[
∆Ψ

0n−2

]〉
<

+

〈
∂g

∂Z∗
(In),

[
∆Ψ∗

0n−2

]〉
<

+ o
(

∆G(1,2,Ψ), (∆G(1,2,Ψ))∗
)
,

from the first-order expansion of g. Hence,

∂h

∂Ψ∗
(I2) = Pi,j

(
∂g

∂Z∗
(In)

)
= Pi,j

(
UH ∂f

∂U ∗
(U)

)
.

Then, it follows by (17) that

gradh(I2) =
∂h

∂Ψ∗
(I2)−

(
∂h

∂Ψ∗
(I2)

)H

= Pi,j (Λ(U)) ,

which completes the proof.

3.4 Jacobi-G algorithm

We are now in a position to formulate a general-purpose Jacobi-G algorithm, which is a
generalization of the algorithm proposed in [22]. The main ideas behind the algorithm are:

• optimize the cost function by successive Jacobi rotations;

• choose the Jacobi rotations according to a gradient based order (well-aligned with the
Riemannian gradient).

Algorithm 2. (General Jacobi-G algorithm)
Input: A differentiable function f : Un → R+ defined in a neighorhood of Un, a positive
constant 0 < δ <

√
2/n, a starting point U 0.

Output: Sequence of iterations U k.

• For k = 1, 2, . . . until a stopping criterion is satisfied do

• Choose an index pair (ik, jk) satisfying

‖ gradh(ik,jk),Uk−1
(I2)‖ ≥ δ‖ grad f(U k−1)‖. (21)

• Find Ψk that maximizes hk(Ψ)
def
= h(ik,jk),Uk−1

(Ψ).

8



• Update U k = U k−1G
(ik,jk,Ψk).

• End for

Now we show that it is always possible to choose the index pair such that the inequality
(21) is satisfied.

Corollary 3.2. Let f and h(i,j),U be as in Lemma 3.1. Then

max
1≤i<j≤n

‖ gradh(i,j),U (I2)‖ ≥
√

2

n
‖ grad f(U )‖.

Proof. By (17) and Lemma 3.1, we see that

‖ grad f(U )‖2 = ‖Λ(U)‖2 =

n,n∑
i,j=1

|Λ(U)i,j|2 ≤

≤
∑

1≤i<j≤n

‖ gradh(i,j),U (I2)‖2 ≤ n2

2
max

1≤i<j≤n
‖ gradh(i,j),U (I2)‖2.

The proof is complete.

4 Derivatives of the cost functions

In this section, we find the concrete derivatives of the cost functions of interest, which can be
used to implement the Jacobi-G algorithm.

4.1 Derivatives for scale-invariant functions

In this section, we consider the functions f : Un → R that are invariant with respect to
multiplication of columns by numbers on the complex unit circle, i.e.,

f(U) = f(US) (22)

for any matrix of the form

S =

e
iα1 0

. . .

0 eiαn

 . (23)

For example, the functions in Section 2.2 satisfy (22).

Lemma 4.1. For a function f satisfying (22) the matrix Λ(U) has zeros on the diagonal for
any U .

Proof. For the matrix

Ωk =


k

0
... 0

k · · · i
0 0

. (24)

we have that

〈Ωk,Λ(U)〉< = 〈UΩk, grad f(U)〉< =

(
d

dt
f(UetΩk)

)∣∣∣∣
t=0

= 0.

Since Λ(U) is skew-Hermitian, the proof is complete.
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4.2 Derivatives for cost functions expressed via quadratic forms

In this subsection, we find the directional derivatives of the cost functions expressed via
quadratic forms (14), as well as the cost functions in Section 2.2.

Lemma 4.2. Let h(i,j),U be as in (14) and satisfy (11). Then

gradh(i,j),U (I2) = 2

[
0 Γ

(i,j,U)
12 + iΓ

(i,j,U)
13

−Γ
(i,j,U)
12 + iΓ

(i,j,U)
13 0

]
.

Proof. Denote h = h(i,j),U and Γ = Γ(i,j,U) for simplicity. By (19) and Lemma 4.1, we see that
gradh(I2) is skew-Hermitian, i.e., it can be decomposed as

gradh(I2) = 2ω1∆1 + 2ω2∆2,

where {∆k}4
k=1 is the following orthogonal basis of TI2U2:

∆1 =

[
0 −1

2
1
2

0

]
, ∆2 =

[
0 − i

2

− i
2

0

]
, ∆3 =

[
i 0
0 0

]
, ∆4 =

[
0 0
0 i

]
. (25)

Since ‖∆1‖2 = ‖∆2‖2 = 1/2 and ‖∆3‖ = ‖∆4‖ = 1, we have

ωk = 〈∆k, gradh(I2)〉< =

(
d

dt
h(et∆k)

)∣∣∣∣
t=0

for 1 ≤ k ≤ 4. On the other hand, we have

h(et∆1) = h

([
cos t

2
− sin t

2

sin t
2

cos t
2

])
= h̃(cos t,− sin t, 0),

h(et∆2) = h

([
cos t

2
−i sin t

2

−i sin t
2

cos t
2

])
= h̃(cos t, 0,− sin t),

where h̃(v) = vTΓv. Since ∇h̃(v) = 2Γv, we have

ω1 = − ∂h̃
∂v2

(1, 0, 0) = −2Γ21, ω2 = − ∂h̃
∂v3

(1, 0, 0) = −2Γ31,

which completes the proof.

Now Lemma 2.3 and Lemma 3.1 allow us to find the Riemannian gradients of all the cost
functions in Section 2.2.

Corollary 4.3. (i) For the cost function in (6), we have that

Λ(U ) = 2
L∑
`=1


0 W

(`)
12 (W

(`)
22 −W

(`)
11 ) · · · W

(`)
1n (W

(`)
nn −W (`)

11 )

−W (`)
21 (W

(`)
22 −W

(`)
11 ) 0 · · · W

(`)
2n (W

(`)
nn −W (`)

22 )
...

