
HAL Id: hal-01998333
https://hal.science/hal-01998333

Submitted on 29 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validation of safety necessities for a Safety-Bag
component in experimental autonomous vehicles

Manel Brini, Paul Crubille, Benjamin Lussier, Walter Schön

To cite this version:
Manel Brini, Paul Crubille, Benjamin Lussier, Walter Schön. Validation of safety necessities for a
Safety-Bag component in experimental autonomous vehicles. 14th European Dependable Computing
Conference (EDCC), Sep 2018, Iasi, Romania. pp.33-40, �10.1109/EDCC.2018.00017�. �hal-01998333�

https://hal.science/hal-01998333
https://hal.archives-ouvertes.fr


Validation of safety necessities for a Safety-Bag
component in experimental autonomous vehicles

Manel Brini∗, Paul Crubillé∗, Benjamin Lussier∗ and Walter Schön∗
∗Sorbonne universités, Université de Technologie de Compiègne, CNRS,

Heudiasyc UMR 7253, CS 60 319, 60203 Compiègne Cedex France
Email: {manel.brini,paul.crubille,benjamin.lussier,walter.schon}@utc.fr

Summary—This work presents a study to improve the safety of
experimental autonomous vehicles in the Heudiasyc laboratory.
This work presents risk analyses showing that the use of our
vehicles involves significant risks during experiments, and that
integrating an Independent Safety Component called Safety-Bag
in the vehicle architecture can significantly reduce these risks.
The Safety-Bag carries out the on-line verification of safety
necessities by checking the vehicle’s current state with safety
rules and taking or disabling actions to ensure a safe behavior. In
our work, we present and we apply two methods for risk analysis
(FMEA and HazOp-UML) to design these safety necessities in
the case of experimental autonomous vehicles. We also present
the validation of two safety necessities through fault injection
experiments with a robotized Fluence vehicle and a vehicle in
the loop testbed.

Keywords—Safety-Bag, dependability, safety, fault tolerance,
FMEA, HazOp-UML, autonomous vehicles.

I. INTRODUCTION

Autonomous automotive vehicles are mobile robots which
evolve in an open environment and need to respect strict traffic
rules. They should also be able to detect and react to dangerous
situations on their own. Depending of their autonomy’s level,
they will have to carry out their mission in unknown surround-
ings and perform various complex tasks. In order to do that,
they use artificial intelligence software based on declarative
mechanisms, which cause their validation and verification to
be difficult. In addition, autonomous vehicles are fast and
powerful mobile robots, able to accumulate a large amount
of energy. Thus, they are a source of danger to their operators
and their environment. Guaranteeing their safety still remains
a technological challenge for their industrialization. In this
paper, we integrate an Independent Safety Component called
Safety-Bag, to reduce risks from the complex and incompletely
validated control systems. The Safety-Bag allows software
and hardware fault tolerance but needs implementable safety
necessities to detect problems and put the system in a safe
state. After this introduction, the second section of this article
presents a state of the art first on safety in autonomous vehicles
and second on the safety bag component. The third section
briefly presents the experimental autonomous vehicle that we
are working on, and the implementation of its Safety-Bag. The
fourth section presents the design process that we propose for
the safety necessities of our Safety-Bag, that is the application
dependent rules that will define its behavior. This design is
based on using diversified risk analysis methods, in our case

FMEA (Failure Mode and Effects Analysis) and HazOp-UML
(HAZard and OPerability study-Unified Modeling Language).
Section V describes how we determined the safety necessities
for autonomous automotive vehicles from the risk analyses,
as well as a comparison of the necessities obtained from each
analysis. The last section presents our approach to validate
our work using fault injection on a dangerous experimental
vehicle in the most representative and safe way possible. This
validation is done using the real autonomous vehicle in a
vehicle-in-the-loop testbed using simulation to send data to the
operator and part of the vehicle’s sensors, while real motors
affixed to the wheels simulate virtual world efforts. The paper
ends with conclusions and perspectives for further work.

II. STATE OF THE ART

We present in this section a state of the art on depend-
ability in autonomous automotive vehicles. We then introduce
the Safety-Bag component and present previous works and
applications of this component. Concerning the dependability
domain, its means and its threats (faults, errors, failures), this
paper will adopt the concepts and definitions presented in [1].

