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Abstract. The present paper describes a numerical study of force fluctuations experienced by a boundary wall

subjected to a granular flow on two distinct systems, namely a lid-driven cavity and an immersed wall system.

Though the two systems exhibit different time-averaged dynamics, the force fluctuations experienced by the

boundary wall show robust features in terms of the shapes of the probability density distributions and auto-

correlation functions, under a wide range of boundary confinement pressure and shearing velocity imparted

to the granular flow at the top of the system. This study identifies the key link between the grain-wall force

fluctuations and the μ(I)−rheology while moving from quasistatic to inertial regime.

1 Introduction

The problem of an assembly of grains in interaction with

a boundary wall is relevant for a number of real-world ap-

plications involving granular materials, such as the trans-

port of particle in food processing or mining industry, the

impact of large-scale avalanche-flows with civil engineer-

ing structures in geophysics, the design of technological

earthmoving equipments used to work with the soils in

agriculture, etc. Understanding the force experienced by a

boundary wall in interaction with a granular flow is crucial

but little is known about the fluctuating part of the granu-

lar force under slow to fast flow regimes. The distribu-

tions of grain-grain or grain-wall contact forces (noted f )

in static or quasistatic systems received a great attention,

as reported in [1, 2] and a number of references therein.

A salient feature in static granular media is a relatively ro-

bust exponential decrease at large forces, while the distri-

butions at small forces may show very different behaviours

(absence or presence of a plateau—even a peak, non-zero

probability at f = 0), depending on many parameters as-

sociated with the shear history of the system. By contrast,

only a few studies were devoted to force fluctuations at

stake in flows of granular materials (see for instance [3]).

The present study investigates the distributions of

grain-wall forces, as well as force time-series autocorrela-

tion, when a granular flow interacts with a rigid boundary

wall, under a wide range of macroscopic boundary shear-

ing velocity U and confinement pressure P imparted to

the granular bulk. The approach is based on the cross-

comparison between two distinct granular flow systems

simulated by discrete element method (DEM). The two
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systems and their time-averaged dynamics are briefly de-

scribed in section 2. Section 3 is devoted to the grain-wall

force distributions on the entire height of the wall and on

portions of wall. The analysis of force time-series auto-

correlation is addressed in section 4. Finally, a conclusion

is given in section 5.

2 Two distinct granular systems studied

2.1 Flow-wall geometries and methods

This section gives a brief summary of the two systems

studied, both involving a boundary wall that is subjected to

a planar and gravity-free granular flow. The first system,

namely the granular lid-driven cavity, is a closed system

for which the grains are forced to stay inside the cavity,

thus producing a perpetual recirculation of the grains in

the whole volume. The second system, namely the im-
mersed wall granular system, is an opened system which

enables the grains to escape by passing over an immersed

wall, while other grains are trapped behind the wall-like

obstacle. Both systems are simulated thanks to DEM, us-

ing the open-source YADE software [4].

The contact forces between the spherical particles of

diameter d were modelled using a damped linear spring

law for the normal direction and a linear spring with a

static Coulomb threshold law for the tangential direction.

Four microscopic parameters were required for the sim-

ulations presented here: the normal stiffness kn, the tan-

gential stiffness kt, the interparticle friction coefficient μ
and the normal restitution coefficient e. All simulations

were conducted in the limit of rigid grains, varying kn and

kt accordingly, with respect to the macroscopic pressure

imparted by the top wall to the system. We considered
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μ = 0.5 and e = 0.5. Full information on how the val-

ues of those parameters were implemented is given in our

initial study of the lid-driven cavity system [5].

For both systems, we defined the two dimension-

less following parameters: NU = U/
√
gd and NP =

P/(ΦρPgH) where H is the height of the system (equal

to 30d with d = 1 mm in the simulations presented here),

and ρP was the particle density taken equal to 2500 kg

m−3 (corresponding to the density of glass beads gener-

ally used in small-scale laboratory experiments). The sys-

tems lengths L were set to five times the height of grains:

L/H = 5. A polydispersity of ±15% was given to the

grains in order to avoid crystallization. Note that we con-

sidered typical pressures ΦρPgH (where Φ was a typi-

cal volume fraction taken equal to 0.6 for a dense three-

dimensional packing) and typical velocities
√
gd in order

to define NP and NU , though the systems simulated by

DEM were gravity-free in the present study. This choice

was made for convenience if laboratory experiments un-

der gravity are developed in the future and compared to

the DEM simulations presented in the paper. For both sys-

tems, NU and NP were typically varied in the ranges [1; 20]

and [0.01; 100], respectively.

Based on the boundary conditions imposed at the top

in terms of shearing velocity U and confinement pressure

P, a macroscopic inertial number can be defined as the

ratio between the typical time tP = d
√
ρ/P, associated

with the top confinement pressure P, and the typical time

tU = H/U, equal to the inverse of the macroscopic shear

rate over the height of the sample: IM =
U
H d
√
ρ/P.