...
. . .

...

−W (`)
n1 (W

(`)
nn −W (`)

11 ) −W (`)
n2 (W

(`)
nn −W (`)

22 ) · · · 0

 .
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(ii) For the cost function in (8), we have that

Λ(U)ij = 2(WjjjW∗jji +
1

2
W∗jjjWijj −W∗iiiWiij −

1

2
WiiiW∗jii), 1 ≤ i, j ≤ n.

(iii) For the cost function in (10), we have that

Λ(U) = 2


0 V1222 − V∗2111 · · · V1nnn − V∗n111

V2111 − V∗1222 0 · · · V2nnn − V∗n222
...

...
. . .

...
Vn111 − V∗1nnn Vn222 − V∗2nnn · · · 0

 . (26)

4.3 Derivatives of other contrast functions

In fact, the form of the Riemannian gradient can be also derived for other cost functions,
which can also be called contrast functions [13] [14], and that have the form

f(U) =
n∑
k=1

γ(uk), (27)

where γ(u) are real-valued.

Remark 4.4. For constrast-like functions, if

γ(zu) = γ(u) for any u ∈ Cn, z ∈ C, |z| = 1, (28)

then the function f satisfies the invariance property (22) and the matrix Λ(U) has zeros on
its diagonal by Lemma 4.1.

Next, we give some hints on how to compute Riemannian gradients for general contrast
functions. Note that

∂f

∂U ∗
(U) = (

∂γ

∂u∗
(u1), · · · , ∂γ

∂u∗
(un)).

Therefore, we just need to compute the derivatives for γ(u). Now we show how to do that for
multilinear forms.

Proposition 4.5. Let A ∈ Cn×···×n be an dth order tensor (not necessarily symmetric), and
consider the following multilinear form

gA(u) = A •1 u
∗ · · · •d1 u∗ •d1+1 u · · · •d u, (29)

where d = d1 + d2 and where A •k v denotes the contraction on the kth index of A with vector
v. Then the gradients are given by

∂gA
∂u∗

(u) =

d1∑
k=1

A •1 u
∗ · · · ��

�HHH•k u
∗ · · · •d1 u∗ •d1+1 u · · · · · · · · · · · · •d u,

∂gA
∂u

(u) =

d2∑
k=1

A •1 u
∗ · · · · · · · · · · · · •d1 u∗ •d1+1 u · · ·����XXXX•d1+k u · · · •d u.

11



Proof. The result follows from the product differentiation rule and the following identities (see
[20, Table IV])

∂uHa

∂u
(u) = 0,

∂uHa

∂u∗
= a,

∂uTa

∂u
= a,

∂uTa

∂u∗
= 0.

Proposition 4.6. For a function

γ(u) = |gA(u)|2,

with gA as in (29), the matrix gradient can be computed as:

∂γ

∂u∗
= (gA(u))∗

d1∑
k=1

A •1 u
∗ · · · ��

�HHH•k u
∗ · · · •d1 u∗ •d1+1 u · · · · · · · · · · · · •d u

+ (gA(u))

d2∑
k=1

A∗ •1 u · · · · · · · · · · · · · •d1 u •d1+1 u
∗ · · ·����

�XXXXX•d1+k u
∗ · · · •d u∗.

Proof. The result follows3 from Proposition 4.5 and the fact that γ is also a multilinear form:

γ(u) = (A⊗A∗) •1 u
∗ · · · •d1 u∗ •d1+1 u · · · •d u •d+1 u · · · •d+d1 u •d+d1+1 u

∗ · · · •2d u
∗.

5 Weak convergence results

5.1 Global rates of convergence of descent algorithms on Rieman-
nian manifolds

We first recall the result presented in [8] on convergence of descent algorithms. Although stated
initially for retraction-based algorithms, it is valid for any descent algorithms (we provide the
sketch of the proof for completeness).

Theorem 5.1 ( [8, Theorem 2.5]). Let f :M→ R be a function bounded from below by f ∗.
Suppose that, for a sequence of iterations4 xk, there exists c > 0 such that the following descent
condition holds:

f(xk−1)− f(xk) ≥ c‖ grad f(xk)‖2. (30)

Then

(i) ‖ grad f(xk)|‖ → 0 as k →∞;

(ii) We can find an xk with ‖ grad f(xk)‖ < ε and f(xk) ≤ f(x0) in at most

Kε =

⌈
f(x0)− f ∗

c

1

ε2

⌉
iterations; i.e., there exists k ≤ Kε such that ‖ grad f(xk)|‖ < ε.

3An alternative proof can be derived by combining Proposition 4.5, the rule of differentiation of composition
[20, Theorem 1], and the fact that d|z|2 = z∗dz + zdz∗.

4Note that in the original formulation of [8, Theorem 2.5] it was required that xk are chosen as retractions
of some vectors in Txk−1

. However, it is easy to see that this condition is not needed in the proof.

12



Sketch of the proof. The proof follows from the standard inequality for telescopic sums

f(x0)− f ∗ ≥ f(x0)− f(xK) =
K∑
k=1

f(xk−1)− f(xk) ≥ cK min
1≤k≤K

‖ grad f(xk)‖2.

In order to check the descent condition (30), the following lemma about retractions is often
useful (we will also use it in this paper).

Definition 5.2. ([3, Definition 4.4.1]) A retraction on a manifold M is a smooth mapping
Retr from the tangent bundle TM toM with the following properties. Let Retrx : TxM→M
denote the restriction of Retr to the tangent vector space TxM.
(i) Retrx(0x) = x, where 0x is the zero vector in TxM;
(ii) The differential of Retrx at 0x, DRetrx(0x), is the identity map.