A. Dependability in autonomous automotive vehicles

In the last decade, autonomous automotive vehicles made
significant progress. In 2003, the Defense Advanced Research
Projects Agency (DARPA) announced the First Grand Chal-
lenge aiming to develop autonomous vehicles capable of
navigating desert rails and roads at high speeds. [2] describes
the winner of the 2007 DARPA Urban Grand challenge: Boss
an autonomous vehicle capable of driving safely in traffic
at speeds up to 48 km/h. It uses on-boards sensors to track
other vehicles, detect static obstacles and localize itself relative
to a road model. However, before being used in critical
application such as everyday driving, autonomous vehicles
need to improve their dependability, that is the ability to deliver
service that can be justifiably trusted [1]. In particular, their
complexity and the use of declarative programming and AI
(Artificial Intelligence), necessary to evolve in an unstructured
open and partially unknown environment, raise the problem of
their safety, that is the absence of catastrophic consequences
due to their behavior on the user and the environment.

According to [3], safety is indeed a technological barrier
to the industrialization of autonomous vehicles. To answer
this problem, the NHTSA (National Highway Traffic Safety



Administration) agency [4] asks for a process that should
include a hazard analysis and safety risk assessment. It should
particularly contain design redundancies and safety strategies
able to put an autonomous vehicle in a safe state when critical
hardware or software failures errors occur. This fall back
should also facilitate the transition from autonomous to manual
driving when the system is not able to function properly on its
own. In [5], dependability techniques are classified as either
fault tolerance techniques or robustness techniques according
to the class of hazards being addressed.

• Fault-tolerance techniques aim to avoid system failures
in the presence of faults affecting system resources (such
as sensor failures, software design faults, etc.).

• Robustness techniques aim to avoid system failures in the
presence of external faults, environment uncertainties and
contingencies.

In [6], Xu and Yuan propose an active safety system for
autonomous vehicle, that has been identified as an effective
technique for avoiding accidents. It consists of a motion
planner and controller based on robust control rather than on
dependable techniques. Another robust approach for the safety
assessment of planned trajectories of autonomous vehicles is
presented in [7]. This approach considers vehicle dynamics,
interaction between traffic participants, and lane changes in
multi-lane traffic. However, to our knowledge, fault tolerance
is rarely mentioned in autonomous cars. Although some tech-
niques for error detection (such as the Safety-Bag’s rules and
a watchdog timer) or error recovery (implemented through
positioning in a safe state or a software reconfiguration)
focus on autonomous robots, they are not yet applied on the
autonomous cars. Jamil & al.[3] propose a hazard analysis
conceptual framework for an Autonomous Automotive Cyber-
Physical Systems (A2CPS). This component continuously
checks the system’s state with a Hazard Database to detect
potential risks and reacts accordingly, in a way similar to
a safety bag component. However, no real implementation
of such a component is presented yet. Perhaps the most
studied dependability mean for autonomous vehicle is fault
elimination through testing. For example, [8] presents the
limitation of the existing reliability and safety engineering
tools for autonomous Unmanned Ground Vehicles (UGVs) and
proposes a novel methodology based on statistical testing in
simulated environment. However, note that in [9], the authors
postulate that testing alone is unfeasible to ensure a sufficient
dependability in autonomous vehicles.

B. Safety-Bag for critical complex system

Independent from the system that it supervises, a Safety-Bag
or Independent Safety Component is responsible for intercept-
ing the system’s commands and enforcing safety rules to avoid
catastrophic failures. To reduce common cause failures, it must
be specified and developed independently from the functional
system, and have means of action and detection independent
from the faults to be tolerated. It monitors the operational
system, and in case of danger puts the system in a safe state
[5].

