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ABSTRACT

Image classification has been at the core of remote sensing
applications. Optical remote sensing imaging systems natu-
rally acquire images with spectral features corresponding to
pixels. Spectral classification ignores the spatial distribution
of the data which is becoming more relevant with the devel-
opment of spatial resolution sensors, and many works aim to
incorporate spatial features based on neighborhood through
for example, Mathematical Morphology (MM). Additionally,
one could stack multiple morphological transformations of
the image resulting in a highly complex block of data. Since
classification is a tool that requires a matrix of samples and
features, and simply stacking the different sets of features can
lead to the problem of high dimensionality, we propose a way
to create a matrix of low dimensional feature space by model-
ing the data as tensors and thanks to Canonical Polyadic (CP)
decomposition. Experiments on real image show the effec-
tiveness of the proposed method.

Index Terms— Remote Sensing Image, Mathemati-
cal Morphology, Attribute Profiles, Tensor Decomposition,
Scene Classification.

1. INTRODUCTION

Classification of pixels has become a core subject in remote
sensing applications allowing each pixel to be associated to
a semantic label. For this procedure to take place in a pixel-
wise approach, it is necessary to have a set of samples and fea-
tures, the former representing the pixels of a scene and the lat-
ter representing distinctive characteristics acquired from the
scene.

Thanks to optical remote sensing systems, spectral fea-
tures of the scene can naturally be acquired so that each pixel
is associated to a discrete spectral signature. When the spec-
tral acquisition spans a very high number of narrow bands,
such images are referred to as hyperspectral images (HSI),
represented as data cubes of 3rd-order.

With the improvements in spatial resolution of acquired
images, it has become easier to identify relatively small ob-
jects and more relevant to include spatial information as fea-
tures. In fact, many works such in [1, 2, 3, 4, 5, 6, 7, 8] aimed

at incorporating spatial features based on neighborhood infor-
mation in addition to spectral ones, towards what is referred
to as spectral-spatial classification. One way to account to
spatial information in classification is by extracting features
obtained by filtering an image with operators based on Math-
ematical Morphology.

Creating a new mode based on spatial MM features nor-
mally yields a block of data that is of order four: i.e., two
spatial dimensions (image rows and columns), one to spectral
and one to spatial features. Furthermore, one might want to
stack multiple types of spatial transformations based on dif-
ferent concepts (e.g., size and shape) in a fifth mode, making
it a data block of order five. As such, merging the first two
modes that account to positioning will still give an array that
is at least of order three, so in terms of classification, one way
to deal with it is to reshape the dataset into a matrix, but this
can still suffer from high dimensionality when the size of the
spatial features is large, also this technique ignores the multi-
modal structure of the data and merges them together as one.

One natural approach to deal with the multi-way structure
of the data is by using tensor analysis [9]. Tensors are data
structures in multi-linear algebra, they are normally the ex-
tension of vectors and matrices into higher orders. Tensors
are represented by multi-dimensional (or multi-way) arrays,
hence they are a natural selection and a direct way to handle
the problem of high-order features and account to the interac-
tions between the different modes.

In short, we aim to model high-order-feature hyperspec-
tral data in the framework of tensors and exploit their tools
for the sake of classification. In fact, tensor modeling of
HSI for classification has been explored previously in [10]
where Tensor-Principal Component Analysis (TPCA), a high-
order extension of PCA, is used as a method to maintain the
spectral-spatial multi-modal structure and reduce the dimen-
sionality of the data.

In this paper, we build a high-order tensor by stacking
multiple types of spectral and spatial features separated in
different modes, and we choose to jointly handle these fea-
tures by taking advantage of the CP decomposition. We show
through experiments on real image that CP decomposition is
a good way to represent the pixel data directly in a ”compact
matrix form” and thanks to a low dimensionality of the de-



Fig. 1: Flow chart of the proposed method.

composition, leading to a low dimensionality of the feature
space despite the high complexity of the data. Moreover, it
is possible to incorporate nonnegative constraints into the CP
decomposition, which allows to spectral unmixing in the fu-
ture. Our approach to model multiple types of spatial features
is inspired by the work of [4] in Extended Multi-Attribute
Profiles (EMAP), where multiple types of morphological at-
tribute operators are considered in the classification. In [4],
the different Extended Attribute profiles (EAP) are concate-
nated along the third mode of the HSI. Instead, we keep the
different EAP separated by stacking them as a new mode in
the tensor. The proposed method incorporating multiple types
of features shows promising results in terms of accuracy of
classification compared to other methods in the literature.

From here on the paper is organized as follows. Section
2 introduces the proposed method and the challenges within.
Section 3 shows the experiments that were carried on. Finally,
a conclusion is drawn in Section 4.

