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Application to Surface Registration.

Pierre Roussillon∗ Joan Alexis Glaunès†
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Abstract

In this paper, we present a framework for computing dissimilarities between surfaces which
is based on the mathematical model of normal cycle from geometric measure theory. This model
allows to take into account all the curvature information of the surface without explicitely comput-
ing it. By defining kernel metrics on normal cycles, we define explicit distances between surfaces
that are sensitive to curvature. This mathematical framework also has the advantage of encom-
passing both continuous and discrete surfaces (triangulated surfaces). We then use this distance
as a data attachment term for shape matching, using the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) for modeling deformations. We also present an efficient numerical imple-
mentation of this problem in PyTorch, using the KeOps library, which allows both the use of auto-
differentiation tools and a parallelization of GPU calculations without memory overflow. We show
that this method can be scalable on data up to a million points, and we present several examples
on surfaces, comparing the results with those obtained with the similar varifold framework.

1 Introduction
This article takes place in the context of computational anatomy, an active research field which aims
at providing a mathematical framework to study the variability of anatomical structures among a
population of subjects. The term “computational anatomy” was first introduced by Grenander and
Miller [28].

In the past decades, the development of acquisition techniques (among which Magnetic Reso-
nance Imaging, coherence tomography, Diffusion-Tensor Imaging, Functional MRI) opens the way
to an early diagnosis of diseases that cause or are caused by unexpected deformations. A qualitative
approach is not anymore sufficient and one necessitates an automatized procedure for an analysis that
fully exploits the size of the database. This automation implies a quantitative approach, and thus a
mathematical modelling of shape variability and how to measure it.

This problematic is at the heart of computational anatomy. Formally, one estimates from a
“healthy” dataset a statistical model of the shapes’ variability. From there, it is possible to provide
statistical tests to discriminate between a pathological and a normal shape variation. Of course, this
is a very large and complex problem. From a mathematical point of view, the measure of shapes vari-
ability necessitates a framework that provides theoretical and numerical guarantees. From a medical
point of view, the relevance and the interpretation of such applications need to be evaluated depending
on the anatomical structure at stake. Yet, numerous studies has shown promising results. Let us quote
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for example works on Alzeihmer’s disease [39, 47, 44, 18, 17], on DTI images [20, 38, 29], heart
malformations [34], Down syndrom [21, 19] and retina layer for glaucoma diagnosis [7, 31, 32].

An elementary brick for carrying out such statistical analyses is the pairwise registration of ge-
ometric structures. This matching problem is often addressed as a variational problem, with a cost
functional which is the sum of two terms: a data attachment term that measures how close the de-
formed shape is to the target shape, and a regularization term on the deformation that ensures that
the problem is well posed. In this context, the construction of a data-attachment term to measure the
residual distance between the deformed shape and the target is of importance. Indeed, depending on
the features of the shapes it takes into account, this term will drive the registration procedure in a
certain way. Ideally, we want a mathematical setting to represent the shapes (e.g. the surfaces) in a
common framework for discrete and continuous shapes, and with theoretical guarantees of the kind
of information that we are able to retrieve through this representation. Last but not least, this set-
ting should provide an explicit metric between shapes, that is implementable numerically for discrete
shapes.

In the past decade, several models for defining such data-attachment terms for curves, surfaces
or points clouds have been proposed, based on mathematical tools coming from geometric measure
theory. The first of these models consisted of defining kernel metrics on spaces of currents ([46],
[27]) to provide an explicit distance between shapes, for both continuous and discrete cases.

This setting is now commonly used in computational anatomy; its advantages lie in its simple
implementation, its parametrization-free representation and the fact that it provides a common frame-
work for continuous and discrete shapes. However, currents are oriented objects and thus a consistent
orientation of shapes is needed for a coherent matching. Moreover, due to this orientation property,
artificial cancellation can occur with shapes with high local variations. To deal with this problem, a
more advanced model based on varifolds has been introduced more recently [10, 30]. Such frame-
work provides a non-oriented distance between shapes, that contains first order information. Note
that optimal transport has also been used to construct a data attachment term for diffeomorphic reg-
istration in the same spirit [25].

In [42], we have introduced another shape representation in computational anatomy, using the
mathematical model of normal cycle, and we have applied it to curves. The notion of normal cycle
has been introduced by Zähle in [49], based on the work on curvature measures developed by Federer
earlier [22]. The theory of normal cycles relies on the representation of shapes through their unit nor-
mal bundle: more precisely, the normal cycle of a shape is the current associated with its unit normal
bundle. The benefit of such a model is that the normal cycle contains all the curvature information
of the underlying shape, as it was shown in [49], [50]. The idea is that the current associated with
a shape contains only first order information. Considering the current of the unit normal bundle, we
get first order information of a first order model, and thus curvature information. One can find a more
detailed explanation in [45, 42]. Defining kernel metrics on normal cycles, one gets an explicit data-
attachment term between shapes which is sensitive to curvature and also to singularities of the shapes,
such as branching points and boundaries. Taking into account the curvature during the registration
process is an interesting property, since in most application regions with high curvature are features
that we want to be matched together.

In this article, we propose to extend the construction of kernel metrics on normal cycles seen in
[42] to surfaces of R3 (note that we presented preliminary work on surfaces in a short article [43]).
The contributions of this paper are twofold: first, the extension of the previous work to surfaces
requires a fine decomposition of normal bundle in the case of triangulated surfaces. The choice of
the kernel defining the metric is also crucial, so that the distance can be calculated, and contains
non-trivial curvature information. We also present an implementation of this algorithm, which makes
extensive use of recent software developments in the neural networks community. More precisely, our
implementation takes full advantage of the automatic differentiation module of the PyTorch library
[37], together with a seamless use of parallelization of generic convolution operations on Graphics
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Processing Units (GPU) provided by the recent KeOps module [8, 9], developed by Benjamin Char-
lier, Joan Glaunès and Jean Feydy. This allows to have a linear memory footprint memory on GPU for
kernel convolutions, and thus to avoid memory overflows that happen because of the usual quadratic
memory footprint. All this elements lead to a code for the matching problem that is both very efficient
(because the parallelization of the calculations is optimized) and simple (because the calculation of
the gradients is painless). In addition, the computation times presented are significantly improved
because of the automatic and efficient calculation of the gradient. By doing so, we are able to de-
fine distances that are sensitive to curvature, with an efficient implementation and that significantly
improve matching results.

The article is organized as follows: in Sect. 2, we present the bases of the representation of shapes
with normal cycles, after which we describe the normal cycle in the case of triangulated surfaces. In
sect. 3 and 4, we define the kernel metrics on normal cycles and express the associated distance in
the case of discrete surfaces. We will see that we can interpret what type of curvature is encoded
in these distances. In section 5, we detail the diffeomorphic deformation model that we will use
for the inexact registration problem, namely the Large Deformation Diffeomorphic Mapping Metric
(LDDMM, [48]) framework. Section 6 focuses on the numerical aspects of the registration problem.
We detail the implementation in PyTorch, and provide benchmarks for computation times of the
distance on normal cycles, as well as the gradient evaluation. We compare this computation times
with the ones on varifolds, and we observe that they are of the same order of magnitude, despite the
greater complexity of the normal cycle model. Finally, in Section 7, we present many examples of
matching on surfaces using kernel metrics on normal cycles as a data attachment term. The various
examples aim to show the advantages of introducing curvature into the data-attachment term.

2 Representation of shapes with normal cycles
The question of shapes representation is a central point in geometric measure theory whose refer-
ence book is from Federer [23]. This field was motivated in the second half of the 20th century
by the calculus of variation, and more specifically by the Plateau’s problem of finding a minimal
area surface with constrained boundary: given a closed (m− 1)-dimensional surface Γ ⊂ Rd , find
an m-dimensional surface S of least area such that ∂S = Γ. Solving this problem was a conceptual
breakthrough. Indeed if the formulation is a classical minimization problem with constraint, the main
difficulty was to provide a theoretical setting to embed surfaces in a topological space with nice prop-
erties. The specifications of this framework are the following: define a space where the surfaces can
be represented, with a topology that allows some compactness properties for a minimizing sequence
of the Plateau’s Problem. The representation of oriented surfaces with integral currents ([24]) and
later the representation of non-oriented surfaces with varifolds ([2], [1]) where introduced for this
purpose.

As convenient as these two settings may be, in this article we investigate the finer shape represen-
tations of normal cycles. The theory of normal cycles originated from Federer’s work on curvature
measures [22] and was pushed forward by Zähle [49] who gave integral representation of these mea-
sures: this is the normal cycle. It provides another theoretical tool to represent surfaces and more
generally shapes, encoding higher order information such as curvature.

The theory of normal cycles had already been used in the applied mathematics community, to per-
form curvature estimation from triangulations: in [15], the authors use the Lipschitz-Killing forms to
generalize the mean and Gaussian curvatures in a mathematical setting that encompasses the polyhe-
dral case as well as the continuous case. They also use vector valued differential forms to extend the
notion of second fundamental form operator and get finer results: the principal curvatures as well as
the principal directions may be estimated from this. Moreover, an upper bound of the error of the es-
timated curvature from a triangulated approximation of a smooth shape is proven. The estimation of
the second fundamental form is refined in [16] in a Riemannian framework. [13] extends the stability
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result of [15] that was valid only for approximation of smooth hypersurfaces. Introducing the µ-reach
of a set, they provide curvature stability with respect to the Hausdorff distance of compact subset that
has positive µ-reach, still using the theory of normal cycles. For example a finite set of points in R3

has a positive µ-reach and the authors derived an algorithm to explicit the curvature measure in this
case from a description of its normal bundle. Some of the previous curvature estimation with normal
cycles are summed up in [36].

In this section, we detail the representation of shapes with normal cycles. We start with a brief
recall of currents, as it is underpinning for the theory of normal cycles. Then, we define the normal
cycle of a shape with positive reach as the current associated with its unit normal bundle, and we
explain how to extend this definition to sets that are union of sets with positive reach. These kinds of
sets encompass the case of discrete shapes, such as triangulations. The next step is then to describe
the normal cycles for elementary objects as a triangle and a union of triangle. The latter relies on a
decomposition of the unit normal bundle into spherical, cylindrical and planar part, each part being
associated with a precise kind of curvature.

2.1 Currents
We present the framework for m-dimensional currents in Rd .

Let 0 ≤ m ≤ d be an integer. In the following, we consider Ωm
0 (Rd) := C0

(
Rd ,(ΛmRd)∗

)
the

space of continuous differential forms on M, vanishing at infinity, endowed with the uniform norm.
Here ΛmRd is the space of m-vector in Rd and (ΛmRd)∗ is its algebraic dual.

In this article, a current will simply be an element of the topological dual of Ω0(Rd):

Definition 1 (Currents). The space of m-currents in Rd is defined as the topological dual of Ωm
0 (Rd),

denoted Ωm
0 (Rd)′. T ∈Ωm

0 (Rd)′ maps every differential form ω to T (ω) ∈R and T (ω)≤CT ‖ω‖∞
.

Note 1. This definition differs from the original one of Federer that was introduced similarly to
Schwartz’ theory of distribution [24]. However, we do not need such refinements for our applications.