This approach was used effectively for critical applications.
For example, the ELEKTRA (Electronic Interlocking Sys-
tem)rail system [10] contains a logic channel that processes
commands, and a safety channel that checks the commands
according to safety rules. The SPAAS (Software Product
Assurance for Autonomy On-board Spacecraft) project for
an autonomous spacecraft [11] is composed of a Safety-Bag
in charge of monitoring on-board a set of safety properties,
and a plausibility checker that validates procedures on a
ground station before they are uploaded and executed on-
board. The SPIN nuclear plant monitor [12] controls phys-
ical parameters such as the pressure of the steam or the
temperature of the core and has an architecture divided in
two stages: acquisition and control. A mobile robot excavator
[13] contains a safety manager component, responsible for all
safety aspects of the system during operations, and is central
to the control system’s architecture. The R2C (Requests &
Resources Checker) component [14] contains a state checker,
that checks acceptable and unacceptable states in the system
according to a set of predefined rules. All these Safety-Bag
components require a set of application dependent rules in
order to check the system’s commands safety and determine
how to react. Diversified analysis methods are proposed in
this article to define these rules. In a complementary way,
the SMOF (Safety MOnitoring Framework for Autonomous
System) [15] proposes a technique using formal methods to
guarantee the validity of each rule and that no emergent
behavior may place the system in a dangerous state. However
in an open environment with extremely diverse situations,
formal analyses may well be a very complex and costly task.

III. SAFETY-BAG COMPONENT
We present in this section the Safety-Bag component de-

signed and implemented for our experimental autonomous
cars.

proprioceptive and

exteroceptive sensors

Safety-bag

pilot

 Stop Process

 Mosfet

 actuators

steering wheel

accelerator

brakes

redondant sensors

gyrometer,

accelerometer

safety-bag rules checker safety-bag supervisor

Control application of the

autonomous vehicle

speed, engine power, brake pressure, ...

heartbeat

al im

orders

rotational speed

lateral acceleration

alerts

alerts

checker report

commands

Figure 1. Safety-Bag implementation on our autonomous car

To know the state of the system, the Safety-Bag uses at the
same time some of the car’s sensors (such as the speed and
steering angle sensors) and specific redundant sensors (such
as the gyrometer and accelerometer). Hardware faults in the
redundant sensor can be detected by the safety bag, so their
choice among all of the car’s sensors is a classical cost/safety
compromise. The Safety-Bag filters the commands from the
software components of the control application, verifies the



respect of the safety rules and is thus able to detect anomalies.
It then recovers through a safety action by enforcing some
commands (such as braking) or rejecting dangerous commands
(such as inhibiting the acceleration). Adding any component in
a system, even a fault tolerant one, can introduce new possible
faults and failures. As a single fault should not cause failure
of the whole Safety-Bag, it is composed of two functionally
diverse computers monitoring each other. As shown in figure
1, one is called the Safety-Bag rules checker, and the other
the Safety-Bag supervisor. The checker verifies the commands
from the control application against a set of safety rules,
allowing them if considered safe, while blocking them or
even taking safety actions otherwise. We call safety necessity
a safety rule combined with its possible safety responses.
A safety necessity is typically expressed as a if-then-else
condition.

The checker and supervisor monitor each other though
the exchange of heartbeats. If the Safety-Bag supervisor no
longer receives the signal from the Safety-Bag rules checker,
it raises alarms and disables the control application commands
as the autonomous behavior of the system can no longer be
guaranteed. If the Safety-Bag rules checker no longer receives
the signal from the Safety-Bag supervisor, it advises the driver
to stop the experiment even if there is no immediate risk, as
the Safety-Bag is now vulnerable to a single fault. The Safety-
Bag can trigger visual and auditory alarms. It records all events
related to safety, which allows post-experimental analysis.

IV. DETERMINATION OF SAFETY REQUIREMENTS

This section presents our design process for safety require-
ments, which are needed to define safety necessities. We
present both FMEA and HazOp-UML risk analysis methods,
but other diversified methods could also be used to diminish
the risk of forgetting or improperly formulating safety require-
ments.

A. Design process

As a design process for safety requirements, we propose to
use diversified risk analysis methods, each one implemented
by a different team of safety experts when possible. This
diversified process has two main reason. First, as risk analyses
can only be done by human experts, using diversified methods
(and even better different teams) is a well known technique
to diminish errors and oversights in an analysis. Second, each
risk analysis methods specializes on a particular aspect, and
using diverse complementary analyses will allow us to produce
as many safety requirements as possible. In this paper, we
chose to use the FMEA [16] and the HazOp-UML analysis
[17]. The FMEA is a well known method that focuses on
every single failure in every component, while the HazOp-
UML analysis focuses more on the system’s process and
its interactions with the environment. Figure 2 presents our
design process using these two methods. Other complementary
analyses could be added, such as the fault tree analysis that
allows to identify the consequences of multiple failures (unlike

the FMEA). In the FMEA, we first identify the system’s com-
ponent and subcomponents, and then determine all possible
failures of these components and their effects on the system.
Safety requirements are deduced from these informations by
safety experts, and we propose to identify the Safety-Bag’s
necessities from the safety requirements as presented latter in
section V.

