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Abstract 

Specific scheduling problems with complex hybrid logical and terminal constraints, non-stationarity in 
process execution as well as complex interrelations between dynamics in process design, capacity utili-
zation, and machine setups require further investigation and the application of a broad range of method-
ical approaches. One of these approaches is optimal control. The objectives of this survey are twofold. 
The first objective is to derive major contributions, application areas, limitations, as well as research and 
application recommendations for the future regarding optimal control applications to scheduling. The 
second objective is to explain control engineering models in terms of industrial engineering and produc-
tion management.  In this paper, we provided a survey on the applications of optimal control to schedul-
ing in production, supply chain, and Industry 4.0 systems with a focus on the deterministic maximum 
principle. Optimal control approaches take a different perspective as mathematical programming meth-
ods which represent schedules as trajectories. We consider optimal control models, performance analy-
sis qualitative methods, and computational methods for optimal control. We provide a brief historic 
overview and clarify major mathematical fundamentals whereby the control engineering terms are 
brought into correspondence with industrial engineering and management. The survey allows the group-
ing of models with only terminal constraints with application to master production scheduling, models 
with hybrid terminal-logical constraints with applications to short term job and flow shop scheduling, 
and hybrid structural-terminal-logical constraints with applications to customized assembly systems 
such as Industry 4.0. Computational algorithms in state, control, and adjoint variable spaces are dis-
cussed. Finally, we derive major contributions, application areas of different control methods, and their 
limitations. This paper also provides recommendations for future research and applications. 

Keywords: optimal program control, deterministic control, maximum principle, scheduling, attainable 
sets, algorithms 



1. Introduction 

Short-term scheduling belongs to the fundamentals of scheduling theory. It considers jobs containing 

operation chains with equal (i.e., flow shop) or different (i.e., job shop) machine sequences and different 

processing times. The operations need to be scheduled for machines with different processing power 

subject to some criteria such as makespan, lead time, or due dates (Blazewicz et al. 2001, Pinedo 2008, 

Dolgui and Proth 2010, Werner and Sotskov 2014).  

Over the last decades, mathematical optimization applications to scheduling problems have been studied 

from different perspectives whereby significant progress can be observed in the development of rigor-

ous theoretical models and efficient solution techniques. Lauff and Werner (2004), Jungwattanakit et al. 

(2009), Sotskov et al. (2013), Choi et al. (2013), Harjunkoski et al. (2014), Bożek and Wysocki (2015), 

Ivanov et al. (2016a,c) have pointed out that specific scheduling problems with complex hybrid logical 

and terminal constraints, non-stationarity in process execution as well as complex interrelations between 

dynamics in process design, capacity utilization, and machine setups require further investigation and 

the application of a broad range of methodical approaches.  

Optimal control approaches take a different perspective as mathematical programming methods which 

represent schedules as trajectories. Optimal control applications to scheduling problems are encountered 

in production systems with single machines (Giglio 2015), job sequencing in two-stage production sys-

tems (Lou and Van Ryzin 1989, Sethi and Zhou 1996)  and multi-stage machine structures with alterna-

tives in job assignments and intensity-dependent processing rates such as flexible manufacturing sys-

tems (Sharifnia et al. 1991, Maimon et al. 1998, Yang et al. 1999, Ivanov and Sokolov 2013a, Pinha et 

al. 2015), supply chains as multi-stage networks (Ivanov and Sokolov 2012, Ivanov et al. 2013), and 

Industry 4.0 systems based on data interchange between the product and stations, flexible stations dedi-

cated to various technological operations, and real-time capacity utilization control (Ivanov et al. 

2016a). 

This survey considers research on optimal control applications to production scheduling with analysis of 

model parameters and computational algorithms published in the last 55 years. The objectives of this 

survey are twofold. The first objective is to derive major contributions, application areas, limitations, as 

well as research and application recommendations for the future regarding optimal control applications 

to scheduling. The second objective is to explain control engineering models in terms of industrial engi-

neering and production management. We provide a survey on the applications of optimal control to 

scheduling in production, supply chain, and Industry 4.0 systems whereby we restrict ourselves to de-

terministic maximum principle-based approaches and omit detailed analysis of stochastic optimal con-

trol approaches as well as dynamic programming algorithms. Regarding the related topics which are not 

covered in this paper, we refer to the surveys by Sethi (1978, 1984) for applications of the maximum 

principle to production-inventory problems and to works (Lou et al. 1994, Sethi and Zhang 1994, 

Presman et al. 1995, Samaratunga et al. 1997, Presman et al. 1997, 2000, Feng and Yan 2000, Sethi et 

al. 2002, Khmelnitsky et al. 2011) which extend this survey to stochastic scheduling problems.    

The survey follows the structure “optimal control models – performance analysis qualitative methods – 

computational methods”. In Section 2, a brief historic overview and clarification of major mathematical 

fundamentals  are provided. The control engineering terms are brought into correspondence with indus-

trial engineering and management. In Section 3, optimal control models for scheduling in production, 

supply chain, and Industry 4.0 systems are presented and classified in terms of their analytical contents 



and application areas. Section 4 deals with attainable (reachable) sets as a method of qualitative analysis 

of optimal control performance. Section 5 is devoted to computational algorithms regarding state, con-

trol, and adjoint variable spaces. In Section 6, we derive major contributions, application areas of differ-

ent methods, and their limitations. This section also provides recommendations for  future research and 

applications. The paper concludes in Section 7 by summarizing the insights from this survey. 

2. Fundamentals of optimal control models with applications to scheduling 

2.1. Historical development 

Optimal control approaches represent schedules as trajectories. The first studies in this area were devot-

ed to inventory control. One of these studies (Eilon 1961) was published in the first volume of the Inter-

national Journal of Production Research (IJPR). Later, Hwang et al. (1967, 1969) were among the first 

to apply optimal control and the maximum principle to multi-level and multi-period master production 

scheduling which determined the optimal control (i.e., production) with the  corresponding state (i.e.,  

inventory) trajectory. Albright and Collins (1977) developed a Bayesian approach to the optimal control 

of continuous industrial processes. Bedini and Toni (1980) developed a dynamic model for the planning 

of a manufacturing system. The maximum principle has been used to formulate the problem and obtain 

a solution. A large research area of flexible manufacturing systems and their dynamics has been exam-

ined in numerous studies (e.g., Stecke and Solberg 1981). The stream of production scheduling was 

continued by Kimemia and Gershwin (1985), Kogan and Khmelnitsky (1996), and Khmelnitsky et al. 

(1997), who applied the maximum principle in discrete form to the planning of continuous-time flows in 

flexible manufacturing systems  

The origins of control scheduling techniques can be found in  network planning, dynamic programming 

and waiting line theory (Moiseev 1974, Sotskov et al. 2013). Consider the graph in Fig. 1. 
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Fig. 1. Network planning graph 

In the classical network planning theory, the state ix of the i-job can be determined subject to Eq. (1): 
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where Ti is the task time to process the i-job, Qi is the processing volume of the i-job, and i  is the in-

tensity (i.e., processing rate) of processing the i-job, whereby the jobs i= 1,...,n are interconnected with 

each other in terms of precedence constraints “or”/“and”. It is notable that even if elements of dynamics 

can be observed in the aforementioned system regarding process deployment in time, job execution 

dynamics itself have not been considered explicitly. In other words, operations execution has been treat-

ed in a static manner since task times nwere assumed to be fixed. In reality, task times may change in  

job execution dynamics. As such, dynamics of job execution requires an explicit description of job pro-

cess execution, distribution (allocation) of resources required for job execution, and changes in the job 

states and the respective control inputs. The aforementioned dynamic interpretation of job execution 

was extensively developed in the 1970s (Zimin and Ivanilov 1971, Moiseev 1974) within the framework 

of optimal control theory. 