A current can be seen as an object that integrates differential forms, and if we consider X an
oriented, m-dimensional submanifold of Rd , we can associate with X a current, denoted [X ], through
the integration of differential forms over X : if ω ∈Ωm

0 (Rd),

[X ](ω) :=
∫

X
〈ω(x)|τX (x)〉dσX (x)

where τX (x) is the m-vector associated with a positively oriented, orthonormal basis of TxX (if
(e1(x), . . . ,em(x)) is an orthonormal frame of TxX , then τX (x) := e1(x)∧ ·· · ∧ em(x)), 〈.|.〉 stands
for the dual pairing between ω(x) ∈ (ΛmRd)∗ and τX (x) ∈ ΛmRd , and σX is the volume form of X
(that coincides with the m-dimensional Hausdorff measure of Rd , H m). We have seen here that the
space of m-dimensional currents contains, among others, all the m-dimensional submanifolds.

Another interesting object living in Ωm
0 (Rd)′ is the Dirac current. Considering x ∈ Rd and α ∈

ΛmRd , we define δ α
x as:

δ
α
x (ω) := 〈ω(x)|α〉 .

These types of currents are useful to have compact approximation of currents, especially for
discrete shapes.

2.2 Representation of surfaces with normal cycles
The convenient setting for introducing normal cycles is the one of sets with positive reach. In this
section we give basic definitions and results of the theory, and refer to [22], [50] for proofs and more
developments.
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Definition 2 (reach of a set). The reach of a set X ⊂ R3 is the supremum of the r > 0 for which we
can define a unique projection from ∂Xr on X, where ∂Xr = {x ∈ R3|d(x,X) = r}.

One can find in figure 1 an illustration of a set X with zero-reach and a set X with positive reach.

Reach(X) = 0

X

Reach(X)> 0

X

Figure 1: On the left: a curve X with zero-reach. On the right: a curve X with positive reach. The red
dotted line represents the medial-axis, i.e. the set of points which do not have a unique projection on
X .

Example 1.

• For a convex set X, Reach(X) = +∞.

• If X is a C 2-submanifold, compact, Reach(X)> 0.

One can prove that for any r < Reach(X), ∂Xr is a closed surface of class C 1 in R3.

Definition 3 (Unit normal bundle for sets with positive reach in R3). Let X ⊂R3 be a set with positive
reach, and 0 < r < Reach(X), and let x ∈ S. The unit normal bundle of X, denoted NX is defined as:

NX :=
{
(x,n) ∈ X×S2,x+ rn ∈ ∂Xr

}
.

It can be proven that this set NX does not depend on r, and that gr : (x,n) 7→ x+ rn defines a
bi-Lipschitz bijection between NX and ∂Xr. Since ∂Xr is a C 1 closed surface in R3, it is canonically
oriented, and this orientation transfers via gr to a canonical orientation of NX .

Definition 4 (Normal cycles for sets with positive reach in R3). Let X ⊂ R3 be a set with positive
reach. The normal cycle of X, denoted N(X), is the 2-current associated with the surface NX ⊂
R3×S2, endowed with the canonical orientation. If ω ∈Ω2

0(R3×S2),

N(X)(ω) := [NX ](ω) =
∫

NX

〈
ω(x,n)

∣∣τNX (x,n)
〉

dH 2(x,n).

The representation of a shape with its normal cycle is thus equivalent to consider the shape as an
object which integrates differential forms over the unit normal bundle. As explained in [49], [45],
and later in [42], there exists differential forms ω0,ω1,ω2 such that N(X)(ωi) retrieves the integral
of the i-th curvature of X when X is a smooth surface of R3. These differential forms are called the
Lipschitz-Killing differential forms. This is why we can say that the representation of shapes with
normal cycles encode all the curvature information.

2.2.1 Description of the Unit Normal Bundle of a Triangle

Let T be a solid triangle of R3 with vertices x1,x2,x3 and edges : f1 = x2− x1, f2 = x3− x2, f3 =
x1− x3. The normal vectors of the face are : nT = f1× f2

| f1× f2|
and −nT .
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Note that the description of the normal cycle of a 2-dimensional polyhedral has been studied in
[15]. The description of the normal bundle of a triangle is quite straightforward. As illustrated in
fig. 2, it can be decomposed into a planar part (associated with the unit normal vectors at the relative
interior of T ), composed of two triangles (in cyan), a cylindrical part (associated with the generalized
unit normal vectors at the edges), composed of three “half” cylinders located at the edges (in red),
and a spherical part (associated with the generalized unit normal vectors at the vertices), composed
of three portions of sphere located at the vertices (in green).

(a) Representation of the normal bundle in R3.

(b) Separation of the normal bundle for better visualisation.

Figure 2: Illustration of the decomposition of the normal bundle of a dark blue triangle into a planar
(in cyan), a cylindrical (in red) and a spherical (in green) parts. Note that the actual normal bundle
lives in R3×S2 and not in R3.

This description of the unit normal bundle can be summed up as follows. Let us define

N pln
T := T ×{−nT ,nT},

N cyl
T := ∪3

i=1[xi,xi+1]×S⊥+fi, fi×nT
,

N sph
T := ∪3

i=1{xi}×S+fi−1,− fi+1
.

N pln
T ,N cyl

T ,N sph
T stand for respectively for the planar, cylindrical and spherical part of the unit

normal bundle. Here, for any non zero vectors α,β ∈ R3, we denote the semicircle S⊥+
α,β :=

(
S2 ∩

α⊥
)
∩{u| 〈u,β 〉 ≥ 0}, and the portion of sphere S+

α,β :=
{

u ∈ S2,〈u,α〉 ≥ 0,〈u,β 〉 ≥ 0
}

. Note that
fi and nT depend on an orientation of T , but this is not the case for fi×nT which is always oriented
outward from the triangle. We define the associated currents:

N(T )pln = [N pln
T ], N(T )cyl = [N cyl

T ], N(T )sph = [N sph
T ].
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We have straightforwardly

N(T ) = N(T )pln +N(T )cyl +N(T )sph

because the sets N pln
T , N cyl

T and N sph
T intersect only along 1-dimensional subsets and their union

equals NT .
Notice that as previously said, every part of the triangle appears in the unit normal bundle: for

a triangle the edges are associated with half cylinders, and the vertices with portions of spheres.
Starting from this description, we will see how to consider the normal cycle of a polyhedral mesh.

2.2.2 Decomposition of the normal cycle for triangulation meshes

The theory of normal cycles can be extended to a class of sets containing unions of sets with positive
reach, as developed in [50] [40],[45]. We briefly introduce this extension here, referring to these
works for all details. The UPR class is defined as the class of sets X which can be written as a locally
finite union of sets Xi, i ∈ N, such that for any finite subset of indices I ⊂ N, ∩i∈IXi is of positive
reach. In particular sets of positive reach belong of course to this class, and it contains also all finite
unions of non-empty closed convex sets. The normal cycle N(X) associated with a set X ∈UPR can
be defined in a recursive way so that the following fundamental additive property is satisfied:

Definition 5 (Additive property). Assume that sets X, Y , X ∩Y are with positive reach. Then we
define

N(X ∪Y ) := N(X)+N(Y )−N(X ∩Y ) (1)

In the case where X ∪Y is with positive reach, this definition is coherent : the left hand side and
the right hand side in the definition are equal. In the case of a finite union of sets with positive reach:
X = ∪n

i=1Xi, belonging to UPR, it is easy to see that any combination of unions and intersections of
the Xi also belongs to UPR. Hence the additive formula allows to write a recursive expression for the
normal cycle of X , which can serve as a definition for normal cycle in this case: for 1 ≤ k ≤ n, one
has

N(X1∪·· ·∪Xk) = N(X1∪·· ·∪Xk−1)+N(Xk)

−N((X1∪·· ·∪Xk−1)∩Xk)

Since this formula is not ready-to-use, we will rather explicit a decomposition of the unit normal
bundle such that the additive property is straightforward. This work has already been done for dis-
crete curves in [42]. We recall it briefly here for convenience, starting with union of segments and
considering union of triangles after.

If we start with a single segment, C = [a,b], we define the normal cycle of its relative interior, the
”open segment” C̃ := [a,b]\{a,b} as

N(C̃) = N(C)−N(∂C) = N(C)−N({a})−N({b})

where N({a}) = {a}×S2, N({b}) = {b}×S2.
Now, let C1∪·· ·∪Cn be a union of n segments in Rd . We can consider without loss of generality

that two segments Ci and C j for i 6= j either do not intersect or intersect at one of their end points.
Using the additive property eq. (1) it can be easily seen that the normal cycle of a union of segments
can be obtained by summing the normal cycles associated with open segments and vertices. More
precisely, if we denote {v1, . . . ,vN} the vertices of ∪n

i=1Ci, our decomposition of the normal bundle
satisfies:

N(C1∪·· ·∪Cn) =
n

∑
i=1

N(C̃i)+
N

∑
j=1

N({vi}) (2)
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Even though the additive property is now straightforward, we will go a bit further in this decom-
position, as it will prove to be more efficient with the kernel metric. We can decompose (2) into
cylindrical and spherical parts as follows:

N(C1∪·· ·∪Cn) =

(
n

∑
i=1

N(Ci)
cyl

)

+

(
n

∑
i=1

N(C̃i)
sph +

N

∑
j=1

N({vi})

) (3)

This decomposition is sketched in fig. 3.

Figure 3: Decomposition of the normal bundle of a union of segments. In green, the spherical part
(of a single point and of an extremity) and in red the cylindrical part. Note that this representation is
only illustrative, as the true normal bundle belongs to the space R2×S1 in this case.

A slightly more complex decomposition is necessary for a union of triangles in R3. We apply
the same process as for the union of segments. Let T be a triangle of R3 with vertices x1,x2,x3 and
edges : f1 = x2− x1, f2 = x3− x2, f3 = x1− x3. We denote by ei the geometrical edges (i.e. the
segments [x1,x2], etc.) of the triangle. The normal vectors of the face are : nT = f1× f2

| f1× f2|
and −nT .

First, we define the normal cycle of the relative interior of T , the ”open triangle” T̃ := T \∂T where
∂T := (e1∪ e2∪ e3):

N(T̃ ) := N(T )−N(∂T ).

∂T is a union of the edges (ei)1≤i≤3, and the description of its normal bundle has been done right
above:

N(∂T ) =
3

∑
i=1

N(ẽi)+
3

∑
i=1

N({xi}).

Thus

N(T̃ ) = N(T )−
3

∑
i=1

N(ẽi)−
3

∑
i=1

N({xi})

Since we know an explicit description of N(T ), N(ẽi) and N({xi}), we can express N(T̃ ) as a sum of
a spherical part, cylindrical part and planar part:

N(T̃ ) = N(T̃ )pln +N(T̃ )cyl +N(T̃ )sph,
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with
N pln

T̃ := N pln
T = T ×{±nT},

N cyl
T̃ := ∪3

i=1ei×S⊥+fi,− fi×nT
,

N sph
T̃ := ∪3

i=1{xi}×S+fi−1,− fi+1
,

where S+
α,β = {u ∈ S2 | 〈u,α〉 ≥ 0 , 〈u,β 〉 ≤ 0}, and

N(T̃ )pln := [N pl
T̃ ] =

[
T ×{±nT}

]
,

N(T̃ )cyl :=−
3

∑
i=1

[
ei×S⊥+fi,− fi×nT

]
,

N(T̃ )sph :=
3

∑
i=1

[
{xi}×S+− fi+1, fi

]
,

In fig. 4 one can find an illustration of the normal bundle of an open triangle.

