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Abstract. A Hyperspectral Image (HSI) is an image that is acquired
by means of spatial and spectral acquisitions, over an almost continuous
spectrum. Pixelwise classification is an important application in HSI due
to the natural spectral diversity that the latter brings. There are many
works where spatial information (e.g., contextual relations in a spatial
neighborhood) is exploited performing a so-called spectral-spatial clas-
sification. In this paper, the problem of spectral-spatial classification is
addressed in a different manner. First a transformation based on mor-
phological operators is used with an example on additive morphological
decomposition (AMD), resulting in a 4-way block of data. The resulting
model is identified using tensor decomposition. We take advantage of the
compact form of the tensor decomposition to represent the data in order
to finally perform a pixelwise classification. Experimental results show
that the proposed method provides better performance in comparison to
other state-of-the-art methods.

Keywords: Hyperspectral Imagery · Morphological Profiles · Tensor
Decomposition · Scene Classification.

1 Introduction

Hyperspectral Imaging is one of the most important tools in remote sensing. A
hyperspectral image (HSI) is typically a three-way1 block of data acquired when
many (two-way) images are taken over hundreds of almost-continuous spectral
bands and stacked together forming a so called hypercube. HSI is employed in
several fields of applications such as astronomy, Earth and planetary observation,
monitoring of natural resources, precision agriculture and biomedical imaging.
One of its most common usages is classification, i.e., a thematic discrimination
of different types of objects present in the image. In other words, the goal of
classification is to assign a label to each pixel belonging to the same thematic
class according to some of its characteristics (e.g., its spectrum, the homogeneity
of its spatial neighborhood or the shape of a region it belongs to). In the case of

1 The number of ways of an array refers to the number of its indices. A HSI is typically
a three-way array of dimensions I1 × I2 × J , where I1 and I2 are space dimensions
(i.e. pixels) and J denotes the number of spectral bands.
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HSI, the image can be seen as a mapping from a couple of positive integers (x, y)
that correspond to horizontal and vertical positioning, to a vector of positive real
values that correspond to the radiance measured by the sensor or the reflectance
of the scene. Hence, a direct way to classify a HSI is to take the spectral bands
as features and the pixels as samples. However, this approach raises some prob-
lems. First, in terms of spectral resolution, the acquisition of HSI induces high
dimensionality in the spectra, which means that the samples are put in a high
dimensional feature space. Second, by only considering the spectral information
can be a limiting factor since spatial information (e.g., contextual relations, size
and shape of the objects) is not exploited. For this reason, many works aimed
at incorporating spatial information based on the pixels’ neighborhood, so that
each pixel in the HSI has features that include both spectral and spatial infor-
mation, and this is known in the literature as spectral-spatial classification; such
previous works could be found in [1–8] with different approaches.

One way to incorporate spatial information in HSI is by using tools defined
in the framework of Mathematical Morphology (MM). A well-known example is
the morphological profile (MP) [9], which is built by stacking the results of a set
of openings and closings based on geodesic reconstruction applied on each band
of the HSI (or on each component obtained after dimensionality reduction as
in [10]) and has been successfully employed in remote sensing [11, 7]. Attribute
Profiles (AP) [4] are another example, in which a scalar image (e.g., a band of a
HSI) is filtered with attribute thinnings and thickenings computed on component
trees [4] or self-dual attribute filters based on the the tree-of-shapes [12].

Since HSI is by nature a three-way block of data, applying transformations
based on MM results in a four-way block of data, which would be of high rank.
Since we care about having low rank data, we merge the first two ways that
correspond to pixel locations. As a result we obtain a three-way block of data
where each dimension could be described by pixels, spectral bands, and spatial
features (e.g., by means of morphological transformations), respectively.