Optimal control theory is devoted to determining some functions known as controls that lead to optimi-

zation(minimization or maximization) of an objective (Pontryagin et al. 1964, Athaus and Falb 1966, 

Lee and Markus 1967, Moiseev 1974, Bryson and Ho 1975, Hartl and Sethi 1984, Soner 1986, Gersh-

win 1994, Sethi and Thompson 2000). This theory evolved over the centuries based on calculus varia-

tion principles developed by Fermat, Lagrange, Bernulli, Newton, Hamilton and Jacobi. In the 20th cen-

tury, two computational fundamentals of optimal control theory, the  maximum principle (Pontryagin et 

al., 1964) and the dynamic programming method (Bellmann 1972), were developed. These methods 

extend the classical calculus variation theory which is based on control variations of a continuous trajec-

tory and observing the performance impact of these variations at the trajectory end. Since control sys-

tems in the middle of the 20th century were increasingly characterized by piecewise continuous func-

tions (such as 0-1 switch automats), the development of the maximum principle and the dynamic pro-

gramming was needed for solving problems with complex constraints on state and control variables. 

This section aims to clarify the notions of state, control, and performance at the optimal control model 

level, bridging these notions to industrial management and engineering. Moreover, the computational 

level will be considered and the maximum principle, adjoint equation system, and transversality condi-

tions will be clarified. 

2.2. Major elements of an optimal control model for scheduling 

Consider the evolution of a quantifiable object (e.g., inventory or production quantity) in time

),u),(x,(f)(x ttt  fttt
dt

d
t  0,
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where mRu is the control, 
nRx is the terminal system state vector, nRf is a given function, 

nR is 

Euclid space of dimensionality 0, tn is the initial point in time and ft  is final point in time. For exam-

ple, in a job shop, )(x t can describe a buffer such as production quantity or inventory, and control 

variable )(tu can describe processed flow volume of a job at a machine. The system state vector is de-

termined by the evolution of state variables )(x t  that characterize the system at each point in time. State 

evolution in dynamics is determined by control variables )(tu  that correspond to the decisions of a per-

son or an algorithm governing the system dynamics. 

In real practice of control engineering, control variables are typically considered bounded piecewise 

continuous functions. Examples of controls in operational systems include processing rates ofmachines 

in manufacturing or shipment rates in transportation. In production scheduling, binary control variables 

are used to describe the assignment of a job to a machine. Consider an example (Fig. 2). 
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Figure 2. Example of job execution dynamics  

Fig. 2 represents job execution dynamics in which the non-stationarity of job execution is reflected. 

Machine availability times (subject to maintenance or other restrictions) are given as a preset matrix 

time function (t). The )(1 tu is a control decision variable characterizing the processed flow volume at 

the machine subject to some processing intensity and to another control decision 1)(2 tu , namely an 

assignment of the job to this machine. It can be observed in Fig. 2 that job processing at the machine 

starts at 1tt   and ends at 11tt   whereby a flow (volume) of six product units is produced.  

A standard dynamic network process control model has the  form of Eqs. (2)-(8). 

Mathematical model of job execution control 
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where )(o
ix is the current state of the execution of the i-job, )( )()( o

i
o

i xa   are asymmetric step func-

tions that set logical constraints to avoid overproduction in regard to the planned volume )(o
ia (see fur-

ther in Eq. 4),  
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  )()( )()()()(  are asymmetric step functions that set logical 

precedence constraints “and”/“or” regarding the i-job (cf. Eq. 5). The job numbers   and   from the 

sets 
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2i
determine preceding jobs for the i-job. )(o

iu is a continuous control variable subject to the 

maximum processing intensity of operations execution (Eq. 3). 
)()( o

i
o
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The peculiarity of optimal control models are constraints. In practice, the system trajectory cannot be-

long to some areas in the space
nR . The above-mentioned boundary conditions belong to the con-

straints on the trajectory that can differ regarding fixed or free ends. In scheduling models, we typically 

have fixed end boundary conditions (Eq. 7). Next, the constraints on control need to be defined. Since 
the search for optimal control is performed within the class of functions )(tu  that depend only on t, this 

problem class is called optimal program control. Typically, in production scheduling we have optimal 

program control problems with two types of constraints on control, i.e., terminal and logical constraints. 

In future systems of Industry 4.0 production, the third type of hybrid constraints, i.e., structural-logical-

temporal constraints will be used (see further in this paper in Sect. 3.3). Terminal constraints (see Sect. 

3.1 in this paper) describe limited control resources (e.g., Eqs. 4 and 5). An example of a terminal con-

straint is a capacity restriction at a machine. Logical constraints (see further in this paper in Sect. 3.2) 

describe α-precedence relations of the type “or” and β-precedence relations of the type “and” regarding 

the job sequences in the jobs (Eq. 5).  
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Terminal constraints (4) describe restrictions for limiting job execution subject to fixed processing vol-

ume )(o
ia . Constraints (5) determine precedence relations by blocking job D  until the previous opera-

tions 
 DD ,  have been completed. Optimal control scheduling models with only terminal constraints 

typically address the master production scheduling level (Hwang et al. 1967, 1969, Kimemia and 



Gershwin 1983, Jiang and Sethi 1991, Khmelnitsky et al. 1997, Kogan and Khmelnitsky 2000). Sched-

uling models with both terminal and logical constraints can also be applied to flow shop and job shop 

scheduling (Kalinin and Sokolov 1985, 1987, Ivanov and Sokolov 2013a, Ivanov et al. 2016a,с) as well 

as to supply chain scheduling (Ivanov and Sokolov 2012, Ivanov et al. 2013). Along with constraints 

(3), integral constraints on resources are typically written in the form of Eq. (6):  
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In order to assess the scheduling results, optimal control models define boundary conditions, i.e., start 

and end conditions such as Eq. (7) 

0xh0xh  ))((;))(( 100 ftt , (7) 

where 
)(

0
oh , )(

1
oh  are known differentiable functions that determine the start and end conditions of the 

vector )(tx . For example, an initial condition might specify that the executed volume of jobs at the 

beginning of the scheduling horizon is equal to zero. End conditions could reflect the desired end state, 

i.e., the completion of the jobs by the time tf. 

The optimal program control vector )(tu and the state trajectory ),u,x(fx t should be determined so 

that the boundary conditions are met; in other words, the desired values of the scheduling performance 

indicators should be achieved as an analogy to goal programming. 