Figure 2. Safety necessities design process

HazOp-UML is a technique based on the description of
the system and its actors. In our case, the actors can be: the
driver, the pedestrians, the other vehicles, etc. The HazOP-
UML analysis focuses on the system’s processes and its
relations with the different actors. First, we identify a set of
use cases, that are the system functionalities. For each use
case, we determine its attributes: preconditions, invariants and
post-conditions that defines the functional limits of the use
case (for example the minimum or maximum speed) but also
requirements for a correct behavior (the correct input of a
particular sensor, or the absence of a vehicle on a particular
lane). Then, we apply the HazOp method by associating
each attribute with a list of guide words as mentioned in
[18] to guide the process and to identify all the potential
dangers that are named deviations. Finally, we identify the
safety requirements from each deviation and then determine
the safety necessities.

B. Risk analysis methods

The first step in risk analysis consists in defining a table of
severity rating (shown in figure 2). This is used to rate each
component’s failure or deviation in the analyses, but also to
guide risk reduction approaches.

In our severity table, there are five levels : from nominal
level 0 to most severe level 5. In level 0, the system is in
nominal operation. In level 1, experimentations should be
stopped, but the application is still capable of properly driving
the vehicle. In level 2, the time needed for the driver to take
over is sufficient to not pose any difficulty. In level 3, the
control application has stopped and the vehicle is no longer
controlled while an alarm is raised. In level 4, the application
has stopped and the vehicle is no longer controlled but no
alarms are raised. Finally in level 5, an invalid command is
sent or maintained on the actuators; it is extremely difficult
for a driver to regain control.

We present now the results from our two risk analyses:
FMEA and HazOp-UML.



1) FMEA: Our FMEA focuses on 11 different components
of our experimental vehicle and identifies 21 different failures.
From these failures 5 are of severity 5, 4 of severity 4 and 3 of
severity 4 or 5, which confirms that our experimental vehicle is
a dangerous system as numerous single component’s failures
can lead to catastrophic consequences. Figure 3 is an extract
from the FMEA table. We introduced additional columns to
distinguish the failure’s effects on the control component and
the final effects on the vehicle’s behavior. We also added a
column describing the safety requirements that can protect
from this failure, which is a common practice in the industry.
In addition, we introduced in the table sub-columns to give
indicative values for both response time and detection time.
The failure rate λ (failure probability per hour) is difficult
to identify accurately without performing a huge number of
experiments. In most cases, the given values are best guesses
from an engineering point of view. For hardware failures,
we took them as pessimistic values, from our knowledge
of the system and its components. For software failures,
experimental components are developed research context and
can be tested only briefly before being integrated into the
system. The practice leads us to believe the failure rates
of such components are significantly high. As an example,
in the first line of the figure 3, a locked down failure in
the control application leads to an uncontrollable vehicle as
the actuators commands are not updated. The accident may
become unavoidable before the driver is able to resume manual
control. The severity of such a failure is 5. The corresponding
safety requirement states that the system needs to be able
to detect failures of the control application and subsequently
block automated commands while warning the driver to regain
manual control.

2) HazOp-UML: To identify a relevant set of use cases to
perform a HazOp-UML analysis for autonomous vehicles, we
relied on the list of conditions cited on pages 28 and 29 of
[4], pending the production of similar recommendations by
the European authorities. From 28 situations described in this
document, we have identified a total of 25 use cases: 8 generic
use cases related to our autonomous vehicle, and 17 use cases
extending 3 of these generic use cases. In this article, we detail
in particular the use case Follow a kinetic trajectory1. The list
of associated attributes is composed by:

• 4 pre-conditions (e.g., the kinetic state 2 estimated by the
vehicle is equivalent to the real kinetic state.),

• 3 invariants (e.g., the vehicle kinetic state estimated by
the vehicle remains at a limited distance from the kinetic
trajectory.),

• And, 3 post-conditions (e.g., the vehicle knows the next
kinetic trajectory to be followed.).

