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Unsupervised Scalable Representation Learning for Multivariate Time Series

Jean-Yves Franceschi 1 * Aymeric Dieuleveut 2 Martin Jaggi 2

Abstract
Time series constitute a challenging data type for
machine learning algorithms, due to their highly
variable lengths and sparse labeling in practice. In
this paper, we tackle this challenge by proposing
an unsupervised method to learn universal em-
beddings of time series. Unlike previous works,
it is scalable with respect to their length and
we demonstrate the quality, transferability and
practicability of the learned representations with
thorough experiments and comparisons. To this
end, we combine an encoder based on causal di-
lated convolutions with a triplet loss employing
time-based negative sampling, obtaining general-
purpose representations for variable length and
multivariate time series.

1. Introduction
We investigate in this work the topic of unsupervised
general-purpose representation learning for time series. In
spite of the increasing amount of work about representation
learning in fields like natural language processing (Young
et al., 2018) or videos (Denton & Fergus, 2018; Denton &
Birodkar, 2017; Sermanet et al., 2017; Villegas et al., 2017;
Goroshin et al., 2015; Srivastava et al., 2015; Tran et al.,
2015), few articles explicitly deal with general-purpose rep-
resentation learning for time series, and feature learning for
time series without structural assumption on non-temporal
data has received much less attention.

This problem is indeed challenging for various reasons.
First, real-life time series are rarely or sparsely labeled.
Therefore, unsupervised representation learning would be
strongly preferred. Secondly, methods need to deliver com-
patible representations while allowing the input time series
to have unequal lengths. Thirdly, scalability and efficiency
both at training and inference time is crucial, in the sense
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that the techniques must work for both short and long time
series encountered in real-world data.

Hence, we propose in the following an unsupervised method
to learn general-purpose representations for multivariate
time series that comply with the issues of varying and po-
tentially high lengths of the studied time series. To this end,
we adapt recognized deep learning tools and introduce a
novel unsupervised loss. Our representations are computed
by a deep convolutional neural network with dilated con-
volutions (Oord et al., 2016), preferred to recurrent neural
networks for their scalability to long sequences, and adapted
so that its output is a fixed-length vector, independent of the
variable length of the input time series. This network is then
trained unsupervised, using the first specifically designed
triplet loss in the literature of time series, taking advantage
of the encoder resilience to time series of unequal lengths.

We assess the quality of the learned representations on var-
ious datasets to ensure their universality. In particular, we
test how our representations can be used for classification
tasks on the standard datasets in the time series literature,
compiled in the UCR repository (Dau et al., 2018). We show
that our representations are general and transferable, and
that the induced classification performance of our method
matches the state-of-the-art of non-ensemble supervised
classification techniques. However, these standard datasets
are limited, as they only contain short univariate time series1,
whose lengths are constant across each dataset (except for a
few ones). To overcome this limitation, we also evaluate our
representations on the recently released UEA multivariate
time series repository (Bagnall et al., 2018), as well as on a
real-life dataset including very long time series, on which
we demonstrate scalability, performance and generalization
ability across different tasks beyond classification.

This paper is organized as follows. Section 2 exposes previ-
ous works on unsupervised representation learning and deep
architectures for time series in the literature. Section 3
details the architecture of the encoder, while Section 4
describes how the encoder is trained. Finally, Section 5
provides results of the experiments that we conducted to
evaluate our method.

1Their lengths vary from 24 to 3 000, with most of them shorter
than 1 000.
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2. Related Work
To our knowledge, few recent works deal with unsuper-
vised representation learning for time series. Hyvarinen
& Morioka (2016) learn representations on evenly sized
subdivisions of time series by learning to discriminate be-
tween those subdivisions from these representations. Lei
et al. (2017) expose an unsupervised method designed so
that the distances between learned representations mimic a
standard distance (Dynamic Time Warping, DTW) between
time series. Malhotra et al. (2017) design an encoder as
a recurrent neural network, jointly trained with a decoder
as a sequence-to-sequence model to reconstruct the input
time series from its learned representation. Finally, Wu
et al. (2018a) compute feature embeddings generated in the
approximation of a carefully designed and efficient kernel.

However, these methods either are not scalable nor suited to
long time series (due to the sequential nature of a recurrent
network, or to the use of DTW with a quadratic complexity
with respect to the input length), are tested on no or very few
standard datasets, or do not provide sufficient comparison to
assess the quality of the learned representations. Our model
and analysis aim at overcoming these issues.

Deep convolutional neural networks have recently been used
to handle time series in classification tasks (Cui et al., 2016;
Wang et al., 2017), showing competitive performance. Di-
lated convolutions, popularized by WaveNet (Oord et al.,
2016) for audio generation, have been used to improve their
performance and were shown to perform well as sequence-
to-sequence models for time series forecasting (Bai et al.,
2018) using an architecture that inspired ours. These works
particularly show that dilated convolutions help to build
networks for sequential tasks that are able to outperform
recurrent neural networks in terms of both efficiency and
performance.

3. Encoder Architecture
Our choice of architecture for the encoder network is moti-
vated by three requirements:

• it must extract relevant information from time series;

• it needs to be time- and memory-efficient, both for
training and testing;

• it has to allow variable-length inputs.

We present and explain this choice in this section.

3.1. Overall Idea and Dilated Convolutions

We choose to use deep convolutional neural networks with
dilated convolutions to handle time series. Compared to

Time
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Input

Output

Figure 1. Illustration of stacked dilated causal convolutions. Lines
between each sequence represent the computational graph of three
stacked dilated causal convolutions. Red solid lines highlight the
dependency graph for the computation of the last value of the
output sequence, showing that no future value of the input time
series is used to compute it.

recurrent neural networks, which are inherently designed
for sequence-modeling tasks and thus sequential, these net-
works are efficient as they allow efficient parallelization on
modern hardware such as GPUs. We create an adapted ver-
sion of the causal sequence-to-sequence model introduced
by Bai et al. (2018) for forecasting tasks, augmented by a
global max pooling layer to squeeze the temporal dimension,
and followed by a fully connected layer to output the final
representation.

This causal model consists of stacks of exponentially di-
lated causal convolutions (see Figure 1 for an illustration).
Each convolutional layer maps, using appropriate padding,
a sequence to a sequence of the same length, such that the
i-th element of the output sequence is computed using only
values up until the i-th element of the input sequence, for
all i; thus, it is called causal, since the output value corre-
sponding to a given time step is not computed using future
input values. If stacked, these convolutions shape a net-
work which retains the same property. In order to increase
the width of the receptive field for the computation of any
sequence value while keeping an efficient and scalable archi-
tecture, stacked convolutional layers have an exponentially
increasing dilation parameter.

We detail this architecture and its characteristics in the re-
maining of this section.

3.2. Description

A causal convolution C with kernel size k and dilation
parameter d is defined in the one-dimensional case (the
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generalization to the multi-channel case is straightforward;
we ignore it for the sake of clarity) as:

C : x 7→

(
k−1∑
i=0

cixj−di

)
j∈J(k−1)d,size(x)−1K

,

where (ci)i∈J0,k−1K are the convolution parameters. A fully
connected causal convolution is retrieved when d = 1.
When d 6= 1, the computation of C (x)j is done using in-
puts elements placed at distances from xj that are multiples
of d. By padding the input of C to the left with (k − 1) d
elements, C becomes a causal convolution mapping a se-
quence to a sequence of the same length; in practice, we
use zero-padding. From now on in this article, a causal
convolution refers to the previous ensemble of a causal di-
lated convolution augmented with the previously described
padding.