2.1.1 The granular lid-driven cavity

The two-dimensional granular lid-driven cavity simulated

by DEM consists of a planar assembly of spheres trapped

into a box made of four walls, as sketched in Fig. 1.

The perpetual recirculation of the grains within the cavity

(closed system) produced streamlines showing the forma-

tion of a vortex in the whole volume of the cavity. The

mean force on the right sidewall (see Fig. 1) was found to

fit the empirical following scaling:

F =
⎛
⎜⎜⎜⎜⎝r +

Δr
1 + I0

M/IM

⎞
⎟⎟⎟⎟⎠ PLd, (1)

where r = 0.53, Δr = 0.33 and I0
M = 0.2 in this study

(see detail in [5, 6]). The values of r and Δr depend on

the mechanical properties of the grains, for instance the

interparticle friction, as reported in [6] where results from

DEM simulations with μ = 0.27 are presented too.

2.1.2 The immersed wall granular system

The immersed wall granular system consists of a horizon-

tal flow of spheres passing over a wall of height h = 20d,

as sketched in Fig. 2. This system was simulated by DEM

using periodic conditions. The immersed wall-like obsta-

cle led to the formation of a dead zone behind the wall, this

dead zone co-existing with an overlying sheared granular

Figure 1. Geometry and boundary conditions for the granular

lid-driven cavity simulated by DEM

Figure 2. Geometry and boundary conditions for the immersed

wall granular system simulated by DEM. Periodic conditions

were used, thus explaining the presence of a wall on the left side

(lighter-colored area), which is a duplicate of the wall (of interest

in our study) on the right side

flow. As a result, the mean force on the wall was found to

obey the empirical following relation:

F =
⎛
⎜⎜⎜⎜⎝r∗ +

Δr∗

1 + I∗0M /I
∗
M

⎞
⎟⎟⎟⎟⎠ Phd, (2)

where r∗ = 1.4, Δr∗ = 1.9 and I∗0M = 0.3 in the present

study (see detail in [7]). The values of r∗ and Δr∗ depend

on the mechanical properties of grains. I∗M is the macro-

scopic inertial number defined with the difference between

the height of the system (the height of grains) and the im-

mersed wall height: I∗M =
U

H−h d
√
ρ/P.

2.2 Distinct time-averaged dynamics

Because the two systems presented above are by construc-

tion different, they show two different time-averaged dy-

namics. First, a standing vortex-like structure is formed

inside the cavity volume [5, 6], while longitudinal stream-

lines with a curvature in the vicinity of the wall take place

in the immersed wall system [7]. Second, the mean force

scalings allowed us to identify different relevant spatial

scales specific to each system. The relevant pressure force

is PLd for the cavity (see Eq. (1)), while it is Phd for

the immersed wall system (see Eq. (2)). The relevant spa-

tial scale for the macroscopic inertial number is the system

height H for the cavity (see Eq. (1)), while it is the height

difference H − h, namely the height of the granular layer

overflowing the wall, for the second system (see Eq. (2)).

Much more details about the specific features of the lid-

driven cavity and the immersed wall system can be found

in [5, 6] and [7], respectively.

However, we show in the following how these two dis-

tinct systems exhibit very similar—not to say, for some

aspects, identical—key features in terms of the force dis-

tributions and the force time-series autocorrelations on the

boundary wall, and we will identify a robust signature of

the transition from quasistatic to dense inertial granular

flow regime.
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Figure 3. Distributions of total force experienced by the bound-

ary wall for the lid-driven cavity (top panel) and the immersed

wall system (bottom panel), for different values of IM

3 Grain-wall force distributions

3.1 At the scale of the entire wall

Figure 3 shows the distributions of total force on the

boundary wall for the lid-driven cavity (top panel) and the

immersed wall system (bottom panel) for different values

of IM . First, it is worthwhile to note that the distributions

are entirely controlled by the value of IM , whatever the

pair (U, P) (see the curves for IM = 6.1 10−3 obtained with

three different pairs (U, P) for the two systems). Second,

it is found that they generally evolve from an exponential-

like form at high forces (much larger than the mean) with

the presence of a plateau/peak at small forces for high IM ,

toward a Gaussian-like form at the lowest IM . We ob-

serve a difference between the cavity and the immersed

wall at the highest IM: the cavity exhibit purely exponen-

tial shapes without any peak, while the peak at small forces

is still present in the immersed wall system.

