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Abstract. The present paper tackles the problem of the impact of a dry granular avalanche-flow on a rigid wall

of semi-infinite height. An analytic force model based on depth-averaged shock theory is proposed to describe

the flow-wall interaction and the resulting impact force on the wall. Provided that the analytic force model

is fed with the incoming flow conditions regarding thickness, velocity and density, all averaged over a certain

distance downstream of the undisturbed incoming flow, it reproduces very well the time history of the impact

force actually measured by detailed discrete element simulations, for a wide range of slope angles.

1 Introduction

The mitigation of natural hazards related to landslides and

avalanche requires a thorough understanding of the inter-

action between large-scale granular flows and civil en-

gineering structures. This includes the development of

new knowledge on the kinematics of free-surface granular

flows—down inclines—disturbed by the presence of ob-

stacles, as well as on the force imparted to the obstacle.

One interesting approach is to develop depth-averaged an-

alytic solutions, useful for engineers in charge of the de-

sign of structures subjected to landslides and avalanches,

as recently reviewed in [1]. The present paper describes a

contribution to this topic, showing how an analytic model

based on depth-averaged shock theory can capture the im-

pact force of a granular avalanche-flow on a rigid wall

which cannot be overtopped (wall of semi-infinite height),

provided that the relevant depth-averaged properties of the

incoming flow are used as input parameters.

Numerical simulations using the discrete element

method (DEM) to mimic the impact of a granular

avalanche-flow on a rigid wall are briefly described in

section 2. An analytic force model based on depth-

averaged shock theory is presented in section 3. Section

4 addresses the main outcomes of our study regarding

the cross-comparison between the depth-averaged analytic

model and the results from DEM simulations. Finally, sec-

tion 5 concludes on the need for future research.

2 DEM simulations

The impact of the granular avalanche-flow on the rigid

wall is simulated with the help of DEM, using the open-
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source YADE software [2]. Samples were prepared us-

ing clumped particles ranging from 12.5 to 25 mm in di-

ameter, interacting through a linear-dashpot model with a

Mohr-Coulomb failure criterion. Particles were flowing in

an inclined chute with different angles ranging from 30 to

55 degrees which is bound by a rigid wall at the bottom.

Much more detail on the parameters used in the DEM sim-

ulations, as well as on the validation of the DEMmodel on

existing laboratory tests on dry granular avalanche impact

on a rigid wall, can be found in [3].

Figure 1 shows series of snapshots of the granular flow

evolution. It starts with the impact of a very dilute front

that is too discrete in nature and can not be represented by

a continuum model. Afterwards, a more dense incoming

flow arrives and a distinguished dead zone (gray) can be

observed. That zone is followed by a green zone represent-

ing the part where the incoming flow conditions (height,

velocity ..etc) are averaged and then used in the analytic

model as inputs. Different inclination angles (Fig.1 top

and bottom) leads to different evolving and final dead zone

shape, basal friction contribution and propagating wave

speed. The objective of the depth-averaged analytic model

is to determine the evolution of impact force with time in-

cluding all the complexities arising from different inclina-

tion angles.

3 Depth-averaged analytic model

The flow of granular materials down the incline, of slope

α and constant width w, can be described by its thickness

h1, and its depth-averaged quantities, namely the veloc-

ity ū1 =
1
h

∫ h1

0
u(z)dz and the volume fraction φ1. The

avalanche-flow then impacts a rigid wall normal to the bot-

tom and of semi-infinite height, thus preventing overflow

downstream of the wall. As a result, the incoming flow

of granular materials is pushed upstream the wall, which
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Figure 1. Impact of the avalanche-flow with the wall (a), forma-

tion (b), propagation of the granular bore (c), and final arrest of

the flow (d), as simulated by DEM for two slopes angles α = 30◦

(top panel) and α = 42.5◦ (bottom panel). Orange: flowing parti-

cles, green: flowing parameters sampling zone, gray: dead zone

particles

Figure 2. Granular bore forming upstream of a rigid wall im-

pacted by a flow of granular materials: DEM simulations (exam-

ple for α = 40◦) and notation

produces a granular shock-wave propagating upstream, the

grains trapped between the wave and the wall forming a

stagnant zone. A general picture of this granular flow-wall

interaction is displayed in Fig. 2 showing a snapshot ex-

tracted from the DEM simulations presented in section 2.

3.1 Simple description of the granular bore

We propose to describe the interface between the incoming

granular flow and the stagnant zone formed upstream of

the wall using depth-averaged shock theory. As depicted

in the sketch in Fig. 3, we define the following variables:

the filling height hdz against the wall, the length ldz of the

dead zone, the jump height h2, the mean velocity ū2 within

the jump, the volume fraction φ2 and vn the propagation

speed of the wave. The dead zone is defined by a volume

fraction φdz corresponding to static close packing (φdz ∼
0.64) and a mean velocity udz = 0. Also we consider that

φ2 (volume fraction within the shock) is equal to φdz (mean

volume fraction inside the dead zone). Because we assume

Figure 3. Sketch of a granular bore for the derivation of the

depth-averaged shock model

that � ∼ 0, we do not describe the variation of φ from φ1
to φ2 but rather consider a strong shock-wave in density.

