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Abstract—In the past decade, the energy needs in WBANs
have increased due to more information to be processed, more
data to be transmitted and longer operational periods. On the
other hand, battery technologies have not improved fast enough
to cope with these needs. Thus, miniaturized energy harvesting
technologies are increasingly used to complement the batteries in
WBANs. However, this brings uncertainties in the system since
the harvested energy varies a lot during the node operation.
It has been shown that reinforcement learning algorithms can
be used to manage the energy in the nodes since they are
able to make decisions under uncertainty. But the efficiency
of these algorithms depend on their reward function. In this
paper we explore different reward functions and seek to identify
the most suitable variables to use in such functions to obtain
the expected behavior. Experimental results with four different
reward functions illustrate how the choice thereof impacts the
energy consumption of the nodes.

Index Terms—reinforcement learning, WBAN, reward func-
tion, Q-learning, energy management

I. INTRODUCTION

The rapid growth of interest in physiological sensors, low-
power integrated circuits, and wireless communication has
enabled a new generation of wireless sensor networks, called
Wireless Body Area Networks (WBANs). WBANs consist
of a number of intelligent nodes fitted on the body to
monitor physiological parameters of the wearer. Advances in
microelectronics lead to significant miniaturization of sensors;
however, battery technology has not improved at the same rate
[1].

To minimize the battery’s size, an increasingly popular ap-
proach is to harvest energy directly from the environment [2].
Miniaturized energy harvesting technologies can not harvest a
lot of energy (see Table I), but they can be used as complement
to the battery. However, such energy sources vary greatly over
time and bring uncertainties in the system. Reinforcement
learning (RL) algorithms have acquired a certain popularity
in recent years ( [3], [4] ...) because they can handle such
uncertainty in energy sources and appear to be a valid solution
for energy management. They adapt the node’s behavior by
rewarding good decision using a reward function. However, it
can be difficult to choose the most suitable reward function;
since this function determines the behavior of the system,
choosing it is an essential task for the system designer.
However, the literature on this topic rarely discusses the choice
of the reward function.

TABLE I
POWER DENSITY OF ENERGY HARVESTING TECHNOLOGIES

Harvesting technologies Power density
Solar cell (outdoors at noon) 15 mW/cm2

Wind flow (at 5 m/s) 16.2 µW/cm3

Vibration (Piezoelectric – shoe insert) 330 µW/cm3

Vibration (electromagnetic conversion at 52 Hz) 306 µW/cm3

Thermoelectric (5 ◦C gradient) 40 µW/cm3

Acoustic noise (100 dB) 960 nW/cm3

Thus, in this paper, we explore the influence of different
reward functions used in a popular RL algorithm, i.e. Q-
learning. We also propose an approach for deciding on the
appropriate reward function and parameters in order to maxi-
mize the battery’s autonomy.

The remainder of the paper is structured as follows. Section
2 discusses the related work and Section 3 presents our use
case. Section 4 introduces the RL mechanism and presents
the proposed decision approach. Section 5 presents our exper-
imental results wherein four reward functions are evaluated
and compared. Lastly, section 6 summarises and concludes
the paper.

II. RELATED WORK

Works on energy management typically focus on the con-
sumption of the radio, often disregarding the power consump-
tion of other parts of the system. In cases where energy
harvesting technologies are employed, related works have
proposed adaptive protocols that deal with the challenge of
providing the required quality of service under uncertainty in
the energy input [5].

To extend a sensor node lifespan in WBANs, there exist
different energy management methods. The work presented in
[6] adapts the node’s consumption according to the activity
of the wearer. They propose a new classifier that detects the
person’s activity and adapts the operating policy accordingly.

RL is an approach to take decisions under uncertainty, which
makes it suitable for energy management in systems where
energy harvesting technologies are used. [7] have developed
a power control approach in WBANs based on RL. This
approach provides a substantial saving in energy consumption
per bit. However, they only focus on the wireless communi-
cation.



There are few papers about WBANs that deal with harvest-
ing energy and RL for the energy management of the entire
node. Most of these papers do not explain the process for
choosing the reward function; for example, [7] shows good
results with one reward function but without explaining if they
tried different reward functions.

III. USE CASE

In this work, we want to manage the energy consumption
of a sensor node fitted on the chest to monitor the cardiac
activity for non medical application using an ECG sensor.
Each measurement lasts 10 seconds, and data is sent to a
smartphone used as base station using Bluetooth Low Energy
(BLE) transmitter. The node does not continuously monitor
the cardiac activity; after each measurement it enters a sleep
mode to minimize energy consumption. The period between
each measurement is variable and lasts from 10 to 60 minutes.

TABLE II
NODE COMPONENTS AND RESPECTIVE CURRENT CONSUMPTION

Component Active mode Sleep mode
ECG sensor 1.6 mA 0.12 mA

Microcontroller 129 µA/MHz 0.78 µA
BLE transmitter 21.1 mA 0 A

Our node features a kinetic motion energy harvester used as
a complement to the battery. This energy harvester is presented
in [8]. The harvested energy is low but it still can extend
the node lifespan; Table III shows how much energy can be
harvested according to the activity of the wearer. These data
were extracted from [8].