In this paper we aim at modeling the 3-way hyperspectral data using ten-
sors, and address the problem of pixelwise classification using tensor tools. Our
contribution is inspired by [13], where an Additive Morphological Decomposi-
tion (AMD) is applied on HSI, resulting in a 4-way block of data, which is
then modeled by tensor means. In [13], the corresponding tensor is dealt with
using Tensor-PCA (TPCA) in order to apply dimensionality reduction of the
data, which is then passed down to classification. In this paper, our motivation
comes from the fact that most tensors enjoy a unique Canonical Polyadic (CP)
decomposition [14], and we take advantage of how it represents the data for
classification purposes. We sum up our contribution as follows:

– CP decomposition is used as a way to represent the pixel data in a compact
form, which is more direct and easy to deal with and works thanks to a
low dimensionality of the feature space. Moreover, CP decomposition can
be adapted to incorporate the nonnegativity of its entries, which leads to a
decomposition that can have a physical meaning.
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– The proposed method shows promising results, when comparing it to TPCA
approach.

The rest of the paper is organized as follows. In Section 2 we briefly talk about
adding a new dimension to the data set based on MM. In Section 3 we describe
CP decomposition, and explain how it can be a suitable way to directly repre-
sent the pixel data in a low dimensional feature space ready for classification.
Experiments and results are reported in Section 4. Finally, a conclusion is drawn
in Section 5 and some future work is outlined.

2 Mathematical Morphology

Let us consider {Φ̄i, Φi}i=1...m, a set of extensive and anti-extensive operators,
respectively, where m refers to the size of the filter and the greater m the coarser
the filter effect. The MP of a grayscale image (i.e., with scalar pixels value) I
using the latter set of operators is defined as:

MP(I) := {Φm(I), . . . , Φ1(I), I, Φ̄1(I), . . . , Φ̄m(I)}, (1)

in which the following ordering relation holds MP(I)i ≤ MP(I)i+1 for i =
1, . . . , 2m and with MP(I)i denoting the i-th component of the MP. A MP using
Opening and Closing by reconstruction is shown in Figure 1.

Fig. 1. Morphological profile of a portion of the 8th spectral band of the HSI of Uni-
versity of Pavia using 3 different SE; disks with sizes [1,6,11].

In the case of HSI, or more generally in the case of multivariate images, a
direct extension to MP is the Extended Morphological Profiles (EMP) [10]. The
concept is the same: one simply concatenates the MP of each image along a fourth
way and the result is provided as an input to the classifier. Along the same lines,
works in the literature extended this concept to other possible rearrangements or
derivations, and an example that we adopt in our experiments is the AMD [13].

As explained in [13], first we suppose that we have any image I decomposed
through AMD such that:

I =
Φ̄m(Φ̄m−1(I)) + Φm(Φm−1(I))

2
+

m∑
i=1

R−
i −R

+
i

2
= S +

m∑
i=1

Ri, (2)

The term S is the structure and contains the unfiltered objects of the decom-
position, while the terms {Ri}i=1...m are the residuals and they contain elements
that are filtered out according to the parameters used. Each element of the set
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{S,Ri}i=1...m is a 3-way data set, and at the end they are stacked to form a
4-way data set.

Unlike [13], we prefer to build the morphological way using the set
{S,R−

i ,R
+
i }i=1...m in order to preserve the nonnegativity of the data, as a

result we have a 4-way hyperspectral data set D = [S,R−
1 ,R

+
1 , . . . ,R

−
m,R

+
m],

which is represented by an I1 × I2 × J × (2m + 1) array, I1 × I2 is the number
of pixels, J is the number of spectral bands, and 2m+ 1 = K is the number of
terms in the morphological decomposition.

We note that the case study is not restricted to this kind of application, one
could also build a 4th way using attribute thinning and thickenings as done in
attribute profiles [4] for example.

3 Tensor Decomposition

In this section, we explain how to process by tensor decomposition the data
obtained with AMD. D is of high rank, this can be explained starting with the
fact that usually a 2D image is full rank which is high, and a tensor built upon
this image will have a rank that is at least as much as that of the image. So we
group the first two ways so that the first dimension becomes I1× I2 = I, and D
becomes an I × J ×K three-way array.