Lemma 5.3 ([8, Lemma 2.7]). Let M⊆ Rn be a compact Riemannian submanifold. Let Retr
be a retraction on M. Suppose that f : M → R has Lipschitz continuous gradient in the
convex hull ofM. Then there exists L ≥ 0 such that for all x ∈M and all η ∈ TxM, it holds
that ∣∣f(Retrx(η))−

(
f(x) + 〈η, grad f(x)〉

)∣∣ ≤ L

2
‖η‖2. (31)

In other words, f(Retrx(η)) is uniformly well approximated by its first order Taylor expansion.

5.2 Convergence of Jacobi-G algorithm to stationary points and
global convergence rates

As we will show in this subsection, the iterations in Algorithm 2 can be viewed as a special
case of the iterations in Theorem 5.1. Therefore, Theorem 5.1 can be applied and the following
proposition on convergence of Jacobi-G algorithm holds true.

Proposition 5.4. Let f : Un → R+ have Lipschitz continuous gradient in the convex hull of
Un. Then there exists L ≥ 0 such that (31) holds by Lemma 5.3. For Algorithm 2, we have
that:

(i) ‖ grad f(U k)‖ → 0 in Algorithm 2; in particular, every accumulation point in Algorithm
2 is a stationary point.

(ii) In order to reach an ε-optimal solution (i.e., ‖ grad f(U k)‖ ≤ ε), the algorithm needs at
most ⌈

2L(f ∗ − f(x0))

δ2

1

ε2

⌉
iterations, where δ is from (21).

In order to prove Proposition 5.4, we show that the descent conditions are satisfied using
Lemma 5.3.

Lemma 5.5. Let f : Un → R+ have Lipschitz continuous gradient in the convex hull of Un.
Then there exists L ≥ 0 such that (31) holds by Lemma 5.3. Let h(i,j),U be as in (4) and Ψopt

be its maximizer. Then

h(i,j),U (Ψopt)− h(i,j),U (I2) ≥
‖ gradh(i,j),U (I2)‖2

2L
.

13



Proof. Denote h = h(i,j),U for simplicity. We set

∆ = UPT
i,jPi,j(Λ(U)) ∈ TUUn,

where PT
i,j : C2×2 → Cn×n is the adjoint operator of Pi,j. Then

∆ = U ·



i j

0
...

... 0
i · · · Λ(U)ii Λ(U)ij

j · · · Λ(U)ji Λ(U)jj
0 0

,

which is a projection of grad f(U ) onto the tangent space to the submanifold of the matrices
of type UG(i,j,Ψ). Take the usual exponential map

ExpU (UΩ) = U exp(Ω),

which is a retraction (see [3, Proposition 5.4.1]). Denote Ψ1 = ExpI2
( 1
L

gradh(I2)). Then, by
Lemma 5.3, we have that

h(Ψ1)− h(I2) = f

(
ExpU

(
∆

L

))
− f(U)

≥
〈

∆

L
, grad f(U)

〉
<
− L

2

∥∥∥∥∆

L

∥∥∥∥2

=
‖ gradh(I2)‖2

2L
.

Since h(Ψopt)− h(I2) ≥ h(Ψ1)− h(I2), the proof is completed.

Proof of Proposition 5.4. We would like to apply Theorem 5.1 to the function −f(U) (since
we are interested in the maximization of f(U)). By Lemma 5.5, we have that

f(U k)− f(U k−1) = hk(Ψk)− hk(I2) ≥ 1

2L
‖ gradhk(I2)‖2 ≥ δ2

2L
‖ grad f(U k−1)‖2,

and thus the descent condition (30) holds with the constant δ2

2L
.

Corollary 5.6. Proposition 5.4 applies to the cost functions introduced in Section 2.2.

6 Convergence of iterations,  Lojasiewicz gradient in-

equality and geodesic convexity

In this section, we gather some known results and preliminaries that will be helpful for the
proof of our main results in Section 7.
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6.1  Lojasiewicz gradient inequality and speed of convergence

Here we recall the results on convergence of descent algorithms on analytic submanifolds that
use  Lojasiewicz gradient inequality [26], as presented in [32]. These results were used in [25]
to prove the global convergence of Jacobi-G on the orthogonal group.

Definition 6.1 ( Lojasiewicz gradient inequality, [31, Definition 2.1]). Let M ⊆ Rn be a
Riemannian submanifold of Rn. The function f : M → R satisfies a  Lojasiewicz gradient
inquality at a point x ∈M, if there exist δ > 0, σ > 0 and ζ ∈ (0, 1

2
] such that for all y ∈M

with ‖y − x‖ < δ, it holds that

|f(x)− f(y)|1−ζ ≤ σ‖ grad f(x)‖. (32)

The following lemma guarantees that (32) is satisfied for the real analytic functions defined
on an analytic manifold.

Lemma 6.2 ([31, Proposition 2.2 and Remark 1 ]). Let M⊆ Rn be an analytic submanifold5

and f : M → R be a real analytic function. Then for any point x ∈ M, the function f
satisfies a  Lojasiewicz gradient inequality (32) for some6 δ > 0, σ > 0 and ζ ∈ (0, 1

2
].

 Lojasiewicz gradient inequality allows for proving convergence of optimization algorithms
to a single limit point.

Theorem 6.3 ([31, Theorem 2.3]). Let M ⊆ Rn be an analytic submanifold and {xk : k ∈
N} ⊆ M be a sequence. Suppose that f is real analytic and, for large enough k,
(i) there exists σ > 0 such that

|f(xk+1)− f(xk)| ≥ σ‖ grad f(xk)‖‖xk+1 − xk‖; (33)

(ii) grad f(xk) = 0 implies that xk+1 = xk.
Then any accumulation point x∗ of {xk : k ∈ N} ⊆ M is the only limit point.

If, in addition, for some κ > 0 and for large enough n it holds that

‖xk+1 − xk‖ ≥ κ‖ grad f(xk)‖, (34)

then the following convergence rates apply

‖xk − x∗‖ ≤ C

{
e−ck, if ζ = 1

2
(for some c > 0),

k−
ζ

1−2ζ , if 0 < ζ < 1
2
,

where ζ is the parameter in (32).

