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Abstract: A new microsystem designed to detect and measure in real time the enthalpy of mixing
of two fluid constituents is presented. A preliminary approach to quantify the enthalpy of dilution
values or mixing is first discussed. Then, a coherent rationale leading to structure devices operating
in real time is formulated, considering the straightforward assessment of heat-flux transducers
(HFTs) capability. Basic thermodynamic observations regarding the analogy between thermal and
electrical systems are highlighted prior consideration of practical examples involving mixing water
and alcohols. Fundamentals about HFT design are highlighted before presenting an adequate way to
integrate both functions of mixing and measuring the entailed heat exchange as two continuously
flowing fluids interact with one another. Thereby, the development of a relevant prototype of such a
dedicated microsystem is discussed. Its design, fabrication and implementation under real operating
conditions are presented together with its assessed performance and limits so as to highlight the
advantages and shortcomings of the concept.

Keywords: heat flux transducer; planar thermopile; enthalpy of mixing; conjugated variables;
3D-printed mixing chamber; SU8 channels; thermal differential and common modes

1. Introduction

As regards industrial processes, assessing the heat exchanges occurring as two fluid constituents
are mixed together is a most common requirement, whatever the quantities to be considered.
Furthermore, miniaturized systems bring, nowadays, new challenges especially in the case of
constituents interacting in continuous flows. As a state variable and the intensive quantity associated
with thermal energy, the absolute temperature is classically the only prominent quantity to be assessed
by way of calorimetry. Then, thermal metrology hinges on thermometry and its numerous methods [1].
However, the extensive quantity conjugated with temperature is the entropy current that should be of
most valuable interest insofar as dedicated sensors would be available [2]. Indeed temperature and
entropy are conjugated quantities with regard to thermal energy, in the same way that voltage and
electric charge are the conjugated quantities characterizing any electrical exchange [3,4].
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Given any domain of energy, the comprehensive knowledge of a system is allowed as both
conjugated quantities are within metrological reach [1,5]. Then, considering thermal exchanges, on a
metrological standpoint, when small changes of temperature are involved, heat-flow meters (HFMs)
may supply quite relevant intelligence especially as regard detection of weak thermal changes [6,7].
For instance, considering phase transitions with quasi-isothermal plateaus, the HFM approach has
already proved its substantial metrological advantages [8,9]. Beyond such an approach, in this paper
we highlight a valuable way to take advantage of the planar thermopile constitutive of a generic
HFM so as to design a sensitive area fitted for measuring weak thermal exchanges otherwise hardly
detectable in terms of ratio signal/noise.

As miniaturized devices, we first describe dedicated HFM-based structures before detailing
the aforementioned original design featuring a specific planar thermopile overlaid with micro-SU-8
channels [10] arranged on a glass substrate. Besides presenting the advantages of self-generating
sensors (no power supply, 2 wires), such alloy-based thermopile configurations feature low output
impedance values (Z0 < 2 kΩ) and naturally minimise Johnson electrical noise.

Since several designs have been investigated, the various stages in the development of the most
miniaturized prototype (microsystem) are delineated. Then, as practical examples of specifications and
verified performance, relevant experimental processes involving mixing water + ethanol and water +
propan-2-ol have been investigated [11,12].

2. Materials and Methods

Considering calibration, specifications for designing effective devices rely on data available
in the literature, especially as regards fluid constituents to be mixed. Moreover, as a mandatory
requisite the constituents experimented with should be devoid of any kind of interaction with the
materials constituting the sensors. Prototypes involving depron (λ = 0.027 W/mK), polylactic acid
(PLA: λ = 0.13 W/mK), polyethylene terephthalate (PET: λ = 0.14 W/mK), SU8 (λ = 0.15 W/mK), and
glass (λ = 1 W/mK), first appeared rugged enough with mixings of water with alcohols. However,
PLA was afterward replaced with PET, both materials being easily shaped with a 3D printer.