2. THE PROPOSED METHOD

In this section we briefly introduce the main aspects of the
proposed method, which is shown in the flowchart of Fig-
ure 1. There are originally two main steps before entering
classification, the first one is creating the spatial features
based on MM and the second one is the CP decomposition.
However, due to challenges induced by high dimensionality
of the spectral bands and the high number of pixels, two
sub-steps are needed. First, we reduce the number of bands
with very minimal loss as a preprocessing step, which is usu-
ally done using PCA, but since we care about conserving the
nonnegativity aspect of the data (for spectral unmixing which
is out of the scope of this paper), we perform the reduction
using Nonnegative Matrix Factorization (NMF). Second, be-
fore the CP decomposition step, we compress the first mode
of the tensor in order to reduce its size, which helps a lot with
computing the CP decomposition in an efficient way.

2.1. Nonnegative Matrix Factorization Preprocessing

First let us denote a HSI by M ∈ RI1×I2×J , where I = I1I2
is the number of pixels and J is the number of spectral bands.
We are interested in reducing the number of bands regardless
of the pixel positioning, so M is reshaped in lexicographic
order into M ∈ RI×J by merging the first two modes. NMF
decomposes a matrix M ∈ RI×J into the product of two non-
negative matrices such that M = WHT , where W ∈ RI×R

and H ∈ RJ×R, and R is the number of components in the
decomposition. Our interest is that W can be thought as a
way to represent pixel data withR spectral features while con-
serving nonnegativity for reasons mentioned earlier, where
essentially R < J . W is then reshaped back to 3rd-order
W ∈ RI1×I2×J .

2.2. Spatial Features Using Mathematical Morphology

As a case example, the focus in this paper will be on Ex-
tended Attribute Profiles (EAP) [4] for their effectiveness in
extracting distinctive spatial features. Nevertheless, the pro-
posed approach can also extend to different approaches for
incorporating spatial features.

The attribute profile (AP) of a 2D image with scalar val-
ues is formed by concatenating the attribute transformations
obtained using successive values of the attribute parameter,
the result is a 3rd-order data block. The EAP of a multivari-
ate image is formed when the AP of the single 2D images are
concatenated, the result is a 3rd-order data block, where the
spectral and spatial features are stacked in one mode. Our
take on EAP is a bit different, we prefer to separate the spec-
tral and spatial modes such that the result of an EAP is a 4th-
order block of data denoted as T ∈ RI1×I2×J×K , and K is
the number of attribute transformations.

Furthermore, we compute more than one type of EAP of
W . These EAP are then stacked in parallel to form a fifth
mode which can be seen as an acquisition of different types of
EAP. Finally, the fifth-order data block is reshaped by merg-



ing the first two modes to form a fourth-order data block de-
noted by Y ∈ RI×J×K×L, which is ready to be dealt with us-
ing tensor decomposition, and L denotes the number of EAP
being computed.

2.3. Compressed Tensor Decomposition

Tensor Y can be seen as a high-order-feature hyperspectral
data. Seeing as the first mode of Y is the one of pixels, i.e.
samples, and seeing as Y is a fourth order tensor, this means
that each pixel has a third-order tensor of features which is
indeed complex and heavy to deal with for the sake of clas-
sification, and here comes the importance of tensor decom-
position. Tensor decomposition is a tool used to break the
high-order complex structure of tensors into multiple simpler
structures of matrices, while accounting to the intrinsic inter-
actions between the elements of the tensor.

One of the most important of such tools is the CP decom-
position, which can be seen in two different ways. To begin
with, an N th-order tensor D ∈ RI1×···×IN is referred to as
decomposable if it can be written as the outer product of N
vectors vn ∈ RIn s.t. n ∈ {1 . . . N}: D def

= v1 ⊗ . . . ⊗ vN .
On one hand CP decomposition allows to decompose a tensor
into the sum of rank-1 decomposable tensors:

Y =

R∑
r=1

λr Dr, (1)

where the tensor rank, denoted by R, is the least number of
terms such that the CP decomposition is exact. On another
hand, it allows to decompose an N -th order tensor into N
matrices, usually referred to as “factor matrices” which are
formed by stacking each set of R vectors as columns, and a
diagonal core tensor Λ, formed by filling the diagonal with
values of λr, under the following notation:

Y = (V 1, . . . ,V N ) ·Λ. (2)

CP decomposition can adopt the nonnegativity constraints in
its computation in order to yield results that can be physically
interpretable, and this will be more relevant for future works.

Hence, one aspect that appears in computing the CP de-
composition is that each factor matrix V n is directly related
to the n-th mode of Y . In our case of application, we are
interested that V 1 directly describes the first mode of pixels
by means ofR components which could be seen as a compact
form of features, and one could say that the complex structure
of pixels in Y boils down to row vectors of R elements, and
due to redundancies that are present in Y , R could be rela-
tively of a small value that is acceptable when feeding V 1 to
the classifier.