Remark 6.4. We can relax the conditions of Theorem 6.3 as follows. We can require just
that (33) holds for all k such that ‖xk−x∗‖ < ε, where x∗ is one of the accumulation points of
the sequence and ε is some radius of the neighborhood of x∗. This can be verified by inspecting
the proof of Theorem 6.3 (see also the proof of [2, Theorem 3.2])

In the case ζ = 1
2
, according to Theorem 6.3, the convergence is linear (similarly to

the classic results on local convergence of the gradient descent [29, 9]). In the optimization
literature, the inequality (32) with ζ = 1

2
is often called Polyak- Lojasiewicz7 inequality. In the

next subsection, we recall some sufficient conditions for Polyak- Lojasiewicz inequality to hold.

5See [23, Definition 2.7.1] or [25, Definition 5.1] for a definition of an analytic submanifold.
6The values of δ, σ, ζ depend on a specific point.
7The inequality (32) with ζ = 1

2 goes back to Polyak [29], who used it for proving linear convergence of the
gradient descent.
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6.2 Riemannian Hessian and stationary points

For a Riemannian manifold M and a C2 function f : M → R, the Riemannian Hessian at
x ∈ M is a bilinear form on TxM that is classically defined as Hessxf [η] = ∇η grad f(x) for
η ∈ TxM, where ∇ is the Riemannian connection [3, p.105] on M. Since we are interested
in Euclidean submanifolds in this paper, we use the following simpler expression from [4] via
the Weingarten operator.

Lemma 6.5 ([4, (8)-(10)]). For a function f̃ defined in a neighborhood of M ⊆ Rn. The
Riemannian Hessian of f at x ∈M is the map TxM→ TxM defined as

Hessxf [η] = ΠTxMHf̃ (x)[η] + Ax(η,Π(TxM)⊥∇f̃(x)), (35)

where η ∈ TxM, Hf̃ (x) is the Euclidean Hessian of f̃ at x, ∇f̃ is the Euclidean gradient,
ΠTxM (resp. Π(TxM)⊥) denotes the orthogonal projector onto the tangent space TxM (resp.
its orthogonal complement), and A is the Weingarten operator8

Ax :TxM× (TxM)⊥ → TxM,

(z, v) 7→ ΠTxDz(ΠTxM)v,
(36)

where Dz is the differential with respect to z.

Note that the Riemannian Hessian (35) contains two terms: one is the projection of the
Euclidean Hessian onto the tangent space, and the other is related to the second fundamental
form of the manifold, which is computed via the Weingarten operator (some examples for
Weigarten operators are given in [4]). We also note that the second term can be also easily
interpreted9 for the submanifolds given by equality constraints.

Remark 6.6 (see [30, Lemma 5.1]). Let M ⊆ Rn be a k-dimensional submanifold defined
locally around x by n− k equations

h(x) = 0, where h(x) =
[
h1(x) · · · hn−k(x)

]T
, x ∈ Rn,

such that rank{Jh(x)} = n− k. Note that the projector on TxM in this case is given by

ΠTxM = In − (Jh(x))†Jh(x).

Then (35) can be found as (an n× n matrix)

Hessxf = ΠTxM

(
Hf̃ (x)−

n−k∑
j=1

µjHhj(x)

)
ΠTxM,

where the vector µ ∈ Rn−k is defined as µ = (JT
h)†∇f̃(x). Note that at a stationary point, µ

is nothing but the vector of Lagrange multipliers.

The Riemannian Hessian gives well-known necessary and sufficient conditions of local ex-
trema10 (see, for example, [30, Theorem 4.1]).

8We take the expression in [4, eqn. (8)] as a definition of Weingarten operator.
9This interpretation will not be used in the paper.

10Usually, these conditions are formulated for local minima and positive definite Hessians, but we formulate
them here for local maxima.
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• If x is a local maximum of f , then the matrix Hessxf � 0 (negative semidefinite);

• If grad f(x) = 0 and Hessxf ≺TxM 0 (negative definite on TxM, i.e., Hessxf � 0 and
rank{Hessxf} = dim(M)), then f has a strict local maximum at x.

Finally, we distinguish stationary points with nonsingular Riemannian Hessian matrices.

Definition 6.7. A stationary point (x ∈M, grad f(x) = 0) is called non-degenerate if Hessxf
is nonsingular on TxM.

6.3 Geodesic convexity

We recall the notion of a geodesic convexity [30] on manifolds, which is a generalization
of the notion of convexity of sets and functions. In particular, we relate the definiteness
of Riemannian Hessians with local convexity/concavity. In this subsection, we assume that
M⊆ Rn is a connected Riemannian manifold.

Definition 6.8 ([30, Definition 2.1]). A set A ⊆M is called geodesically convex, if any two
points x, y ∈ A are joined by a geodesic lying in A.

Definition 6.9 ([30, Definition 2.2]). Let A ⊆M be geodesically convex. A function f : A→
R is called geodesically convex (resp. concave) on A, if it is convex11 (resp. concave) when
restricted to geodesics.

We will later on use the following lemma that guarantees the geodesic convexity of sublevel
sets.

Lemma 6.10 ([30, Lemma 2.1]). Let A ⊆ M and f : A → R be geodesically convex. Then
for any x0 ∈ A, the level set

{x|f(x) ≤ f(x0), x ∈ A}

is geodesically convex.

The following two characterizations of geodesic convexity/concavity will be useful for anal-
ysis of the convergence properties in Section 7.

Proposition 6.11 ([30, Corollary 4.1]). For any C2 function f : M → R, if grad f(x) = 0
and Hessxf �TxM 0 (resp. ≺TxM 0), then there exists a neighorhood U of x, such that f is
geodesically convex (resp. concave) on U.