2.1. Prerequisite for Calibration: Suitable Fluids and Ways to Handle their Mixing

Both ethanol and isopropyl alcohol (IPA) mixed with water have been investigated, considering
references 11 and 12. Products used in this paper were high-quality products (Ethanol Rectapur™ 99.5%
in vol. and IPA Normapur™ 99.7%) mixed with deionised water (10.6 MΩ·cm). Taking advantage of
both the Boyne’s study [11] and the Peeters and Huyskens polynomial model [12], the excess enthalpies
of mixing for any case of combination may be calculated. For instance, one may resort to the following
fitting equation, where XW and XA denote the respective mole fraction of water and alcohol within the
blend experimented with:

∆Hmix = C6/1 · X6
w · XA + C1/1 · Xw · XA + C1/2 · Xw · X2

A, with XW = (1 − XA), (1)

As depicted in Figure 1, such a thermodynamic behaviour may be illustrated whatever the
quantitative combination involving water and both alcohols.
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Figure 1. Heat of mixing of water with alcohol mixtures (J.mol−1) vs. mole fraction of alcohol
(XA). It appears that as isopropyl alcohol (IPA) + water are blended together, processes can be either
exothermic (∆Hmix < 0) or endothermic.

Considering a given mass of water M added with that of an alcohol m and referring to the entailed
ratio r = m/M, the mole fraction of alcohol may be written as:

XA =
r · w

1 + r · w
. Here, w =

MWwater

MWalc
is the ratio of respective molecular weights, (2)

Practical values are: {MWwater = 18.015 g/mol, MWIPA = 60.1 g/mol, MWEthanol = 46.07 g/mol}.
Then, considering energy balance, the effective exchanged heat ∆Q (J) that can be measured by way of
standard calorimetric methods may be given with:

∆Q = ∆Hmix ·
[

m
MWalc

+
M

MWwater

]
(3)

Considering now a continuous flow process involving both constituents, the entailed heat flow Φ
(W) produced in steady state and related with Equation (3) may be written as:

Φ =
dQ
dt

= ∆Hmix ·
[
ρalc · (∂Valc/∂t)

MWalc
+

ρwater · (∂Vwater/∂t)
MWwater

]
(4)

It is clear that as peristaltic pumps were used to introduce fluids within the prototypes, m
and M values had to be inferred from their controlled respective volumetric quantities with ρ_IPA =
0.785 g/cm3 and ρ_Ethanol = 0.789 g/cm3.

2.2. Generic Heat Flow Meter (HFM)-Based Design for Monitoring Excess Enthalpies

Heat flow meters (HFMs) are nowadays quite common self-generating sensors allowing
measurement of heat transfers with internal low noise due to their reduced output impedance. Indeed,
Z0 may range between 100 Ω and 2 kΩ [1-chap.XI, 6,7,8] with the most common devices designed in the
laboratory. A generic structure, based on a planar thermopile, is depicted in Figure 2a. Basically, such
a device relies on differential thermocouples arranged in series along a meandering path. Then, as one
thermojunction out of two is subject to the heat flow driven through the upper collector, the numerous
entailed local voltages are added in series accounting then for the thermal energy proceeding across
the sensing area. The top view of a real specific set of plated thermoelements is given with Figure 2b.
Practically, sensitive areas may be realized with sizes ranging from 1 cm2 up to 25 cm2 depending on
either microtechnologies with sputtering processes, or classical printed circuit techniques involving
electroplating. Both approaches hinge on photolithography [13] and the manufacturing process is
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pliant enough to customize planar thermopiles on request, even fitted for radiant measurements [7,14].
With response time values in the order of one second, HFMs, functional in the field of control, come up
as noteworthy solutions in case of unsteady transfer analysis.

Figure 2. Heat flow meter (HFM) fundamentals: (a) cross section view of a generic structure: heat
flow is constricted through a copper wedge so as to act on one gold-constantan contact out of two. (b)
Arrangement in a checkerboard pattern for a specific golden plated planar thermopile deposited on a
glass substrate.

As regards the requirements dealt within this paper, we investigated continuous mixing processes
with a first family of miniaturized devices. They were fabricated with standard HFMs assembled
with PLA and PET 3D-printed-mixing-chambers. In such a configuration the mixing chamber (whose
bottom face must be thermally insulated) was arranged on the lower face of a HFM whose upper face
was superimposed with a heat sink. The generic layout of such a prototype is depicted in Figure 3a.
Then, a real structure is illustrated in Figure 3b.

Figure 3. Generic HFM-based devices: (a) layout-design of the polyethylene terephthalate (PET)
3D-printed unit. Inside the mixing chamber, blades and studs are arranged so as to enhance the
self-stirring of both fluids. (b) Photograph of a prototype apart from its heat sink. Isothermal channels
drive both inlet fluids within the mixing chamber. Then any imbalance in heat entails an effective
demand on the heat sink through the HFM.