In the HazOp-UML table figure 4, we have associated with
each deviation its consequences and possible causes, their

1Kinetic trajectory: The kinetic trajectory is successive sets of position,
attitude and speed of the vehicle that describes its intended immediate
movement on the road.

2Vehicle kinetic state: The vehicle kinetic state consists of the position, the
attitude and the speed of the vehicle.

severity and finally the safety requirements needed to protect
from those consequences. Unlike the method proposed in [18],
we do not determine directly the safety necessities for the
Safety-Bag, but we begin by identifying safety requirements
related to the vehicle behavior’s deviation, in a similar way to
safety analysis carried out by engineers in the FMEA method.
Indeed, all safety requirements may not be implemented by
the Safety-Bag component, and other mechanisms will be
required when it can not. For instance, verifying the car’s
available driving space can only be carried out with a data
fusion mechanism, which at the moment can not be justifiably
trusted enough to be implemented in the Safety Bag.

V. DETERMINATION OF SAFETY NECESSITIES,
COMPARISON AND SYNTHESIS

Once risk analyses of the system have been performed,
we need to determine the safety necessities from the safety
requirements. Safety necessities are derived from safety re-
quirements using the knowledge and experience of safety
experts, and will subsequently be implemented as safety rules
and safety actions in the Safety-Bag.

1) With FMEA: For each safety requirement (as shown
in figure 5), the means of its implementation are detailed,
and if the Safety-Bag is considered as one of these means, a
safety necessity is identified. A safety necessity specifies what
the Safety-Bag should observe, how it identifies failures from
observations, and what it should do once a fault is detected.

Note than all safety requirements cannot be implemented
by the Safety-Bag. The Safety-Bag may for example lack the
needed sensors to detect a component’s failure. Particularly,
the checks to be carried out may be too complex to be
performed by the Safety-bag. Indeed, the Safety-Bag must
remain sufficiently simple to be validated easily, and thus have
a similar form to conditional blocks in an imperative language
(if-then-else clauses).

2) With HazOp-UML: Safety necessities are deduced from
the safety requirements in the exact same way than with the
FMEA.

As stated before, some requirements cannot be implemented
by the Safety-Bag. For example, ref. 3 from figure 6 would
require complex comparisons between the sum of the vehicle
perception and the inboard map. Guaranteeing the dependabil-
ity of such a function is a hard (or even near impossible) task,
and it thus cannot be incorporated into the Safety-Bag.

3) Comparison: In this section, we compare the results
obtained by the two methods, using the full risk analyses
from which Figures 3 to 5 are extracted, and their quantitative
results are summarized in Figure 7.

Indeed, FMEA and HazOp-UML have the same main goal
to identify unacceptable risks to the system and its environ-
ment, as part of a process to reduce them to an acceptable
level. However, the FMEA method focuses on internal com-
ponents of the system (in our case, experimental software and
hardware components), while HazOp-UML focuses more on
the vehicle’s functions process and its interactions with the
environment. This explains the fact that there are common



Figure 3. An extract of FMEA for autonomous vehicles without Safety-Bag

Figure 4. An extract of HazOp-UML

Figure 5. Safety requirements and necessities from FMEA

Figure 6. Safety requirements and necessities from HazOp-UML

elements in both analyses, but also different ones. For example,
the safety requirements from HazOp-UML, ref. 1 figure 4,
does not correspond to any safety requirements derived from
the FMEA. Conversely, some components that are mentioned
in the FMEA (ref. 1 figure 3) are not included in HazOp-UML.
In regards to common elements, we identified six similar
necessities, such as ref. 2 figure 3 for FMEA and ref. 5
figure 4 for HazOp-UML. Finally, it should be noted that the
results of the HazOp-UML analysis depend in part on design
choices in representing and expressing the UML use cases

and attributes, and thus on the person who realizes it. Another
difference is that HazOp-UML explicitly studies the system’s
processes and their evolution in time, while the FMEA focuses
on failures of the system’s components at a given instant.
As previously stated, we found 8 similar safety necessities
in both analyses. Those safety necessities correspond to the
failure of components that were explicitly targeted in the
HazOp-UML analysis, and naturally covered in the FMEA.
However, note that these safety necessities needed an analysis
similar to the FMEA and that the FMEA still identified three



safety necessities on other components. Therefore, the two
techniques appear to us as complementary.