6.4  Lojasiewicz inequality at stationary points

It is known, and widely used in optimization (especially in the Euclidean case), that around a
strong local maximum the function satisfies the Polyak- Lojasiewicz inequality. In fact, it is also
valid for non-degenerate stationary points, as shown in [21]. Here we recall the most general
recent result on possibly degenerate stationary points that satisfy the so-called Morse-Bott
property (see also [7, p.248]).

11with respect to the arc length parameters.
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Definition 6.12 (Local Morse-Bott, [18, Definition 1.5]). Let M be a C∞ submanifold and
f :M→ R be a C2 function. Denote the set of stationary points as

Critf = {x ∈M : grad f(x) = 0}.

The function f is said to be Morse-Bott at x0 ∈ M if there exists an open neighborhood
U ⊆M of x0 such that

(i) C = U ∩ Critf is a relatively open, smooth submanifold of M;

(ii) Tx0C = Ker Hessx0f .

Remark 6.13. (i) If x0 ∈ M is a non-degenerate stationary point, then f is Morse-Bott at
x0, since {x0} is a zero-dimensional manifold in this case.
(ii) If x0 ∈ M is a degenerate stationary point, then condition (ii) in Definition 6.12 can be
rephrased12 as

rank{Hessx0f} = dimM− dimC. (37)

For the functions that satisfy the Morse-Bott property, it was recently shown that the
Polyak- Lojasiewicz inequality holds true.

Theorem 6.14 ([18, Theorem 3, Corollary 5]). If U ⊆ Rn is an open subset and f : U → R
is Morse-Bott at a stationary point x, then there exist δ > 0 and σ > 0 such that

|f(y)− f(x)| ≤ σ‖∇f(y)‖2,

for any y ∈ U satisfying ‖y − x‖ ≤ δ.

We can also easily deduce the same result on a smooth manifold M.

Proposition 6.15. If U ⊆M is an open subset and a C2 function f : U→ R is Morse-Bott
at a stationary point x, then there exist an open neighborhood V ⊆ U of x and σ > 0 such that

|f(y)− f(x)| ≤ σ‖ grad f(y)‖2,

for all y ∈ V.

Proof. Consider the exponential map Expx : TxM → M, which is a local diffeomorphism.

Let W ⊆ TxM be an open subset such that Expx(W) = U. Let f̂ = f ◦Expx be the composite
map from W to R. Then

∇f̂(y′) = JT
Expx

(y′) grad f(y), (38)

where y′ ∈ W and y = Expx(y
′). It follows that Expx gives a diffeomorphism between Critf

and Critf̂ . Since Hessxf = Hf̂ (0) by [3, Proposition 5.5.5], we have that f̂ is Morse-Bott at
0. Therefore, by Theorem 6.14, there exist σ′ > 0, σ > 0 and an open neighborhood V ⊆ U of
x such that

|f(y)− f(x)| = |f̂(y′)− f̂(0)| ≤ σ′‖∇f̂(y′)‖2 ≤ σ‖ grad f(y)‖2,

for any y ∈ V, where the last inequality holds because JExpx is nonsingular in a neighborhood
of x.

Remark 6.16. For the case of non-degenerate stationary points and C∞ functions, Propo-
sition 6.15 is proved in [21, Lemma 4.1], which is a simple corollary of Morse Lemma [28,
Lemma 2.2]. For C∞ functions and Morse-Bott functions, Proposition 6.15 (as noted in [18])
is also a simple corollary of Morse-Bott Lemma [5].

12due to the fact that Tx0C ⊆ Ker Hessx0f .
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7 Convergence results based on  Lojasiewicz inequality

Here we consider only the cost functions that are given by

7.1 Weingarten operator and the Riemannian Hessian

We first find the Weingarten map for Un (compared with the case of On given in [4]).

Lemma 7.1. The Weingarten map for Un is given by

AU (Z,V ) = U
1

2

(
ZHV − V HZ

)
.

Proof. We mainly follow the approach of [4]. The projection onto TUUn is given by

ΠTUUn(V ) =
1

2

(
V −UV HU

)
.

By computing the differential of the projector, we have

DZ(ΠTUUn) = −1

2

(
ZV HU +UV HZ

)
.

Since Z ∈ TUUn and V ∈ (TUUn)⊥, we have ZUH = UZH,UHV = −V HU , and hence

DZ(ΠTUUn) =
1

2

(
ZUHV −UV HZ

)
= U

1

2

(
ZHV − V HZ

)
.

Finally, since U 1
2

(
ZHV − V HZ

)
∈ TUUn, the proof is complete.

Now we show that the Riemannian Hessian for the elementary rotations can be also com-
puted as a submatrix of the Riemannian Hessian.

Proposition 7.2. Let h(i,j),U be as in (4), the projection operator Pi,j be as in (3), and PT
i,j

be its adjoint operator. Then

HessI2h(i,j),U = Pi,j ◦ ((In ⊗UH)HessUf(In ⊗U)) ◦ PT
i,j.

Proof. We denote h = h(i,j),U for simplicity. Define g(Z) = f(UZ) for Z ∈ Un. It follows
from the proof of Lemma 3.1 that

ΠTInUn
= (In ⊗UH)ΠTUUn(In ⊗U).

Therefore, for the first term in (35) we have

ΠTI2
U2Hh(I2)ΠTI2

U2 = Pi,jΠTInUn
Hg(In)ΠTInUn

PT
i,j

= Pi,j ◦ ((In ⊗UH)ΠTUUnHf (U)ΠTUUn(In ⊗U)) ◦ PT
i,j.
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For the second term in (35), we use the expression of Weingarten operator computed in
Lemma 7.1. Denote V 2 = Π(TI2U2)⊥∇h(I2) and V = Π(TUUn)⊥∇f(U). Then

〈Y,AI2(Z,V 2)〉< =

〈
PT
i,j(Y ),PT

i,j

(
1

2

(
ZHV 2 − V H

2Z
))〉

<

=

〈
PT
i,j(Y ),

1

2

(
PT
i,j(Z)HPT

i,j(V 2)− PT
i,j(V 2)HPT

i,j(Z)
)〉
<

=

〈
PT
i,j(Y ),

1

2

(
PT
i,j(Z)HUHV − V HUPT

i,j(Z)
)〉
<

=
〈
UPT

i,j(Y ),AU (PT
i,j(Z),V )

〉
< ,

which completes the proof.