In any case, an effective isothermal condition must be imposed on both liquids before being mixed.
Making them circulate within separated channels arranged within the upper sink was thereafter
considered as an advantageous solution enhancing then the design of Figure 3.
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Considering a given HFM with a planar thermopile structure involving N couples of
thermojunctions, the amplified Seebeck output voltage is representative of the heat current [Φmes (W)]
proceeding through the acting surface with:

Vout = G · Rs · Φmes = G · N · ∆α · δθ , (5)

where G is the gain of the amplifier (50 < G < 1000), Rs the responsivity of the HFM (V/W), ∆α the
relative Seebeck coefficient (∆α ∼= 38 µV/K) and δθ the local elementary differences in temperature
available between two adjacent thermojunctions as depicted in Figure 2a. Although quite liable, such
systems based on HFMs featured a major drawback due to internal turbulence within the mixing
chamber: then, a significant enhancement regarding the operating principle had to be considered.

2.3. Specific Design Relying on Micro-Technology

Any extraneous noise due to uncontrolled turbulence comes up as an unfortunate drawback
while considering most common control processes: generally, the volumetric flow of a solute has to
be adjusted for a given flow of the solvent, the enthalpy of mixing being determined with prior
assessments (either theoretical or experimental). The sensor presented in this section has been
designed with a view to making possible the adequate control of the solvent flow as regards industrial
applications. Then, we had to minimize the integrated effect of turbulence impeding the measurements
over the sensing surface of the HFM. To overcome such an issue, we changed the whole HFM approach:
indeed we made it possible to locally ensure the mixing process directly upon one thermojunction
out of two of the thermopile as depicted in Figure 4, the other one being at the relative reference
temperature—that of both constituents—in the course of the mixing process.

Figure 4. Main principles for constitutive parts of the self-generating microsystem (Zo < 2kΩ).

We may then consider the thermopile output Seebeck voltage with the right term of Equation (5)
while highlighting the local differences in temperature (δθ): the relevant emf added values come
up as representative of statistics on thermoelectric voltages localized on the numerous sets of
thermojunctions; we verified that it could be considered as a valuable output signal practically
associated with the mixing heat flow described with Equation (4). Then, regarding a given mixing
process in a steady state with an expected theoretical heat flow rate Φ for a fixed water flow set point
value, we may consider after amplification:

Vout = G · ξ · Φ , (6)
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with G the gain and ξ (V/W) an apparatus-related constant depending on the design of the thermopile
and its overlaying channels driving both constituents.

3. Results: Technological Achievement and Validation of the Microsystem

As depicted in Figure 5 the aforementioned thermopile is deposited on a glass substrate. Then,
walls arranged together with apt studs and blades made of SU8 250 µm in thickness allow an adequate
repartition of both constituents to be mixed together.

Figure 5. (a) Layout of the prototype highlighting: the glass substrate (λth = 1 W/m·K),
the Au-Constantan plated planar thermopile (N = 360), the SU8 walls 400 µm in height allowing
to drive and mix both fluid-constituents, and the electrical terminals. (b) Global view of the device
with both fluids inputs: the output being on the other side is here invisible.

3.1. Micro-Fabrication

3.1.1. Specifications and Features

The prototype experimented with includes a thin planar thermopile featuring 360 plated
thermoelements, coated with 3 matched compartments over a whole 1.44 cm2 acting surface (Figure 6a).
The fabrication process is single sided, and requires six mask layers: 1 for a first SU8 layer, 2 for the
bimetallic thermopile, 1 for ensuring both the electrical insulation and chemical protection, 1 for
building the walls and pads and 1 for the upper face (covering lid). Indeed the device is mounted
on a standard glass substrate 1 mm in thickness [Elka®Micro Slides 76 × 26 mm, λ = 1 W/(m·K)],
allowing a fair reference isothermal condition. The thermopile relies on the constantan thermoelectric
alloy [poorly conducting material; σ1 = 52 (µΩ·cm)−1] plated with gold conductors [highly conducting
material; σ2 = 2.2 (µΩ·cm)−1] prior covering with the patterned SU-8 layers. It must be noted that
numerous parameters are involved to account for the optimization of such a thermoelectric device;
thermal and electrical conductivities, the effective thermoelectric power of the plated structure and
dimensional parameters are among the most important to be considered [7]. For instance, the first
SU8 layer arranged between the substrate and the constantan allows optimized δθ values between
each thermojunction.