3.1 CP Decomposition

A third order tensor Dr is referred to as decomposable if it can be written as

Dr
def
= ar ⊗ br ⊗ cr, (3)

A tensor Y can always be decomposed into a sum of decomposable tensors Dr:

Y =

R∑
r=1

λr Dr, (4)

The tensor rank, usually denoted by R, is the least number of terms required
such that the CP decomposition (4) is exact. Suppose we have a 3-way tensor
Y ∈ RI×J×K , each decomposable term Dr in the CP decomposition can be
expressed as in (3), where the set of vectors {ar}r=1...R ∈ RI , {br}r=1...R ∈ RJ ,
and {cr}r=1...R ∈ RK form the columns of the so-called factor matrices, A ∈
RI×R, B ∈ RJ×R, and C ∈ RK×R. Hence another way to write equation 4 is,
with an obvious notation:

Y = (A,B,C) ·Λ (5)

The diagonal tensor Λ governs the interaction between the components
(columns) of the factor matrices such that components of different r indices
do not interact. R can then be seen as directly related to the degrees of freedom
in the decomposition.
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When Y is nonnegative, it is often desirable to constrain factor matrices
to be also nonnegative. In this case, the rank is called nonnegative rank and
sometimes denoted R+. Having nonnegative factors is essential for the sake of
physical interpretation of the results where negative values have no meaning.
Consequently, the goal is to minimize the cost function:

1

2
‖Y − (A,B,C).Λ‖2 (6)

s.t. A � 0,B � 0,C � 0

An interesting aspect is that each of the factor matrices represents one way
of the tensor. For example, an element yi,j,k is decomposed into R+ components
and the decomposed information is mapped to the i-th row of A, the j-th row
of B, and the k-th row of C.

In the case of HSI, A corresponds to the way of pixels, B corresponds to the
way of spectral bands, and C corresponds to the way based on MM. Accordingly
each row of A represents a pixel, that of B represents a spectral band, and
that of C is defined by a scale or a structure. Thanks to the nonnegativity
constraints and especially after normalizing the columns of the factor matrices,
one could assume that columns ofB represent spectral signatures and those of C
represent a combination of scale domination along the set of structuring elements
being chosen, and finally each column of A could be seen as an abundance map,
that could be reshaped to show a grayscale image, with respect to information
received at B and C, very similar to the case of spectral unmixing (but for two
dimensions only) – except that unmixing is presently not our concern.

In this paper, we take advantage of the low-rank aspect of our CP decom-
position, i.e. how it represents the data in a more compact form with almost no
loss of information (depending on how exact the decomposition is). First, instead
of dealing with a multidimensional data set of large dimensions, we are able to
deal with matrices of much smaller size, as explained earlier (since a small rank
permits compression). Second, since our approach is pixelwise classification, we
mainly think of A as the matrix to deal with. Theoretically speaking, similar
pixels should have the same composition of coefficients with respect to the com-
ponents in A, so we take the components (columns) as features and the rows as
samples in the classification.

3.2 High-Order Singular Value Decomposition (HOSVD)

Because of the huge dimensions of our tensor, directly applying CP decompo-
sition would be computationally very demanding. One solution to make the
decomposition possible is to pass by a pre-processing step by compressing the
original tensor into one with smaller dimensions without losing any information.
This can be done by providing the minimal compression size for each way such
that the information is preserved. In that sense, let’s suppose a tensor Y with
dimensions I×J×K, where I � JK (which is our case), the compressed tensor
can have a size of JK × J ×K whenever its rank satisfies R ≤ JK.
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Algorithm 1 COMPRESS