FMEA HazOp-UML
(1 use case)

Number of failures/deviations 21 42
Safety requirements 10 21

Safety necessities 11 14
Safety necessities similar 8 8

to the other method

Figure 7. Quantitative results of both analyses

VI. EXPERIMENTAL VALIDATION
In this section, we validate our Safety-Bag using fault injec-

tion and a VITL (Vehicle-In-The-Loop) testbed. Autonomous
vehicles are integrated systems in which the interactions
between components (both software and hardware) have a
significant impact on the system’s behavior (communication
delays, time needed for the mechanical brake to operate, etc.).
We thus believe that VITL validations have a significantly
more realistic representativity than SIL (software-in-the-loop)
and MIL (modeling-in-the-loop). We implemented in our
safety-bag the five following safety necessities from the 18
obtained in the previously presented analyses:

1) The Safety-Bag checks the liveliness of the control
application ; when the latter is not responding, the
Safety-Bag raises alarms for the driver to take back the
controls and brakes while slowly reducing the steering
wheel angle.

2) The Safety-Bag checks the temporal consistency of
the control application’s commands. When a significant
number of commands have been successively received
in a wrong order, it warns the operator and reduces
the vehicle’s speed in the same way that in the safety
necessity 1.

3) The Safety-Bag checks whether the vehicle’s speed does
not exceed a safety speed of 50 km/h. When it happens,
the Safety-Bag inhibits any acceleration commands from
the control application until the vehicle’s speed is again
under the safety speed value.

4) The Safety-Bag checks whether the steering angle and
the vehicle’s speed are consistent with the vehicle dy-
namics. If the steering angle exceeds a value depending
of the vehicle’s speed, the Safety-Bag reacts by alerting
the operator and trying to reduce speed and angular
velocity by braking.

5) The Safety-Bag checks that the speed information from
the control application and the speed known by the
Safety-Bag (via the CAN bus) are compatible. The
Safety-Bag reacts by raising alarms and inhibiting the
acceleration until the operator takes back the control of
the vehicle.

In the following sections, because of a lack of space, we
focus only on the first safety necessity. We first present our
experimental platform: a real robotized car on a VITL testbed.
We then present the nominal activity of our experiment, then
the injected fault, and finally our validation results.

A. VILAD testbed presentation

As shown in figure 8, the VILAD (the VITL of the
Heudiasyc laboratory) testbed integrates a vehicle simulator
controlling force feedback motors which opposes the power of
the engine and those of the brakes to simulate a real vehicle’s
efforts. It allows either a human driver or the command

Figure 8. VILAD testbed

application to control the automated IRIS car in a virtual
world. IRIS is based on Renault’s Fluence electric car. The
brake and acceleration are controlled by analog signals. The
vehicle is able to accelerate from 0 km/h up to 50 km/h in
4 seconds and can reach 130 km/h. Part of the sensors such
as the inertial sensors and lidars are simulated, while others
sensors data such as the car’s or the motor’s speed can be used
as such. In these experiments, we used scripted commands
rather than a real command architecture for three reasons.
First, we had not developed the complete control architecture
on our experimental vehicle yet. Second, fault injection is
more easily done with scripted commands, as we can simply
modify the script to simulate frozen or locked applications.
Third, even though our testbed is much more safe than the
real robotized vehicle, injecting fault in such a system is still
a very dangerous task, especially for the operator, and using
scripted commands gives much more controllability and safety
in our experiments. We focus here on the longitudinal control:
accelerations and brakes.

B. Runway followed by the vehicle and nominal scenario

Figure 9 represents the virtual runway for our experiments.
The nominal scenario follows the white trajectory, from
the starting point to the destination. Figure 10 presents the
command applied for the longitudinal control of the vehicle
during the nominal scenario. A value between 0 and 1.8 volts
commands the Fluence acceleration. A value between 0 and
-2 volts is transmitted to the braking system.

C. Faults injection experiments

We inject two different faults, each in one experiment, by
modifying the commands sent by our simulated command
application. The first fault consists in simulating a locked
application that do not change the last applied command,
while the second fault consists in sending an erroneously high
acceleration command. The injected faults can be seen on
figure 10.