TABLE III
KINETIC MOTION’S HARVESTED ENERGY FOR THREE DIFFERENT

ACTIVITIES

Activity Power generation
relaxing 2.4 µW

walk 180.3 µW
run 678.3 µW

We use the dominant frequency of motion, Fm, to determine
which activity is performed by the wearer. We obtain Fm by
determining the maximum spectral component of the Fourier
Transform of the acceleration a(t). Since the harvested energy
is uncertain, we use an RL approach to manage the node’s
consumption by adjusting its sleep duration.

IV. REINFORCEMENT LEARNING

In this section, we give an overview of RL, we present
the selected Markov decision process used to deal with the
energy management process and we introduce the selected RL
algorithm, i.e. Q-learning.

A. Overview of Reinforcement Learning

RL is a formal framework that models sequential decision
problems [9], in which an agent learns to make better decisions
by interacting with the environment (fig. 1). When the agent
performs an action, the state changes and the agent receives a

reinforcement called a reward, which indicates the quality of
the transition. The agent’s goal is to maximize its total reward
over the long term.

Environment

Agent

ActionStateReward

Fig. 1. Interaction between an agent and its environment

There is a trade-off between exploration and exploitation
in RL. Exploration chooses an action randomly in the system
to find out the utility of that action. Exploitation deals with
the actions which have been chosen based on the previously
learned utility of the actions. A heuristic is used where the
exploration probability at any point of time is given in [10]:

ε = min(εmax, εmin + k × (Smax − S)/Smax) (1)

where εmax and εmin denote upper and lower boundaries
for the exploration factor, respectively. Smax represents the
maximum number of states which is three in our work and
S represents the current number of states already known. At
each time step, the system calculates ε and generates a random
number in the interval [0, 1]. If the selected random number
is less than or equal to ε, the system chooses a uniformly
random task (exploration), otherwise it chooses the best task
using Q-values (exploitation).

B. Markov Decision Process for Energy Management

We can model the energy management problem as a Markov
decision process (MDP). An MDP provides a mathematical
framework for modeling decision making in situations where
outcomes are partly random and partly under the control of
a decision maker. An MDP is formally defined as a n-uplet
< S,A, T,R > where S is a state space, A a set of possible
actions, T : S×A×S → [0, 1] are the transition’s probability
between states (T (s, a, s′) = p(s′|a, s) is the probability to
reach the state s′ starting from s after taking the action a) and
R : S ×A→ R is a reward signal.

In this work, we define a set of actions with different
processor frequencies (Fp) and periods between each mea-
surement (Ps) (Table IV). For instance, action 1 had a
processor frequency of 80MHz and a measurement every
minute, whereas action 3 has a processor frequency of 10MHz
and a measurement every 5 minutes. All these actions have
different energy consumption levels since they depend on the
processor’s frequency in active mode and its consumption in
sleep mode (see the second row in Table II).

Our state space is divided into three different states. We use
Fm which is correlated with the energy we harvest to consider
our state; a high value of Fm corresponds to more energy being
harvested and a low value of Fm correspond to less energy



TABLE IV
SET OF ACTIONS WITH DIFFERENT PROCESSOR FREQUENCIES (Fp) AND

PERIODS BETWEEN EACH MEASUREMENT (Ps)

Action Fp Ps

1 80 MHz 1 min
2 10 MHz 1 min
3 10 MHz 5 min
4 10 MHz 20 min
5 5 MHz 60 min

being harvested. The considered state uses the value of Fm

and corresponds to an activity. The activity can be considered
high (i.e. running) if Fm > 2Hz , moderate (i.e. walking) if
2Hz ≥ Fm > 1Hz or low (i.e. relaxing) if 1Hz ≥ Fm.

We do not have a transition’s probability between the states
T , so we use a model-free algorithm. Model-free algorithms
works even when we do not have a precise model of the
environment; these algorithms primarily rely on learning al-
gorithms such as Q-learning which is described in the next
section.

C. Q-learning algorithm

In this section we present the Q-Learning algorithm [11].
The Q-learning algorithm is widely used since it is simple to
implement yet effective and its convergence is proven. So we
use this algorithm for the energy management of a sensor node
in combination with the MDP presented above.

Algorithm 1 Q-learning algorithm
Initialize Q(s, a) arbitrarily
The agent observes the initial state s0
Initialize s
for each decision epochs do

Choose a from s using policy derived from Q
Take action a, observe the new state s′ and the associated
reward r
Q(s, a)← Q(s, a) + α(r + γmaxa′ Q(s′, a′)−Q(s, a))
s← s′

end for

Learning rate α: The learning rate α determines how fast
the new information will surpass the old one. A factor of 0
would not teach the agent in question anything, whereas a
factor of 1 would only teach the agent the latest information.
In our work, we decrease slowly the learning rate α in such a
way that it reflects the degree to which a state-action pair has
been chosen in the recent past. It is calculated as:

α =
ζ

visited(s, a)
(2)

where ζ is a positive constant and visited(s, a) represents the
visited state-action pairs so far [12].