The performance assessment is designed in control systems in the following way. The control of system 

(2) is directed towards attainability of some performance. The performance metrics (or functionals, in 

terms of optimal control) can be grouped into terminal (i.e., flow-oriented metrics, e.g., work-in-process 

inventory or planned production volume subject to a customer demand) and integral (e.g., due dates) 

functionals (Eq. 8):  
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Performance reachability depends on the selection of the trajectory )(tx  and control )(tu . In general, 

scheduling problems in terms of control have been formulated for searchingoptimal program control for 

dynamic system (2) subject to minimization of the functional (8) subject to  constraints (3)-(7). The first 

term in Eq. (8) characterizes the relationship between planned job execution volume and the volume that 

can be realized in the computed schedule. The second term depends on the interpretation of the function 

)((  u  and frequently plays the role of delay penalties.   

2.3. Major elements of optimal control computational procedures 

Necessary optimality conditions can be derived from the maximum principle (Sethi 1978, Hartl et al. 

1995, Afanasiev et al. 1996, Khmelnitsky et al. 1997, Sethi and Thompson 2000). Consider control sys-

tem (9): 

)),(u),(x,()(x tttft  ,fttt 0  
,x)(x 00 t ,)(u Ut 

  
min))(x(  ftFJ   (9)

 

Let us introduce a scalar Hamiltonian function H  and adjoint vector system 
nR in Eq. (10):  
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Adjoint vector system plays the role of dual models in linear programming. Coefficients of the adjoint 
systems can be interpreted as Lagrange multipliers. Under assumptions that )(u t  is optimal control and 

)(x t and )(t are the trajectory and adjoint system satisfying (10) and (11), the function 

))(ψ),(u),(x,( ttttH  reaches its maximum for )(x t at the point )(u t . Then Eq. (12) holds: 

))(ψ),(x,(uu ttt           (12) 

Subsequently, Eq. (12) is brought into correspondence with (10) and (11). As a result, a two-point 
boundary problem for a system of ordinary differential equations involving )(x t  and )(t  is formed. 

The optimal solution is now bounded by this differential system. Note that Eqs. (9)-(12) in general pro-

vide only the necessary conditions for the existence of an optimal solution. For linear control systems, 

these maximum principles provide both optimality and the necessary conditions (Ivanov and Sokolov 

2010). This fact requires further optimality study for each concrete case of application. 

Typically, computational procedures start with a nominal solution that satisfies both main and  

adjointdifferential systems. Then this solution is modified by integrating main and adjoint systems by 

control variations towards a Hamiltonian increase. During this procedure, at fTt  transversality condi-

tions are evaluated. Transversality conditions are the end conditions of the adjoint system. The adjoint 

variables can be interpreted as dynamic priorities of jobs and play here the role of “shadow” prices in 

linear programming models. However, in contrast to those canonical forms where “shadow” prices are 

fixed, the adjoint variables change dynamically. These changes are subject to the contribution of a par-

ticular operations assignment and scheduling (i.e., machine and time windows) to the change in perfor-

mance assessment functions. Consequently, at each point in time the dynamic priorities of jobs may be 

changed if a newly arrived job provides a better contribution to the performance functional. 

Various algorithms based on Pontryagin’s maximum principle have been developed in the aforemen-

tioned area. In essence, these algorithms reduce the non-classical calculus variation problem to a two-

point boundary problem (Zimin and Ivanilov 1971, Moiseev 1974). Regarding large-scale problems, 

two major shortcomings of this approach have been observed. First, the two-point problem became a 

multiple-point problem with jumps in the adjoint variables at the end of job processing because of ter-

minal constraints (4). The explanation of this effect can be seen in step function differentiating. The step 

functions became general delta-functions. The second problem was related to the numerical computa-

tion of the boundary problems for deriving the initial conditions of the adjoint variables which are need-

ed to compute the optimal schedule. Questions of convergence, optimality, and the necessary conditions 

remained open. Special heuristic algorithms were developed in this area to overcome these problems 

(Chernousko & Lyubushin (1982).  

In order to resolve the problems with the step functions and the respective non-linearity in the right-

hand parts of Eq. (2), Moiseev (1974) and Kalinin and Sokolov (1985)] developed another variant to 

describe the right-hand parts of Eq. (2) as terminal constraints in the control and functional space (Eq 

13), whereby the functional (8) was modified as shown in Eq. (14).  
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where if are given penalty functions if the conditions (13) are not fulfilled (in case of objective function 

minimization).  id are the given terminal constraints.   

The additional component in (14) describes the penalty for non-fulfillment of the condition (13). How-

ever, the search complexity for i  was similar to the search complexity for the jump values in the 

adjoint variables. In addition, the classical optimal control models for scheduling do not consider as-

pects such as setups, indivisibility of resources for job execution at any point of time, and bans on inter-

ruptions of the job execution. A special group of problems can be considered regarding uncertainty and 

risks, schedule stability, flexibility and robustness analysis, as well as multi-criteria resolution. The fol-

lowing Section 3 will describe how the given problems can be resolved through several modifications of 

the model (2)-(8). 

3. Optimal control models for job scheduling in production, supply chain, and Industry 4.0  

Scheduling problem statements differ in terms of fixed or variable process and operations sequences. In 

this regards, we structure the analysis in this section in accordance to Fig. 2.  

 

Fig. 2. Classification of scheduling problems solved by optimal program control 

 

Let us analyse the problem statements, models, and algorithms in Sects 3.1-3.3 in detail. 

3.1. Model with terminal constraints 

According to Kimemia and Gershwin (1983), Kogan and Khmelnitsky (1996), Khmelnitsky et al. 

(1997) and Maimon et al. (1998), the optimal control model with terminal constraints can be applied to 

production scheduling in the following settings. 

Problem description 

The task consists of scheduling jobs on machines subject to cost minimization and on-time demand 

fulfillment regarding quantity and due date with limited machine capacity considerations. 

The problem formalization is presented as follows. Note that, in line with the referenced studies Kogan 

and Khmelnitsky (1996), Khmelnitsky et al. (1997) and Maimon et al. (1998), Sect. 3.1 contains origi-

nal notations which are different from notations in other sections of this paper and are valid for Sect. 3.1 

only. 
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imD   
due date of job

  

imX demand  

kjT minimum setup time  

ikj capacity of machine k being in state j when producing product i (in case of product consumption, 

this parameter is negative) 

c
ic  subcontracting cost per unit product 

r
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; 

r
ic  

purchasing cost of all raw materials required per unit product  i ; 

p
imc  penalty for violating the due date of job m   

Decision variables 

)(tX i  
cumulative buffer level of i-product at time  t ; 

)(tVkj  a dimensionless continuous function that reflects the current state of machine; ];[)( 10tVkj  

)(twkj
control variable characterizing actual loading of machine k  relative to its production capacity

];1,0[)( twkj
 

)(tukj
 control variable, characterizing the rate of state j on machine k , i.e., the setup rate  

Process control model 
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Eq. (15) describes production process. Eq. (16) describes the setup process. 

Constraints 

The setup process is characterized by two types of constraints. First, the rate of transformation from 

current state is equal to the transformation rate into a new state (Eq. 17)  
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Second, the rate of transformation from and to state j

 
is bounded (Eq. 18) 
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where kjT  is the minimum time of setting up machine k  on state j , and kjT  is the minimum time of 

setting down machine k  on state j . Eq. (17) characterizes the balance between the setup intensities of 

the j-machine by state transition. Eq. (18) constraints the maximum intensity (i.e., processing speed) of 

the operation processing at the j-machine. 