Following the recommendations of Bai et al. (2018), we
build each layer of our network to be the succession of
a causal convolution, weight normalization (Salimans &
Kingma, 2016), leaky ReLU, another causal convolution
with the same kernel size and dilation parameter as the first
one, weight normalization and leaky ReLU, augmented with
a residual connection from the input of the layer (see Fig-
ure 2a). If the input and output sequences of the layer do not
have the same dimension, the residual connection is done
using an upsampling (or downsampling) convolution with
kernel size 1 and dilation size 1. Notice that all operations
in this layer are causal, thus this layer and the succession of
such layers are also causal.

The final architecture of our encoder is then formed by a
succession of a given number of layers with exponentially in-
creasing dilation parameters (the i-th layer is given dilation
parameter 2i) mapping the input sequence to a sequence
of the same length in a causal manner, a global softmax
pooling layer that squeezes the temporal dimension and ag-
gregates all temporal information in a fixed-size vector (as
proposed by Wang et al. (2017) in a supervised setting with
full convolutions), and finally a fully-connected linear layer
whose output, which is also fixed-length, is the output of
the encoder. See Figure 2b for an illustration.

3.3. Further Motivation for Causal Dilated
Convolutions

Efficiency. Besides their demonstrated efficiency on mod-
ern hardware, exponentially dilated convolutions have also
been introduced to increase the ability of convolutional net-
works to better capture long-range dependencies by expo-
nentially increasing the receptive field of the network at the
same depth level of the network (Oord et al., 2016; Yu &
Koltun, 2016; Bai et al., 2018).

Additionally, using a causal convolutional network followed

by a global max pooling layer can alleviate the disadvantage
of not using recurrent networks at testing time. Indeed,
recurrent networks can be used in an online fashion, thus
saving memory and computation time during testing. In
our architecture, adding an element to the input time series
does not require to evaluate the whole network on the input,
as it would be the case with non-causal convolutions: it
suffices to compute its corresponding output in the causal
network with the computation graph highlighted in Figure 1,
and update the outputs of the global max pooling and fully
connected layers accordingly.

Performance. Recurrent networks are known to be sub-
ject to the issue of exploding and vanishing gradients, due
to their recurrent nature (Goodfellow et al., 2016, Chap-
ter 10.9). While significant work has been done to tackle
it and improve their ability to capture long-term dependen-
cies, such as the LSTM (Hochreiter & Schmidhuber, 1997),
recurrent networks are still outperformed by convolutional
networks on this aspect (Bai et al., 2018).

On the specific domain of time series classification, which is
an essential part of our experimental evaluation, deep neural
networks have not shown significant results compared to the
state of the art of the domain for a long time (Bagnall et al.,
2017), but have recently been successfully used thanks to
convolutional networks (Cui et al., 2016; Wang et al., 2017).

4. Unsupervised Training
We explain in this section how the previously presented
network can be trained in an unsupervised fashion.

We choose to use a triplet loss, inspired by approaches used
in the field of word representation learning with word2vec
(Mikolov et al., 2013), but also in other domains as well
(Wang et al., 2014; Wu et al., 2018b). The objective is to
ensure that similar time series obtain similar representations,
with no supervision to learn such similarity. The assumption
made in word2vec is twofold. The representation of a word
should be, on one hand, close to the one of its context
(Goldberg & Levy, 2014), i.e., the distribution of words
which they have have been associated to in sentences, and,
on the other hand, distant from the one of randomly chosen
contexts, since they are probably different than the original
word’s context. The corresponding loss then pushes pairs of
(word, context) and (word, random context) to be linearly
separable. This technique is called negative sampling.

To adapt this principle to time series, we consider a random
subseries2 xref of a given time series yi. Then, on one hand,
its representation should be close to the one of any of its own
subseries xpos (a positive example). On the other hand, if we

2I.e., a subsequence of a time series composed by consecutive
time steps of this time series.
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Figure 2. (a) Composition of the i-th layer of the chosen architecture, when the number of input channels is smaller than the number of
output channels. (b) Example of the whole encoder architecture with two causal convolution layers.
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Figure 3. Illustration of the choices of xref , xpos and xneg.

consider another subseries xneg (a negative example) chosen
at random (in the same time series if it is long enough, or in
a different random time series yj if a dataset is available),
then its representation should probably be distant from the
one of xref . See Figure 3 for an illustration. Following the
comparison with word2vec, xpos corresponds to a word,
xref to its context, and xneg to a random context. The
objective to be minimized corresponding to these choices,
similarly to the one of word2vec with its shallow network
replaced by a deep network f (., θ) with parameters θ, is:

− log
(
σ
(
f
(
xref , θ

)>
f (xpos, θ)

))
− log

(
σ
(
−f
(
xref , θ

)>
f (xneg, θ)

))
, (1)

where σ is the sigmoid function. This loss pushes the com-
puted representations to distinguish between xref and xneg,
and to assimilate xref and xpos. Overall, the training pro-
cedure consists in traveling through the training dataset

for several epochs (possibly using mini-batches), picking
tuples

(
xref , xpos, xneg

)
at random, and performing a mini-

mization step on the corresponding loss for each pair, until
training ends.

To improve the stability and convergence of the training
procedure as well as the experimental results of our learned
representations, we allow, as in word2vec, our loss to take
into account several negative samples (xnegk )

k∈J1,KK, cho-
sen independently at random:

− log
(
σ
(
f
(
xref , θ

)>
f (xpos, θ)

))
−

K∑
k=1

log
(
σ
(
−f
(
xref , θ

)>
f (xnegk , θ)

))
. (2)

In practice, we pick tuples
(
xref , xpos, (xnegk )

k∈J1,KK

)
in

the following manner. We iterate over the available dataset
for a given number of epochs (given as hyperparameter).
For each train time series z, the length of xpos is chosen
uniformly at random in J1, size (z)K; then the size of xref is
chosen uniformly at random in Jsize (xpos) , size (z)K, and
xref is chosen uniformly at random among all subseries of
z of the chosen size. Similarly, xpos is chosen uniformly
at random in xref . The choice of (xnegk )

k∈J1,KK consists in
simply choosing uniformly at random the time series which
they will be drawn from, then their length, then picking them
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at random as well according to those chosen parameters.
The generalization of this procedure to mini-batch training
is straightforward, so we do not detail it.

The length of the negative examples can either be the same
for all samples and equal to size (xpos), or be chosen at
random similarly to size (xpos). The first case is suitable
when all time series in the dataset have equal lengths, and
speeds up the training procedure thanks to computation
factorizations; the second case is only used when time series
in the dataset do not have the same lengths, as we saw no
other difference than time efficiency between the two cases
in our experiments.

We highlight that this training procedure takes advantage of
the ability of the chosen encoder to take as input time series
of different lengths. By training the encoder on a range of
input lengths going from one to the length of the longest
time series in the training set, it becomes able to output
meaningful representations regardless of the input length,
as shown in Section 5.

This training procedure is interesting in that it is efficient
enough to be run over long time series (see Section 5),
thanks to the efficiency of the chosen architecture, and of
the separability of the loss, on which a backpropagation
per term can be performed to save memory. Moreover, it
only requires to train an encoder network, while standard
representations learning methods jointly train an encoder
and decoder in an autoencoder framework, as done by Mal-
hotra et al. (2017), which induces a larger computational
cost. As far as we know, this work is the first in the time
series literature to propose a triplet loss for feature learning.

5. Experimental Results
We review in this section experiments conducted to inves-
tigate the relevance of the representations we learn. Code
corresponding to these experiments is publicly available3.

5.1. Classification

We first assess the quality of our learned representations
by using them for time series classification, on which we
obtain close to state-of-the-art results. We also highlight the
transferability of our representations.