The faults are injected at time 93s into the experiments (at
the place seen on figure 9), but do not propagate into failures



Figure 9. Simulated environment and vehicle trajectory

Figure 10. Nominal commands and injected faults from the control-command
bloc

until the next left turn. Note that in the first injection (locked

Figure 11. Commands applied to the actuators for the locked control
application fault

control application), the commands stop at 123s because the
operator had to stop automated control of the vehicle due
to its dangerous behavior. In the second injection (incorrect

Figure 12. Commands applied to the actuators for the incorrect acceleration
fault

acceleration), we had to change the script at 140s to brake
before the nominal scenario because the vehicle was farther
on the road due to the incorrect acceleration.

D. Result and analysis

This section presents results for both injected faults on
our VILAD testbed. For each fault, figures 11 and 12 show
the longitudinal commands applied to the car’s actuators
(acceleration and brake) in three cases: (1) the nominal case,
(2) with the specified injected fault and no Safety-Bag, (3)

with the specified injected fault in presence of a Safety-Bag.
The difference in the applied commands between (2) and (3)
is due to safety actions taken by the Safety-Bag after a safety
rule has been identified as violated.

1) Locked control application fault: Without the Safety-
Bag, we see in the figures 13 and 14 that the vehicle speeds
up to 80 km/h before the turn. The following brutal slowdown

Figure 13. Vehicle speed in the case of locked control application fault

is due to the vehicle slipping on the road before being
stopped by the operator. The distance to the trajectory jumps
to almost 6 meters, showing that the vehicle clearly went
out of control. With the Safety Bag, the frozen application

Figure 14. Vehicle trajectory deviation in the case of locked control applica-
tion fault

is immediately detected as an identification number on the
sent commands is no longer incremented. This violates the
safety rule stipulating that the control application liveliness
must be ensured, and enforces the safety action of rejecting
all acceleration commands from the control application while
alerting the operator of its failure. The system thus stops at
117s.

2) Incorrect acceleration fault: Without the Safety-Bag, we
see in figure 15 that the vehicles speeds up to almost 70 km/h
before the left turn. The consequences are not as dire as in

Figure 15. Vehicle speed in the case of incorrect acceleration fault

the previous fault, because the acceleration is not maintained
as long (and especially not during the turn), but figure 16
still shows significant deviations from the nominal trajectory,
which could be dangerous on a road with opposing traffic.



Figure 16. Vehicle trajectory deviation in the case of incorrect acceleration
fault

With the Safety-Bag, we see that the vehicle does not go
faster than 50km/h. Indeed, the incorrect acceleration violates
the safety rule stipulating that the vehicle must not go farther
than 47km/h, and the corresponding safety action inhibits all
acceleration commands while raising an alarm for the operator,
in a similar way than in the previous fault injection. In our
current implementation, the Safety-Bag moves to a degraded
state from which it can not recover as soon as a safety
rule is violated. Therefore, when the car’s speed excesses a
safety rule’s threshold, the acceleration remains inhibited until
the end of the experiment and the vehicle stops (figures 13
and 14 for the first fault, 15 and 16 for the second). This
behavior is well suited for an experimental vehicle, but for
better availability in industrialized cars, the safety-bag could
allow acceleration commands again when the car’s speed drops
below the safety rule’s threshold.

VII. CONCLUSION AND PERSPECTIVES

In our study, an Independent Safety Component called
Safety-Bag is implemented to reduce the risks in an exper-
imental autonomous vehicle. It detects software and hardware
faults and recovers by rejecting dangerous inputs, enforcing
safe actions, or ultimately giving the control back to the
operator. Thus, trained and vigilant pilots remain essential in
these experimental vehicles, although the Safety-Bag ensures
the detection of some of the most critical errors and allows
more response time to the driver.

In this paper, we presented two analysis methods: FMEA
and HazOp-UML. These methods are used to determine the
safety necessities required by the Safety-Bag to detect and re-
act from problems. They analyze the system from two different
points of view and appear complementary for identifying the
safety necessities.

However, it should be noted that the results of these analyses
(in particular the HazOp-UML analysis) depend greatly on the
analyst’s skills. In addition, not all safety requirements are nec-
essarily implementable by the Safety-Bag, which must remain
simple enough to be easily validated. Moreover, the Safety-
Bag should not involve decisions based on risky components
(such as data fusion or artificial intelligence mechanisms).
Nonetheless, the first tests performed on the virtual runway on
the VILAD testbed confirm the interest of using the Safety-
Bag in autonomous vehicles, and the interest of FMEA and
HazOP-UML to design its safety necessities.