Figure 4: “Normal bundle” of an open triangle T̃ in dark blue. The normal bundle above the interior
of the triangle, N pln

T̃ , are two triangles in cyan. The normal bundle above the edges, N cyl
T̃ are three

half cylinder, in red. The normal bundle over the vertices, N sph
T̃ are portions of sphere, in green.

After the introduction of N(T̃ ) we can proceed as for a union of segments. Suppose that T =
∪nT

i=1Ti is a triangulation where we require that the intersection of two triangles is either empty, or
a single edge or a single vertex. We denote (e j)1≤ j≤ne the edges and (vk)1≤k≤nv the vertices of the
triangulation. Then one has:

N(T ) =
nT

∑
i=1

N(T̃i)+
ne

∑
j=1

N(ẽ j)+
nv

∑
k=1

N({vk})

With this decomposition, the additive property is straightforward. Moreover, one can guess that the
different parts of the unit normal bundle contain different kind of discrete curvature information: the
area form for the planar part, the mean curvature for the cyclindrical part, and the Gaussian curvature
for the spherical part. This will be clearer when introducing kernel metrics.

In this section we have developed the representation of shapes through normal cycles, in a com-
mon setting that encompasses both the smooth and the discrete case. We are left to design metric on
such representations, so that we have a distance between shapes that is sensitive to curvature.
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Figure 5: Decomposition of the normal bundle for two triangles with a common edge. In this figure,
the two normal bundle of the open triangles appear. Then, we add (only once) the normal bundle of
the open edge (the red cylinder and the two green half spheres). Then we add ( only once) the normal
bundle of the vertices of the edge (the two green spheres). Note that if the triangulation is reduced to
this two triangles, we should add the normal bundle of the other edges of the triangles.

3 Kernel Metrics on Normal cycles
The idea of normal cycles (resp. current) is convenient because it embeds shapes in a vectorial
space: the space of 2-currents in R3×S2 (resp. the space of 2-current in R2). These spaces, defined
as dual to spaces of differential forms, come with a dual norm: if T ∈ Ωm

0 (Rd)′, we define M(T ) :=
sup
{

T (ω),ω ∈Ωm
0 (Rd),‖ω‖

∞
≤ 1
}

, called the mass norm in geometric measure theory. It would be
tempting to use this norm as a distance between shapes. However it is not interesting for a matching
purpose. Indeed, if C and S are two shapes, non intersecting, then one can show that M([S]− [C]) =
H m(C) +H m(S), and this independently of any closeness between the two sets. This happens
because the set of test functions ω is too large, and thus discriminates completely the two shapes.

For our numerical purpose, we need a computable expression for the dissimilarity between shapes.
In the very same spirit of [26] for currents and [11] for varifolds, we will use the theory of Reproduc-
ing Kernel Hilbert Space (RKHS, see [4] for the original article) to provide kernel metrics on normal
cycles as dissimilarity measures. This work has already been presented in [42], and we present here
the basis for self-completeness.

Example 2. We illustrate this with the example of two curves C and S in R2. Representing these two
curves as currents [C] and [S] (fig. 6), a kernel metric allows to consider a scalar product between
those curves that takes explicit expression as integral over the curves:

〈[C], [S]〉W ′ =
∫

C

∫
S

k(x,y)
〈
τx,τy

〉
dH 1(x)dH 1(y).

Now, if we represent the two curves as normal cycles (fig. 7), the kernel metric will consider
integrals over the normal bundle rather than integrals over the curves themselves. Precisely, we will
construct two scalar kernels kp and kn where kp takes into account the relative spatial position of the
curves and kn the relative position of the normal vectors u and v at point x ∈C and y ∈ S.

10



x
τx

C

y
τy

S

Figure 6: Representation of the curves C and S with currents

〈N(C),N(S)〉W ′ =
∫

NC

∫
NS

kp(x,y)kn(u,v)
〈
τ(x,u),τ(y,v)

〉
dH 1(x,u)dH 1(y,v).

x u

τ(x,u)

N  C

y v

τ(y,v)

N S

Figure 7: Representation of the curves C and S with normal cycle

It has been shown in [42] (in Rd and as a consequence in our framework of surface in R3) that
by choosing scalar kernels kn and kp such that: ∀x ∈ R3, kp(x, .) ∈ C0(Rd) and ∀n ∈ S2, kn ∈ C (S2),
then we generate a RKHS W of differential forms such that W ↪→ Ω2

0(R3×S2). This will always be
the case in the following. The space W is generated through elementary differential forms :

kp(x, .)kn(n, .)α, (x,n) ∈ R3×S2, α ∈ Λ
2(R3×S2)∗

By considering the topological dual of these spaces, we obtain the inclusion: Ω2
0(R3×S2)′ ⊂W ′.

We recall that the normal cycle N(S) of a surface S⊂R3 is an element of Ω2
0(R3×S2)′. The inclusion

Ω2
0(R3×S2)′ ⊂W ′ allows to have an explicit representation of N(S) in W ′ through the kernels kp and

kn.

Note 2. The question whether the dual inclusion Ω2
0(R3× S2)′ ⊂W ′ is an injection is called the

universality property. It can be shown that it is equivalent to W being dense in Ω2
0(R3×S2) [6]. We

have already shown that if kn is a Sobolev kernel, then we have indeed Ω2
0(R3×S2)′ ↪→W ′ ([42]).

However, this will not be the case with the normal kernels kn that we will chose in this article.

In W ′, the scalar product between two normal cycles N(S) and N(C) associated with two surfaces
S and C is explicit:

Proposition 1. [42] With such spatial scalar kernel kp and normal scalar kernel kn, we generate a
RKHS of differential forms W ↪→Ω2

0(R3×S2). In W ′, the scalar product between the normal cycles

11



N(C) and N(S) associated with two surfaces ( discrete or smooth) C and S is:

〈N(C),N(S)〉W ′ =
∫

NC

∫
NS

kp(x,y)kn(u,v)
〈
τ(x,u),τ(y,v)

〉
dH 2(x,u)dH 2(y,v).

(4)

The unit normal bundles NC and NS have been described for smooth surfaces and triangulations
in the previous section. Our aim in the following is to specify some kernels kn and kp that allow for
a computable scalar product between two triangulations. The main limitation for the choice of the
kernels will be our ability to compute explicitly the scalar product, and to do so, we will chose two
simple normal kernels : kn(u,v) = 1 and kn(u,v) = 〈u,v〉. We will see that even though these kernels
may seem coarse at first, we are able to retrieve curvature-related information. For the spatial kernel
kp, we will use a Gaussian kernel kp(x,y) = exp

(
−|x−y|2

σ2
W

)
.

4 Expression of the Kernel Metric for Discrete Surfaces with
Constant and Linear Normal Kernel

Note 3. We derive expression of the kernel metrics on normal cycles with the linear normal kernel
and the constant normal kernel kn. However, for the moment and for the linear normal kernel we are
limited to the implementation phase which is more delicate than for the constant kernel. This is why
we only present experiments with the constant normal kernel in this article. It is however interesting
to see that the normal linear kernel gives Gaussian curvature information as it will be seen in Prop.
4

In this section, we derive the expression of the kernel metric for discrete surfaces in R3, with
constant and linear normal kernels. For this, we will use the decomposition of the unit normal bundle
that has been presented in sect. 2.2. The computation of the scalar product between two triangulations
(eq. (4)) involves integration over the planar part (in cyan in fig. 5), the cylindrical part (in red) and
the spherical part (in green). After introducing the notations in 4.1, we will detail the computation and
the approximation of eq. (4) for each part of the normal bundle. One can find the scalar product with
the constant and linear normal kernel kn in 4.2 and 4.3. In sect. 6.2, we present an implementation of
such metrics in PyTorch, using automatic differentiation libraries in order to compute the gradient of
the metric without implementing it.

4.1 Notations for triangulated surfaces and general remarks
Let us first introduce the notations that we will use in the following.

Let T = ∪N
i=1Ti and T ′ = ∪M

i=1T ′i be two triangulated meshes. We denote x1, . . . ,xnv (resp.
y1, . . . ,ymv ) the vertices of T (resp. of T ′). Given a triangle Ti (resp. T ′j ), v1

i ,v
2
i ,v

3
i are its three

vertices and bi its barycentre: bi =
1
3 (v

1
i + v2

i + v3
i ) (resp. b′j). ( fl)1≤l≤ne (resp (gl)1≤l≤me ) are the

edges of T (resp. T ′). ±nTi are the normal vectors of the triangle Ti. Moreover:

• x f 1
i

and x f 2
i

are the two vertices of fi: fi = x f 2
i
− x f 1

i
.

• ci (resp. d j) is the middle of the edge fi (resp. g j).

• nT, fi is the normal vector of the triangle T such that nT, fi× fi is oriented inward for the triangle
T .

We recall that with the kernel metric, the planar, cylindrical and spherical parts are orthogonal
one with another ([42], prop. 36).
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Proposition 2. [42], prop. 36. For any two triangulations T and T ′, the planar part N(T )pln, the
cylindrical part N(T )cyl and the spherical part N(T )sph are orthogonal with respect to the kernel
metric: 〈

N(T )pln,N(T ′)cyl
〉

W ′
=
〈

N(T )cyl ,N(T ′)sph
〉

W ′

=
〈

N(T )sph,N(T ′)pln
〉

W ′
= 0

The calculation of the expression of (4) in this case is simplified and we see here how convenient
the decomposition introduced in sect. 2.2 is: we only need to compute scalar products between
spherical parts, cylindrical parts and planar parts. This will be done below.

We start with
〈
N(T )pln,N(T ′)pln

〉
W ′ . We would like to compute〈

N(T )pln,N(T ′)pln
〉

W ′
=
∫

N pln
T

∫
N pln

T ′
kp(x,y)kn(u,v)

×
〈
τ(x,u),τ(y,v)

〉
dH 2(x,u)dH 2(y,v)

We have seen in sect. 2.2, and illustrated in fig. 5 that

N(T )pln =
[
N pln

T

]
,

with

N pln
T =

N⊔
i=1

Ti×{±nTi} .

N pln
T corresponds to the cyan triangles in fig. 5. Since the planar parts are disjoint, we can restrict

ourselves to the computation of the scalar product for the planar part associated with a single triangle
T ∈T and T ′ ∈T ′.

For a point (x,u) ∈N pln
T , we denote τ(x,u) the 2-tangent vector of N pln

T . We recall that this is a
2-vector associated with a positively oriented, orthonormal basis of T(x,u)N

pln
T . One can show that

τ(x,u) =

(
e1(x,u)

0

)
∧
(

e2(x,u)
0

)
,

where (e1(x,u),e2(x,u),u) is a positively oriented orthonormal basis of R3. Moreover, if τ(y,v) is a
2-tangent vector of N pln

T at point (y,v), then we have
〈
τ(x,u),τ(y,v)

〉
= 〈u,v〉. Combining all these

quantities, we have: 〈
N(T )pln,N(T ′)pln

〉
W ′

=
∫

T

∫
T ′

kp(x,y)kn(±nT ,±nT ′)

×〈±nT ,±nT ′〉dH 2(x)dH 2(y).