A restriction on sequence-dependent setup process interaction (19) states that the j-machine in the setup 

state cannot execute processing operations at the same time.   
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where )(tX i
is positive, and the function )(XC  reflects the inventory carrying cost. Otherwise, it re-

flects the stock out cost for subproducts (internal shortages) and penalties for violating demands for end 

products (external shortages) 
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The scheduling problem is now formulated in the following way: minimize the functional constraints 

(20) to transit the dynamic object (14)-(15) from the given initial state )(),( 00
iki VX  to the required final 

state (defined in Eq. (20)) subject to constraints (17)-(18). 

With the help of the maximum principle, Kogan and Khmelnitsky (1996), (2000) formulated the Hamil-

tonian function (21) and the respective adjoint equation systems (22). 
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As a result of Hamiltonian maximization, it becomes possible to compute the optimal schedule for mate-

rial flow processing at a machine complex. The schedule is described using three logical conditions 

regarding control w (Eq. 23): 
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Eq. (23) was derived in the studies by Kogan and Khmelnitsky (1996) and (2000). It underlines the ad-

vantages of the maximum principle as compared to other optimal control approaches. The developed 

approach allows explicit determination of information about the structure of optimal operating modes of 

work stations prior to computational experiments. In addition, existence conditions were found, i.e., 

conditions where the Hamiltonian function equals Eq. (21). Kogan and Khmelnitsky (1996) provided 

evidence of the practical application of the developed approach for a flexible manufacturing system with 

four machines and six jobs for the case of fixed job processing technology.  

A number of questions have arisen from the analysis of the aforementioned approach. First, the compu-

tation error estimation as a consequence of replacing the step function in Eq. (19) with a sequence of 

approximated functions needs to be named. Second, the convergence in the numerical computation pro-

cedure needs to be analysed. The Hulquist’s (1988) modification does not guarantee convergence for the 

considered form of non-linear systems in general. The selection of the initial conditions for the adjoint 

system is an important precondition for algorithmic convergence. In addition, optimality proofs need to 

be addressed. As known, the maximum principle for non-linear dynamic systems is a necessary optimal-

ity condition. The sufficiency condition needs to be analysed separately (Athaus and Falb 1966, Bryson 

and Ho 1975, Pontryagin et al. 1964).   

At the same time, it can be observed that the initial model (2)-(8) has been extensively extended by the 

model (15)-(23). Another extension in Sect. 3.2 will be made regarding the dynamic system (15)-(16) 

itself and the technical and technological constraints (Eq. 17 and 18) subject to practical needs of real-

time job and flow shop environments. 

3.2 Model with hybrid terminal-logical constraints: applications to job shop and flow shop scheduling 

The model in Sect. 3.1 has been proved to be a working tool for production scheduling when flow con-

trol is considered and no precedence operation relations exist in jobs. For job shop scheduling, prece-

dence relations exist. The studies by Kalinin and Sokolov (1985), (1987), Sokolov and Yusupov (2002) 

resolved the aforementioned problems with multiple criteria, bans on execution interruptions and non-

stationarity for large-scale scheduling problem. The following studies by Ivanov and Sokolov (2013), 

Ivanov et al. (2013), and Ivanov et al. (2016a,b,c) developed a special form of hybrid terminal-logical 

constraints that allows the application of maximum principle-based optimal control models to job and 

flow shop scheduling for flexible manufacturing systems, supply chains, and Industry 4.0 networks. 

Consider the following simplified example that unites the model of operation execution control and flow 

control (Eqs. 24-29).  
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In contrast to constraints (5) and (13), Eq. (25) contains both control and state variables from Eq. (24). 

In this form, constraints (25) are new in optimal control applications to scheduling and allow the use of 

optimal control for assignment and sequencing tasks. In the following part of this paper, we will show 

how to transit from impulse controls in Eq. (26) to interval [0,1] for these controls in the class of piece-

wise continuous functions. The controls will take binary values that will allow their usage in assignment 

problems. In terms of sequencing, we observe that in Eq. (27), the controls from Eq. (24) are contained. 

These controls activate Eq. (27) that describes the flow distribution control problem and sequencing 

subject to processing intensity of the machines. The given constraint system unifies two large model 

classes: the flow models in system dynamics and operation control and resource distribution models in 

network planning theory.  

The basic idea of this approach is that operation execution and machine availability are dynamically 

distributed in time over the planning horizon. As such, not all operations and machines are involved in 

decision making at the same time (Fig. 3). 

 

Fig. 3. Schedule execution dynamics at two points in time (based on Ivanov et al. 2016c) 

The multidimensionality and the combinatorial explosion of the problem results in decreasing connec-

tivity under the network diagram of operations. Consider four machines and six jobs )(iB  each of which 

is composed of 3–6 operations 
)(iD . At any time instant, only one operation can be processed on one 

machine. Different colors describe current execution states of operations. The operations marked in 

black have already been completed. The operations marked in gray may be executed subject to machine 

availability and precedence relations. The operations marked in white cannot be executed yet because of 

the precedence relations. For example, at 2tt  , the operation 
)4(

2D  cannot be assigned since the opera-

tion 
)4(

1D  is still being processed with the use of machine  )1)(( 2
)(

12
)4( tuM o

j . From Figure 3, it can be 



observed that at any time instant, the assignment decisions consider only the gray colored operations 

subject to some available (“competing”) machines, i.e., the large-scale multi-dimensional combinatorial 

matrix is decomposed. The assignment of a machine )( jM  to the execution of the operation 
)(iD  can be 

described by the piecewise continuous function )()( tu o
ji  that becomes equal to 1 in the case of an as-

signment. It can be observed from Figure 3 that the current dimensionality of the considered scheduling 

problem is determined by the dimensionality of the gray colored area. The operations in the black and 

white areas are not being considered at the given points of time , and, therefore, will not influence the 

assignment matrix size. This is the principal advantage of the proposed dynamic decomposition as com-

pared to mathematical programming and combinatorial optimization theory (Kalinin and Sokolov 1985, 

1987, Sokolov and Yusupov 2002, Ivanov and Sokolov 2010, 2012, Ivanov et al. 2012). 

Problem description 

The task consists of sequencing jobs and scheduling operations with precedence relations on machines 

subject to a multi-criteria objective function (makespan, due dates, lead time, and throughput) with lim-

ited machine capacity and non-stationary capacity availability considerations (Ivanov et al. 2016c).  

Consider the problem formalization. Note that some of the notations have been defined in Sect. 2. Addi-

tional notations are defined as follows. 

 Set indexes 

j is the machine index, 

μ is the operation index (i.e., number of the operation in the job), 

o is the index of parameters and variables in the model of operation control,  

k is the index of parameters and variables in the model of machine control, and 

 f is the index of parameters and variables in the model of flow control.  