5.1.1. PROTOCOL AND IMPLEMENTATION DETAILS

For each considered dataset with a train / test split, we un-
supervisedly train an encoder using its train set. We then
train an SVM with radial basis function kernel on top of
the learned features using the training labels of the given
dataset, and output the corresponding classification score

3https://github.com/White-Link/
UnsupervisedScalableRepresentationLearningTimeSeries.

on the test set. As our training procedure encourages repre-
sentations of different time series to be separable, observing
the classification performance of a simple SVM on these
features is a good mean to check their quality.

We found that the number of negative samples to draw at
each step of the encoder learning stage can have a significant
impact on the performance of the encoder. E.g., for univari-
ate time series classification, we trained for each dataset four
encoders, one for each number of drawn negative samples
K ∈ {1, 2, 5, 10}, and present results for each one of them.
We also present a combined version, where all four pairs of
encoders and SVMs are put together in a voting classifier,
outputting the class that gets the majority of the predictions
among the four classifiers. This enables our learned repre-
sentations with different parameters to complement each
other, and to remove some random noise in the classification
scores.

We perform no hyperparameter optimization for the training
of the encoder, except for the number of epochs which
is dynamically tuned by an early stopping heuristic, only
using the training labels as additional information. We
use it for two reasons: as the same hyperparameters are
used for all datasets, we chose the number of epochs to be
large; early stopping then prevents overfitting due to this
parameter and saves computation time. Note that, even if it
introduces supervision in the encoder training, it is strictly
equivalent to a more computationally demanding and fully
unsupervised training, and remains optional, as discussed in
the supplementary material, Section S1.2.

The full training process and hyperparameter choices are de-
tailed in the supplementary material, Sections S1.1 and S2.
We used Python 3 for implementation, with PyTorch 0.4.1
(Paszke et al., 2017) for neural networks and scikit-learn (Pe-
dregosa et al., 2011) for SVMs. Each encoder was trained
on a single Nvidia Titan Xp GPU with CUDA 9.0.

5.1.2. UNIVARIATE TIME SERIES

We present accuracy scores for all datasets of the new it-
eration of the UCR archive (Dau et al., 2018), which is a
standard set of varied univariate datasets. We preprocess
datasets of the archive that were not already normalized so
that the set of time series values for each dataset has zero
mean and unit variance.

We compare our scores to the ones of the four best classifiers
of the state-of-the-art presented in Bagnall et al. (2017)4:
COTE (Bagnall et al., 2015), ST (Bostrom & Bagnall, 2015),
BOSS (Schäfer, 2015) and EE (Lines & Bagnall, 2015), on
the first 85 datasets of the archive5. We also add DTW

4http://www.timeseriesclassification.com/singleTrainTest.csv.
5The new UCR archive includes 43 new datasets on which

no reproducible results of state-of-the-art methods have been pro-

https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries
https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries
http://www.timeseriesclassification.com/singleTrainTest.csv
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Figure 4. Critical difference diagram of the average ranks of the
compared classifiers for the Nemenyi test, obtained with Orange
(Demšar et al., 2013).

(which is a one-nearest neighbor classifier with DTW as
metric) as a baseline to the comparison.

While DTW is an unsupervised method, the other ones are
supervised. COTE is a powerful ensemble method using
many classifiers on several representations of time series
(such as Fourier); EE is a simpler ensemble method. ST
and BOSS are supervised6 as well: the former is based on
shapelets and the latter is a dictionary-based classifier. Note
that instead of reporting results for COTE, we report results
for HIVE-COTE (Lines et al., 2018), which is a refinement
of COTE and has been found to outperform it. HIVE-COTE
assembles classifiers in a hierarchical voting structure to
take advantage of their respective strengths. In particular,
it includes ST, BOSS and EE in its ensemble, and is thus
expected to outperform them.

Methods based on neural networks have emerged recently
(Cui et al., 2016; Wang et al., 2017) and claim to achieve
close to state-of-the-art performance, but, to our knowledge,
there was no extensive study similar to Bagnall et al. (2017)
comparing them in similar settings and in a reproducible
manner. We provide a comparison of our method with the
reported scores of FCN in Wang et al. (2017), who was only
tested on half the old UCR archive, in the supplementary
material, Section S3, Table S3. We provide there as well
comparisons with TimeNet (Malhotra et al., 2017) and RWS
(Wu et al., 2018a), which are two unsupervised methods also
training a simple classifier on top the learned representations,
and reporting their results on a few UCR datasets.

We report in Table 1 scores for only some UCR datasets,
while scores for all datasets are reported in the supplemen-
tary material, Section S3.

Performance. For an overall analysis of the performance
of our method, we show in Figure 4 the critical difference
diagram of all compared methods, as in Bagnall et al. (2017).
It shows that our method is globally second-to-best, only

duced yet. Nevertheless, we provide complete results for our
method on these remaining datasets as well, in the supplementary
material, Section S3, Table S4, and only compare them to DTW.

6While ST and BOSS also use ensembles of classifiers, these
classifiers are simple and applied on a specifically-designed repre-
sentation of the input. Thus we do not qualify them as ensemble.

beaten by HIVE-COTE and equivalent to ST. Thus, our
unsupervised method beats several recognized supervised
classification algorithms, and is only preceded by a powerful
ensemble method, which was expected since it takes advan-
tage of the numerous classifiers and data representation it
uses. More details are presented in Figure 5: the histogram
of ranks shows that our method ranks first 22% of the time
(versus 55% for HIVE-COTE and 25% for ST), and is in
the top 3 60% of the time (versus 96% for HIVE-COTE
and 66% for ST), while the boxplot shows that our method
has second-to-best median regarding the ratio of accuracy
over maximum achieved accuracy, behind HIVE-COTE and
above ST. Its limitation comes from the fact that, for some
datasets, it performs significantly worse than other methods:
it corresponds to cases where our encoder could not un-
cover the differences between differently labeled time series,
which is expected due to its unsupervised training. Over-
all, our method, while expectedly beaten by HIVE-COTE,
matches the second-to-best studied supervised method, and
in particular is at the level of the best performing method
included in HIVE-COTE7.

Note that partial results also indicate that our method is
beaten (on 68% out of 44 UCR datasets) by FCN, which
are neural network trained for supervised classification, and
thus expected to beat our neural network trained unsupervis-
edly (see the supplementary material, Section S3, Table S3).
These results also indicate that our method consistently out-
performs both unsupervised methods TimeNet and RWS
(on, respectively, 13 and 9 out of 13 and 12 UCR datasets),
showing its performance.

Transferability. We include in the comparisons the classi-
fication accuracy for each dataset of an SVM trained on this
dataset using the representations computed by an encoder,
which was trained on another dataset (FordA, with K = 5),
to test the transferability of our representations.

We observe that the scores achieved by this SVM trained on
transferred representations are close to the scores reported
when the encoder is trained on the same dataset as the SVM,
showing the transferability of our representations from a
dataset to another, and from time series to other time series
with different lengths. More generally, this transferability
and the performance of simple classifiers on the representa-
tions we learn indicate that they are universal and easy to
make use of.

5.1.3. MULTIVARIATE TIME SERIES

We tested our method on all 30 datasets of the newly re-
leased UEA archive (Bagnall et al., 2018). For each dataset,

7It is possible to incorporate our representations in HIVE-
COTE thanks to its flexibility. We suppose that it could improve
its performance, but this is beyond the scope of this work.



Unsupervised Scalable Representation Learning for Multivariate Time Series

Table 1. Accuracy scores of variants of our method compared with those of DTW (unsupervised), ST and BOSS (supervised) and HIVE-
COTE and EE (supervised ensemble methods), on some UCR datasets. Results for the whole archive are available in the supplementary
material, Section S3, Tables S1, S2 and S4. Bold scores indicate the best performing method.