In order to have a fast implementation, we approximate the integrals over T and T ′ with a single
evaluation of the spatial kernel at the barycenters of the triangles cT and c′T ′ :

〈
N(T )pln,N(T ′)pln

〉
W ′
' |T ||T ′|kp(cT ,c′T ′)

kn(±nT ,±nT ′)〈±nT ,±nT ′〉 .
(5)

where |T |= Area(T). For the whole triangulation:
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〈
N(T )pln,N(T ′)pln

〉
W ′
'

N

∑
i=1

M

∑
j=1
|Ti||T ′j |kp(ci,c′j)

kn(±nTi ,nT ′j
)
〈
±nTi ,±nT ′j

〉
.

Note 4. If we choose kn(u,v) = 〈u,v〉, we obtain:〈
N(T )pln,N(T ′)pln

〉
W ′
' 4

N

∑
i=1

M

∑
j=1
|Ti||T ′j |kp(ci,c′j)

〈
nTi ,nT ′j

〉2
.

which is exactly the kernel metric on varifolds for the linear kernel on the Grassmanian [11]. We
see here that with the planar part, we retrieve the metric on varifolds. This shows that the metric on
normal cycles contains more information about the shape that the one on varifolds.

The same work can be done for the cylindrical and the spherical part.
We consider two cylinders (or half cylinders) Ci = fi×Si and C′j = g j×S′j, where Si (resp. S′j) is

a circle or a half circle, in a plane orthogonal to fi (resp. g j). Ci represents a generic elementary of
the cylindrical part of the unit normal bundle for a triangulation, as it is illustrated in fig. 5. Thus, [Ci],
the current associated with Ci represents a typical contribution of the cylindrical part in the normal
cycle.

For a point (x,u) ∈N cyl
T , one can show ([16, 42]) that:

τ(x,u) =

(
e1(x,u)

0

)
∧
(

0
e2(x,u)

)
,

where (e1(x,u),e2(x,u),u) is a positively oriented orthonormal basis of R3. We then obtain:〈
[Ci], [C′j]

〉
W ′ =

∫
fi

∫
g j

kp(x,y)
〈

fi/| fi|,g j/|g j|
〉∫

Si

∫
S′j

kn(u,v)〈u,v〉

×dH 2(x,u)dH 2(y,v)

and with a similar approximation as for the planar part, we end up with:

〈
[Ci], [C′j]

〉
W ′ ' kp(ci,d j)

〈
fi,g j

〉∫
Si

∫
S′j

kn(u,v)〈u,v〉dH 1(u)dH 1(v)
(6)

One should notice that we do not approximate the integration over the normal part (i.e. integra-
tions over Si and S′j).

For the spherical part, for a point (x,u) ∈N sph
T , one can show ([16, 42]) that:

τ(x,u) =

(
0

e1(x,u)

)
∧
(

0
e2(x,u)

)
,

where (e1(x,u),e2(x,u),u) is a positively oriented orthonormal basis of R3

We compute explicitely the spherical scalar product: we end up with

〈[{x}×S1], [{y}×S2]〉= kp(x,y)

×
∫

S1

∫
S2

kn(u,v)〈u,v〉dH 2(u)dH 2(v)
(7)

where x and y are the vertices at stake, and S1 and S2 are portions of sphere (see fig. 5, in green).
In the next sections, we will specify the different scalar product with the constant (kn(u,v) = 1)

or the linear normal kernel (kn(u,v) = 〈u,v〉).
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4.2 Discrete scalar product with constant normal kernel
In this subsection, we express the discrete version of the scalar product eq. (4), with the constant
normal kernel,

kn(u,v) = 1.

With such kernel, it is easy to show that the planar scalar product vanishes, as well as the spherical
scalar product. Only the cylindrical part, and the boundary term remain:

Proposition 3. Let T and T ′ be two triangulated meshes. The approximated scalar product between
the associated normal cycles with spatial kernel kp and constant normal kernel kn(u,v) = 1 is

〈
N(T ),N(T ′)

〉
W ′ =

π2

4

ne

∑
i=1

me

∑
j=1

kp(ci,d j)
〈

fi,g j
〉

×

〈
∑

{T | fi edge of T}
nT, fi , ∑

{T ′|g j edge of T ′}
nT ′,g j

〉

+
π2

4 ∑
xi vertex
of ∂T

∑
y j vertex
of ∂T ′

kp(xi,y j)
〈
Ai,B j

〉
(8)

where Ai = ∑k f i
k/| f i

k| is the sum of the normalized edges of the border, with xi as vertex, and
oriented outward from xi, and nTi, fi is the normal vector of the triangle Ti such that nTi, fi × fi is
oriented inward for the triangle T .

Proof. See appendix.

This can be re-written:〈
N(T ),N(T ′)

〉
W ′ =

π2

4

ne

∑
i=1

me

∑
j=1

kp(ci,d j)
〈

fi,g j
〉

×

〈
∑

{T | fi edge of T}
nT, fi , ∑

{T ′|g j edge of T ′}
nT ′,g j

〉
+
〈
N(∂T ),N(∂T ′)

〉
W ′

(9)

The expression 〈N(∂T ),N(∂T ′)〉W ′ is exactly the scalar product of the curves ∂T and ∂T ′

that has been computed in [42]. Notice that the planar part and the spherical part are not involved in
this scalar product (except for the spherical part of the border).

Some remarks: first, we recall that the previous expression does not necessitate a coherent ori-
entation for the mesh. Secondly, even with a constant kernel kn for the normal part, the metric is
sensitive to curvature. Indeed, for an edge f , the cylindrical part of the scalar product involves scalar
products between normal vectors of the adjacent triangles which are required quantities to compute
the discrete mean curvature. Another interesting feature to notice is that the scalar product involves a
specific term for the boundary which will enforce the matching of the boundaries of the shapes. The
fact that the boundary has a special behaviour for the normal cycle metric is not surprising. Indeed
a normal cycle encodes generalized curvature information of the shape. Hence, the boundary corre-
sponds to a singularity of the curvature and has a specific behaviour in the kernel metric. We will see
that this feature is of interest for a matching purpose.

In term of computational complexity, we see in (8) that the model of normal cycles on surfaces is
more sophisticated than varifolds (see sect. 4.4 for a recall on varifolds), even with a constant normal
kernel. The scalar product involves a double loop on the edges of the triangulations, as well as for

15



each edge, the computation of the sum of the normal vector of the adjacent triangles. However, it is
the same order of complexity as varifolds for the computation of the scalar product, i.e. O(n2

e) where
ne is the number of edges which is often the same order as the number of triangles.

4.3 Discrete scalar product with linear normal kernel
Now, we focus on the linear normal kernel, kn(u,v) = 〈u,v〉.

Proposition 4. Suppose that T and T ′ are two triangulated meshes. The scalar product between
the associated normal cycles with spatial kernel kp and linear normal kernel kn(u,v) = 〈u,v〉 is

〈
N(T ),N(T ′)

〉
W ′ = 4

N

∑
i=1

M

∑
j=1

kp(bi,b′j)|Ti||T ′j |
〈

nTi ,nT ′j

〉2

+
4
3

Nv

∑
k=1

Mv

∑
l=1

kp(xk,yl)GT (xk)GT ′(yl)

+ second order spherical terms

where 
GT (xk) =

[
π(2−nxk +Nxk)−

Nxk

∑
i=1

ϕi,xk

]
GT ′(yl) =

[
π(2−myl +Nyl )−

Myk

∑
j=1

ϕ j,yl

]
with Nxk the number of triangles with vertex xk and mxk the number of edges with vertex xk, and ϕi,xk
is the angle at vertex xk of the triangle Ti.

Proof. See appendix, the second order spherical terms are also explained.

Now, suppose for sake of simplicity that the two triangulated meshes have no border and no
branching edge or vertex. Then, it is easy to see that for every vertex x of the triangulations Nx = mx
and then, GT (x) is the discrete Gaussian curvature of the triangulation T at vertex x. The scalar
product is then a classical varifold scalar product, with an additional measure term, located at the
vertices, and with intensity equal to the discrete Gaussian curvature.

We remind that we put this linear term to be complete, but that for the moment we do not present
any results with such a metric. There is indeed not yet a satisfactory implementation.

4.4 Comparison with kernel metrics on varifolds
This subsection is for comparison purpose. We briefly express the discrete metric on varifolds. For
more details, one can see [30].

Rigorously speaking, a 2-varifold in R3 is a Borel finite measure on R3×G2(R3) where G2(R3)
is the Grassmanian: the space of all unoriented planes of R3. G2(R3) can be made in correspondence
with R3 by associating to a plane one of its normal vectors.

Now, considering (x,T ) ∈ R3×G2(R3), we define the Dirac varifold δ(x,T ) which is simply the
dirac measure located at (x,T ).

We can define a scalar product between two such measures using two scalars kernel kp for the
spatial part (R3), and kt for the Grassmanian part (G2(R3)):〈

δ(x,T ),δ(y,P)
〉
= kp(x,y)kt(T,P).
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Associating T and P with a unit normal vector u and v, and considering kt(T,P) = 〈u,v〉2 which
defines a proper reproducing kernel on G2(R3), then we have:〈

δ(x,T ),δ(y,P)
〉
= kp(x,y)〈u,v〉2 .

Now if we consider a triangulations T , we can approximate T in the space of varifolds with dirac
varifolds located at the barycenter of the triangles, and with unit normal vectors as a unit normal vec-
tor of the triangle, and with an area information of the triangles. We denote µT this approximation
in the space of varifolds. µT = ∑

N
i=1 Area(Ti)δ(bi,nTi )

. Then the scalar product between two triangu-
lations writes immediately:

〈µT ,µT ′〉=
N

∑
i=1

M

∑
j=1

kp(bi,b′j)|Ti||T ′j |
〈

nTi ,nT ′j

〉2
(10)

Comparing this expression with the one obtained with the linear normal kernel on normal cycles
in prop. 4, one can see that the metric on varifolds contains only planar information and thus is not
sensitive to curvature. Moreover, it formalizes the fact the model of normal cycles is more complex,
and even that the latter encompass the former.

This metric is the one with which we will compare the results in the experiment.

5 Deformation model : LDDMM
Previous sections provide a theoretical framework to compute distance between shapes with kernel
metrics on normal cycles. This distance can be used for various applications. In this article, we
propose an application for a registration purpose: we use this distance as a residual distance between
a deformed shape and a target shape, or in other words, we use this distance as a data-attachment term
for an inexact matching problem.

This data attachment term can be fitted in any kind of registration framework. In the following,
we will consider diffeomorphic deformations that are generated through flows of regular time varying
vector fields. This is the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework,
that we will briefly recall in the following.

After stating an existence result for this problem, we detail in 6.1 a practical algorithm to minimize
the functional associated with the inexact matching problem (see eq. (11)) with discrete shapes. The
concrete numerical implementation is detailed in the next section. Several examples of registration
with normal cycles are proposed on synthetic and real data in the following sections.

As explained in [48], in the LDDMM framework, the study of shape variability is carried by the
study of geometrical transformations from one shape to another. The group of deformations at stake,
GV , is generated through integration of time-varying vector fields living in a a Hilbert space V , with
V ↪→ C 1

0 (Rd). With this hypothesis, V is a Reproducing Kernel Hilbert Space with kernel KV and
GV is endowed with a nice Riemannian structure. For example, the Riemannian distance between the
identity and a deformation ϕ ∈ GV writes:

dGV (Id,ϕ)
2 = E(ϕ)

:= inf
{∫ 1

0
‖vt‖2

V dt
∣∣∣∣(vt)0≤t≤1 ∈ L2([0,1],V )

}
∂ϕt

∂ t
= vt ◦ϕt , ϕ0 = Id, and ϕ1 = ϕ.