For further consideration and a more convenient comparison of approaches from different articles, we 

assume ],( fttt 0 = ],( 0 fTT  

Parameters 

)(o
ia   is the planned processing volume of )(iD  operation, 

)(
~~ f

jR  is the total )( jM  machine capacity, 

)( f
jic   is the processing intensity of )(iD  execution on )( jM  machine, 

],[)(],,[)( 1010 21  tt   are the vectors of perturbation impacts on the notes and links,  

)(  is the penalty function in the mathematical model of the operation control processes, 

)(  is the penalty function in the mathematical model for the flow control, 
)1(q  and 

)2(q  are vector-functions, defining the main spatio-temporal, economic, technical, and techno-

logical conditions for the operation processing process, and 

  are the weight coefficients of the performance indicators in the multi-criteria objective function. 

Continuous decision variables  
)(o

ix   is a state variable characterizing the state of an operation )(iD , 

)(t  is the given preset matrix time function of time-spatial constraints, 
)(k

jx  is a state variable characterizing the total employment time of machine M(j), 

)( f
jix   is a state variable characterizing the processed flow volume, 



)()( tu f
ji  is a control variable that is equal to the processed flow volume 

)( f
jix   at any point of time t, 

)(tu is a feasible schedule, and 

)(* tu is the optimal schedule. 

Binary decision variable 

}1,0{)()( tu ji

  is the assignment decision control action at time t.  

The impact of the processing intensity )(tc f
ji  is that the machine )( jM  can process jia  units subject to 

the planned processing volume )(o
ia   and )()( tc f

ji . An operation 
)(iD  may start only after the previous 

operation )(iD  has been completed. The problem consists of scheduling the operations while taking into 

account flow dynamics control  subject to three objectives: J1 – minimization of total lateness (subject to 

ft ), J2 – throughput maximization subject to )(o
ia   and )( f

jia  ; i.e., in the ideal case )()( )( o
if

o
i atx   , 

)()( )( f
jif

f
ji atx    for all jobs subject to )(tc ji  and )(tij ; and J3 – equal utilization of the machines (sub-

ject to )(
~~ f

jR ).  

Process control model 

The simplified form of processing dynamics of the operation )(iD  can be expressed as follows in Eq. 

(30)-(32): 
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For simplification, we introduce only three equations of process dynamics control. The overall model-

ling complex also contains additional models such as setup and material delivery models (Ivanov 

2016b). Eq. (30) represents the progress of operation execution at a machine whereas 1)( tij , if ma-

chine )( jM  is available, and 0)( tij . )()( tu o
ji is a decision variable. 1)()( tu o

ji  at the any point of 

time t, if the operation )(iD  is assigned to the machine )( jM , and 0)()( tu o
ji  otherwise. Equation (31) 

represents machine utilization dynamics. The variable 
)(k

jx  characterizes the total employment time of 

machine M(j). Eq. (32) corresponds to Eq. (30) subject to the control variable )()( tu o
ji . 1)()( tu o

ji  at each 

t, if the operation )(iD  is assigned to machine )( jM  and 0)()( tu o
ji  otherwise (cf Fig. 2). 

Recall that the task times may differ depending upon different speeds )()( tc f
ji  and machine availabilities 

)(tij . For this reason, the assignments from the model (30) (made on the basis of the volumes ia ) are 

now subject to further optimization regarding flow dynamics control. 

The assignment of an operation to a machine and the starting execution of operations causes dynamic 

flows of processed products. The economic sense of Eq. (32) consists of the dynamic representation of 

the material flows resulting from the execution of the operations on machine )( jM . The meaning of Eq. 

(32) is quite similar to a system dynamics model for balancing the flows in a system. The proposed ap-



proach also considers the strictly defined logic of the operation execution. Moreover, the models of 

operations and flow control are interlinked linearly by precedence constraints and the adjoint system. In 

contrast to model (30), the control variable )()( tu f
ji  is not a binary variable, but is equal to the processed 

flow volume 
)( f

jix   at each t. 

Constraints 
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Constraints (33) depict the processing logic of operations in the jobs and determine precedence relations 

by blocking the operation )(iD  until the previous operations )()( , ii DD
  have been completed. Constraints 

(34) and (35) are capacity constraints in terms of processing intensity and maximum capacity, respec-

tively. 

The flow control model (32) uses the assignment results from the operations control model (30) in the 

form of the control variables )()( tu o
ji  and extends them by the actual processing speed of the machines 

subject to the constraints (34) and (35). Inequalities (34) use the assignment decisions ( )()( tu o
ji ) from the 

model (30) and the processing speed )()( tc f
ji  of the machines )( jM . Constraints (35) reflect that the 

processing speed is constrained by )(
~~ f

jR , taking into account the lower and upper bounds of some per-

turbation impacts 10 2  )()( tf  which may decrease capacity availability. 

Objective function 
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A good model should provide decision makers with alternatives. The performance indicators may be 

weighted differently depending on decision-maker’s preferences. The preference relations (minmax, 



maxmin, etc.) form the Pareto space and allow the calculation of a general relative quality index (31) 
within the corresponding schedule )(tu . 

T)(
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The transition from the vector form J  to a scalar form GJ  can be performed on the basis of the weight 

coefficients 
)(

5
)(

4
)(

3
)(

2
)(

1 ,,,, ffkoo  .  

The performance indicator )(
1

oJ  (36) characterizes the accuracy of the end condition accomplishment, 

i.e., the volume of the completed operations by the time ft . Maximization of (36) is throughput maxi-

mization. Minimization of the function (37) relates to total maximum lateness using penalties and de-

picts due date objective. The indicator 
)(

1
kJ (38) helps to estimate the uniformity of the machine capaci-

ty utilization at the end point ftt   of the planning period. The economic meaning of the objectives 

(39) and (40) is identical to the objectives (36) and (37).  

The scheduling problem can now be formulated as the following optimal program control problem. This 

is necessary to find an allowable control )(tu , ],( fttt 0  that ensures the model (30)-(32) meets the 

requirements   0uxq ,)1(
,   0uxq ,)2(

 (33)–(34) and guides the dynamic system ),u,x(fx t  

from the initial state 0h  to the specified final state 1h . If there are several allowable controls (sched-

ules), then the best one (optimal) should be selected to maximize (minimize) GJ .  

This scheduling model is a linear, non-stationary, finite-dimensional controlled differential system with 

a convex area of admissible control and a reconfigurable structure that allows the use of Boolean as-

signment control variables. According to optimal control theorems (Lee and Markus 1967, Moiseev 

1974), the optimal control exists and can be calculated (Pontryagin et al. 1964) for the model class con-

sidered. 

The main idea of the model is to implement non-linear technological constraints in the sets of allowable 

control inputs rather than in the right parts of differential equations. In this case, Lagrange coefficients, 

keeping the information about economic and technological constraints, are defined via the local-sections 

method (Pontryagin et al. 1964). The recurrence description of models allows parallel computations, 

accelerated problem solving. Furthermore, the model proposed use of interval constraints instead of 

relay ones. Nevertheless, the control inputs take on Boolean values as caused by the linearity of differ-

ential equations and the convexity of the set of alternatives.  

The first model feature is that the right parts of the differential equations undergo discontinuity at the 

beginning of interaction zones. The considered problems can be regarded as control problems with in-

termediate conditions. The second feature is the multi-criteria nature of the problems. The third feature 

is concerned with the influence of uncertainty factors. The fourth feature is the form of time-spatial, 

technical, and technological non-linear conditions that are mainly considered in control constraints and 

boundary conditions.  