Require: Y, wayc, dimc

for d ∈ wayc do
Unfold Y into Y (d) such that the mode d takes the second way of the matrix;
Compute the right singular matrix from the SVD of Y (d), denoted by V d;
Truncate the columns of V d by dimc(d);

end for
for d /∈ wayc do
V d = Idimc(d); (Identity matrix)

end for
G = Y •1 V T

1 •2 . . . •N V T
N ;

return G and V 1, . . . ,V N

This can be explained as follows. First let us denote the d-mode unfolding of
Y by Y (d), which is the matrix flattening of the tensor obtained by reordering
the elements with respect to the d-th index. Each of these unfoldings has a
matrix rank that essentially appears in its economic SVD. More precisely, after
applying the SVD on each unfolding, we get three right singular (orthogonal)
matrices that form the basis of the HOSVD factor matrices:

Y (d) = UdΣdV
T
d (7)

∀d = {1, 2, 3}

These matrices, denoted by V 1, V 2, and V 3 have dimensions I×R1, J×R2

and K ×R3 respectively, with R1 ≤ JK, R2 ≤ J , and R3 ≤ K. Hence they can
be used to compress the original tensor into smaller dimensions without any loss
of information. In fact, this is how HOSVD is computed by finding orthogonal
matrices as the basis of the decomposition, and the compressed tensor G is found
by projecting the original one onto the basis of factor matrices. HOSVD of Y
can be written as follows:

Y = G •
1
V 1 •

2
V 2 •

3
V 3 = (V 1,V 2,V 3) · G (8)

where •d indicates a summation over the dth tensor index. Subsequently, we
shall compress only the first mode, so that R1 < JK, but R2 = J and R3 = K.
As a consequence, we may choose V 2 and V 3 both as Identity matrices. The
algorithm that we implement to compress an N -way tensor using HOSVD is
described in Algorithm 1; wayc is a vector containing the ways that we want to
compress and dimc is a vector containing the compressed dimension size.

3.3 Alternating Optimization - Alternating Direction Method of
Multipliers (AO-ADMM)

In order to compute the CP decomposition and cope with the constraints of non-
negativitity and compression together, the algorithm AO-ADMM [15] is adopted
for its efficiency and flexibility especially with the different kinds of constraints.
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The CP decomposition can be computed via the Alternating Least Squares al-
gorithm (ALS), where one factor matrix is updated alternatingly at a time by
fixing the others and minimizing the convex least squares cost function:

Hd = argmin
Hd

1

2
‖Y (d) −WHT

d ‖2 (9)

∀d = 1 . . . N,

where Hd is the factor matrix corresponding to the d-th way of the tensor,
and W is the Khatri-Rao product of all the factor matrices excluding Hd. The
optimization problem (9) needs to be modified when constraints on the factor
matrices are imposed, say through regularization functions r(Hd):

Hd = argmin
Hd

1

2
‖Y (d) −WHT

d ‖2 + r(Hd) (10)

∀d = 1 . . . N,

As the name suggests, AO-ADMM works by alternating between the opti-
mization problems of each factor matrix alone while fixing the others. For ex-
ample in our case, the three factor matrices (H1,H2,H3) are recommended to
have nonnegative entries, while only the first one is concerned with compression.
AO-ADMM allows to pass different kinds of constraints and parameters for each
mode-decomposition and alternates accordingly.

Algorithm 2 Alternating Optimization (Least Squares loss)

Require: Y, H1, . . . ,HN , U1, . . . ,UN

H1, . . . ,HN are initialized; U1, . . . ,UN are initialized to zero matrices;
for d = 1, . . . , N do

Store the different unfoldings Y d;
end for
repeat

for d = 1, . . . , N do
W = �j 6=dHj ;
update Hd and Ud using Algorithm 3;

end for
update µ if necessary; (refer to [15] for the update of µ)

until some termination criterion is reached (number of iterations)
Normalize the columns of the factor matrices and store the weights in Λ;
return H1, . . . ,HN , Λ