The integral forms of mass and momentum conserva-

tion equations across the compressible jump are given by

the following relations (see more detail in [4]):

[[ρPφh(u − vn) · n]]w = 0, (1)

[[ρPφhu(u − vn) · n +
1

2
ρPφgh2 cosαn]]w = S. (2)

The jump bracket [[ f ]] = f1 − f2 denotes the dif-

ference between the enclosed function f on the forward

and rearward sides of the singular surface, following the

notation commonly used in the literature about granular

shocks [5, 6]. Hydrostatic pressure distribution is as-

sumed at each side of the jump (k = σxx/σzz = 1 with

σzz = ρg(h − z) cosα), as well as uniform velocity pro-

files (β = ū2/ū2 ∼ 1). The density of the granular fluid

is ρPφ, where ρP is the particle density. A detailed dis-

cussion on considering values of k and β slightly different

from 1 (either upstream or downstream the shock) is given

in [1, 4] and some other references therein. In the momen-

tum equation, assuming that the jump volume shrinks into

a singular surface (� ∼ 0) yields S = 0. In other words, the

volume and surface forces acting over the finite length of

the jump are neglected here, though a recent experimen-

tal study dedicated to standing jumps formed in granular

flows revealed the importance of those forces under certain

circumstances when the jumps become diffuse [4]. This

crucial assumption will be further discussed while con-

cluding the present paper.

In the problem of granular impact against a wall of

semi-infinite height, the normal velocity at the outgoing

section of the jump has to satisfy the velocity continuity,

which means that ū2 · n = udz = 0. From mass conserva-

tion, it yields an expression for the velocity vn at which the

granular jump propagates upstream:

vn = − (ū1 · n)n
φ2
φ1

h2

h1
− 1
. (3)

Note that the jump height h2 is by construction smaller

or equal to hdz, as drawn in Fig. 3. h2 can be predicted

by injecting the relation for vn in the momentum conserva-

tion equation across the shock (Eq. 2), which after some

rearrangements takes the following form:

(
h2

h1

)3
+ A

(
h2

h1

)2
+ B

(
h2

h1

)
+C = 0, (4)
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where A = 1/λφ, B = −(1 + 2Fr21)/λφ, and C = 1/λ2φ.
We have defined here the density ratio λφ = φ2/φ1
and the Froude number of the incoming flow Fr1 =
ū1/

√
gh1 cosα. This equation is a cubic equation that can

be solved by Cardano’s method.

3.2 Impact force imparted to the rigid wall

Once the grains start piling-up against the wall, the force

imparted to the rigid wall is given by the apparent weight

of the grains squeezed between the incoming flow and the

wall. The interface between the incoming flow and the

grains trapped against the wall is modeled by a strong

compressible jump (see Sec. 3.1). Let’s write the static

equilibrium for the dead zone:

ΣFext = Fs +Wdz sinα − μdzWdz cosα + R = 0. (5)

The following forces are defined: Fs is the force of

the strong jump exerted on the dead zone, Wdz sinα is the

weight of the dead zone along the slope, μdzWdz cosα is

the resistive friction force (where μdz denotes the Coulomb

friction coefficient) and R is the reaction of the wall. The

total force on the wall is given by the following expression:

Fn = −R = Fs +Wdz cosα(tanα − μdz). (6)

The weight of the dead zone is:

Wdz = ρPφFgcdzldzhdzw, (7)

where ldz is the dead zone length and cdz a shape coeffi-

cient. The distance Ls at which the granular wave is lo-

cated at time t+ dt can be estimated from the value at time

t using Ls(t + dt) = Ls(t) + vndt. In practice, it is mostly

likely that the propagation speed is actually smaller than

the theoretical value for vn because of some dissipation

(by friction and collisions between grains). However, if

we assume that vn matches the speed at which the material

piles-up against the wall, we have: ldz ∼ Ls. Ls should

then be always an overestimation of ldz.

