N

N

Asynchronous One-Sided Communications for Scalable
Fast Multipole Method in Electromagnetic Simulations
Nathalie Moller, Eric Petit, Quentin Carayol, Quang Dinh, William Jalby

» To cite this version:

Nathalie Moller, Eric Petit, Quentin Carayol, Quang Dinh, William Jalby. Asynchronous One-Sided
Communications for Scalable Fast Multipole Method in Electromagnetic Simulations. COLOC: Open
workshop on data locality In conjunction with Euro-Par 2017, Aug 2017, Santiago de Compostela,,
Spain. hal-01998352

HAL Id: hal-01998352
https://hal.science/hal-01998352v1
Submitted on 29 Jan 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01998352v1
https://hal.archives-ouvertes.fr

Asynchronous One-Sided Communications for
Scalable Fast Multipole Method in
Electromagnetic Simulations

Nathalie Moller'™, Eric Petit?, Quentin Carayol', Quang Dinh! and William
Jalby?

! Dassault Aviation, France
firstname.lastname@dassault-aviation.com,
2 Intel, France
eric.petit@intel.com
3 LI-PaRAD, University of Versailles, France
william. jalbyQ@uvsq.fr

Abstract. A common approach in HPC applications is to use MPI and
OpenMP programming models to express the parallelism. Refined so-
lutions are using asynchronous communications to take advantage from
overlapping. In this paper we propose an early implementation of the
ML-FMM algorithm using GASPI asynchronous one-sided communica-
tions to demonstrate how PGAS ad task based programming can impact
the code performance. Early results, on 32 nodes, show a 49% improve-
ment on communications over the optimized MPI4+OpenMP version.

Keywords: CEM MLFMM, communications, Gaspi

1 Introduction

SPECTRE is a Dassault Aviation in-house simulation code for Electromagnetic
and Acoustic applications. It is intensively used for RCS (Radar Cross Section)
computations. These problems can be described using the Maxwell equations.
When approximating with the Method of Moments, they result in a dense linear
system. Direct resolution leads to an O(N?) complexity, where N denotes the
number of unknowns. A common approach to solve larger systems is to use
the Multi-Level Fast Multipole Method (MLFMM) to reduce the complexity to
O(NlogN)[1].

The MLFMM relies on an accurate approximation of pairwise interactions in
the far field [2]. The rationale is to model the distant point to point interactions
by hierarchically grouping the points into a single equivalent point. Therefore
the MLFMM relies on the accuracy of this far field low rank approximation.
To make the approximation valid, the group of point have to be far enough to
the target point: this is the well-separated property. The interaction with the
points that are not well separated, the near field, are done using the method of
moment.

A common way to build the group is to use a hierarchical decomposition based
on an octree. Then the MLFMM traverses the tree forward and backward. The
upward pass aggregates the children’s contributions into larger parent nodes, and
the downward pass collects the contributions from the same level source cells,
which involves communications, and translates the values from parents down to
children. These operations are organized into MLFMM operators.

In SPECTRE, MLFMM has been implemented with a hybrid MPI + OpenMP
parallelism. A common difficulty in the MLFMM algorithm is its distributed
memory implementation scalability due to the large number of communications
required. Furthermore, despite many existing work are optimizing the shared
memory parallelization of the FMM algorithm for n-body problems, the electro-
magnetic simulation is introducing a major difference: at each level of the tree
the work to be done to compute the multipole is doubling. This explains the
O(NlogN) complexity compared to the O(N) of the standard algorithm. The
efficient parallelization within a multipole and how it integrates with the rest
of the algorithm is not widely devised in the literature. An in-depth profiling
of SPECTRE confirmed our analysis. Firstly, the time spent in the communica-
tions grows considerably with the number of processes and reaches 29% of total
execution time with 32 processes. Secondly, the scalability in shared memory is
improvable, over eight threads parallel efficiency falls under 75% for each oper-
ator. In this work, we focus on the optimization of the communications. This
paper presents our preliminary results and future work in introducing asyn-
chronous one-sided communications to improve communication overlapping and
scalability, and the introduction of fine grain task parallelism for multipole com-
putations and how it integrates with the communication layer.

2 Optimizing the Communications

For the N-body problem, the FMM communication complexity was studied in
[8] and [4]. Global complexity is demonstrated to be O((n/p)® + log p), n being
the problem size, p the number of processes and « equaling 2/3 in the 3D case.
The PGAS programing model efficiency has been demonstrated in [5], [6].

The MLFMM’s communications consist of two-sided point to point exchanges
of far field terms. In the current version, all communications are executed at
the top of the octree when the upwards pass is completed. They are ordered
and organized in rounds. At each round, pair of processes communicate and
accumulate the received data into their far field array. Messages are sent via
blocking MPI_send, MPI_recv or MPI_sendrecv. The computation continues only
once the communication phase is terminated. We aim at proposing a completely
asynchronous and multithreaded version of these exchanges. A first step consists
in desynchronizing the communications by sending the available data as soon as
possible and receiving it as late as possible. We have developed different versions
based on non-blocking MPI and one-sided GASPI.