It is important to note that the tensor fed in AO-ADMM is the compressed
one that is computed as a result of Section 3.2, which allows to have negative
entries, and this presents a certain inconsistency with the fact of having nonneg-
ativity constraints on the decomposition. For this reason we present a solution
with ADMM inspired by [16]. So our minimization problem goes as follows:

arg min
H1,H2,H3,Λ

1

2
‖G − (H1,H2,H3).Λ‖2 (11)

s.t. V 1H1 � 0,H2 � 0,H3 � 0,Λ � 0
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Algorithm 3 ADMM of a mode d

Require: Y , W , H, U , k, µ, ε, constraint, imax, V
H and U are already initialized;
G = W TW ;
ρ = trace(G)/k;
Calculate L from Cholesky decomposition such that G+ (ρ+ µ)Ik = LLT ;
F = W TY ;
Hf = H;
repeat
H̃ ← (LT )−1L−1(F + ρ(H +U)T + µHf

T ); (See [15] for µ and Hf )

H ← proximity(constraint,H̃
T

,U ,V ); (refer to Algorithm 4)

U ← U +H − H̃T
;

Update r and s; (refer to [15] for the updates of r and s)
until (r < ε and (s is undefined or s < ε)) or (imax > 0 and i ≥ imax)
return H and U

Algorithm 4 Proximity Update of H in ADMM

Require: constraint, Ht, U , V
switch (constraint)
case Nonnegativity:
H ← (Ht −U)+;

case Compression and Nonnegativity:
Hu ← V (Ht −U); Hu ←H+

u ; H ← V THu;
end switch
return H

This minimization is executed by ADMM as follows, for d ∈ {2, 3}:

H̃1 ← (W TW + ρI)−1(W TG(1) + ρ(U +H1)T )

H1 ← V T
1 max(0,V 1(H̃

T
1 −U))

U ← U +H1 − H̃
T
1

 (12)

H̃d ← (W TW + ρI)−1(W TG(d) + ρ(U +Hd)T )

Hd ← max(0, H̃
T
d −U)

U ← U +Hd − H̃
T
d

 (13)

Of course, the calculation of (W TW +ρI)−1 should be done once for all outside
the loops, as explained in the pseudo-codes Algs. 2, 3, and 4.

4 Results

4.1 Description of the dataset

Our dataset is described by a real hyperspectral image, University of Pavia, as
shown in Fig. 2 in true colors (by choosing the bands 53, 31, and 8 as Red,
Green, and Blue channels respectively). It is an image acquired by the ROSIS
sensor with geometric resolution of 1.3 meters. The image has 610 × 340 pixels
and 103 spectral bands. The dataset contains a groundtruth image that consists
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of 9 classes: trees, asphalt, bitumen, gravel, metal sheets, shadows, self-blocking
bricks, meadows, and bare soil. There are also 42776 labeled pixels available as
test set and 3921 pixels available as training set, the latter is fixed at that.

4.2 Classification

For the classification part we use Support Vector Machines (SVM), which has
proved useful in the application of pixelwise classification of HSI. Practically
SVM is carried out through the open source machine learning library provided
by Libsvm [17]. After decomposing the tensor using CP decomposition, we use
the first factor matrix as the set of data to be classified by SVM.

4.3 Results and discussion

In the following experiments, we fix the morphological transformations on struc-
turing elements whose neighborhoods are defined arbitrarily by disk shapes with
varying sizes of radii: 1, 6, 11, 16, 21, and 26 pixels, this accounts to m = 6 struc-
turing elements, thus a morphological decomposition of K = 13 components. We
note that considering the whole set of {S,R−

i ,R
+
i }i=1...6 without dimensional-

ity reduction yielded a classification with better accuracy than that of the set of
{S,Ri}i=1...6 (96.60% to 93.06% respectively) under the same AMD parameters.