3.1.2. Manufacturing Principle

At first, after chemical and plasma cleaning, the glass substrate is coated with the aforementioned
thermally insulating SU-8 layer (Microchem®2100 mask #1), 100 µm in thickness (post-bake at
95 ◦C, λ = 0.3 W/(m·K)). A constantan layer (600 nm) is deposited by RF magnetron sputtering
(PLASSYS-BESTEK, Evry, France MP-450-S). Then, a continuous meandering path (50 µm in width,
legs 50 µm apart: mask #2), ended with the contact pads, is wet etched, prior to deposit the gold-plated
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electrodes. The latter (400 nm in thickness, 2 mm in length, 50 µm in width: mask #3) are processed
by classical lift-off techniques [13]. Then, a SU-8 protective and electrical insulating layer (10 µm;
MicroChem® Corp, Westborough, MA, USA 2010) is spread, cured, and recessed by photoimaging
(mask #4). Thereafter, the walls, blades and surrounding enclosure (Figure 6a) are patterned by way
of a thick SU-8 layer (250 µm: MicroChem®), with the second last photolithographic stage (mask #5).
Eventually, the device is oxygen-plasma treated so as to optimize the surface wetting properties, and
the thin holes are drilled by way of sand blasting through the glass substrate allowing the water-based
fluids to be steadily distributed into the set of channels both through capillary action and pressure due
to the peristaltic pumps. Eventually, the lid (fitted with the outlet channeling) allowing the closing of
the acting volume is fabricated with same techniques.

Figure 6. (a) Layout of the mixing chambers arranged upon the planar thermopile. (b) The device seen
through before closure (its lid being fitted with the mixing outlet).

3.2. Microprototype Characterization

According to the allotted dimensional parameters, especially the effective area of the glass
substrate, and taking account of the characteristics of the peristaltic pumps, preliminary tests were
operated as follows:

3.2.1. Preliminary Tests with Classical Temperature Measurements

A first set of experiments has been carried out to evaluate under realistic conditions the relevance
of Equations 1 and 3. To this end, given masses (weighted ± 0.02 g) were mixed within a 20 cm3

thermally insulated cell with classical calorimetric procedures. Temperature values were measured
with a G10K3976 radial glass thermistor (NTC) fitted with a thin fin (aluminized aluminium foil
# 1 cm2), operated with a 100 µA current value (HP 33120A). After a straightforward determination
of the threefold set of Steinhart–Hart coefficients [15], temperature values were measured with an
accuracy estimated to the nearest 0.05 ◦C within the range {10 ◦C–60 ◦C}. Since our characterizations
regarding alcohols and water were in fair agreement (albeit less accurate due to our oversimplified
cell) with that of Peeters and Huyskens investigating with a Parr Calorimeter [12], and with no further
interest than that of classical thermometry, they may be considered of no interest in this paper whose
topic is focused on applicability of heat flow measurements. It may be noticed that as a prospective
source of error we had to eliminate any PLA layer within the cell due to its slight chemical interaction
with both water and alcohols. Then, we verified (haphazardly) that due to its complex structure water
may dissolve almost anything in the long run [16].
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3.2.2. Suitable Conditions to Operate the Microsystem

As a consequence of the dimensioning of the prototype, relevant working regimes had to be
identified. To this end, a first coarse setting with water highlighted proper flow values ranging around
7 mL/min. Then, both inlets were supplied with coloured water (with, respectively, blue and yellow
food dyes): a straightforward eye sighting of the green coloured volume allowed us to choose an apt
duty point for the water flow (water as the solvent) and delineate the adequate range for the solute
(alcohols). Hence, the best suited controlled water flow was fixed at 7.2 ± 0.2 mL/min. At this stage,
first tests highlighted the critical issue as regards removing entrapped air bubbles as is clearly shown
in Figure 7a. As regards filling tests, the detail of the green expanding area in a given transient regime
is shown in Figure 7b.

Figure 7. Filling tests: (a) air bubbles entrapped within the mixing chamber as a major source of
erratic behaviour; (b) visual observation of a transitory regime while filling with coloured blue and
yellow water.

Figure 8a illustrates the global set up involving the system under experiment together with the
two peristaltic pumps. Blended fluids were directly evacuated in a simple beaker. The maintenance
of the atmospheric pressure within both burettes containing the liquids to be mixed was ensured by
way of unscrewing their respective cap. The output voltage of the sensor was amplified (Chopped
TI® Texas Instrument, DALLAS, USA-TLC 2652A: G = 1000) and filtered (2d order, LP-3dB: 10 Hz)
before signal acquisition. The output signals volumetric flow values obtained with IPA and ethanol
are illustrated in Figure 8b.