3.2 At the scale of a portion of wall

For both systems and a given IM , our simulations showed

that the distribution of the force Fi on each portion i of

the boundary wall was independent of the vertical location

along the boundary wall, excluding the extreme locations

at the top and the foot of the wall (not shown here: details

can be found in [6] for the cavity and [7] for the immersed

wall). As a result, we could average the distributions and

extract robust mean values of distributions as functions of
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Figure 4. Distributions of the force experienced by a portion of

the boundary wall for the lid-driven cavity (top panel, H split into

10 portions) and the immersed wall system (bottom panel, h split

into 5 portions). The curves drawn in both graphs correspond to

the mean value obtained from all the vertical locations i along

the wall, excluding the extreme locations at the top and the foot

of the boundary wall

IM , as depicted in Fig. 4. The top panel shows the results

for the lid-driven cavity, while the bottom panel holds for

the immersed wall system.

The force distributions shown in Fig. 4 collapse nicely

into one single master curve, independent of IM , once IM

becomes greater than 10−2, whatever the granular system

considered. This remarkable result, showing that there ex-

ists a threshold value of IM which is independent of the

system geometry, suggests that the distributions on por-

tions of wall are robust to identify the transition between

quasistatic and dense inertial granular flow regimes.

4 Force time-series autocorrelation

The autocorrelation function C(t, t + Δt) of force time-

series on the wall was analysed for the cavity and the

immersed wall system. It was generally observed that

C(t, t + Δt) dropped quickly (exponentially) to zero over

a time scale Δtc and could fluctuate around zero (see de-

tails in [6, 7]). Note that very similar C(t, t + Δt) functions

were extracted from an experimental study on the force ex-

perienced by an intruder dragged into a granular medium

in an annular geometry [8].

Well-defined fluctuations, associated with the trans-

mission of the frequency U/d linked to the roughness of

the wall at the top shearing the granular sample, could
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Figure 5. Critical time 〈Δtc〉 beyond which the force time-series

become weakly correlated, as a function of IM . We report the

mean over the Δtc
i values for i ∈ [1; 10] in the case of the lid-

driven cavity (cross symbols) and for i ∈ [1; 5] in the case of the

immersed wall system (circle symbols)

sometimes be identified in the case of the cavity, as de-

tailed in [6]. By contrast, this effect was never detected

for the immersed wall. This observation illustrates the fact

that the cavity can produce high confinement pressure on

the right top corner (see [5] for much more discussion).

We could not find any clear relation between the crit-

ical time Δtc beyond which the force time-series became

weakly correlated, and the inertial number IM , consider-

ing the entire height of the boundary wall subjected to the

granular flow. However, by considering the autocorrela-

tion function for portions of wall (as done for the distri-

butions in section 3), we found that each Δtci (the criti-

cal time corresponding to a vertical location i along the

boundary wall) systematically had a non-zero value for IM

below 10−2, while it was nil beyond IM = 10−2. This re-

sult being robust whatever the system considered, we de-

fined the critical time 〈Δtc〉 averaged over all the locations

i considered along the boundary wall. The latter is plotted

in Fig. 5 as a function of IM for the two granular systems.

It is remarkable that both curves display very similar be-

haviours.

The autocorrelation function C(t, t + Δt) can be seen

as a measure of the memory of the system through time

Δt. High values of C indicate that a future state of the sys-

tem (in terms of force applied to the wall) depends on the

past state of this system, while it does not when C tends

toward zero. As such, we can conclude from Fig. 5 that a

future state of the system may strongly depend on the past

state below IM � 10−2 while it does not beyond this criti-

cal IM . The latter result being robust whatever the granular

system considered, this reveals another clear signature of

the transition from the quasi-static regime (system with a

memory) to the dense inertial regime (full loss of mem-

ory).

Note that the non-zero value of 〈Δtc〉 below IM � 10−2

is higher for the immersed wall than for the cavity. This

difference may be explained by the fact that the grains

against the boundary wall are moving along the cavity

wall (perpetual recirculation), while they are not in the im-

mersed wall system because they are trapped in the stag-

nant zone formed against the immersed wall. Therefore,

memory effects may be more pronounced in the immersed

wall system.

5 Conclusion

The present paper paid a particular attention to the force

fluctuations experienced by the boundary wall, consider-

ing a wide range of macroscopic boundary conditions in

terms of shearing velocity and confinement pressure im-

posed to each system. By comparing the results between

the two distinct systems, we could extract some key fea-

tures which appeared to be independent of the system at

stake. In particular, our study showed that the distribu-

tions measured on portions of wall (of size around 3d)

moved from an exponential decrease at large forces with

a shoulder at small forces, which were independent of IM

for IM greater than 10−2, toward IM-dependent Gaussian-

like distributions while IM was decreased. Moreover, we

could detect a system memory for the lowest IM , which

disappeared while increasing IM beyond 10−2. Those fea-

tures were obtained from two distinct granular flow sys-

tems, characterized by a different time-averaged dynam-

ics in terms of streamlines and mean force scalings on the

boundary wall. Those results then appear as a robust sig-

nature of the transition between quasistatic and dense in-

ertial granular flow regimes, revealing and quantifying the

link between the μ(I)−rheology proposed by [9] and the

force fluctuations experienced by a boundary wall.
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