Discount factor γ: The discount factor γ determines the
importance of future rewards. A factor of 0 would make the
agent myopic by considering only current rewards, while a
factor close to 1 would also involve more distant rewards. If

the discount factor is close or equal to 1, the value of Q may
never converge.

Using the MDP, we try to identify the best parameters to
use as variables in the reward function to adapt the energy
consumption according to the energy we can harvest. In the
following section, we present some results and identify those
parameters.

V. EXPERIMENTAL RESULTS

First of all, it should be noted that the harvesting capabilities
are not sufficient to recharge the sensor node’s battery. So we
seek and expect to reduce the node’s consumption when the
harvested energy is low. We test four different reward functions
to identify which parameters influence correctly our system’s
behavior.

There are different constraints when designing the sys-
tem and most of them are conflicting; for example, keeping
the sleep period at a minimum while also reducing energy
consumption. The main purpose of the RL algorithm is to
find the balance point to respect the constraints. For the
first two reward functions, we use a parameter β to balance
the equilibrium point according to what is considered most
important [10].

The first reward function tries to balance the conflicting
objectives between the sleep duration Ps and the energy
consumption of the system. Br(t) is the residual energy in
the battery’s node at time t.

R = β ∗ min(Ps)

Ps
+ (1− β) ∗ (Br(t)−Br(t− 1)) (R1)

The second reward function is similar to the first one but
instead of using the energy consumption, it only uses the
residual energy of the battery’s node at time t.

R = β ∗ min(Ps)

Ps
+ (1− β) ∗ Br(t)

Bmax
(R2)

The third reward function does not consider the sleep
duration Ps but only the energy consumption. Indeed, the
objective is to find the less consuming functioning mode
according the energy we can harvest.

R = Br(t)−Br(t− 1) (R3)

The last reward function tries to balance Ps and the residual
energy but this function do not have a parameter β to balance
the objectives. Instead it is a product of both parameters, sleep
duration Ps and residual energy Br(t).

R = Ps ×Br(t) (R4)

We simulate the evolution of the battery’s charge level.
Each 30 minutes, the activity changes and each 20 minutes
the algorithm chooses an action. Figure 2 shows the average
action taken by the algorithm (i.e. across the values given in
Table IV) according to the activity identified with the dominant
frequency of motion, Fm. Higher average values correspond to
less consuming actions and lower average values correspond
to more consuming actions. Moreover, β is fixed at 0.3 since



our primary goal is to adapt the node’s consumption, i.e. we
give more importance to the energy factor. The results show
that the choice of the reward function has a significant impact
on the results; while some reward functions yield the expected
behavior, others adapt poorly to the activity and others do not
yield the correct behavior at all, as discussed in what follows.

Fig. 2. Average functioning state according to the activity and the reward
function. Higher average values correspond to less consuming actions

Reward functions (R1) and (R2) increase the node’s con-
sumption when the harvested energy increases whereas reward
function (R4) increases the node’s consumption when it har-
vests a moderate amount of energy but decreases the node’s
consumption when it harvests a lot of energy. This is due to
the fact that reward function (R4) is more influenced by the
sleep time Ps than by the consumption of the sensor node.
Reward function (R3) does not make any difference between
the activities. Reward functions (R3) and (R4) are not suitable
to manage correctly the energy in a sensor node. The best
reward function are those that use a parameter β.

With the same value for the parameter β = 0.3, the results
are very similar. However, the residual energy achieves the
lowest energy consumption. These reward functions allow us
to manage the importance given to the energy consumption
according to the application requirements by increasing or
decreasing the value of β.

VI. CONCLUSIONS AND PERSPECTIVES

The development of harvesting technologies has led to new
energy management algorithms. The RL approach is a valuable
solution for this kind of problem. However, to apply it, we
need to tune several aspects such as the trade-off between
exploration and exploitation, the value of the learning rate,
and the definition of the reward function.

The choice of a reward function is important since it
influences the behavior of the node. Its choice must be justified
and not just stated as an experimental parameter. We conducted
a series of simulations to identify the best reward function, and
we found out that the proposed reward functions (R1) and (R2)
that include an balancing parameter are better able to find the
balance to give between performance and consumption in the
context of energy management.

On the other hand, the reward functions (R3) and (R4) did
not allow a good energy management. Reward function (R3)

did not make a connection between the node’s consumption
and the energy harvested. Reward function (R4) did a con-
nection but failed to choose less consuming actions when the
harvested energy is low.

Reward functions (R1) and (R2) succeeded to choose less
consuming actions when the harvested energy is low. The
choice between the battery’s residual energy or the con-
sumption does not seem to make any particular difference,
the choice must be made according to the context of the
application, e.g. if we want to reduce consumption at certain
times (no recharging capabilities) or if we want to control the
charge and discharge of the battery.

Future work includes the validation of the simulated ap-
proach in practice. However, the sensor nodes have more
tunable knobs and can present more parameters to balance (e.g.
several sensors with different importance, several concurrent
applications running on the same node), which might require
adjustment to the reward functions.
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