3.3 Model with hybrid structure-terminal-logical constraints: applications to customized assembly sys-

tems and Industry 4.0 

Problem description 

Industry 4.0 principles give rise to new requirements for scheduling techniques. In classical manufactur-

ing systems, scheduling is performed for a predefined production system and process design. Since both 



production system and the process design become dynamic in Industry 4.0, a new two-level problem of 

simultaneous process design and job scheduling arises. Traditionally, these two tasks were solved sepa-

rately. Let us illustrate how the optimal control models with hybrid structure-terminal-logical con-

straints allow the handling of scheduling tasks in Industry 4.0 systems. 

Сonsider a customized, reconfigurable assembly system that is controlled on the basis of Industry 4.0 

principles. This means that manufacturing processes for different customer orders may have individual 

process structures, whereby the flexible stations are able to execute different process steps subject to 

individual sets of operations within the jobs. Therefore, a problem of simultaneous, structural-functional 

synthesis of the customized assembly system arises. The task consists of process structure synthesis, 

sequencing jobs and scheduling operations with precedence relations on machines subject to a multi-

criteria objective function (makespan, due dates, lead time, and throughput) with limited machine capac-

ity and non-stationary capacity availability considerations (Ivanov et al. 2016b,c, Ivanov et al. 2017b). 

Consider a simplified example of a system with hybrid structural-terminal-logical constraints in Fig. 4. 
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Fig. 4. Precedence relations of operation
)(iD   

Let us illustrate a general logical-dynamic mathematical model of production process structure and pro-

cess control. This model implicitly allows the description of all possible interconnections of the produc-

tion structures and processes on the basis of operation execution control (Okhtilev et el. 2006). 

Operation
)(iD follows the operations 
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   according to the “and” precedence rule and 

operations )(
/

iD


)(
//

iD


)(
///

iD


 according to the precedence rule “or”. Analogously, six operations follow 

the operation
)(iD  according to either “and” or “or” rules. For the considered system, the following 

modified optimal control model can be presented (Eqs. 42-44). 
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The interpretation of this model is similar to the model (30)-(32). The constraint system (33)-(35) can 

now be modified as shown in Eqs. (45)-(53). 
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Constraints (46) and (47) define precedence relations for operation 
)(iD  with regards to the predecessor 

operations )( iD , and )(iD


. Constraints (48) and (49) define precedence relations for operation 
)(iD  with 

regards to the following operations )( iD
, and )( iD


. Constraint (50) defines the logic for the auxiliary 

control variable },{)( 10o
jiw   which equals 1 if )()( )( f

i
f

i atx    at timet t and )()( o
i

o
i ax   . In other words, 

the flow is interrupted. To compensate for this, the auxiliary control 
)(o
jiw   is introduced in Eq. (42) that 

differentiates it from Eq. (30). Constraint (48) is used to avoid overproduction regarding the operation
)(iD , i.e., )()( )( o

if
o

i atx   , which means that )()(
f

o
i tx   cannot exceed )(o

ia  . In order to assess schedule 

robustness (e.g., using attainable sets; see Section 4), we introduce constraints on perturbations (52) and 

(53). 

End conditions can be written as shown in Eqs (54) and (55). 
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In Section 4, we describe the method of attainable sets for schedule robustness. In Section 5, computa-

tional procedures for the models from Section 3 will be presented. 

 

4 Attainable (reachable) sets as a method for qualitative analysis of optimal control perfor-

mance.  

An advantage of optimal control application to scheduling is the possibility of attracting a rich variety of 

qualitative performance analysis methods. For example, robustness and resilience objectives can be 

integrated as non-stationary performance indicators in scheduling decisions. (Ivanov et al. 2016 a,b) 

proposed application of the method of attainable sets to calculate the robustness index for schedules and 

to obtain the attainable sets for interval data with no a priori information about perturbation impacts, i.e., 

for the most severe case of non-stationary perturbations. 



The attainable set (also known as reachable sets) approach determines a range of operating policies (the 

union of which is called an attainable set) during the scheduling stage over which the system’s current 

performance can be guaranteed to meet certain targets, i.e., output (Ivanov and Sokolov, 2010). The 

attainable set characterizes all possible states of a schedule subject to different variations of control pa-

rameters (e.g., machine capacity availability).  

The attainable set is calculated from the main optimal program control vector. Here, the impacts of per-

turbations play the role of control variables. In varying these perturbations at each instant of time over 

the schedule within the time interval and setting these variations into the initial differential system, a set 

of points where the schedule can be steered to is generated. In other words, a set of alternative optimal 

program control vectors is generated through admissible variations of perturbations and forms herewith 

the attainable set of a schedule subject to disturbances. With the help of attainable sets, it becomes pos-

sible to create a dynamic projection of schedule execution for different uncertainty scenarios. Therefore, 

attainable sets can be used to calculate a corresponding robustness metric for schedules. This metric can 

be used for ranging alternative schedules subject to the individual risk perceptions of decision-makers. 

The application of the attainable set method to schedule robustness analysis can be found in studies by 

Ivanov et al. (2016a,b). In particular, Eqs. (34) and (35) (cf Sect. 3) set up the attainable set of the opti-

mal program in a dynamic system, i.e., all possible states of schedule execution subject to different 

variations of the parameters (e.g., the capacity availability). The introduction of Eqs (52) and (63) al-

lows analysis of feasible schedule executions under conditions of non-stationary perturbations. If so, an 

attainable set can be used to analyse schedule robustness i.e., the ability to continue schedule execution 

according to the specified objectives despite the presence of perturbations.  

5 Computational algorithms  

Analytical methods for optimal control have been proved for small-dimensional systems only (Moiseev 

1974, Afanasiev et al. 1996, Maimon et al. 1998, Thompson and Sethi 2000, Kogan and Khmelnitsky 

2000). In control engineering practice, numerical methods have been applied. A methodological chal-

lenge in applying the maximum principle is to find the coefficients of the adjoint system which change 

over time. Another methodical challenge of boundary problems is that the initial conditions for the 

adjoint variables (t0) are not given. At the same time, optimal program control should be calculated 

subject to the end conditions.  

Numerical methods can be classified into several groups. General and specialized methods and algo-

rithms can be distinguished.  General methods can be classified into three groups: the state space (so 

called direct methods, e.g., gradient methods), control space (so called indirect methods based on con-

trol variations such as the method of successive approximations), and trajectory space (e.g., dynamic 

programming method) methods. The dynamic programming method was applied to production schedul-

ing through optimal control in the work by Giglio (2015). Specialized methods are valid for special 

control system classes such as linear systems where methods and algorithms for quadratic linear prob-

lems are applied (Ivanov and Sokolov 2012) or when the optimal control problem is presented in terms 

of mathematical programming (Tabak and Kuo 1971, Ivanov et al. 2017a). 

The first group of general methods (i.e., system space methods) is based on optimal control problem 

presentation as a two-point boundary problem using the maximum principle and based on the necessary 

conditions of optimal control. Two systems of differential equations are solved: the main system and the 

conjugate one. This provides the optimal program control vector )(* tu  and the state trajectory )(* tx . 