AMD. The HSI of University of Pavia is loaded in its 3rd-order form, I ∈
R610×340×103. I is then decomposed into a morphological structure, going from a
dataset of one tensor to a set of tensors (S, R−’s and R+’s, forming a 4th-order
dataset) representing information of the scene with different scales:

I → D = {S,R−
1 ,R

+
1 , . . . ,R

−
6 ,R

+
6 }

such that I = S+
∑6

i=1
R−

i −R+
i

2 . As we mentioned in Section 3, D is vectorized
by merging the first two modes resulting in a 3-way tensor of dimensions 207400×
103× 13.

Tensors. Now that the data is modeled as a 3rd-order tensor, we seek to
decompose it using CP decomposition. The latter is carried out by taking the
compressed tensor as input, the factor matrices are initialized randomly (ab-
solute value of i.i.d. standard Gaussian distribution), and only the first factor
matrix is compressed after that. The rank is set to different values followed by
different initializations of factor matrices.

Classification. The accuracy of the classification is related to the reconstruc-
tion error of the CP decomposition since it is important that factor matrix H1

represents the data in a shape as good as possible. Two factors play major roles
in the reconstruction error: the number of iterations and the input rank of the
decomposition. Hence we try different values of the two variables and record both
the reconstruction error and the result of the overall accuracy as seen in Table
1. Per-class and average accuracy is also recorded for two methods in Table 2.
As discussed in Section 3.1, H1 is passed to the classifier since it is considered
as the representative of pixel data in compact low-dimensional form.
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Method Rec. Error OA
AMD + TPCA + SVM (PC=(10,5)) - 91.09
AMD + CPD + SVM (itr=50,R=10) 18.45 87.87
AMD + CPD + SVM (itr=20,R=20) 11.10 88.85
AMD + CPD + SVM (itr=50,R=20) 10.94 91.17
AMD + CPD + SVM (itr=20,R=30) 8.86 93.76
AMD + CPD + SVM (itr=50,R=30) 8.72 94.08
AMD + CPD + SVM (itr=100,R=30) 8.70 93.94
AMD + CPD + SVM (itr=100,R=40) 7.16 94.03

Table 1. Records of various tests in terms of Reconstruction Error (Rec.
Error) (in case of CPD) and Overall Accuracy (OA).

Class AMD + TPCA (PC=(10,5)) AMD + CPD (itr=50,R=30)
Asphalt 95.54 98.46
Meadow 94.08 96.42
Gravel 72.12 59.83
Tree 97.59 98.00

Metal Sheet 100 99.64
Bare Soil 81.56 92.71
Bitumen 99.79 99.69

Brick 76.66 88.49
Shadow 99.87 86.66
Overall 91.09 94.08
Average 90.80 91.10

Table 2. Records of Per-class, Overall and Average Accuracies.

Results. We compare our results to the method of [13]. Looking at Table 1,
we can see that the better the reconstruction error in the CP decomposition, the
better the overall accuracy of the classification. The accuracy shows promising
results for our proposed method. It is worth to stress the influence of rank and/or
number of iterations on the reconstruction error. But at some point the error
decreases very slowly as more iterations are run, towards what seems to be a
limit, which is mainly influenced by the value of the input rank. Figure 2 shows
images of the training set, the test set, and the results of various classifications;
parameters are mentioned in the caption.
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[A] [B] [C]

[D] [E] [F]

Fig. 2 [A] image in true colors, [B] available training set, [C] test set, [D-F]
classification results: [D] AMD+TPCA(15)+SVM (91.09%), [E] AMD+CPD
(itr=50,R=20)+SVM (91.17%), [F] AMD+CPD (itr=50,R=30)+SVM (94.08%)

5 Conclusion

In the framework of pixelwise classification of hyperspectral images, an extra-
neous diversity is built from hyperspectral data thanks to Mathematical Mor-
phology. Then the use of tensor decomposition allows to take into account both
spectral and spatial information of the scene. Experimental results using a real
image show that the CP decomposition is a promising way to represent the data
in a low dimensional feature space and improve on classification accuracy. In
future works, we plan to investigate other potential interests of the CP decom-
position, like spectral unmixing of HSI.
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