This distance between the identity and ϕ can be interpreted as the energy of the deformation ϕ .
Thus, the optimal deformation between two shapes C and S will be the deformation ϕ with least
energy and such that ϕ(C) = S. For practical purpose, we can not assume that any two shapes can be
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registered with a deformation ϕ ∈GV . That is why we relax this hypothesis, and say that the optimal
deformation is the one that minimize the sum of the energy and a discrepancy measure between the
deformed shape and the target, A(ϕ(C),S). This new registration problem, called inexact matching
problem, is a trade-off between the regularity of the deformation, quantified by the energy E(ϕ) and
the closeness of the registration, quantified by a term A(ϕ(C),S). The aim of this section is to use
kernel metrics on normal cycles for the dissimilarity measure A. Given two shapes C and S

A(C,S) := ‖N(C)−N(S)‖2
W ′ .

where W is a RKHS such that W ↪→Ω
d−1
0 (Rd×Sd−1). The minimization problem with dual Hilbert

norm on normal cycles as data attachment term is then:

min
v∈L2

V

γ

∫ 1

0
‖vt‖2

V dt +‖ϕv.N(C)−N(S)‖2
W ′ (11)

where γ is a trade-off parameter and ϕv is the deformation obtained at time 1 through the flow of
(vt)0≤t≤1.

One should notice that we have defined the action ϕ.N(C) of diffeomorphism on normal cycles
for sets C ∈UPR in [42]. This includes smooth submanifolds of Rd , but also polyhedral meshes. This
has been studied with more details in [41]. This general framework will be the one we work with in
the following.

5.1 Existence of a minimizer
We remind that for smooth submanifold C, we have ϕ.N(C) = N(ϕ(C)). For discrete shapes, we
refer to [42] for a rigorous definition of such transport.

We now state the theorem of existence of a minimizer for (11) that encompasses both the case of
smooth shapes and the one of polyhedral shapes:

Theorem 1 (Existence of a minimizer for (11)). Suppose that C,S are either smooth or discrete
shapes and assume that one has the embeddings V ↪→ C 3

0 (Rd ,Rd), and W ↪→ Ω
d−1
1,0 (Rd × Sd−1).

Then there exists a minimizer for the problem (11).

The proof of this theorem relies on the weak continuity of v ∈ L2
V 7→ ‖ϕv.N(C)−N(S)‖2

W ′ and is
fully proved in [42, 41].

In the following, KV will be, depending on the application, a Cauchy kernel with width σV :

KV (x,y) =
1

1+ |x−y|2
σ2

V

,

a Gaussian kernel with width σV :

KV (x,y) = exp(−‖x− y‖2 /σ
2
V ),

or a sum of Gaussian kernel with decreasing width. W is generated through the kernels kp and kn as
in Sect. 4. So that we have existence of a minimizer for (11).

5.2 Discrete framework
Knowing that a minimizer exists is a first step, and we will focus now on the problem of finding such
a minimizer.

In the following, we focus on the discrete problem: we consider discrete shapes Cd and Sd . The
geodesic equation followed by ϕv

t are simpler and we will explicit the approximations made for the
data attachment term in order to have a tractable algorithm for the minimization procedure.
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A discrete shape Cd is defined by a set of N points (xi)1≤i≤N in Rd (the vertices), with a connec-
tivity matrix describing the connexion between the vertices. This applies for curves in R3 but also for
any polyhedral shape in Rd . However, we will restrain our problem to curves and surfaces in Rd , and
we will use the metric on surfaces seen in sect. 4. The functional to minimize is then:

J1(v) = γ

∫ 1

0
‖vt‖2

V dt +‖ϕv
1 .N(Cd)−N(Sd)‖2

W ′ (12)

However, ϕv
1 .N(Cd) is too complex to be implemented numerically. To overcome this difficulty, we

approximate the action of ϕv on Cd . For this purpose, we define Cd,ϕv as the discrete curve or surface
with vertices (ϕv

1(xi))1≤i≤N with the same connectivity matrix as Cd . This means that we consider
that ϕv induces a displacement of the vertices only, and the displaced vertices are linked with straight
lines. From this, we introduce the approximate matching problem, with the functional J̃:

J̃(v) = γ

∫ 1

0
‖vt‖2

V dt +
∥∥N(Cd,ϕv)−N(Sd)

∥∥2
W ′ (13)

As shown in [26], if we denote by qi(t) = ϕv
t (xi) the points trajectories, the energy term in (13)

enforces the optimal vector field to be a geodesic path and to write

vt =
N

∑
i=1

KV (·,qi(t))pi(t) (14)

where the pi(t) ∈Rd are auxiliary variables and are called momentum vectors. Further, it was shown
in [35] (and detailed in an optimal control point of view in [3]) that the problem can be written in
Hamiltonian form: if we denote Hr the reduced Hamiltonian:

Hr(p(t),q(t)) =
1
2

N

∑
i=1

N

∑
j=1

p j(t)T KV (qi(t),q j(t))pi(t)

=
1
2
‖vt‖2

V ,

qi and pi must satisfy coupled geodesic equations which write
q̇i,t =

∂Hr

∂ pi
=

n

∑
j=1

KV (qi,t ,q j,t)p j,t

ṗi,t =−
∂Hr

∂qi
=−

( n

∑
j=1

d1(KV (qi,t ,q j,t)p j,t)

)T

pi,t .

(15)

This Hamiltonian is constant along geodesic path and thus is a function of the initial momenta p0 and
the initial positions q0. As could be expected, this implies that the optimal velocity vector field vt in
(14) is of constant norm: ‖vt‖2

V = cste = Hr(q0, p0). Initial positions being fixed, we can consider Hr
and further ϕv as function of the p0 only, and denote it ϕ p0 . The Hamiltonian formalism reduces the
initial problem of minimization on an infinite dimensional Hilbert space V (13) to a minimization on
(Rd)N :

min
p0∈(Rd)N

2γHr(p0,q0)+
∥∥N(Cd,ϕ p0 )−N(Sd)

∥∥2
W ′ (16)

and where q and p follow the coupled geodesic equations (15). The second term depends only on the
position of the final vertices: (qi(1))1≤i≤N =

(
ϕ

p0
1 (qi(0))

)
1≤i≤N that we will denote q(1). The data

attachment term is then a function of q(1): g(q(1)).
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min
p0∈(Rd)N

J(p0) := 2γHr(p0,q0)+g(q(1)) (17)

with q and p following (15). As said before, g is a measure of the residual dissimilarity between the
deformed shape at time 1 with vertices q(1) and the target shape Sd .

6 Numerical implementation

6.1 Registration Algorithm
The functional (17) is explicit using the expressions for the scalar products of normal cycles appearing
in g(q(1)) and that have been computed in Sect. 4. In order to minimize it depending on the initial
momenta, one classically uses a geodesic shooting algorithm [35, 3]. We explain here briefly the
heuristic of this aglorithm. In order to compute ∇p0J(p0), we need to compute ∇p0g(q(1)). However,
g(q(1)) depends on p0 through the integration of the geodesic equations (eq. (15)). Hopefully, we
have explicitly access to ∇q(1)g(q(1)), and starting with this gradient, we obtain ∇p0g(q(1)) through
backward integration of the linearized geodesic equations which are recalled in [3], and which involve
the Hessian of the Hamiltonian. Integrating these equations from time 1 to time 0, we end up with
∇p0g(q(1)).

Algorithm 1 Geodesic shooting with fixed-step gradient descent.

Input: q0 (initial source shape), δ (step size)
Output: argminp0∈(Rd)n J(p0)
initialization: p0 = 0
while Convergence do

Compute (q(1), p(1)) through forward integration
Compute ∇q(1)g(q(1))
Compute ∇p0g(q(1)) through backward integration
Compute ∇p0J(p0) = KV (q0,q0)p0 +∇p0g(q(1))
p0← p0−δ∇p0J(p0).

end while

In fact, once we can compute ∇p0J(p0), one can plug any optimization procedure in order to min-
imize the functional with respect to p0. We use a quasi Newton Broyden Fletcher Goldfarb Shanno
algorithm with limited memory (L-BFGS) [33] rather than the gradient-descent with fixed step pre-
sented in Alg. 1. The BFGS agorithm is a quasi-Newton method that computes an approximation of
the Hessian, which is updated and improved at each step. With the limited memory implementation
of BFGS, there is no storage of a N×N (where N is the number of variables) matrix and the memory
storage is linear with respect to N. See [33] for more details. This method provides a direction of
descent and the step in this direction is fixed by a Wolfe line search.

For our numerical implementation, the forward integration scheme is done with a Ralston numer-
ical scheme. This is a higher order discrete ode solver than the classical Euler scheme.

The challenging part of the implementation is the calculation of the gradient, which requires the
integration of linearized backward differential equations involving the second order derivatives of the
deformation kernel (as briefly explained above and extensively studied in [3]). In the next section we
will see how to take advantage of PyTorch’s auto-differentiation libraries to automatically evaluate
the gradient ∇p0J(p0), without implementing it, and therefore without implementing the backward
step in Alg. 1.
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6.2 PyTorch and KeOps
Our code for surface registration with normal cycles as data-attachment term is available at https:
//proussillon.gitlab.io/en/code/surface-registration-lddmm/projects/.

We provide a Python implementation using the PyTorch library, together with the KeOps library
developed by Benjamin Charlier, Jean Feydy, and Joan Glaunès and freely available at https://
plmlab.math.cnrs.fr/benjamin.charlier/libkeops.

This allows for a user friendly implementation which performs automatic differentiation (to com-
pute the gradient of the metrics). Moreover, the PyTorch + KeOps library automatically transfers the
calculus on GPU (Graphics Processing Unit), with a smart paralellization. All this is briefly detailed
in the following. See [9, 8] for more details.

PyTorch is a Python native language, developed by Facebook for neural networks applications.
It handles the computation on GPU, allowing for a pain free parallelization. On top of that, PyTorch
performs automatic differentiation. Indeed, with the recent development of neural network, there has
been an increasing necessity to compute the gradient of loss functions, obtained through elementary
operations, linear or non-linear, across different layers. Even though each operation is simple, with
an explicit differential, it may be hard to compute the whole gradient (i.e. across all the layers). With
PyTorch, it is possible to keep track of the sequence of operations, and to automatically differentiate
it through backward propagation.

Now, if we look closely at our scalar products of the kernel metrics (e.g. eq. (8)), the typ-
ical expressions that we want to evaluate and differentiate are of the form γi = ∑ j ci j with ci j =

kp(xi,y j)
〈
bi,c j

〉
or ci j = kp(xi,y j)

〈
bi,c j

〉2.
The main limitation inherent with PyTorch is that we need to store the matrix (ci j)i, j, transfer this

matrix to the GPU and then perform the computations. However, this matrix is of size N2 where N is
the number of vertices which may be huge. For surfaces with 100 000 vertices, this may exceed the
memory capacity of the GPU.

In order to solve this problem, Benjamin Charlier, Jean Feydy, and Joan Glaunès developed the
KeOps library which is an interface for a CUDA implementation that computes and automatically
differentiate such expressions on the fly, without storing the whole matrix on GPU.