The vector )(* tu  at time 0Tt   under the conditions   Oxh )( 00 T  and for the given value of )( 0Tψ  

returns the maximum to the Hamiltonian function (10). The missing initial conditions of the adjoint 

system are computed based on different algorithms.  

In the second group and regarding the constraint type from Sect. 3.1 (i.e., control space methods), 

Maimon et al. (1998) analysed time-decomposition methods based on multi-iteration control variations. 

These authors along with Ivanov and Sokolov (2010) pointed out the importance of approximation accu-

racy and the quality of the initial nominal heuristic solution. Ivanov et al. (2016c) proved that computa-

tional complexity of the method of successive approximations in one iteration is polynomial. Regarding 

the considered scheduling problem, the complexity of the proposed algorithm in one iteration is deter-

mined by the complexity of an integer programming assignment problem.  

Let us limit detailed analysis of computational procedures to two-point boundary problems with fixed 

ends of the state trajectory )(tx  and a fixed time interval ],( fttt 0 = ],( 0 fTT (Lee and Markus 1967, 

Moiseev 1974, Ivanov and Sokolov 2010, Krylov & Chernousko 1972, Chernousko & Lyubushin 

1982). Newton’s method and its modifications allow for simple realization (there is no need to integrate 

the conjugate system), a fast convergence (if the initial choice of control is good), and high accuracy of 

the solution. The main disadvantage is the dependency of a convergence upon the choice of )( 0Tψ . In 

the case of  absence of a good heuristic plan, these methods can be divergent. The method of penalty 

functionals is rather simple, but it does not provide an exact solution. Therefore, it is advisable to com-

bine it with other methods. The main advantage of these algorithms over the classical gradient algo-

rithms is that it has a simpler calculation for the direction vector at all iterations. However, this results in 

a slower convergence (sometimes in divergence). The convergence of all the gradient methods depends 
upon the initial approximation )( 0)0( Tψ .  

Ivanov and Sokolov (2012) applied the Krylov-Chernousko method (1972). For production flow sched-

uling, Kogan and Khmelnitsky (1996), Khmelnitsky et al. (1997) and Maimon et al. (1998) related 

space methods as shooting methods. The authors, along with Kalinin and Sokolov (1985, 1987) and 

Ivanov and Sokolov (2012), noted that the methods of this group can be efficiently applied to linear 

main and adjoint systems whereby non-linearity should be transferred to the constraints. Ivanov et al. 

(2016c) applied a method of successive approximations with a free right end that can be used in combi-

nation with the branch & bound method.  

Regarding the constraints from Sect. 3.2, Ivanov and Sokolov (2010), Ivanov and Sokolov (2012), 

Ivanov et al. (2013 and Ivanov et al. (2016a,c) applied a combination of optimal control and mathemati-

cal programming. Optimal control is not used for solving the combinatorial problem, but rather for en-

hancing the existing mathematical programming algorithms regarding non-stationarity, flow control, 

and continuous material flows. Since the control variables are presented as binary variables, methods of 

discrete optimization are applied to combinatorial tasks within certain time intervals. 

The basic computational idea of this approach is that operation execution and machine availability are 

dynamically distributed in time over the planning horizon. As such, not all operations and machines are 

involved in decision making at the same time (cf Fig. 3). Therefore, the solutions at each point of time 

for small dimensionalities of assignment and flow distribution problems are calculated with the help of 

mathematical programming. 



For a more general case in Sect. 3.3 (Eqs. 42-44), the following Hamiltonian can be written (Eqs. 56-

58). 
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Transversality conditions for the case from Sect. 3.3 are written as Eqs (59)-(61): 
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Let us consider the algorithmic realization of the above-described modified maximum principle. We 

consider a general algorithm for the general model (42)-(55) and the model (30)-(41). We refer to the 

general model (42)-(55) equations as ( ) and to the model (30)-(41) equations as [ ]. Note that the con-

straints (45)-(53) and [(21)–(23)] are identical to those in the mathematical programming models. How-

ever, at each point of time t, the number of variables in the calculation procedure is determined by the 

operations, which are currently in the “active zone” of scheduling, i.e., the operations marked in grey in 

Figure 3. For the problem sizes subject to the “active zone”, there are known methods for the solution of 

the mathematical programming.  

After transforming into a boundary problem, a relaxed problem can be solved to receive an optimal 

program control, for the computation of which the main and adjoint systems are integrated, i.e., the op-

timal program control vector )(* tu  and the state trajectory )(* tx  are obtained. The optimal program 

control vector at time t = 0t 0 and for the given value of (t) should return the maximum to (56)–(58), 

which have been transformed to a general performance index and are expressed in scalar form GJ (Eq. 

41).To obtain the adjoint system vector, the Krylov–Chernousko method of successive approximations 

for an optimal program control problem with a free right end which is based on the joint use of a modi-

fied successive approximation method (Krylov & Chernousko, 1972) has been used.  

Step 1 An initial solution ],(),(u ftttt 0  (a feasible control, in other words, a feasible schedule) is 

selected and 0r . 

Step 2 As a result of the dynamic model run, )()( trx  is received. Besides, if ftt   then the record value 

)(r
GG JJ   can be calculated. Then, the transversality conditions (59)–(61) are evaluated. 

Step 3 The adjoint system is integrated subject to )()( tt uu   and over the interval from ftt   to 0tt 

. For the time 0tt  , the first approximation )()(
0t

r
i  is obtained as a result. Here, the iteration number 

0r  is completed. 



Step 4 From the time point 0tt   onwards, the control )()1( tru  is determined ( ,...2,1,0r denotes the 

number of the iteration). In parallel with the maximization of the Hamiltonian, the main system of equa-

tions and the conjugate one are integrated. The maximization involves the solution of several mathemat-

ical programming problems at each point of time. 

Note that the method of successive approximations in its initial form has not guaranteed convergence. 

Specific modifications are needed. One such example is shown in the study by Ivanov et al. (2016c). 

Finally, we note the problem with operation preemptions while applying the algorithm described above. 

Since operations have different processing durations, the machines become available for the processing 

of the next operations at different points in time. This can result in a situation in which Hamiltonian 

maximization can lead to an improvement in the performance functional if operation processing at one 

machine is interrupted and the operation is reassigned to the new machine that became available. For 

some practical problem, it can be possible through technology. In other settings, such preemptions can 

be prohibited. The study by Ivanov et al. (2013) showed how to resolve this problem at the modelling 

and the algorithmic levels. The monotony and convergence of the modified successive approximations 

method for problems with the non-preemption condition has been previously proved for two-point linear 

boundary problems with convex control areas and goal function (Lybushin 1979, Kalinin and Sokolov 

1987). 

6 Contributions, application areas, and limitations 

The performed analysis allows classification of optimal control models with applications to scheduling 

in the following three classes (Fig. 5). 

 

Fig. 5. Classification of deterministic optimal control scheduling models 

Models with terminal constraints only (i.e., no precedence relations in jobs) are frequently applied to 

master production scheduling and flexible manufacturing system domains. Models with hybrid logical-

terminal constraints (i.e., with flexible precedence relations in job operations, but fixed machine struc-

tures) have their place in job and flow shop scheduling. Models with hybrid structural-logical-terminal 

constraints are characterized by flexible precedence relations in job operations and flexible machine 

structures.  Such models decide simultaneously on assignment and sequencing with applications to cus-

tomized assembly systems, where two-stage scheduling procedures are applied containing process de-

sign and scheduling levels. An example of such systems is Industry 4.0 (Ivanov et al. 2016c). 