7.2 Riemannian Hessian for the contrast-like functions

Now we show that the Riemannian Hessian of functions satisfying invariance property (22)
(with matrix S given in ) is rank-deficient at stationary points.

Lemma 7.3. Assume that f : Un → R satifies the invariance property (22).

(i) If U is a stationary point of f , then rank{HessUf} ≤ n(n− 1), and HessUf [Zk] = 0 for
each matrix

Zk =
[
0 · · · 0 iuk 0 · · · 0

]
∈ TUUn, (39)

i.e., all the matrices Zk are in the kernel of HessUf .

(ii) In general, we have that

HessUf [Zk] =
iU

2


0 ··· 0 Λ1,k 0 ··· 0

...
...

...
...

...
0 ··· 0 Λk−1,k 0 ··· 0

−Λk,1 ··· −Λk,k−1 0 −Λk,k+1 ··· Λk,n
0 ··· 0 Λk+1,k 0 ··· 0

...
...

...
...

...
0 ··· 0 Λn,k 0 ··· 0

 ,

where Λ = Λ(U ).

Proof. (i) Note that Zk = UΩ, where Ω = Ωk is defined in (24). Recall that the parallel
transport on Un along the geodesic in the direction Zk = UΩ ∈ TUUn is given [17,
(2.18)]13, [19, Chap. 2, Ex. A.6] by

τtZ : TUUn → TExpU (tZ)Un, τtZ(Y ) = Ue
tΩ
2 UHY e

tΩ
2 ,

and its inverse is then given by

τ−1
tZ (V ) = Ue

−tΩ
2 UHV e

−tΩ
2 .

13Note that [17, (2.18)] was given for On, but it is straighforward to show that the same expression is valid
for Un, following [19, Chap. 2, Ex. A.6].
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From the link between parallel transport [3, (8.1)] and Riemannian connection , we get

HessUf [Zk] = ∇Zk grad f(U) =

(
d

dt
τ−1
tZ (grad f(ExpU (tZk)))

)∣∣∣∣
t=0

=

(
d

dt
Ue−

tΩ
2 UH grad f(UetΩ)e−

tΩ
2

)∣∣∣∣
t=0

.

Now recall that due to (22), we have ∇f(UetΩ) = ∇f(U)etΩ, hence

grad f(UetΩ) =
∇f(UetΩ)−UetΩ∇f(UetΩ)HUetΩ

2
= grad f(U)etΩ = 0,

when the last equality holds because U is a stationary point, hence HessUf [Zk] = 0.

Since dim TUUn = n2 and n vectorsZk are linearly independent, we get that rank{HessUf} ≤
n(n− 1).

(ii) In the general case, we get

HessUf [Zk] =

(
d

dt
Ue−

tΩ
2 UH grad f(U)e

tΩ
2

)∣∣∣∣
t=0

=
U

2
(−ΩΛ(U ) + Λ(U)Ω) ,

which completes the proof.

Next, we find the expressions of the Riemannian Hessians in the case of Jacobi rotations.
For each pair of indices (i, j), we define a 2× 2 matrix as follows:

D
(i,j)
U = 2

([
Γ2,2 Γ2,3

Γ3,2 Γ3,3

]
− Γ1,1I2

)
.

Lemma 7.4. Let h(i,j),U and Γ = Γ(i,j,U) be as in (14) satisfying (11). Take the basis in
TI2U2 as in (25). Then

(i) The 2× 2 leading principal submatrix of the Riemannian Hessian of h(i,j),U is

(HessI2h(i,j),U )1:2,1:2 = D
(i,j)
U .

(ii) If, in addition gradh(i,j),U (I2) = 0, then the Riemannian Hessian of h(i,j),U becomes

HessI2h(i,j),U =

[
D

(i,j)
U 0
0 0

]
.

Proof. (ii) Follows from (i) and Lemma 7.3, since HessI2h(i,j),U [∆k] = 0 for k = 3, 4.

(i) We denote h = h(i,j),U for simplicity. Take Ω = α1∆1 + α2∆2, where α1, α2 ∈ R satisfy
α2

1 + α2
2 = 1. By [3, (5.32)], we have that

〈Ω,HessI2h[Ω]〉< =

(
d2

dt2
h(etΩ)

)∣∣∣∣
t=0

.
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Note that

h(etΩ) = h

([
cos t

2
−(α1 + iα2) sin t

2

(α1 − iα2) sin t
2

cos t
2

])
= h̃(cos t,−α1 sin t,−α2 sin t).

(40)
It follows that

d

dt
h(etΩ) = −2

[
sin t α1 cos t α2 cos t

]
Γ
[
cos t −α1 sin t −α2 sin t

]T
,

and thus (
d2

dt2
h(etΩ)

)∣∣∣∣
t=0

=
[
α1 α2

]
D

(i,j)
U

[
α1

α2

]
,

which completes the proof.

Corollary 7.5. If I2 is a local maximum of h(i,j),U , then the matrix D
(i,j)
U is negative semidef-

inite.

Remark 7.6. The matrix D
(i,j)
U is negative definite if and only if

Γ11 > λmax

([
Γ22 Γ23

Γ23 Γ33

])
.

If, in addition, gradh(i,j),U (I2) = 0, this is equivalent to saying that λ1(Γ) > λ2(Γ) (i.e., the
first two eigenvalues are separated) and Γ11 = λ1(Γ).

7.3 Preliminary lemmas: checking the decrease conditions

In this subsection, we are going to find some sufficient conditions for (33) and (34) to hold in
Algorithm 2, which will allow us to use Theorem 6.3.