It is worth noting here that since the number of pixels is
huge compared to the other dimensions, a compressed non-
negative CP decomposition inspired by [11] and adopted by
the algorithm Alternating Optimization - Alternating Direc-
tion Method of Multipliers (AO-ADMM) [12] is carried out.

3. EXPERIMENTS AND RESULTS

3.1. Description of the dataset

Our dataset is described by a real hyperspectral image, Uni-
versity of Pavia. It is an image acquired by the ROSIS sen-
sor with geometric resolution of 1.3 meters. The image has
610×340 pixels and 103 spectral bands. The dataset contains
a groundtruth image that consists of 9 classes: trees, asphalt,
bitumen, gravel, metal sheets, shadows, self-blocking bricks,
meadows, and bare soil. There are also 42776 labeled pixels
available as test set and 3921 pixels available as training set,
the latter is fixed at that.

3.2. Experimental set-up

NMF. We start with the HSI such that M ∈ R610×340×103

and the number of pixels is 610 × 340 = 207400. As a pre-
processing step in order to reduce the number of 103 bands,
we find that the NMF with 30 components yields a reconstruc-
tion error of 0.89% where W30 ∈ R610×340×30, and that with
40 components yields a reconstruction error of 0.65% where
W40 ∈ R610×340×40. We use both datasets for the following
steps.

EAP features. We use three different types of EAP
as mentioned in [4], the area of the regions (EAPa) with
values of λa = {100, 500, 1000, 5000}, the diagonal of
the box bounding the region (EAPd) with values of λd =
{10, 25, 50, 100}, and the standard deviation of the grey-level
values of the pixels in the regions (EAPs) with values of
λs = {20, 30, 40, 50}, bringing a wide diversity of features
to the image. Having 4 values of λ corresponds to K = 9.

First we create the 3 EAP for each of W30 and W40

corresponding to L = 3, then we stack them in a 5th order
tensor to which the outputs are Y30 ∈ R207400×30×9×3 and
Y40 ∈ R207400×40×9×3 respectively. Denote by Extended
Multi-Attribute Profile (EMAP) as the stacking of multiple
types of EAP.

Compressed nonnegative CP decomposition. Now that we
have the 4th-order tensor, we pass it to the CP decomposition
step. As mentioned earlier, this part is adopted by the algo-
rithm AO-ADMM with constraints of nonnegativity on all the
modes in addition to constraint of compression only on the
first mode. The factor matrices are randomly initialized using
the absolute value of i.i.d. standard Gaussian distribution, and
only the first factor matrix is compressed after that.

Classification. For all the classifications, we use a Ran-
dom Forest (RF) classifier with the number of trees set to 100.
Table 1 shows some results of various conducted tests, where
we compare the proposed method to others in the literature,
namely PCA as carried out in [4] for EMAP and TPCA as
carried out in [10]. The comparisons are based on the Overall
Accuracy (OA) and the Average Accuracy (AA) of the classi-
fication. For all the conducted tests, the same set of attribute
parameters was chosen.



Method Features OA AA
PCA 4 68.34 78.01

NMF30 30 73.79 85.10
NMF40 40 77.74 86.33

PCA + EMAP [4] 108 91.12 90.36
EMAP + TPCA [10] 100 90.60 91.65

NMF30 + EMAP + CPD30 30 93.96 92.50
NMF40 + EMAP + CPD30 30 94.20 95.85
NMF40 + EMAP + CPD40 40 94.76 94.38

Table 1: Records of various tests in terms of Overall Accu-
racy (OA) and Average Accuracy (AA). The number of fea-
tures for each test appears in the second columns. The best
results are in bold and the second best are underlined.

3.3. Results and discussion

Looking at Table 1, we can see that the best results are
achieved by computing the EMAP on the NMFs and apply-
ing CPD afterwards. The proposed method shows improved
accuracy compared to the competing techniques, PCA and
TPCA. On a second note, we see that classifying the com-
ponents obtained by NMF yields better accuracy than classi-
fying the components obtained by PCA. In addition to good
accuracy, obtaining nonnegative features using NMF has an
advantage of conserving nonnegativity and extracting phys-
ical meaning from the data compared to features obtained
using PCA.

4. CONCLUSION

In this paper, creating multiple spatial diversities thanks
to mathematical morphology was explored for the sake of
spectral-spatial classification of HSI. The corresponding
high-order data was handled using tensor decomposition
by jointly accounting to spectral and spatial features. Some
challenges like reducing the high dimensionality of the spec-
tral bands while conserving the nonnegativity of the data was
dealt with using NMF, which also showed some advantages
over choosing PCA. Experimental results using a real HSI
showed that the CP decomposition is a promising candidate
to represent high-order feature data in low dimensional fea-
ture space with good accuracy. In future works, we plan to
dig more into the properties of nonnegativity and investi-
gate other potential interests of the CP decomposition, like
spectral unmixing of HSI.
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