For perspectives, we intend to experimentally validate more
safety necessities, and eventually study the absence of conflicts
in a way similar to the SMOF approach [15].

ACKNOWLEDGMENTS

This work was carried out and funded under the EQUIPEX
ROBOTEX. It was supported by the French Government,
through the program Investissements d’avenir managed by
the Agence Nationale de la Recherche. (Reference: ANR-10-
EQPX).

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE transactions
on dependable and secure computing, vol. 1, no. 1, pp. 11–33, 2004.

[2] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving
in urban environments: Boss and the urban challenge,” Journal of Field
Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[3] J. K. Naufal, J. B. Camargo, L. F. Vismari, J. R. de Almeida, C. Molina,
R. I. R. González, R. Inam, and E. Fersman, “A2cps: A vehicle-centric
safety conceptual framework for autonomous transport systems,” IEEE
Transactions on Intelligent Transportation Systems, 2017.

[4] N. H. T. S. A, “Federal automated vehicles policy: Accelerating the
next revolution in roadway safety,” Washington, DC: US Department of
Transportation, 2016.

[5] B. Lussier, R. Chatila, F. Ingrand, M.-O. Killijian, and D. Powell, “On
fault tolerance and robustness in autonomous systems,” Proceedings of
the 3rd IARP-IEEE/RAS-EURON joint workshop on technical challenges
for dependable robots in human environments, pp. 351–338, 2004.

[6] T. Xu and H. Yuan, “Autonomous vehicle active safety system based
on path planning and predictive control,” Chinese Control Conference
(CCC), pp. 8889–8895, 2016.

[7] M. Althoff, O. Stursberg, and M. Buss, “Safety assessment of driving
behavior in multi-lane traffic for autonomous vehicles,” Intelligent
Vehicles Symposium, pp. 893–900, 2009.

[8] D. Meltz and H. Guterman, “Verification of safety for autonomous
unmanned ground vehicles,” Electrical & Electronics Engineers in Israel
(IEEEI), IEEE 28th Convention of, pp. 1–5, 2014.

[9] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing
and validation,” SAE International Journal of Transportation Safety,
vol. 4, no. 2016-01-0128, pp. 15–24, 2016.

[10] P. Klein, “The safety-bag expert system in the electronic railway
interlocking system elektra,” Expert Systems with Applications, vol. 3,
no. 4, pp. 499–506, 1991.

[11] J. Blanquart, S. Fleury, M. Hernerk, C. Honvault, F. Ingrand, J. Poncet,
D. Powell, N. Strady-Lécubin, and P. Thévenod, “Software safety
supervision on-board autonomous spacecraft,” in Proceedings of the 2nd
European Congress Embedded Real Time Software (ERTS’04), 2004.

[12] G. Guesnier, J.-F. Hamelin, and J.-M. Peyrouton, “Centrales nucléaires
n4: l’informatique au service d’une conduite plus sûre,” Epure, no. 56,
pp. 95–96, 1997.

[13] C. Pace, D. Seward, and I. Sommerville, “A safety integrated architecture
for an autonomous excavator,” in IEEE, Proc. 17th Int. Symp. on
Automation and Robotics in Construction,(ISARC), Taiwan, 2000.

[14] F. Py and F. Ingrand, “Dependable execution control for au-
tonomous robots,” in Intelligent Robots and Systems,(IROS). Proceed-
ings. IEEE/RSJ International Conference on, vol. 2. IEEE, 2004.

[15] M. Machin, J. Guiochet, H. Waeselynck, J.-P. Blanquart, M. Roy, and
L. Masson, “Smof: A safety monitoring framework for autonomous sys-
tems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
2016.

[16] MIL-STD-1629A, “Military standard: Procedures for performing a
failure mode, effects and criticity analysis,” Departement of Defence
Washington, Tech. Rep., 1980.

[17] J. Guiochet, “Hazard analysis of human–robot interactions with hazop–
uml,” Safety science, vol. 84, pp. 225–237, 2016.

[18] A. Mekki-Mokhtar, J.-P. Blanquart, J. Guiochet, D. Powell, and M. Roy,
“Elicitation of executable safety rules for critical autonomous systems,”
in Embedded Real Time Software and Systems (ERTS), 2012.