Dataset
Ours (unsupervised) Unsup. Supervised Supervised ensemble

K = 1 K = 2 K = 5 K = 10 Combined FordA (K = 5) DTW ST BOSS HIVE-COTE EE

DiatomSizeReduction 0.987 0.977 0.993 0.993 0.99 0.958 0.967 0.925 0.931 0.941 0.944

ECGFiveDays 1 1 1 1 1 0.768 1 0.984 1 1 0.82

FordB 0.767 0.784 0.774 0.788 0.798 0.764 0.62 0.807 0.711 0.823 0.662

Ham 0.638 0.552 0.724 0.6 0.657 0.723 0.467 0.686 0.667 0.667 0.571

Phoneme 0.251 0.253 0.248 0.255 0.272 0.225 0.228 0.321 0.265 0.382 0.305

SwedishLeaf 0.923 0.916 0.933 0.912 0.939 0.909 0.792 0.928 0.922 0.954 0.915

supervised

unsupervised

sup. & ensemble

(a)

supervisedunsupervised supervised & ensemble

(b)

Figure 5. (a) Distribution of the ranks of compared methods on the first 85 UCR datasets. (b) Boxplot of the ratio of the accuracy versus
maximum achieved accuracy for compared methods on the first 85 UCR datasets.

Figure 6. Minute-averaged electricity consumption for a single day, with respect to the hour of the day. Vertical lines and colors divide the
day into six clusters, obtained with k-means clustering based on representations computed on a day-long sliding window. The clustering
divides the day in meaningful portions (night, morning, afternoon, evening).
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each dimension of the time series was preprocessed inde-
pendently from the other dimensions by normalizing its
mean and variance. Full accuracy scores are presented in
the supplementary material, Section S4, Table S5.

The UEA archive has been designed as a first attempt to
provide a standard archive for multivariate time series clas-
sification such as the UCR one for univariate series. As it
has only been released recently, we could not compare our
method to state-of-the-art classifiers for multivariate time
series. However, we provide a comparison with DTWD
as baseline using results provided by Bagnall et al. (2018).
DTWD (dimension-Dependent DTW) is a possible exten-
sion of DTW in the multivariate setting, and is the best
baseline studied by Bagnall et al. (2018).

Overall, our method matches or outperforms DTWD on 72%
of the UEA datasets, which indicates a good performance.
As this archive is destined to grow and evolve in the future,
and without further comparisons, no additional conclusion
can be drawn.

5.2. Evaluation on Long Time Series

In this section, we show the applicability and scalability of
our method on long time series without labeling for regres-
sion tasks, which could correspond to an industrial applica-
tion.

The Individual Household Electric Power Consumption
dataset from the UCI Machine Learning Repository (Dheeru
& Karra Taniskidou, 2017) consists in a minute-averaged
electricity consumption of a single household in France for
four years. It thus corresponds to a single time series of
length 2 075 259.

We split this time series into train (first 500 000 measure-
ments, corresponding to approximately a year) and test
(last 1 575 259 measurements), and normalize it to a zero-
mean and unit variance time series. The encoder, whose
hyperparameters are detailed in the supplementary material
(Section S2), is trained over the train time series on a sin-
gle Nvidia Tesla P100 GPU in no more than a few hours,
showing that our training procedure is scalable to long time
series.

We consider the learned encoder, trained on a year-long
time series, on two regression tasks involving two different
input scales. We compute, for each time step of the time
series, the representations of the last window corresponding
to a day (1 440 measurements) and a quarter (12 · 7 · 1 440
measurements)8. An example of application of the day-long
representations is shown on Figure 6. The considered tasks
consist in, for each time step, predicting the discrepancy of

8Note that representations for both scales are computed with
the same encoder.

Table 2. Results obtained on the Individual Household Electric
Power Consumption dataset.

Task Metric Representations Raw values

Day
Test MSE 8.95 · 10−2 8.92 · 10−2

Wall time 12s 3min 1s

Quarter
Test MSE 7.81 · 10−2 6.26 · 10−2

Wall time 4s 1h 40min 15s

the mean value of the series during the next day (respectively,
quarter) compared to the mean value of the previous day
(respectively, quarter), given the representations computed
on this day (respectively, quarter).

We consider simple linear regressors over the learned rep-
resentations, trained on the train time series using gradient
descent to minimize the mean squared error between the
prediction and the target. We compare their final scores on
the test time series to the ones of linear regressors taking as
input the raw values of the last day (respectively, quarter),
trained in a similar manner.

Results and execution times on a Nvidia Titan Xp GPU are
presented in Table 2. While regressors trained on our repre-
sentations are slightly less performing than the ones trained
on the raw time series values, they are trained much more
efficiently, as they operate on small input sizes. Moreover,
a single encoder trained with our procedure is able to out-
put representations for different scales of input lengths that
are helpful for other tasks than classification, corroborating
their universality.

6. Conclusion
We presented an unsupervised general-purpose represen-
tation learning method for time series that is scalable and
produces high-quality and easy-to-use embeddings. They
are generated by an encoder formed by dilated convolutions
that admits variable-length inputs, and trained with a novel
triplet loss using adapted negative sampling for time se-
ries. The architecture of the encoder and the simplicity of
the loss ensure the efficiency of the learned representations.
Conducted experiments show that these representations are
universal and can easily and efficiently be used for diverse
tasks, especially for classification for which training SVMs
on them produces close to state-of-the-art results in the do-
main, but also for regression. We leave as future work the
applicability of our method to other tasks like forecasting,
and the study of its impact if it were to be added in powerful
ensemble methods.
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Appendices

In these appendices, we provide our detailed training procedure for classification tasks, choices of hyperparameters, as well
as the full experimental results of our method, compared to other concurrent methods. Section S1 explains and discusses the
exact early stopping strategy and SVM training used for classification tasks, and discusses the importance of early stopping
in the training of otherwise fully unsupervised representations. Secion S2 details the choices of hyperparameters in all
presented experiments. Section S3 reports accuracy scores of all variants of our method on the whole UCR archive (Dau
et al., 2018), as well as comparisons with concurrent methods, when available. Finally, Section S4 provides accuracy scores
for our method on the whole UEA archive (Bagnall et al., 2018).

S1. Detailed Training for Classification Tasks
S1.1. SVM Training and Early Stopping

We perform no hyperparameter optimization on the architecture of our encoder, nor on the batch size or optimizer we use.
We thus perform a single training procedure for each dataset and parameter K. The only parameters we dynamically tune
are the number of epochs to train the encoder through an early stopping heuristic (stop training after a given number of
epochs have been done without increasing a performance score and until a given number of epochs is reached, and keep the
encoder corresponding to the best score), and the penalty C of the error term of the SVM.

In order to tune the latter and monitor a performance test which is not the train classification score for the early stopping
criterion, we use as performance score a cross-validation score on the training set in the following manner. To choose a
penalty for the SVM, we pick the one that achieves the best cross-validation mean classification score on the representations
of the train set. The performance monitored at the end of each training epoch of the encoder is this cross-validation score
for the best found SVM penalty, on the current representations of the train set. Note that if the train set or the number of
training samples per class are too small, we do not use early stopping and choose a penalty C =∞ for the SVM (which
corresponds to no regularization).

This complex scheme is required because the avalaible UCR and UEA archive do not provide any additional validation
set. Because lots of datasets are small, and to guarantee a fair comparison with concurrent methods which do not use any
validation set, we designed the early stopping strategy to only use training labels.

S1.2. Early Stopping Discussion

With such an early stopping criterion, the entire method is then not fully unsupervised, because the labels are used to decide
when to stop the learning procedure. This choice was mainly made to avoid having extra hyper-parameters to tune, and
to save time on computation by avoiding a long training on some datasets. It does not change much the overall results, as
it improves the accuracy on some datasets, but worsens them on some others. As an example, we provide in Figure S1,
the evolution of the test accuracy with respect to the number of epochs, showing that the stopping time is not optimal.
Besides, the encoder can always be trained without label information (stopping after a certain number of epochs), or with
very sparsely labeled time series.