Applications of optimal control theory to the scheduling of operational systems and supply chains are 

summarized in Table 1. 

Scheduling models by 
optimal control

Models with terminal 
constraints only (no 

precedence relations)

Models with hybrid logical-
terminal constraints (flexible 
precedence relations in job 

operations but fixed machine 
structures)

Models with hybrid structural-logical-
terminal constraints (flexible precedence 
relations in job operations and flexible 

machine structures subject to simultaneous 
assignment and sequencing)

Deterministic models



Table 1 - Applications of optimal control theory to scheduling  

The main results of optimal con-

trol theory 

Application to scheduling of operational systems and sup-

ply chains 

Criteria for existence of a solution  Model verification for schedule control 

Criteria for controllability and at-

tainability  

Control processes verification for a given time interval / De-

termination of the constraints on operational goals  

Criteria for uniqueness of optimal 

program control  

Analysis of possibility to obtain an optimal plan  

Necessary and sufficient conditions 

of optimality  

Preliminary analysis of optimal program controls; generation 

scheduling algorithms 

The program control and feedback 

control   

Planning, scheduling, and execution control models on a unit-

ed methodological basis 

Criteria for stability and sensitivity  

 

Evaluation of schedule robustness, stability, and sensitivity 

for execution risks and alteration of input data 

 

Advantages of optimal control methods can be considered regarding the treatment of specific scheduling 

problems with complex constraints, consideration of non-stationary process execution dynamics, repre-

sentation in differential equations of complex interrelations between process execution, capacity evolu-

tion, and machine setups (Kinemia and Gershwin 1983, Kogan and Khmelnitsky 1996, Powell and Chen 

1997, Maimon et al. 1998, Yang et al. 1999, Ivanov and Sokolov 2012,  Song 2012, Ivanov et al. 2013, 

Giglio 2015, Ivanov et al. 2016a, Ye and Liu 2016). In addition, accuracy of continuous time and accu-

rate presentation of continuous flows (e.g., in process industry or energy systems) with the help of con-

tinuous state variables belong to optimal control advantages. Finally, and probably most important, 

schedule presentation in terms of optimal control opens constructive ways to incorporate the rich variety 

of control theoretic axioms regarding feedback adaptive control (most applied in the framework of pro-

duction-inventory control models, e.g., Dejonckheere et al. 2004, Ortega and Lin 2004, Wang et al. 

2012, Spiegler et al. 2012, Spiegler et al. 2016, Dolgui et al. 2018), and use of control tools for qualita-

tive performance analysis such as attainable (reachable) sets (Ivanov and Sokolov 2013b, Ivanov et al. 

2016b,c). 

Limitations of control applications should also be addressed. They comprise of a conceptual restriction 

for modelling mostly continuous flows and computational restrictions in terms of possible numerical 

instability, Heaviside step function jumps, nonexistence and non-convexity of gradients, gradient step, 

and quality of nominal control vector (Zimin and Ivanilov 1971, Sethi 1978, Afanasiev et al. 1996, 

Maimon et al. 1998, Sethi et al. 2002, Ivanov and Sokolov 2010, Ivanov et al. 2012). The algorithmic 

method selection strongly depends on the form of the process model and constraints. This is why the 

state-of-the art in optimal control mathematics does not provide a general framework for all application 

areas but rather serves to develop concrete solutions for concrete application cases using complexes of 

proved theorems and axioms. 

7 Conclusions 



Specific scheduling problems with complex structural, logical, and terminal constraints, process execu-

tion non-stationary (i.e., interruptions in machine availability) and complex interrelations between pro-

cess dynamics, capacity evolution, and dynamic setups require further investigation and the attraction of 

a broad range of methodical approaches. One of these approaches can be optimal control. Optimal con-

trol strategies, as functions of the system and control state, allow generation of optimal decisions with 

consideration of system evolution in time in the presence of perturbations which results in different 

system states. In this paper, we provided a survey on the applications of optimal control to scheduling in 

production, supply chain, and Industry 4.0 systems with a focus on maximum principle-based studies. 

Optimal control approaches differ in perspective from mathematical programming methods representing 

schedules as trajectories.  

In the paper, we considered optimal control models, performance analysis qualitative methods, and 

computational methods for optimal control. We provided a brief historic overview and clarified major 

mathematical fundamentals to bridge the control engineering terms and the industrial engineering and 

management terms. Optimal control models for job scheduling in production, supply chain and Industry 

4.0 systems have been presented and compared regarding their analytical content and application areas. 

The survey grouped models with only terminal constraints with application to master production sched-

uling, models with hybrid terminal-logical constraints with applications to short term job and flow shop 

scheduling, and models with hybrid structural-terminal-logical constraints with applications to Industry 

4.0. We also presented attainable (reachable) sets as a method for qualitative analysis of optimal control 

performance. Computational algorithms regarding state, control, and adjoint variable spaces have been 

analysed.  

We point out that the advantages of optimal control methods belong treatment of scheduling problems, 

especially in process industry, with complex constraints, consideration of non-stationary process execu-

tion dynamics, representation in differential equations of complex interrelations between process execu-

tion, capacity evolution, and machine setups. In addition, accuracy of continuous time and accurate 

presentation of continuous flows (e.g., in process industry or energy systems) with the help of continu-

ous state variables are also advantages of optimal control. Other applications of control theoretic models 

and algorithms to scheduling in shipyards, aerospace systems, logistics systems, and service systems can 

be found at http://litsam.ru. 

It is important to note that scheduling presentation in terms of optimal control makes it possible to in-

corporate the rich variety of control theoretic axioms regarding feedback adaptive control (most applied 

in the framework of production-inventory control models) as well as to use control tools for qualitative 

performance analysis such as attainable (reachable) sets. Limitations of control applications are concep-

tual and algorithmic restrictions regarding continuous process applications and specific (i.e., non-

generalized) forms of constructing algorithms with necessary requirements on optimality, convergence, 

and numerical stability.  

Regarding future research and in light of the revealed methodical shortcomings and application limita-

tions of optimal control methods using deterministic maximum principle, the following research ave-

nues can be stated. First, concrete application cases need to be considered for which specific control 

models and algorithms will be developed. The construction of models and computational procedures 

within proved axioms of control theory is important. Second, application of qualitative performance 

analysis methods for control policy dynamic investigation under uncertainty, such as attainable sets, 

should be further explored. These tools might be helpful regarding analysis of production schedule ro-



bustness, supply chain resilience, and Industry 4.0 system flexibility. Third, computational methods 

themselves need to be further investigated and modified for concrete application. Fourth, the works on 

the stochastic maximum principle can be applied in stochastic scheduling environments. Fifth, new do-

mains such as energy supply scheduling and information flow scheduling belong to optimal control 

application areas.  A closer collaboration of control and industrial engineers is therefore important for 

future applications of control methods to operations and supply chain management. 
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