The code provided in this article uses with benefits all the functionality allowed by the coupling
PyTorch + CUDA in terms of automatic differentiation and GPU implementation thanks to the KeOps
Library.

6.3 Computation time for the data-attachment term and its gradient
We present here indications on the calculation time of the kernel distance with normal cycles, and
compare them with those on varifolds. For this purpose, we provide benchmarks of calculation time,
for mesh size ranging from 101 to 106 points. In figure 8 , we present the calculation times for a
single evaluation of the distance and its gradient (with respect to the vertices) on the normal cycles
and on the varifolds according to the number of points.

In fig. 9, we present the computational time with respect to the number of vertices for the eval-
uation of the total loss in the LDDMM framework, i.e. eq. (17), with varifolds or normal cycles as
data-attachment term. The time needed here is higher because on top of the evaluation of the previous
distance, we also need to integrate the geodesic equation and to do backpropagation to compute the
gradient.

Let us now make some comments on these results. First of all, it is important to note that the
implementation coupling auto-differentiation on PyTorch and parallelization on GPU via KeOps pro-
vides a method that is fast and scalable to surfaces up to a million points (for the distance evaluation,
as well as for the gradient evaluation). Second, even if the normal cycle model is more complex, the
computation times are comparable with those of varifolds (from figures 8, it can be said that there is
a factor 3 between the two methods). And the difference in computation time is reduced even further
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when this distance is integrated into the LDDMM machinery. Indeed, we observe in figure 9 that the
calculation times are almost identical with varifolds or normal cycles. This means that in this context,
the time-consuming part of the calculation comes more from the forward and backward integration
of geodesic equations than from the evaluation of the data-attachment term and its gradient. This is
even if the normal cycle model is more complex.

Note 5. The integration of the geodesic equations are made using a Ralston’s method. It is a Runge-
Kutta method of order 2 (an Euler scheme method).

Note 6. These results are obtained with a NVIDIA GeForce GTX 1080. With a standard graphic card
on a laptop (e.g. a Quadro M1200), the computation time is approximately 8 times higher.
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Figure 8: Time needed to compute the distance between two triangulated meshes, as well as its gradi-
ent (with respect to the vertices) for varifolds and normal cycles. On the y-axis: time of computation
in seconds, on the x-axis : number of vertices of the meshes. The computation is scalable to surfaces
up to millions of points. Note that the calculation time is of the same order of magnitude for normal
cycles and varifolds. This benchmark is made with a NVIDIA GeForce GTX 1080.

7 Experiments
Let us now move to the experiments of surface matching using LDDMM and kernel metrics on
normal cycles. The aim of this section is to illustrate the properties of a matching with normal cycles,
as well as some limitations.

For each type of data, the different synthetic examples aim to illustrate the curvatures properties
and a comparison with varifolds ([11],[30]) are shown when it is relevant. The examples on real data
are a first step to show the advantage of this new dissimilarity metric for applicative purpose.

The algorithm is run until convergence with a stopping criterion on the norm of the successive
iterations, with a tolerance of 10−6. Our implementation with the use of GPU allows to perform
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Figure 9: Time needed to compute the total loss of the LDDMM framework (eq. (17)) as well as its
gradient (with respect to the initial momenta) for varifolds and normal cycles as data-attachment term.
On the y-axis: time of computation in seconds, on the x-axis : number of vertices of the meshes. The
computation is scalable to surfaces up to millions of points. Note that the calculation time is of the
same order of magnitude for normal cycles and varifolds. This benchmark is made with a NVIDIA
GeForce GTX 1080.
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matching of surfaces with 10 000 points in a reasonable time, which will be specified for each exper-
imentation.

For all the following matchings, the geometric kernel kp is a Gaussian kernel of width σW , kn is
constant kernel as in sect. 4.2. The kernel KV is a sum of 4 Gaussian kernels of decreasing sizes, in
order to capture different features of the deformation. The trade-off parameter γ is fixed at 0.01 for
all the experiments.

7.1 Synthetic data: illustration of the curvature properties
7.1.1 Registration of an ellipsoid to a duck.

Let us start with the simple, yet interesting example of fig. 10. We want to perform a matching
between an ellipsoid (the source shape, in blue) and a duck shape (the target, in orange). The duck
shape contains 2000 points and the ellipsoid 10 000.

Figure 10: Two views of the matching problem of an ellipsoid to an duck.

The registration is performed with normal cycles and varifolds. We chose a Gaussian kernel for
the spatial kernel and a sum of 4 Gaussian kernels of decreasing size (σV = 0.2,0.1,0.05,0.025) for
the deformation kernel kV . We recall that for normal cycles, we chose a constant normal kernel and
for varifolds, a linear kernel on the Grassmanian. One run is performed at size σW = 0.075 for spatial
kernel. For normal cycles the 1000 iterations were made in 1018 seconds (1s/it). For varifolds, the
run ended in 890 seconds (0.9s/it). These computation times were obtained with a Nvidia GeForce
GTX 1080. The registrations can be found in fig. 11. As expected, the matching with normal cycles
is more accurate that the one with varifolds. This appears clearly in the neighbourhood of regions
with high curvature as the beak or the eyes. It is interesting to notice that even the coarse mesh of the
duck appears in the deformed ellipsoid for normal cycles.

For validation purposes, in order to have a measurement of the closeness between the deformed
shape and the target, and compare the different registrations, we computed the Hausdorff distance
and a Root Mean Square (RMS) Hausdorff distance between two surfaces S and S′, defined as:
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d(S,S′) = max

(
sup
x∈S

d(x,S′), sup
y∈S′

d(y,S)

)
,

dRMS(S,S′) =

√
1

H 2(S)

∫
S

d(x,S′)2dH 2(x)

+

√
1

H 2(S′)

∫
S′

d(y,S)2dH 2(y).

(18)

To compute these distances, we used the MeshLab software ([14]). In practice these quantities
were approximated by subsampling meshes and evaluating all pairwise distances between vertices.
Note that for an interpretation purpose, we also renormalized these distances with the typical size of
the data (i.e. the diagonal of the box containing the data). The reader can find the distances on the
figures for each experiment.

Figure 11: Registration of a blue ellipsoid to an orange duck. The left column represents the matching
with normal cycles and the right column the one with varifolds. The registration with normal cycles
is more accurate as it can be seen with the beak or the eyes. One can even notice that the coarse mesh
of the duck appears in the deformed ellispoid.
Hausdorff distance with normal cycles: d = 0.015,dRMS = 0.004. Hausdorff distance with varifolds:
d = 0.021,dRMS = 0.005. See eq. (18) for the definition of d and dRMS.

Beyond the precision of the matching, we want to insist on the stability of the results in relation
to the parameters. Unlike varifolds, where precise parameter adjustment is sometimes required, the
result of matching for normal cycles is less crucially dependent on the parameters of the spatial kernel
σW , as well as the trade-off parameter γ . As an illustration, we can look at Fig. 12,13 which shows
the result of the final matching on the duck as a function of the size of σW . It is noteworthy that
even at very small scale (σW = 0.0375), the metric on normal cycles still contains global information.
Indeed, if we compare the results for σW = 0.0375 for normal cycles and varifolds (bottom right in
fig. 12, 13), we see that the matching with normal cycles is very accurate, whereas with varifolds, we
end up in a poor local minima. On fig. 14,15, we present the same experiment with γ = 0.1. That is, in
the trade-off between regularization and proximity of the matching, the importance of regularization
is increased. We can see that this strongly deteriorates the results for varifolds, whereas it remains
fully satisfactory for normal cycles.

A way to avoid such behaviour for varifolds is to use a coarse to precise scale strategy, by de-
creasing progressively σW . The lower sensitivity of the metric on normal cycles with respect to the
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parameters allows us to avoid this costly step in time and adjustment.

Figure 12: Sensitivity to the size of the kernel σW , normal cycles, γ = 0.01. We show here the final
matching of the blue ellipsoid to the orange duck with normal cycles, depending on σW . σW decreases
from top left to right bottom, respectively σW = 1.2,0.6,0.3,0.15,0.075,0.0375.

7.1.2 Registration of an ellipsoid to a hippopotamus.

Now let us move to an other example (fig. 16). We want to perform a matching between an el-
lipsoid (source shape, in blue) and a hippopotamus shape ( target, in orange). The hippopotamus
contains 20000 points and the ellipsoid 10 000. Notice that the size of the mesh of the hippopotamus
is curvature-dependant (coarse near flat regions, precise around region with high curvature). This
feature will be of importance to compare the matching results.

The hippopotamus fits in a box of size 52×26×16. The registration was performed with normal
cycles and varifolds. We chose a Gaussian kernel for the spatial kernel and a sum of 4 Gaussian
kernels of decreasing size (σV = 10,5,2.5,1.25) for the deformation kernel kV . We recall that for
normal cycles, we chose a constant normal kernel and for varifolds, a linear kernel on the Grassma-
nian. Three runs were performed, one at size σW = 10, one at size σW = 5 and the last one at size
σW = 2. The first runs can be seen as initialization procedures in order to avoid local minima. In
this example these runs are compulsory since the target has fine details (located in the head), but also
coarse features, such as the legs.

For normal cycles, each run was stopped after 200 iterations, for a total time of 660 seconds (1,1
s/it). The same number of iterations was used for varifolds, for a total time of 600 seconds (1 s/it).
The registrations are depicted in fig. 17. The matching with normal cycles is satisfactory considering
the difficulty of the registration. Not all details are retrieved in the head, but this could be achieved
with another run at smaller scale.

The result obtained with varifolds may seem surprising at first. If the registration is good near
the head of the hippopotamus, it is much worse on the body. On this region, one can observe pinches
of the deformed shape, whereas the target is flat. In order to understand this behaviour, the figure 18
is illuminating. On this figure, one can observe the superimposition of the target mesh and the final
matching mesh. The first thing to notice is that for the varifolds (right column), the deformation tends
to concentrate triangles at different locations (the pinches). And on the last row, one can observe that
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Figure 13: Sensitivity to the size of the kernel σW , varifolds, γ = 0.01. We show here the final
matching of the blue ellipsoid to the orange duck with varifolds, depending on σW . σW decreases
from top left to right bottom, respectively σW = 1.2,0.6,0.3,0.15,0.075,0.0375.

Figure 14: Sensitivity to the size of the kernel σW , normal cycles, γ = 0.1. We show here the final
matching of the blue ellipsoid to the orange duck with normal cycles, depending on σW . σW decreases
from top left to right bottom, respectively σW = 1.2,0.6,0.3,0.15,0.075,0.0375.
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Figure 15: Sensitivity to the size of the kernel σW , varifolds, γ = 0.1. We show here the final matching
of the blue ellipsoid to the orange duck with varifolds, depending on σW . σW decreases from top left
to right bottom, respectively σW = 1.2,0.6,0.3,0.15,0.075,0.0375.

Figure 16: Matching problem between an ellipsoid and a hippopotamus shape. Note that the mesh of
the target is coarse at flat regions, and becomes more precise around regions with high curvature.
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these locations can be made in correspondence with vertices of the target that are in the middle of big
triangles. To explain this phenomena, one needs to remember that in the discrete case, the varifold
is approximated as Diracs located in the couple (barycenter of the triangles × tangent plane of the
triangles), with mass equals to the area of the triangle. Thus, one way to reduce the varifold norm is to
concentrate the mass of the deformed shape at points far from all the barycenters of the surrounding
triangles, i.e. the vertices. This is particularly true at small scales σW , and this is why we can observe
this behaviour for the varifolds norm. However, the runs at small scales are neccessary in order to fit
the details of the head.