Moreover, this encoder training augmented with this early stopping criterion is strictly equivalent to a more computationally
demanding and fully unsupervised training. Indeed, consider the training of the encoder for a number of epochs equal to the
maximal number of epochs under the early stopping procedure. If one records the weights of the encoder at the end of each
epoch, then one could simulate the online early stopping heuristic in an offline fashion by iteratively computing the early
stopping performance score, stopping when the early stopping conditions are met and retain the best set of weights. This
way, the encoder training is fully unsupervised at the cost of longer and more complex training using the train labels. Note
that exploratory experiments indicate that selecting the best performing set of weights over the whole number of epochs,
instead of simulating early stopping, tends to give results similar to the ones obtained with early stopping.
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Figure S1. Evolution of the test accuracy during the training of the representation on the CricketX dataset from the UCR archive (with
K = 10), with respect to the number of completed epochs. The test labels were only used for monitoring purposes and the test accuracy
was computed after each mini-batch optimization. The vertical line marks the epoch selected by the early stopping heuristic. Test accuracy
clearly increases during training, and the early stopping heuristic is suboptimal on this dataset.
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S1.3. Behavior of the Learned Representations through Training

The Risk R is defined as the expectation (taken over the random selection of the sequences {xref , xpos, xneg}) of the loss
defined in Equation (1). This risk may decrease if all the representations f (·, θ) are scaled by a positive large number.
For example, if for some θ0, for (almost surely) any sequences {xref , xpos, xneg}, f

(
xref , θ0

)>
f (xpos, θ0) ≥ 0 and

f
(
xref , θ0

)>
f (xneg, θ0) ≤ 0, then

R(λ, θ0) := Exref ,xpos,xneg

[
− log

(
σ
(
λ2f

(
xref , θ0

)>
f (xpos, θ0)

))
− log

(
σ
(
−λ2f

(
xref , θ0

)>
f (xneg, θ0)

))]
(3)

is a decreasing function of λ, thus λ could diverge to infinity in order to minimize the loss. In other words, the parameters in
θ0 corresponding to the last linear layer could be linearly scaled up, and representations would “explode” (their norm would
always increase through training). Such a phenomenon is not observed in practice, as the mean representation Euclidean
norm lies around 20. There are two possible explanations for that: either the condition above is not satisfied (more generally,
the loss is not reduced by increasing the representations) or the use of the sigmoid function, that has vanishing gradients,
results in an increase of the representations that is too slow to be observed, or negligible with respect to other weight updates
during optimization.

S2. Hyperparameters
We train our models with the following parameters for time series classification:

• optimizer: Adam (Kingma & Ba, 2014) with learning rate α = 0.001 and decay rates β = (0.9, 0.999);

• SVM: penalty C ∈
{
10i | i ∈ J−4, 4K

}
∪ {∞};

• encoder training:

– number of negative samples: K ∈ {1, 2, 5, 10} for univariate time series, K ∈ {5, 10, 20} for multivariate ones;
– batch size: 10;
– maximum number of epochs: 400;
– number of epochs to wait without performance improvement for early stopping: 25;

• architecture:

– number of channels in the intermediary layers of the causal network: 40;
– number of layers (depth of the causal network): 10,
– kernel size of all convolutions: 3;
– negative slope of the leaky ReLU: 0.01;
– number of output channels of the causal network (before max pooling): 320;
– dimension of the representations: 160.

For the Individual Household Electric Power Consumption dataset, changes are the following:

• number of negative samples: K = 10;

• batch size: 1;

• no early stopping;

• number of channels in the intermediary layers of the causal network: 30;

• number of output channels of the causal network (before max pooling): 160;

• dimension of the representations: 80.
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S3. Univariate Time Series
Full results corresponding to the first 85 UCR datasets for our method are presented in Table S1, while comparisons
with DTW, ST, BOSS, HIVE-COTE and EE are shown in Table S2, and comparisons with FCN, TimeNet and RWS are
shown in Table S3. Table S4 compiles the results of our method and of DTWS1 for the newest 43 UCR datasets (except
DodgerLoopDay, DodgerLoopGame and DodgerLoopWeekend which contain missing values).

All UCR datasets are provided with a unique train / test split that we used in our experiments. Compared techniques (DTW,
ST, BOSS, HIVE-COTE and EE) were also tested on 100 random train / test splits of these datasets by (Bagnall et al., 2017)
to produce a very strong state-of-the-art evaluation, but we did not perform similar resamples as this is beyond the scope of
this work and would require much more computations. Note that the scores for these methods used in this article are the
ones corresponding to the original train / test split of the datasets.

As our method is based on random sampling, the reported scores may vary depending on the random seed. While we do not
report standard deviation, the large number of tested datasets prevents large statiscal error in the global evaluation of our
method. The order of magnitude of accuracy variation between different runs of the combined version of our method is
around 0.01 (for instance, for five different runs, the corresponding standard variations for, respectively, datasets Mallat,
DiatomSizeReduction, CricketX and UWaveGestureLibraryX are 0.004, 0.014, 0.019 and 0.004).

S1Taken from https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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Table S1: Accuracy scores of variants of our method on the first 85 UCR datasets. Bold scores indicate the best performing method.

Dataset
Ours (unsupervised)

K = 1 K = 2 K = 5 K = 10 Combined FordA (K = 5)

Adiac 0.747 0.734 0.752 0.747 0.775 0.788
ArrowHead 0.777 0.8 0.834 0.766 0.851 0.783
Beef 0.633 0.667 0.633 0.633 0.633 0.767
BeetleFly 0.85 0.8 0.85 0.85 0.85 0.95
BirdChicken 0.8 0.9 0.75 0.9 0.9 0.9
Car 0.75 0.867 0.667 0.783 0.817 0.683
CBF 0.988 0.999 0.996 0.997 0.998 0.989
ChlorineConcentration 0.717 0.736 0.728 0.697 0.75 0.696
CinCECGtorso 0.641 0.733 0.784 0.699 0.726 0.63
Coffee 1 1 1 1 1 1
Computers 0.696 0.692 0.708 0.684 0.704 0.696
CricketX 0.751 0.715 0.715 0.751 0.79 0.618
CricketY 0.651 0.697 0.685 0.69 0.726 0.638
CricketZ 0.723 0.721 0.736 0.754 0.767 0.656
DiatomSizeReduction 0.987 0.977 0.993 0.993 0.99 0.958
DistalPhalanxOutlineCorrect 0.754 0.703 0.775 0.743 0.75 0.707
DistalPhalanxOutlineAgeGroup 0.727 0.734 0.748 0.741 0.748 0.741
DistalPhalanxTW 0.647 0.662 0.669 0.64 0.676 0.676
Earthquakes 0.748 0.748 0.748 0.748 0.748 0.748
ECG200 0.83 0.85 0.85 0.85 0.87 0.85
ECG5000 0.938 0.941 0.935 0.938 0.94 0.943
ECGFiveDays 1 1 1 1 1 1
ElectricDevices 0.722 0.712 0.687 0.682 0.73 0.676
FaceAll 0.782 0.761 0.757 0.779 0.786 0.75
FaceFour 0.795 0.841 0.886 0.898 0.875 0.864
FacesUCR 0.877 0.891 0.861 0.857 0.893 0.873
FiftyWords 0.745 0.752 0.767 0.723 0.778 0.668
Fish 0.909 0.874 0.874 0.811 0.897 0.949
FordA 0.924 0.92 0.922 0.92 0.932 0.922
FordB 0.767 0.784 0.774 0.788 0.798 0.764
GunPoint 0.993 0.98 0.993 0.987 0.987 1
Ham 0.638 0.552 0.724 0.6 0.657 0.723
HandOutlines 0.919 0.905 0.919 0.916 0.922 0.924
Haptics 0.474 0.484 0.471 0.494 0.506 0.494
Herring 0.625 0.563 0.578 0.469 0.609 0.594
InlineSkate 0.362 0.389 0.416 0.405 0.418 0.34
InsectWingbeatSound 0.565 0.586 0.583 0.606 0.603 0.566
ItalyPowerDemand 0.93 0.941 0.954 0.929 0.937 0.96
LargeKitchenAppliances 0.835 0.824 0.843 0.813 0.861 0.837
Lightning2 0.754 0.77 0.77 0.738 0.77 0.836
Lightning7 0.753 0.74 0.822 0.74 0.808 0.699
Mallat 0.934 0.967 0.943 0.957 0.962 0.909
Meat 0.933 0.917 0.917 0.917 0.917 0.967
MedicalImages 0.762 0.733 0.755 0.762 0.778 0.725
MiddlePhalanxOutlineCorrect 0.821 0.842 0.801 0.797 0.838 0.797
MiddlePhalanxOutlineAgeGroup 0.643 0.63 0.656 0.623 0.636 0.636
MiddlePhalanxTW 0.578 0.584 0.532 0.591 0.578 0.578
MoteStrain 0.846 0.873 0.847 0.863 0.859 0.864
NonInvasiveFatalECGThorax1 0.929 0.926 0.925 0.911 0.938 0.906
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Table S1: Accuracy scores of variants of our method on the first 85 UCR datasets. Bold scores indicate the best performing method.