Let U k = U k−1G
(ik,jk,Ψk) be the iterations in Algorithm 2. Then it is obvious that

‖U k −U k−1‖ = ‖Ψk − I2‖.

Assume that Ψk is obtained as in Section 2.3, i.e., by taking w as the leading eigenvector of
Γ(ik,jk,Uk−1) (normalized so that w1 = cos 2θ = 2c2 − 1 > 0 in (13)) as in Remark 2.4, and
retrieving Ψk from w according to (12) and (13). We first express ‖Ψk − I2‖ through w1.

Lemma 7.7. For the iterations Ψk obtained as in Section 2.3, it holds that

2‖Ψk − I2‖ ≥
√

1− w2
1 ≥ 0.65‖Ψk − I2‖ (41)

Proof. Note that
‖Ψk − I2‖ =

√
2(1− c)2 + 2|s|2 = 2

√
1− c.

By (13) and Remark 2.4, we see that√
1− w2

1 = 2c
√

1− c2 ≥ 1.3
√

1− c

and
2c
√

1− c2 ≤ 2 · 2
√

1− c.
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Since we are looking at Algorithm 2, we can replace grad f(U k−1) with gradh(i,j),U (I2) in
both inequalities of (41).

Now we prove a result for condition (34).

Lemma 7.8. Let f : Un → R+ be a C3 function. Then there exists a universal constant κ > 0
such that

‖Ψk − I2‖ ≥ κ‖ gradhk(I2)‖.

Proof. We denote Γ = Γ(ik,jk,Uk−1) as in (14). By Lemma 4.2, we have that

‖ gradhk(I2)‖ = 2
√

2
√

Γ2
12 + Γ2

13.

By Lemma 7.7, it is sufficient to prove that

1− w2
1 ≥ κ′(Γ2

12 + Γ2
13)

for a universal constant κ′ > 0. Let λ1 ≥ λ2 ≥ λ3 be the eigenvalues of Γ. Without loss of
generality, we set Γ′ = Γ− λ3I3, µ1 = λ1 − λ3 and µ2 = λ2 − λ3. Then

Γ′ = µ1ww
T + µ2vv

T, (42)

where v is the second eigenvector of Γ. It follows that

Γ2
12 + Γ2

13 = (Γ′12)2 + (Γ′13)2 = (µ1w1w2 + µ2v1v2)2 + (µ1w1w3 + µ2v1v3)2

= µ2
1w

2
1(w2

2 + w2
3) + 2µ1µ2w1v1(w2v2 + w3v3) + µ2

2v
2
1(v2

2 + v2
3)

= µ2
1w

2
1(1− w2

1)− 2µ1µ2w
2
1v

2
1 + µ2

2v
2
1(1− v2

1).

(43)

Since v2
1 ≤ 1 − w2

1 (the first elements of the orthogonal eigenvectors) and µ2, µ1 ≤ 2‖Γ‖, we
get that

Γ2
12 + Γ2

13 ≤ (1− w2
1)4‖Γ‖2.

By Lemma 4.2, Lemma 7.4 and C3 smoothness of f , we see that Γ continuously depends on
U ∈ Un. Therefore, ‖Γ‖ is bounded from above, and thus the proof is completed.

We are ready to check the sufficient decrease condition (33).

Lemma 7.9. Let Γ = Γ(ik,jk,Uk−1) be as in (14). Let λ1 ≥ λ2 ≥ λ3 be the eigenvalues of Γ,
and η = λ2−λ3

λ1−λ3 . Suppose that there exists ε > 0 such that 1− η ≥ ε. Then

|hk(Ψk)− hk(I2)| ≥ ε

4
‖ gradhk(I2)‖

√
1− w2

1.

Proof. Define the ratio

q(Γ,w) =
(wTΓw − Γ11)2

(Γ2
12 + Γ2

13)(1− w2
1)
. (44)

It is sufficient to prove that q(Γ,w) ≥ ε/2. Now we use the same notations as in the proof of
Lemma 7.8. Denote

ρ = 1− w2
1, τ =

v2
1

ρ
∈ [0, 1].
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From (42), we have that

wTΓw − Γ11 = µ1 − (µ1w
2
1 + µ2v

2
1) = µ1ρ(1− τη). (45)

Then, from (43), we have that

Γ2
12 + Γ2

13 = ρµ2
1((1− τ) + τ(1− η)2 − ρ(1− τη)2). (46)

By (44), (45) and (46), we see that

q(Γ,w) =
µ2

1ρ
2(1− τη)2

ρ2µ2
1((1− τ) + τ(1− η)2 − ρ(1− τη)2)

≥ (1− τη)2

1− 2τη + τη2
.

Note that
1− 2τη + τη2

(1− τη)2
= 1 +

(1− τ)τη2

(1− τη)2
≤ 1 +

τη2

(1− η)
≤ 2

ε
.

The proof is complete.

7.4 Main results

First, we prove a global convergence result using Theorem 6.3.

Theorem 7.10. Suppose that f : Un → R+ has Lipschitz continuous gradient in the convex
hull of Un, and U is an accumulation point of Algorithm 2, where the elementary rotations
for f are given by (14) (which is a stationary point by Proposition 5.4). Assume that all D

(i,j)
U

are negative definite for all pairs (i, j) at U . Then

(i) U is the only limit point.

(ii) If the rank of Riemannian Hessian is maximal at U (i.e., rank{HessUf} = n2−n), then
the speed of convergence is linear.

Moreover, the convergence rates in Theorem 6.3 apply.

Proof. (i) Due to the fact that D
(i,j)
U is negative definite for any pair (i, j), the two top

eigenvalues of Γ(i,j,U) are separated by Remark 7.6. Therefore, there exists ε > 0 such
that

λ2(Γ(i,j,U))− λ3(Γ(i,j,U))

λ1(Γ(i,j,U))− λ3(Γ(i,j,U))
< 1− ε.