Moreover, it is worthwhile to stress that the jump

height h2 is not the run-up height hdz on the wall. hdz takes

the following form: hdz(t + dt) = max (h2(t), h2(t + dt)) +
h+, where h+ is an additional contribution to the run-up, as

shown in the sketch on the bottom panel of Fig. 3. Pre-

dicting h+ remains a challenging question. There exists a

time beyond which the jump height h2, derived from shock

theory, starts vanishing once the incoming flow starts dy-

ing. We then consider the maximum between h2(t + dt)
and h2(t) because the filling height hdz = h2 + h+ cannot

decrease. Note that cdz > 2 if h+ = hdz−h2 is not nil, while

cdz = 2 if hdz = h2. The latter situation corresponds to a

dead zone that is nearly rectangular—see case (1) drawn

in the sketch on bottom panel of Fig. 3, and may happen if

the slope α is lower than a typical friction angle ϕ associ-

ated with quasi-static deformations. The former situation

holds for a dead zone being trapezoidal—see case (2) in

the sketch on bottom panel of Fig. 3, and may occur when

the slope α is greater than ϕ. In this case, the slope of the

deposit is nearly equal to ϕ.
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Figure 4. Temporal force signal on the rigid wall: prediction

of the depth-averaged shock model (Eq. 6 fed with Eqs. 7 and

9, continuous lines) versus the force actually measured in DEM

simulations (dots), for different slope angles α

Finally, in the DEM simulations described at Sec. 2

a finite-sized mass mtot of material is initially released,

which means that the mass of the dead zone is limited to

this value mtot: ρPφdzcdzldzhdzw < mtot. For given values of

hdz, φdz and cdz, this yields a limit value for ldz, itself ap-

proximated by Ls. In other words, the weight of the dead

zone is restricted to the maximum value mtotg.

The force of the incoming flow on the dead zone can

be predicted from the integral form of momentum conser-

vation across the shock formed between the incoming flow

and the dead zone (the forces acting over the finite length

� of the dead zone are still neglected here):

[
[[ρPφhu(u − vn) · n]] − [[

∫ h

0

σx]]n
]
w = 0. (8)

Under the assumption of hydrostatic pressure distribu-

tion for the incoming granular flow, this yields:

Fs = ρPφ1u2
1h1w

⎛⎜⎜⎜⎜⎜⎜⎝1 + 1
φ2
φ1

h2

h1
− 1
+

1

2Fr2
1

⎞⎟⎟⎟⎟⎟⎟⎠ (9)

Equation 6, fed with Eqs. 7 and 9, enables the estima-

tion of the total force on the rigid wall, which is compared

to the impact force actually measured in the DEM simula-

tions in the next section.

4 Depth-averaged model versus DEM

A number of calculations were done to test the depth-

averaged analytic force model presented in Sec. 3 and

the various assumptions made. A full description of these

tests will be given in a forthcoming paper. A key result

is that the model was not able to capture the impact force

actually measured in the DEM simulations if the proper-

ties of the incoming flow, taken at a singular surface before

the jump, were used to feed the model. However, a good

agreement could be found—over the whole range of slope
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Figure 5. Peak and residual forces versus α: comparison be-

tween the shock model and the force measured in DEM
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Figure 6. Evolution over time of the jump height h2 predicted by

the shock model (dots) and of the run-up hdz measured in DEM

(continuous line)

angles tested, by feeding the force model with the incom-

ing flow properties averaged over a certain region, starting

from the beginning of the jump and stopping after a dis-

tance 15d50 along the slope (see the green-colored regions

on Fig. 1). These results are shown in Fig. 4.

The agreement is nearly perfect for the highest slope

angles α but becomes less good while decreasing α. Note

that there always exists—whatever the slope—a time win-

dow (until and even after the peak for the highest α) during
which the increase of F with time is very well captured

by the analytic force model. The agreement is less good

after this time window because the strong compressible

shock does not longer exist but is largely damped by en-

ergy dissipation caused by friction and taking place along

the slope. There is then a transition towards a much more

diffuse jump, leading to the formation of a final deposit of

characteristic shape. Of course this complicated physics

related to a fluid-to-solid transition is not considered in

the shock model and prevails at the lowest α. As a re-

sult, the peak and residual forces cannot be well captured
at the lowest α, as depicted in Fig. 5 that shows the peak

force (Fpeak) and the residual force (Fres) extracted from

the temporal signals displayed in Fig. 5.

As already discussed in section 3.1, the (saturated)

height of the granular bore is—by construction—an un-

derestimate of the run-up height hdz on the wall. This is

confirmed by Fig. 6 showing the hdz actually in DEM and

the jump height h2 predicted by the shock model. Inter-

estingly, the depth-gradients ∂hdz/∂t and ∂h2/∂t are very

similar, thus probing the relevance of describing the im-

pact by the shock model presented in Sec. 3.

5 Discussion and conclusion

The present paper briefly presented DEM simulations of

the impact of a dry granular avalanche-flow on a rigid wall.

An analytic force model based on depth-averaged shock

theory for compressible fluids was derived. This model

was able to capture the evolution of the impact force with

time actually measured in DEM if it was fed with the in-

coming flow properties averaged over a certain distance

(equal to 15d50) independent of the slope angle. This re-

sult shows that there exists a relevant length-scale, namely

the jump length along the slope, relevant to the problem.

The assumption � ∼ 0 appears to be too strong and will

need further investigation in the future. A detailed descrip-

tion of both the DEM simulations and the depth-averaged

force model, as well as an extended description of the tests

made to compare the analytic force model to the DEM re-

sults, are addressed in a paper currently under preparation.
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