The MPI standard offers non-blocking communications via MPI_Isend and
MPI_Irecv. These calls return immediately, and let the communication complete

while computation pursues. However, the lack of communication progression is
a well known problem. Some methods, like manual progression, help to force the
completion[3]. Manual progression consists in calling MPI_Test on the communi-
cation’s corresponding MPI_Request. The MPI standard ensures that MPI_Test
calls trigger the communications.

PGAS (Partitioned Global Address Space) is a programming model based
on a global memory address space partitioned among the distributed processes.
Each process owns a local part and directly accesses to the remote parts both
in read and write modes. Communications are one-sided : the remote process
does not participate. Data movement, memory duplications and synchronizations
are reduced. Moreover, PGAS languages are well suited to clusters exploiting
RDMA (Remote Direct Memory Access) and letting the network controllers
handle the communications. We use GPI, a GASPI API, which implements the
PGAS standard, developed by Fraunhofer ITWM [7].

The FMM-lib library, entirely handles the GASPI communications. It is
called by the Fortran application, which provides pointers to the structures con-
taining the data to exchange. At the initialization step, the GASPI segments
are created and, since the communications are one-sided, some first exchanges
are required. All necessary informations to handle the communications are pre-
computed. When a level is terminated, the source process sends the available
information by writing remotely into the receiver’s memory at a pre-computed
offset. This write is followed by a notification containing a notifyID and a
notifyValue which are used to indicate the source’s rank and the octree level.
When the receiver needs the information to poursue its computation, it checks
for the expected notifications and waits only if necessary. The library is available
under LGPL licence at https://github.com/EXAPARS/FMM-lib.

3 Preliminary Results

Far Fields - Total communication time

80
60
’ .
0
2 4 8 16 32

WRef ®Mpi_Async ®Gaspi_Bulk Gaspi_Async W MpiAsync M Gaspi_Buk M Gaspi_Async

Total application speedup over Ref

Time (seconds)

2 4 8 16 32

Fig. 1. Left: Time spent in far field communications, Right: Total speedup over Ref

Figure 1 shows the execution time of the different MPI and GASPI and the
gain on the total application. The experiences are run on an in-house cluster at

Dassault Aviation, composed by 32 nodes of two Intel Sandy Bridge E5-2670 (8
cores@2.60GHz). SPECTRE and the FMM library are compiled with Intel 2015
and run with bullxmpi-1.2.9.1. The test case is a generic metallic UAV, with
95 524 nodes, 193 356 elements and 290 034 dofs. We place one MPI/GASPI
process per node and increase the nodes count from 1 to 32. Each node is fully
used with OpenMP threads.

We compare four different versions : Ref, MPI Async and Gaspi Bulk handle
all the exchanges at the top of the tree. Ref uses blocking MPI calls, MPT Async
uses non blocking MPI calls and manual progression and Gaspi Bulk one-sided
Gaspi writes. Gaspi Overlap sends as soon a level is complete, receives as late as
possible and relies on hardware progression. One can see that, without introduc-
ing any overlapping, on 32 nodes, the Gaspi_Bulk version already reaches 46%
speedup over Ref. MPI_Async version achieves 36% speedup, but still remains
slower than the synchronous Gaspi_Bulk version. Finally, introducing overlap-
ping enables the Gaspi Overlap version to gain 3 more percentage points over
the Ref version, with a total of 49% speedup on communications and 20% on
the complete application.

4 Conclusion and Future Work

In this article we investigate a way of desynchronizing an industrial Fortran
MLFMM kernel based on blocking MPI communications. The communication
phase has been optimized with the use of non blocking MPI and one-sided Gaspi
and a significant speedup has been obtained. At the present time, we are working
on optimizing the intranode scalability with the use of tasks. The communica-
tions will be multithreaded and be integrated into the tasks.
Acknowledgements The optimized SPECTRE application described in this
article is the sole property of Dassault Aviation.

References

1. Carayol, Q.: Development and analysis of a multilevel multipole method for elec-
tromagnetics. Ph.D. thesis, Paris 6 (2002)

2. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput.
Phys. 73(2), 325-348 (Dec 1987), http://dx.doi.org/10.1016,/0021-9991(87)90140-9

3. Hoefler, T., Lumsdaine, A.: Message Progression in Parallel Computing - To Thread
or not to Thread? IEEE Computer Society (Oct 2008)

4. Tbeid, H., Yokota, R., Keyes, D.: A performance model for the communication in
fast multipole methods on HPC platforms. CoRR abs/1405.6362 (2014)

5. Jabbar, M.A.) Yokota, R., Keyes, D.: Asynchronous execution of the fast multipole
method using charm++. CoRR abs/1405.7487 (2014)

6. Milthorpe, J., Rendell, A.P., Huber, T.: Pgas-fmm: Implementing a distributed
fast multipole method using the x10 programming language. CCPE 26(3), 712-727
2014

7. éimm)endinger7 C., Jagerskiipper, J., Machado, R., Lojewski, C.: A pgas-based im-
plementation for the unstructured cfd solver tau. PGAS11, USA (2011)

8. Yokota, R., Turkiyyah, G., Keyes, D.: Communication complexity of the fast mul-
tipole method and its algebraic variants. CoRR abs/1406.1974 (2014)