For normal cycles, the metric penalizes the difference of curvatures between the source and the
target, and one can observe a nice fitting of the flat region with a coarse mesh (fig. 18, left column).

Figure 17: Registration of an ellipsoid (in blue) to a hippopotamus shape (in orange). The left
column represents the matching with normal cycles and the right column the one with varifolds.
The registration with normal cycles is satisfactory. The one with varifolds is bad near the flat regions
of the target.
Hausdorff distance with normal cycles: d = 0.014,dRMS = 0.0037. Hausdorff distance with varifolds:
d = 0.024,dRMS = 0.0055. See eq. (18) for the definition of d and dRMS.

7.1.3 Registration of hippocampi.

The second example is a matching of two human hippocampi, of typical size 10× 20× 40. Each
shape is around 7000 points. Three runs at different geometric kernel sizes are performed (see Fig.
19). We can see the the final deformation matches well the two hippocampus, even the high curved
regions of the shape.

7.1.4 Real data: retinas

This data set was provided by B. Charlier, N. Charon and M.F. Beg is a set of retina layers from
different subjects. Originally, each surface comes with a signal that represents the thickness of the
retina layers at each vertex. In [31], a statistical analysis of these functional shapes is made using
atlas estimation in the framework of LDDMM and with a varifolds kernel metric. We refer to this
article for the procedure of generation of this data set. In the following, we only use the geometrical
information of the shapes to illustrate the properties of a matching with normal cycles. The difficulty
of this example is to perform a matching that is convincing for the interior of the retina, as well as
for the boundary. One should notice that the border has no real physical meaning but is the result of
the data acquisition. The hole in the center of each retina corresponds to optical nerve. Even though
these boundaries are not the interesting part for a medical application, they make the registration
harder. We will see that the matching with normal cycles will incorporate the boundaries during the
registration, resulting to a much smoother deformation.
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Figure 18: View 1. Registration of an ellipsoid to a hippopotamus (zoom, with the mesh). The left
column represents the matching with normal cycles and the right column the one with varifolds. The
last row is the overlay of the target and the final resgistration. In order to reduce the varifolds norm
between the source and the target at small scales, the deformation concentrates small triangles of the
source near vertices of big triangles for the target. This is beacause, with the discrete varifolds setting,
the mass is concentrated at the barycenter of the triangles.

The retina are surfaces of typical size 8×8mm. Each retina is sampled with approximately 5000
points. As for hippocampi, three runs were performed, with σW = 0.8,0.4,0.2 and the deformation
kernel KV used was a sum of 4 Gaussian kernels, σV = 2.4,1.2,0.6,0.3. All the details of the matching
are in Fig. 20. The retinas have a boundary which will be seen as a region with singularities for the
kernel metric on normal cycles. This is not the case for the varifolds metric which makes the matching
of the corresponding corners harder. The matching of the boundaries is better with normal cycles,
and provides a much more regular deformation (see Fig. 20).

In the last example (Fig. 21), the two retinas are the result of an unsatisfactory segmentation .
This leads to artifacts in each retina : two triangles for the source retina (in blue, Fig. 21) and only
one for the target, in orange. We would like that during the matching, these artificial features are not
taken into account. However, these are regions of high curvature and as we could expect, the kernel
metric on normal cycles will make a correspondence between those points. As we can see in the
second row of Fig. 21, the two triangles are crushed together, into one triangle, even though the cost
of the resulting deformation is high. This example shows how sensitive to noise or artifacts normal
cycles are. The data must be smooth and well segmented so that the matching works well.

8 Conclusion and perspectives
In this paper, we have used the theory of the shapes representation with normal cycles to define a
distance between surfaces. Using reproducing kernels, we are able to construct a distance that be-
comes completely explicit in the case of triangulated surfaces. In addition, this distance still contains
curvature information that is inherent in the normal cycle model, even if the selected kernels are sim-
ple. We also proposed an implementation in PyTorch, using both auto-differentiation libraries, and
optimized GPU calculations, and with a linear memory footprint (with the KeOps library). Gradient
calculations are greatly simplified, despite the complexity of the model (both for normal cycles and
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(a) profile, t = 0 (b) profile, t = 1

(c) face, t = 0 (d) face, t = 1

Figure 19: Two views (profile and face) at times t = 0 and t = 1 of the matching of two hippocampi
with normal cycles. The target shape is in orange and the source in blue. Each shape has 6600
points. Three runs at different geometric kernel sizes are performed (σW = 25,10,5) and the kernel
of deformation is a sum of Gaussian kernels with σV = 10,5,2.5,1.25. Each run ended respectively
at 72, 100 and 100 iterations for a total time of 565 seconds (2seconds per iteration).
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Figure 20: Each column represents the matching of two retinas with kernel metric on normal cy-
cles (left) and varifolds (right). The target shape is in orange and the source shape is in blue. Each
shape has 5000 points. For the varifolds metric, the geometric kernel is Gaussian. The kernel on
the Grassmanian is chosen linear so that no additional parameter is involved. The same parameters
are used for each data attachment term. Three runs at different geometric kernel sizes are performed
(σW = 0.8,0.4,0.2). KV is a sum of Gaussian kernels with σV = 2.4,1.2,0.6,0.3. For normal cycles,
the registration algorithm took 1000 seconds (0.5 seconds per iteration).
Hausdorff distance with normal cycles: d = 0.1997,dRMS = 0.0017. Hausdorff distance with vari-
folds: d = 0.2086,dRMS = 0.0036. See eq. (18) for the definition of d and dRMS.
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(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 21: Matching of two retinas with normal cycles : the target is in orange and the source in
blue. Three runs at different geometric kernel sizes are performed (σW = 0.8,0.4,0.2). KV is a
sum of Gaussian kernels with σV = 2.4,1.2,0.6,0.3. The first row shows the initial configuration.
The second row shows the matching in the specific zone delimited by the red rectangle. The metric
on normal cycles enforces the matching of corresponding high curvature points, which leads to the
alignment of the two triangles into the single one of the target.

for the deformation model).
The examples presented show that the use of normal cycles improves matching results (even when

the size of the spatial kernel is large compared to the features to be matched), at a cost that is similar
compared to varifolds. We can also highlight the fact that normal cycles take naturally into account
the boundary of the shapes. This implies a good matching of the boundary for surfaces. This implies
also that normal cycles are sensitive to topological changes, as opposed to currents or varifolds. This
may be a drawback if we have uncertainty on the data (for example a poor segmentation that creates
artificial holes). However it also allows the use of coarse meshes on regions of low curvature without
affecting the registration (see example of fig. 18).

An obvious future work is to develop the computation of the metric in the case of discrete surfaces
for non constant kn, at least for the linear normal kernel. This is of interest since we have already
seen that the kernel metric with linear kernel encodes Gaussian curvature information of the surfaces.
A normal kernel kn(u,v) = 1+ 〈u,v〉 would thus contains all the curvatures informations. However,
the calculus remains intricate and this may lead to another approach: to find interesting compact
approximation of the spherical part of a normal cycle. Indeed in our discretization strategy, replacing
the spherical part of the normal cycle by Dirac masses as we do for the spatial part would not be
directly possible, as it would not guarantee convergence of the discrete model to a continuous version
when the size of the mesh goes to zero. In place of that we decided not to approximate this part, which
leads to heavy computations. Finding efficient approximations of integrations over the spherical part
of the normal bundle would be of great interest.

We believe also that kernel metrics on normal cycles can prove useful outside the LDDMM frame-
work, in the spirit of [15, 16, 12, 13], where the authors study the curvature information of a smooth
surface that one could retrieve from a surface approximation using normal cycles. The estimation
of the mean curvature of a surface from a points cloud approximation has also been done using the
first variation of varifolds in [5].The advantage of our setting is that it provides a Hilbert space W ′

where all the representation of shapes lives, and it might be possible to obtain convergence rate of
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the approximation on W ′ and retrieve information on the curvatures convergence. Of course these are
only guess for now, and we need to work further on this direction.

The theoretical study of the link between the kernels defined on the normal cycles and the infor-
mation of curvatures that we retrieve is also an aspect that we would like to study. Going further in
this direction, it seems that we can formalize a precise link between normal cycles and varifolds. It
is obvious from the expression of prop. 4 that with the projection on the planar space of the discrete
scalar product we retrieve the scalar product on varifolds. We would like to investigate this projection
independently of the metric.
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A Discrete scalar product with the constant kernel

A.1 Discrete surfaces

Figure 22: Decomposition of the normal bundle for two triangles with a common edge. In this figure,
the two normal bundle of the open triangles appear. Then, we add (only once) the normal bundle of
the open edge (the red cylinder and the two green half spheres). Then we add ( only once) the normal
bundle of the vertices of the edge (the two green spheres).

For discrete surfaces, and with the constant normal kernel, it can be easily seen that the planar part
is not involved. The scalar product of normal cycles above vertices (i.e. the spherical scalar product)
involves terms as:

kp(x,y)
∫

S1

∫
S2

kn(u,v)
〈
τNC(x,u),τNC(y,v)

〉
dH 2(u)dH 2(v)

= kp(x,y)

〈∫
S1

τNC(x,u)︸ ︷︷ ︸
=u for the spherical part

dH 2(u),
∫

S2

τNC(y,v)dH 2(v)

〉

= kp(x,y)
〈∫

S1

udH 2(u),
∫

S2

vdH 2(v)
〉

If we focus on portion of sphere, one can show that if

S1 =

{sθucϕu
sθusϕu

cθu

∣∣∣∣θu ∈ [0,π], ϕu ∈ [0,ϕ0]

}

is a portion of sphere, then
∫

S1
udH 2(u) = π sin

(
ϕ0/2

)cos(ϕ0/2)
sin(ϕ0/2)

0

. Note that we retrieve the half

sphere with ϕ0 = π and the total sphere with ϕ0 = 2π . Now, taking into account the orientation, we
have to compute for the spherical part:〈

x×
(
[s.]−∑[h.s]+∑[p.s]

)
,y×

(
[s.]−∑[h.s]+∑[p.s]

)〉
W ′
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where s stands for sphere, h.s for half sphere and p.s for portion of spheres. In fact, one can show
that for a given vertex, summing the contributions of the sphere, the half spheres (associated with the
edges), and the portion of spheres (associated with the triangles), then the spherical part vanishes for
a vertex that is not in the border. Moreover, we have the following equality:〈

N(C)sph,N(S)sph
〉

W ′
= 〈N(∂C),N(∂S)〉W ′

thus, the spherical part is exactly the scalar product of the curves associated with the border, scalar
product that have been computed right above.