Dataset
Ours (unsupervised)

K = 1 K = 2 K = 5 K = 10 Combined FordA (K = 5)

NonInvasiveFatalECGThorax2 0.933 0.935 0.938 0.936 0.945 0.916
OliveOil 0.867 0.9 0.833 0.867 0.9 0.867
OSULeaf 0.74 0.785 0.752 0.773 0.814 0.711
PhalangesOutlinesCorrect 0.789 0.79 0.762 0.798 0.808 0.819
Phoneme 0.251 0.253 0.248 0.255 0.272 0.225
Plane 1 1 1 1 1 0.99
ProximalPhalanxOutlineCorrect 0.863 0.907 0.859 0.866 0.89 0.904
ProximalPhalanxOutlineAgeGroup 0.844 0.844 0.829 0.868 0.839 0.844
ProximalPhalanxTW 0.78 0.79 0.78 0.776 0.81 0.771
RefrigerationDevices 0.541 0.576 0.493 0.461 0.515 0.528
ScreenType 0.485 0.475 0.411 0.483 0.491 0.411
ShapeletSim 0.606 0.557 0.822 0.639 0.75 0.644
ShapesAll 0.837 0.857 0.832 0.853 0.865 0.815
SmallKitchenAppliances 0.733 0.709 0.637 0.701 0.717 0.728
SonyAIBORobotSurface1 0.877 0.827 0.894 0.857 0.895 0.762
SonyAIBORobotSurface2 0.92 0.924 0.941 0.836 0.94 0.845
StarlightCurves 0.959 0.958 0.963 0.954 0.964 0.96
Strawberry 0.957 0.957 0.949 0.943 0.957 0.962
SwedishLeaf 0.923 0.916 0.933 0.912 0.939 0.909
Symbols 0.954 0.96 0.957 0.949 0.954 0.954
SyntheticControl 0.983 0.983 0.993 0.987 0.987 0.96
ToeSegmentation1 0.925 0.908 0.947 0.961 0.947 0.947
ToeSegmentation2 0.9 0.877 0.885 0.823 0.908 0.938
Trace 1 1 1 1 1 1
TwoLeadECG 0.996 0.985 0.975 0.996 0.989 0.98
TwoPatterns 1 1 1 1 1 0.969
UWaveGestureLibraryX 0.788 0.801 0.8 0.801 0.81 0.76
UWaveGestureLibraryY 0.728 0.714 0.721 0.711 0.741 0.657
UWaveGestureLibraryZ 0.749 0.752 0.752 0.74 0.766 0.697
UWaveGestureLibraryAll 0.91 0.889 0.899 0.891 0.927 0.807
Wafer 0.994 0.994 0.994 0.994 0.996 0.992
Wine 0.815 0.759 0.722 0.907 0.815 0.759
WordSynonyms 0.654 0.654 0.687 0.663 0.691 0.567
Worms 0.584 0.701 0.649 0.623 0.74 0.597
WormsTwoClass 0.597 0.688 0.831 0.753 0.74 0.623
Yoga 0.836 0.853 0.848 0.851 0.87 0.788
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Table S2: Accuracy scores of the combined version of our method compared with those of DTW (unsupervised), ST and BOSS (supervised)
and HIVE-COTE and EE (supervised ensemble methods), on the first 85 UCR datasets (results on the full archive were not available for
comparisons). Bold scores indicate the best performing method.

Dataset
Ours (unsupervised) Unsup. Supervised Supervised & ensemble

Combined DTW ST BOSS HIVE-COTE EE

Adiac 0.775 0.604 0.783 0.765 0.811 0.665
ArrowHead 0.851 0.703 0.737 0.834 0.863 0.811
Beef 0.633 0.633 0.9 0.8 0.933 0.633
BeetleFly 0.85 0.7 0.9 0.9 0.95 0.75
BirdChicken 0.9 0.75 0.8 0.95 0.85 0.8
Car 0.817 0.733 0.917 0.833 0.867 0.833
CBF 0.998 0.997 0.974 0.998 0.999 0.998
ChlorineConcentration 0.75 0.648 0.7 0.661 0.712 0.656
CinCECGtorso 0.726 0.651 0.954 0.887 0.996 0.942
Coffee 1 1 0.964 1 1 1
Computers 0.704 0.7 0.736 0.756 0.76 0.708
CricketX 0.79 0.754 0.772 0.736 0.823 0.813
CricketY 0.726 0.744 0.779 0.754 0.849 0.805
CricketZ 0.767 0.754 0.787 0.746 0.831 0.782
DiatomSizeReduction 0.99 0.967 0.925 0.931 0.941 0.944
DistalPhalanxOutlineCorrect 0.75 0.717 0.775 0.728 0.772 0.728
DistalPhalanxOutlineAgeGroup 0.748 0.77 0.77 0.748 0.763 0.691
DistalPhalanxTW 0.676 0.59 0.662 0.676 0.683 0.647
Earthquakes 0.748 0.719 0.741 0.748 0.748 0.741
ECG200 0.87 0.77 0.83 0.87 0.85 0.88
ECG5000 0.94 0.924 0.944 0.941 0.946 0.939
ECGFiveDays 1 0.768 0.984 1 1 0.82
ElectricDevices 0.73 0.602 0.747 0.799 0.77 0.663
FaceAll 0.786 0.808 0.779 0.782 0.803 0.849
FaceFour 0.875 0.83 0.852 1 0.955 0.909
FacesUCR 0.893 0.905 0.906 0.957 0.963 0.945
FiftyWords 0.778 0.69 0.705 0.705 0.809 0.82
Fish 0.897 0.823 0.989 0.989 0.989 0.966
FordA 0.932 0.555 0.971 0.93 0.964 0.738
FordB 0.798 0.62 0.807 0.711 0.823 0.662
GunPoint 0.987 0.907 1 1 1 0.993
Ham 0.657 0.467 0.686 0.667 0.667 0.571
HandOutlines 0.922 0.881 0.932 0.903 0.932 0.889
Haptics 0.506 0.377 0.523 0.461 0.519 0.393
Herring 0.609 0.531 0.672 0.547 0.688 0.578
InlineSkate 0.418 0.384 0.373 0.516 0.5 0.46
InsectWingbeatSound 0.603 0.355 0.627 0.523 0.655 0.595
ItalyPowerDemand 0.937 0.95 0.948 0.909 0.963 0.962
LargeKitchenAppliances 0.861 0.795 0.859 0.765 0.864 0.811
Lightning2 0.77 0.869 0.738 0.836 0.82 0.885
Lightning7 0.808 0.726 0.726 0.685 0.74 0.767
Mallat 0.962 0.934 0.964 0.938 0.962 0.94
Meat 0.917 0.933 0.85 0.9 0.933 0.933
MedicalImages 0.778 0.737 0.67 0.718 0.778 0.742
MiddlePhalanxOutlineCorrect 0.838 0.698 0.794 0.78 0.832 0.784
MiddlePhalanxOutlineAgeGroup 0.636 0.5 0.643 0.545 0.597 0.558
MiddlePhalanxTW 0.578 0.506 0.519 0.545 0.571 0.513
MoteStrain 0.859 0.835 0.897 0.879 0.933 0.883
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Table S2: Accuracy scores of the combined version of our method compared with those of DTW (unsupervised), ST and BOSS (supervised)
and HIVE-COTE and EE (supervised ensemble methods), on the first 85 UCR datasets (results on the full archive were not available for
comparisons). Bold scores indicate the best performing method.