By the continuity of Γ(i,j,U) with respect to U , the conditions of Lemma 7.9 are satisfied
in a neighborhood of U . Therefore, there exists c > 0 such that

|f(U k)− f(U k−1)| ≥ c‖ gradhk(I2)‖‖U k −U k−1‖,

in a neighborhood of U . By Remark 6.4, it is enough to use Theorem 6.3, and thus U
is the only limit point. Moreover, by Lemma 7.8, the convergence rates apply.

(ii) Due to the invariance by scaling of the columns, U belongs to an n-dimensional subman-
ifold of stationary points defined by US, where S is as in (23). Since rank{HessUf} =
n2 − n, f is Morse-Bott at U by Remark 6.13. Therefore, by Proposition 6.15, the
 Lojasiewicz constant ζ = 1/2 in (32) at U , and thus the convergence is linear by Theo-
rem 6.3.
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Theorem 7.11. Let U ∗ be a semi-strict local maximum of f (i.e. such that rank{HessU∗f} =
n2 − n). Then there exists a neighborhood W of U ∗, such that for any U 0 ∈W, Algorithm 2
converges to U ∗S, where S is of the form (23); the speed of convergence is linear.

Proof. Let T be the unit circle in the complex plane and consider the action of the group Tn
on Un defined as

U · (t1, . . . , tn) = U

t1 0
. . .

0 tn

 .
Since the action of Tn on Un is free and proper, we can consider the quotient manifold Ũn =
Un/Tn.

In order to define the gradient and Hessians on Ũn, we use the standard splitting into
horizontal and vertical space

TUUn = VUUn ⊕HUUn,

where HUUn can be found as adding the constraint that the skew-symmetric matrix has zero
diagonal:

HUUn = {X ∈ Cn×n : X = UZ, Z +ZH = 0, diag{Z} = 0}.

In this case, an element Ũ ∈ Ũn can be represented as its representative U and the tangent

space TŨ Ũn is identified with HU Ũn, see [3, Section 3.5.8]. Moreover, the Riemannian metric

on Ũn can be defined as
〈ξ̃, η̃〉

T
Ũ
Ũn

= 〈ξ, η〉TUUn ,

because the inner product is invariant with respect to the choice of representative U , see [3,

Section 3.6.2]. This makes Ũn a Riemannian manifold; the natural projection π : U 7→ Ũ
then becomes a Riemannian submersion.

Due to the invariance property (22), the function f is, in fact, defined on Ũn (we will

denote the corresponding function f̃ : Ũn → R). Obviously, grad f(U ) ∈ HUUn; moreover,
the Riemannian Hessian is given by

HessŨ f̃ [Z] = PHUUnHessUf [Z],

see [3, Section 5.3.4].

By Lemma 7.3 have that rank{HessŨ∗ f̃} = rank{HessU∗f} = n(n− 1), and therefore it is

negative definite. Hence, by Proposition 6.11 there exists an open neigborhood Ũ of Ũ ∗ where
f̃ is geodesically concave. For simplicity assume that f(U ∗) = 0. Without loss of generality

(and by Lemma 6.10) we can take W̃ such that its boundary δ(W̃) is a level set for a value
a < 0, i.e.

f(Ũ ) = a, ∀Ũ ∈ δ(W̃).

Moreover, for any a < b < 0 we have that the level set

W̃b = {f(Ũ) ≥ b, Ũ ∈ W̃}

is a geodesically convex neigbourhood of Ũ ∗.
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Next, assume that Ũ k−1 ∈ W̃, and consider the U k = U k−1G
(i,j,Ψ) with Ψ given as

the maximizer of (14). Define b = f(U k−1). In what follows, we are going to prove that

Ũ k−1 ∈ W̃b, so that the sequence Ũ k never leaves the set W̃.
Recall that Ψ is computed as follows (see (2.4)): take the vector w as in (13). Take

α1 = −w2/
√

1− w2
1, α2 = −w3/

√
1− w2

1 (we can assume w1 6= 1 because otherwise Ψ = I2

and this case is trivial), and consider the following geodesic in Un:

γ(t) = U k−1PT
i,j

([
cos t

2
−(α1 + iα2) sin t

2

(α1 − iα2) sin t
2

cos t
2

])
,

which starts at γ(0) = U k−1. Note that at each point t1, d
dt
γ(t1) ∈ Vγ(t1)Un, hence the

corresponding curve γ̃ is a geodesic in the quotient manifold Ũn.
Next, as in (40), we have that

f(γ(t)) =
[
cos t −α1 sin t −α2 sin t

]
Γ
[
cos t −α1 sin t −α2 sin t

]T
+ C,

hence
f(γ(t)) = A cos(2(t− t∗)) + C,

where t∗ = arccos(w1) ∈ [0, π
2
] and γ(t∗) = U k. Note that by geodesic concavity of f at U k−1

we have d
dt2
f(γ(0)) = −4A cos(−2t∗) < 0 and therefore cos(2t∗) > 0 and t∗ ∈ [0, π

4
]. Hence we

have that d
dt
f(γ(t)) = −4A sin(2(t− t∗)) > 0 for any t ∈ [0, t∗), the cost function is decreasing;

note that d
dt
f(γ(t∗)) = 0 and there are no other stationary points in t ∈ [0, t∗).

Next, by continuity and because W̃ is open, there exist a small ε > 0 such that γ̃(ε) is in
the interior of Wb. By periodicity of f(γ(t)) and continuity, we have that there exists t2 such

that γ(t2) ∈ δW̃b and γ̃(t) ∈ W̃b for all t ∈ [0, t2]. By Rolle’s theorem, there exists a local
maximum of f(γ(t)) in [0, t2]. Note that by construction, the closest positive local maximum

to 0 is at t∗, therefore Ũ k = γ̃(t∗) ∈ W̃b, hence we stay in the same neigbourhood W̃.

Finally, as a neigborhood of U ∗ ∈ Un, we can take the preimage W = π−1(W̃); also linear
convergence rate follows from Theorem 7.10.
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