Now let us focus on the cylindrical part. Using expression (6), with kn = 1, one can see that the
scalar product involving a full cylinder is null, and thus, only the half cylinders remains. Consider
thus the scalar product between two half cylinders. If we denote HCyl1 = [a,b]× S⊥b−a, HCyl2 =

[c,d]×S⊥d−c two half cylinders (where S⊥+b−a,α =
{

u ∈ S2| 〈u,b−a〉= 0,〈u,α〉 ≥ 0
}

is a half circle),

we compute the scalar product in W ′ between these two half cylinders. With the approximations of
(6):

〈HCyl1,HCyl2〉W ′ ' kp

(a+b
2

,
c+d

2

)
〈b−a,d− c〉

×
∫

S⊥,+b−a,α

∫
S⊥d−c,β ,+

〈
b−a
|b−a|

×u,
d− c
|d− c|

× v
〉

dH 1(u)dH 1(v)

' kp

(a+b
2

,
c+d

2

)
〈b−a,d− c〉

×

〈
b−a
|b−a|

×
∫

S⊥,+b−a,α

udH 1(u),
d− c
|d− c|

×
∫

S⊥d−c,β ,+
vdH 1(v)

〉

' π2

4
kp

(a+b
2

,
c+d

2

)
〈b−a,d− c〉

〈
b−a
|b−a|

×α,
d− c
|d− c|

×β

〉
In a triangle T , [a,b] corresponds to an edge and α corresponds to a unitary vector orthogonal to

[a,b], in the plane defined by the triangle and oriented in the interior of the triangle. Finally, if we
consider two triangulations T and T ′, we have:

〈
N(T ),N(T ′)

〉
W ′ =

〈
N(T )cyl ,N(T ′)cyl

〉
W ′

+
〈
N(∂T ),N(∂T ′)

〉
W ′

=
π2

4

ne

∑
i=1

me

∑
j=1

kp(ci,d j)
〈

fi,g j
〉〈

∑
Ti triangles
with edge fi

nTi, fi , ∑
T ′j triangles
with edge g j

nT ′j ,g j

〉

+
〈
N(∂T ),N(∂T ′)

〉
W ′

(19)

where nTi, fi is the normal vector of the triangle Ti such that nTi, fi× fi is oriented inward for the triangle
T .

For the boundary, 〈N(∂T ),N(∂T ′)〉W ′ , we can show similarly that:

〈
N(∂T ),N(∂T ′)

〉
W ′ =

π2

4 ∑
xk∈∂T

∑
yl∈∂T ′

kp(xk,yl)〈Ak,Bl〉 (20)

where Ak = ∑i f k
i /| f k

i | is the sum of the normalized edges of the boundary with xk as vertex, and
oriented outward from xk.
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B Discrete scalar product with linear normal kernel
We can show that only the planar and the spherical parts are involved in this scalar product. For the
planar part, we have already seen that〈

N(T )pln,N(T ′)pln
〉

W ′
' 4

N

∑
i=1

M

∑
j=1
|Ti||T ′j |kp(ci,c′j)

〈
nTi ,nT ′j

〉2
.

In this appendix, we want to compute explicitely the spherical scalar product for normal cycles,
with the linear normal kernel. The generic expression involved is the following integral:∫

S1

∫
S2

〈u,v〉2 dudv

where S1 and S2 are two portions of spheres (that may be the whole sphere, half sphere) with no
assumption on the relative position of one sphere compared to the other.

To compute this expression, without loss of generality, we can suppose that S1 is parametrized as
follow:

S1 =


sinθu cosϕu

sinθu sinϕu
cosθu

 ∣∣∣θu ∈ [0,π],ϕu ∈ [0,ϕ1]


where ϕ1 is the apperture angle of the portion of sphere (ϕ1 = 2π for a whole sphere, and π for a half

sphere). Suppose that v =

v1
v2
v3

, then:

∫
S1

〈u,v〉2 du =
∫

π

0

∫
ϕ1

0

〈sinθu cosϕu
sinθu sinϕu

cosθu

 ,

v1
v2
v3

〉2

sinθudθudϕu

which can be made explicit using the fact that∫
π

0
sin3

θudθu =
4
3
,
∫

π

0
sin2

θu cosθudθu = 0,
∫

π

0
sinθu cos2

θudθu =
2
3
.

Integrating first with respect to θu and then to ϕu, we end up with:∫
S1

〈u,v〉2 du =
2
3

ϕ1 +
1
3
(v2

1− v2
2)sin(2ϕ1)+

4
3

v1v2 sin2(ϕ1).

The quantity of interest is now:∫
S1

∫
S2

〈u,v〉2 dudv =
∫

S2

[2
3

ϕ1 +
1
3
(v2

1− v2
2)sin(2ϕ1)

+
4
3

v1v2 sin2(ϕ1)
]
dv

The main limitation is that we do not have an obvious parametrization of S2 since there is no assump-
tion on the relative disposition of S1 and S2. Suppose now that R is the rotation which brings S2 to S′2,
where

S′2 =


sinθv cosϕv

sinθv sinϕv
cosθv

 ∣∣∣θv ∈ [0,π],ϕv ∈ [0,ϕ2]


We have:
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∫
S2

(v2
1− v2

2)dv =
∫

S2

(
〈v,e1〉2−〈v,e2〉2

)
dv

=
∫

RS2

(〈
R−1v,e1

〉2−
〈
R−1v,e2

〉2
)

dv

=
∫

π

0

∫
ϕ2

0

〈
sinθv cosϕv

sinθv sinϕv
cosθv

 ,Re1

〉2

−

〈sinθv cosϕv
sinθv sinϕv

cosθv

 ,Re2

〉2


× sinθvdθvdϕv

This computation is similar to the one of
∫

S1
〈u,v〉2 du and we obtain:∫

S2

(v2
1− v2

2)dv =
1
3
[
r2

11− r2
12 + r2

22− r2
21
]

sin(2ϕ2)+
4
3
[r11r21− r12r22]sin2(ϕ2)

where R = (ri j)1≤i, j≤3. The same reasoning for the term v1v2 leads to∫
S2

v1v2dv =
∫

π

0

∫
ϕ2

0
〈v,Re1〉〈v,Re2〉dv.

=
1
3
[r11r12− r21r22]sin(2ϕ2)+

2
3
[r11r22 + r12r21]sin2(ϕ2)

Finally, if we combine all the terms, we obtain:

∫
S1

∫
S2

〈u,v〉2 dudv =
4
3

ϕ1ϕ2 +
1
9
[
r2

11− r2
12 + r2

22− r2
21
]

sin(2ϕ1)sin(2ϕ2)

+
4
9
[r11r21 + r12r22]sin(2ϕ1)sin2(ϕ2)

+
4
9
[r11r12− r21r22]sin2(ϕ1)sin(2ϕ2)

+
8
9
[r11r22 + r12r21]sin2(ϕ1)sin2(ϕ2)

(21)

with
r11 = 〈e1, f1〉

r21 = 〈e1, f2〉=
〈

e1,
1

sinϕ2
( fϕ2 − cosϕ2 f1)

〉
r12 = 〈e2, f1〉=

〈
1

sinϕ1
(eϕ1 − cosϕ1e1), f1

〉
r22 = 〈e2, f2〉=

〈
1

sinϕ1
(eϕ1 − cosϕ1e1),

1
sinϕ2

( fϕ2 − cosϕ2 f1)

〉
Note 7. Expression (21) simplifies greatly when one of the involved sphere is a half sphere or a
sphere. Indeed, all the terms with a sinus vanish, and it remains:

∫
S1

∫
S2
〈u,v〉2 dudv = 4

3 ϕ1ϕ2.

Note 8. Note that this computation is useful to compute the scalar product between portions of sphere
in the triangulation. For an implementation, remember that the portion of sphere is not defined by
the edges of the triangles, say e1,e2, but by the orthogonals : −e⊥2 ,e

⊥
1 .

Now, if we are given two triangulated meshes, we will express one part of the spherical scalar
product: at two vertex x and y, as we have done for the constant normal kernel, we need to compute
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〈
x×
(
[s.]−∑[h.s]+∑[p.s]

)
,y×

(
[s.]−∑[h.s]+∑[p.s]

)〉
W ′

If we use the previous expressions of
∫

S1

∫
S2
〈u,v〉2 dudv, ad gathering all the terms 4/3ϕ1ϕ2, we

end up with:

〈
N(T )sph,N(T ′)sph

〉
W ′

=
4
3

Nv

∑
k=1

Mv

∑
l=1

kp(xk,yl)GT (xk)GT ′(yl)

+ second order spherical terms

where 
GT (xk) =

[
π(2−nxk +Nxk)−

Nxk

∑
i=1

ϕi,xk

]
GT ′(yl) =

[
π(2−myl +Nyl )−

Myk

∑
j=1

ϕ j,yl

]
and where the second order spherical terms appear when considering the crossed terms

1
9
[
r2

11− r2
12 + r2

22− r2
21
]

sin(2ϕ1)sin(2ϕ2)

+
4
9
[r11r21 + r12r22]sin(2ϕ1)sin2(ϕ2)

+
4
9
[r11r12− r21r22]sin2(ϕ1)sin(2ϕ2)

+
8
9
[r11r22 + r12r21]sin2(ϕ1)sin2(ϕ2)

we do not explicit these second order terms since we still not have a satisfying implementation of this
metric.
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(2013)
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[45] Thäle, C.: 50 years sets with positive reach, a survey. Surveys in Mathematics and its Applica-
tions 3 (2008)

[46] Vaillant, M., Glaunès, J.: Surface Matching via Currents. In: G.E. Christensen, M. Sonka (eds.)
Information Processing in Medical Imaging, no. 3565 in Lecture Notes in Computer Science,
pp. 381–392. Springer Berlin Heidelberg (2005)

[47] Wang, L., Beg, F., Ratnanather, T., Ceritoglu, C., Younes, L., Morris, J.C., Csernansky, J.G.,
Miller, M.I.: Large deformation diffeomorphism and momentum based hippocampal shape dis-
crimination in dementia of the alzheimer type. IEEE Transactions on Medical Imaging 26(4),
462–470 (2007). DOI 10.1109/TMI.2006.887380

[48] Younès, L.: Shapes and Diffeomorphisms. Springer (2010)

[49] Zähle, M.: Integral and current representation of Federer’s curvature measure. Arch. Maths. 23,
557–567 (1986)

[50] Zähle, M.: Curvatures and currents for unions of set with positive reach. Geometriae Dedicata
23, 155–171 (1987)

42

http://www.sciencedirect.com/science/article/pii/S1053811907010932
http://www.sciencedirect.com/science/article/pii/S1053811907010932
http://dx.doi.org/10.1023/A:1010624214933
http://dx.doi.org/10.1023/A:1010624214933
http://dx.doi.org/10.1002/hbm.22431

	Introduction
	Representation of shapes with normal cycles
	Currents
	Representation of surfaces with normal cycles
	Description of the Unit Normal Bundle of a Triangle
	Decomposition of the normal cycle for triangulation meshes


	Kernel Metrics on Normal cycles
	Expression of the Kernel Metric for Discrete Surfaces with Constant and Linear Normal Kernel
	Notations for triangulated surfaces and general remarks
	Discrete scalar product with constant normal kernel
	Discrete scalar product with linear normal kernel
	Comparison with kernel metrics on varifolds

	Deformation model : LDDMM
	Existence of a minimizer
	Discrete framework

	Numerical implementation
	Registration Algorithm
	PyTorch and KeOps
	Computation time for the data-attachment term and its gradient

	Experiments
	Synthetic data: illustration of the curvature properties
	Registration of an ellipsoid to a duck. 
	Registration of an ellipsoid to a hippopotamus. 
	Registration of hippocampi. 
	Real data: retinas


	Conclusion and perspectives
	Discrete scalar product with the constant kernel
	Discrete surfaces

	Discrete scalar product with linear normal kernel