Dataset
Ours (unsupervised) Unsup. Supervised Supervised & ensemble

Combined DTW ST BOSS HIVE-COTE EE

NonInvasiveFatalECGThorax1 0.938 0.79 0.95 0.838 0.93 0.846
NonInvasiveFatalECGThorax2 0.945 0.865 0.951 0.901 0.945 0.913
OliveOil 0.9 0.833 0.9 0.867 0.9 0.867
OSULeaf 0.814 0.591 0.967 0.955 0.979 0.806
PhalangesOutlinesCorrect 0.808 0.728 0.763 0.772 0.807 0.773
Phoneme 0.272 0.228 0.321 0.265 0.382 0.305
Plane 1 1 1 1 1 1
ProximalPhalanxOutlineCorrect 0.89 0.784 0.883 0.849 0.88 0.808
ProximalPhalanxOutlineAgeGroup 0.839 0.805 0.844 0.834 0.859 0.805
ProximalPhalanxTW 0.81 0.761 0.805 0.8 0.815 0.766
RefrigerationDevices 0.515 0.464 0.581 0.499 0.557 0.437
ScreenType 0.491 0.397 0.52 0.464 0.589 0.445
ShapeletSim 0.75 0.65 0.956 1 1 0.817
ShapesAll 0.865 0.768 0.842 0.908 0.905 0.867
SmallKitchenAppliances 0.717 0.643 0.792 0.725 0.853 0.696
SonyAIBORobotSurface1 0.895 0.725 0.844 0.632 0.765 0.704
SonyAIBORobotSurface2 0.94 0.831 0.934 0.859 0.928 0.878
StarlightCurves 0.964 0.907 0.979 0.978 0.982 0.926
Strawberry 0.957 0.941 0.962 0.976 0.97 0.946
SwedishLeaf 0.939 0.792 0.928 0.922 0.954 0.915
Symbols 0.954 0.95 0.882 0.967 0.974 0.96
SyntheticControl 0.987 0.993 0.983 0.967 0.997 0.99
ToeSegmentation1 0.947 0.772 0.965 0.939 0.982 0.829
ToeSegmentation2 0.908 0.838 0.908 0.962 0.954 0.892
Trace 1 1 1 1 1 0.99
TwoLeadECG 0.989 0.905 0.997 0.981 0.996 0.971
TwoPatterns 1 1 0.955 0.993 1 1
UWaveGestureLibraryX 0.81 0.728 0.803 0.762 0.84 0.805
UWaveGestureLibraryY 0.741 0.634 0.73 0.685 0.765 0.726
UWaveGestureLibraryZ 0.766 0.658 0.748 0.695 0.783 0.724
UWaveGestureLibraryAll 0.927 0.892 0.942 0.939 0.968 0.968
Wafer 0.996 0.98 1 0.995 0.999 0.997
Wine 0.815 0.574 0.796 0.741 0.778 0.574
WordSynonyms 0.691 0.649 0.571 0.638 0.738 0.779
Worms 0.74 0.584 0.74 0.558 0.558 0.662
WormsTwoClass 0.74 0.623 0.831 0.831 0.779 0.688
Yoga 0.87 0.837 0.818 0.918 0.918 0.879



Unsupervised Scalable Representation Learning for Multivariate Time Series

Table S3: Accuracy scores of the combined version of our method compared with those of FCN (supervised), TimeNet and RWS
(unsupervised), when available. Bold scores indicate the best performing method. ‘X’s indicate that a score were reported in the original
paper, but was either obtained using transferability or on a reversed train / test split of the dataset, thus not comparable to other results for
this dataset.

Dataset
Ours (unsupervised) Supervised Unsupervised

Combined FCN TimeNet RWS

Adiac 0.775 0.857 0.565 -
ArrowHead 0.851 - - -
Beef 0.633 0.75 - 0.733
BeetleFly 0.85 - - -
BirdChicken 0.9 - - -
Car 0.817 - - -
CBF 0.998 1 - -
ChlorineConcentration 0.75 0.843 0.723 0.572
CinCECGtorso 0.726 0.813 - -
Coffee 1 1 - -
Computers 0.704 - - -
CricketX 0.79 0.815 0.659 -
CricketY 0.726 0.792 X -
CricketZ 0.767 0.813 X -
DiatomSizeReduction 0.99 0.93 - -
DistalPhalanxOutlineCorrect 0.75 - X -
DistalPhalanxOutlineAgeGroup 0.748 - X -
DistalPhalanxTW 0.676 - X X
Earthquakes 0.748 - - -
ECG200 0.87 - - -
ECG5000 0.94 - 0.934 0.933
ECGFiveDays 1 0.985 X -
ElectricDevices 0.73 - 0.665 -
FaceAll 0.786 0.929 - -
FaceFour 0.875 0.932 - -
FacesUCR 0.893 0.948 - -
FiftyWords 0.778 0.679 - -
Fish 0.897 0.971 - -
FordA 0.932 - X -
FordB 0.798 - X X
GunPoint 0.989 1 - -
Ham 0.657 - - -
HandOutlines 0.922 - - 0.843
Haptics 0.506 0.551 - -
Herring 0.609 - - -
InlineSkate 0.418 0.411 - -
InsectWingbeatSound 0.603 - - 0.619
ItalyPowerDemand 0.937 0.97 - 0.969
LargeKitchenAppliances 0.861 - - 0.792
Lightning2 0.77 0.803 - -
Lightning7 0.808 0.863 - -
Mallat 0.962 0.98 - 0.937
Meat 0.917 - - -
MedicalImages 0.778 0.792 0.753 -
MiddlePhalanxOutlineCorrect 0.838 - X X
MiddlePhalanxOutlineAgeGroup 0.636 - X -
MiddlePhalanxTW 0.578 - X -
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Table S3: Accuracy scores of the combined version of our method compared with those of FCN (supervised), TimeNet and RWS
(unsupervised), when available. Bold scores indicate the best performing method. ‘X’s indicate that a score were reported in the original
paper, but was either obtained using transferability or on a reversed train / test split of the dataset, thus not comparable to other results for
this dataset.