Figure 8. (a) Global view of the characterization system. (b) Compared values regarding measurements
Φmes = Vout/G·ξ and theoretical expected values calculated from Equation (4).
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4. Discussion

4.1. Quantitative Results Regarding the Microsystem: Presentation and Relevance

Considering Figure 8b, theoretical values are quantitatively inferred from Equation (4), regarding
IPA and Ethanol associated with the water duty point set at 7.2 mL/min. The entailed expected
behaviour is shown in solid lines with ∆Hmix considered for t ◦C = 25 ◦C. On the other hand,
experimental results are depicted by way of specific boxes accounting for uncertainties regarding both
flow values and related monitored output voltages. With such a configuration the ξ parameter binding
the thermopile emf and the theoretical flow (Equation 6) can be established as: ξ = (2.083 ± 0.02) ×
10−4 V/W. However, we must underline a slight ξ-dependence on the water flow set point values.
It must also be noted that experimenting with ethanol brought (by a far cry) more difficulties than with
IPA. Then, the effective operating range with ethanol was substantially reduced due to incontrollable
internal degassing mechanisms that were involved (although barely visible to the naked eye), entailing
extraneous output signals. Other prototypes with different sizes will be realized for a comprehensive
analysis of the behaviour of the system.

4.2. Advantages, Shortcomings and Prospects

Although designed with a same view to monitoring heat exchanges in continuous flow, HFM-based
sensors (Figure 2) and devices working with a distributed mixing chamber (Figures 4 and 5) are systems
quite different from one another. Since HFM configurations hinge on heat exchanges through the
sensing surface, their output voltage depends on the temperature gradient perpendicular to the
sensing surface: then, a heat sink is mandatory for proper operation. Conversely, composite mixing
chambers allow a direct local heat distribution upon one thermojunction out of two; then, each heat
exchanges entails its respective δθ (parallel with the plane of the thermopile) working as a thermal
differential mode: moreover, insofar as the global heat is evacuated, the mean temperature of the
substrate acts as a thermal common mode with a somewhat limited influence on the output signal
due to the Cxy parameters drift (Figure 1) function of temperature (impacting ∆Hmix in Equation (1)).
Hence, with small chemical interactions the heat sink is optional.

Moreover, such a distributed configuration features another significant advantage as regards the
response time whose value is naturally quite reduced (<0.5 s) compared with that of more cumbersome
HFM devices. Then, our preliminary results highlight a promising ability for such devices to be
implemented within regulatory loops [17], insofar as their operating regimes are subjected to a
comprehensive control. Although the relevance of the concept (together with its feasibility) has
been proved, several critical issues remain to be addressed. Indeed, operational implementation
may be fatally flawed in the case of air bubbles (even with a trifling amount, ethanol being more
difficult than IPA to experiment with) introduced within the mixing chamber. Then, before operating
the system has to be cleaned for any trace of air that must be drained out with a comprehensive
flush of liquid. Unfortunately this may come up as a significant drawback as regards fluid waste.
Furthermore, operating regimes hinge on numerous parameters. Beyond the obvious dimensional
ones, the hydrophilic properties depend critically on the effectiveness of material processing, notably
the SU8 plasma treatment (Plassys®CVD 300, oxygen Plasma). With initial trials, the effects were
sometimes tricky, entailing erratic signals. Eventually, in operation another potential default may
stem from the positioning of the device. We assume that the related observed drifts were due to the
difference in density of the fluids experimented with.
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5. Conclusions

New sensors designed to monitor in real time the heat exchanged while mixing two fluids have
been developed. Based on planar thermopiles, two families are presented. The first one comes up
as a direct application of heat-flux transducers: a 3D-printed realization of such a configuration
as mini-system is delineated. The second family relies on a distributed mixing chamber and its
relevant generic design is presented whatever the size of the device. However, with a view to
addressing pharmacobiology applications, a specific development with microtechnologies is presented.
After describing the fabrication of such a microsystem, its implementation method is discussed on
the ground of relevant tests carried out under realistic conditions with water and alcohols (IPA
and ethanol) mixings. Then, the advantages and shortcomings are pointed out. Finally, industrial
applications involving the device within a regulatory loop controlling the solvent flow are expected in
the coming year.
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