Dataset
Ours (unsupervised) Supervised Unsupervised

Combined FCN TimeNet RWS

MoteStrain 0.859 0.95 - -
NonInvasiveFatalECGThorax1 0.938 0.961 - 0.907
NonInvasiveFatalECGThorax2 0.945 0.955 - -
OliveOil 0.9 0.833 - -
OSULeaf 0.814 0.988 - -
PhalangesOutlinesCorrect 0.808 - 0.772 -
Phoneme 0.272 - - -
Plane 1 - - -
ProximalPhalanxOutlineCorrect 0.89 - X 0.711
ProximalPhalanxOutlineAgeGroup 0.839 - X X
ProximalPhalanxTW 0.81 - X -
RefrigerationDevices 0.515 - - -
ScreenType 0.491 - - -
ShapeletSim 0.75 - - -
ShapesAll 0.865 - - -
SmallKitchenAppliances 0.717 - - -
SonyAIBORobotSurface1 0.895 0.968 - -
SonyAIBORobotSurface2 0.94 0.962 - -
StarlightCurves 0.964 0.967 - -
Strawberry 0.957 - 0.93 -
SwedishLeaf 0.936 0.966 0.901 -
Symbols 0.954 0.962 - -
SyntheticControl 0.987 0.99 0.983 -
ToeSegmentation1 0.947 - - -
ToeSegmentation2 0.908 - - -
Trace 1 1 - -
TwoLeadECG 0.989 1 - -
TwoPatterns 1 0.897 0.999 0.999
UWaveGestureLibraryX 0.81 0.754 - -
UWaveGestureLibraryY 0.741 0.725 - -
UWaveGestureLibraryZ 0.766 0.729 - -
UWaveGestureLibraryAll 0.927 - - -
Wafer 0.996 0.997 0.994 0.993
Wine 0.815 - - -
WordSynonyms 0.691 0.58 - -
Worms 0.74 - - -
WormsTwoClass 0.74 - - -
Yoga 0.87 0.845 0.866 -



Unsupervised Scalable Representation Learning for Multivariate Time Series

Table S4. Accuracy scores of variants of our method and of DTW on the remaining 43 UCR datasets, except DodgerLoopDay, Dodger-
LoopGame and DodgerLoopWeekend which contain missing values. Bold scores indicate the best performing method.

Dataset
Ours (unsupervised)

K = 1 K = 2 K = 5 K = 10 Combined FordA (K = 5)

ACSF1 0.79 0.84 0.86 0.8 0.87 0.68
AllGestureWiimoteX 0.691 0.689 0.686 0.723 0.733 0.679
AllGestureWiimoteY 0.75 0.759 0.74 0.754 0.77 0.71
AllGestureWiimoteZ 0.701 0.704 0.713 0.711 0.734 0.657
BME 0.98 0.967 0.967 0.993 0.987 0.98
Chinatown 0.974 0.959 0.962 0.951 0.959 0.98
Crop 0.732 0.721 0.719 0.73 0.747 0.719
EOGHorizontalSignal 0.522 0.552 0.575 0.566 0.569 0.478
EOGVerticalSignal 0.428 0.398 0.401 0.376 0.403 0.414
EthanolLevel 0.54 0.596 0.584 0.482 0.588 0.318
FreezerRegularTrain 0.984 0.992 0.989 0.998 0.988 0.989
FreezerSmallTrain 0.925 0.962 0.973 0.927 0.957 0.921
Fungi 1 0.995 0.995 0.989 0.995 0.984
GestureMidAirD1 0.615 0.654 0.677 0.654 0.646 0.546
GestureMidAirD2 0.531 0.585 0.523 0.508 0.562 0.492
GestureMidAirD3 0.323 0.323 0.285 0.3 0.315 0.223
GesturePebbleZ1 0.791 0.866 0.86 0.802 0.82 0.494
GesturePebbleZ2 0.867 0.81 0.854 0.905 0.88 0.525
GunPointAgeSpan 0.991 0.991 0.984 0.997 0.991 0.981
GunPointMaleVersusFemale 0.994 0.994 0.997 0.997 0.994 0.997
GunPointOldVersusYoung 1 0.902 1 1 1 1
HouseTwenty 0.924 0.958 0.95 0.932 0.966 0.95
InsectEPGRegularTrain 1 1 1 1 1 1
InsectEPGSmallTrain 1 1 1 1 1 1
MelbournePedestrian 0.944 0.94 0.935 0.943 0.953 0.922
MixedShapesRegularTrain 0.906 0.909 0.92 0.905 0.921 0.88
MixedShapesSmallTrain 0.849 0.824 0.852 0.866 0.865 0.808
PickupGestureWiimoteZ 0.84 0.84 0.76 0.78 0.86 0.76
PigAirwayPressure 0.529 0.606 0.63 0.659 0.644 0.135
PigArtPressure 0.928 0.938 0.928 0.918 0.938 0.361
PigCVP 0.688 0.769 0.846 0.889 0.856 0.37
PLAID 0.518 0.574 0.567 0.54 0.542 0.447
PowerCons 0.983 0.944 0.939 0.928 0.944 0.922
Rock 0.68 0.6 0.62 0.6 0.64 0.42
SemgHandGenderCh2 0.848 0.903 0.862 0.831 0.885 0.802
SemgHandMovementCh2 0.729 0.747 0.769 0.804 0.807 0.467
SemgHandSubjectCh2 0.822 0.867 0.858 0.878 0.904 0.567
ShakeGestureWiimoteZ 0.92 0.9 0.88 0.9 0.9 0.9
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S4. Multivariate Time Series
Full results corresponding to the UEA archive datasets for our method as well as the ones of DTWD as reported by Bagnall
et al. (2018) are presented in Table S5, for the unique train / test split provided in the archive.

Table S5. Accuracy scores of variants of our method on all UEA datasets, compared to DTWD. Bold scores indicate the best performing
method.

Dataset
Ours

K = 5 K = 10 K = 20 Combined DTWD

ArticularyWordRecognition 0.96 0.97 0.96 0.973 0.987
AtrialFibrillation 0.067 0.067 0.067 0.067 0.2
BasicMotions 1 0.975 1 1 0.975
CharacterTrajectories 0.992 0.99 0.99 0.992 0.989
Cricket 0.972 0.972 0.958 0.986 1
DuckDuckGeese 0.525 0.575 0.55 0.625 0.6
EigenWorms 0.802 0.817 0.824 0.809 0.618
Epilepsy 0.971 0.971 0.964 0.971 0.964
Ering 0.133 0.133 0.133 0.133 0.133
EthanolConcentration 0.274 0.247 0.243 0.236 0.323
FaceDetection 0.505 0.522 0.516 0.526 0.529
FingerMovements 0.54 0.55 0.52 0.57 0.53
HandMovementDirection 0.27 0.338 0.248 0.27 0.231
Handwriting 0.435 0.448 0.452 0.466 0.286
Heartbeat 0.688 0.732 0.727 0.722 0.717
InsectWingbeat 0.152 0.165 0.168 0.167 -
JapaneseVowels 0.984 0.981 0.984 0.989 0.949
Libras 0.839 0.839 0.839 0.839 0.87
LSST 0.553 0.564 0.571 0.581 0.551
MotorImagery 0.49 0.52 0.54 0.5 0.5
NATOPS 0.889 0.9 0.9 0.917 0.883
PEMS-SF 0.688 0.659 0.711 0.676 0.711
PenDigits 0.985 0.983 0.981 0.984 0.977
Phoneme 0.216 0.219 0.218 0.224 0.151
RacketSports 0.803 0.803 0.809 0.836 0.803
SelfRegulationSCP1 0.799 0.836 0.802 0.819 0.775
SelfRegulationSCP2 0.578 0.578 0.611 0.589 0.539
SpokenArabicDigits 0.891 0.92 0.896 0.936 0.963
StandWalkJump 0.333 0.333 0.267 0.4 0.2
UWaveGestureLibrary 0.881 0.913 0.903 0.916 0.903


