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ABSTRACT. 

 Reactions by solvothermal methods of lanthanide nitrates and 

azoxybenzene-3,3’,5,5’-tetracarboxylic acid (H4aobtc) lead to a family of isostructural 

lanthanide-based coordination polymers with general chemical formula 

[Ln(Haobtc)(H2O)2∙2H2O]∞ with Ln = Nd-Er plus Y. The crystal structure has been solved on 

the basis of the Y3+-derivative. It crystallizes in the triclinic system, space group P-1 (n°2) 

with the following cell parameters: a = 6.6890(18) Å, b = 10.052(3) Å, c = 13.879(4) Å, 

 = 75.756(9)°,  = 77.551(9)°,  = 83.964(9)° and Z = 2. The crystal structure is 

two-dimensional (2D). Thermal properties and luminescent properties of the Nd3+-containing 

compound have been studied. 
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INTRODUCTION 

 Lanthanide-based coordination polymers arouse increasing interest because of their 

various potential applications [1] such as lighting and display [2-3], thermometric probes,[4-

7] chemical sensing [8-9] or fight against counterfeiting [10-13], for instance. Our group, 

which is involved in that field for more than twenty years, has synthesized numerous 

lanthanide-based coordination polymers, playing with both the nature of the metallic nodes 

[14-15] or of the ligands [16], targeting new interesting porosity [17-18], magnetic [19-20] or 

optical [21-24] properties. Because of the unique optical properties of the lanthanide ions [25-

27] much work has been devoted to the modulation of the intensity and color of the 

luminescence of lanthanide-based coordination polymers [28-31]. One of the challenge in that 

field is to produce intense white light [3, 6, 32-33]. The red and green components can be 

easily obtained using luminescence of the Eu3+ and Tb3+ ions respectively [34]. The blue 

component is more difficult to produce because it is absent from trivalent lanthanide ions 

emission colors. Alternatively, this blue emission can be achieved by ligand phosphorescence 

[3, 35]. Therefore, we have decided to investigate lanthanide coordination polymers based on 

azoxybenzene-3,3’,5,5’-tetracarboxylic acid ligand (Scheme 1). Indeed this planar ligand 

presents an extended conjugated -system that could induce blue phosphorescence. 

Additionally, because of its low energy excited states, efficient ligand-to-metal energy 

transfer is not expected, which is supposed to be favorable to ligand emission. At last its four 

carboxylate functions are appropriate for coordinating lanthanide ions [36] and, to the best of 

our knowledge, there is, to date, no example of lanthanide coordination polymer based on this 

ligand. 
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Scheme 1. Schematic representation of azoxybenzene-3,3’,5,5’-tetracarboxylic acid hereafter 

referred as H4aobtc. 

 

EXPERIMENTAL SECTION. 

Synthesis of the ligand azoxybenzene-3,3’,5,5’-tetracarboxylic acid (H4aobtc). 

Nitro-isophthalic acid (C8H5NO6) was purchased from Aldrich (98%) and used without any 

further purification. The ligand was synthesized on the basis of procedures that have 

previously been reported (Scheme 2) [37-39]. 
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Scheme 2. Schematic representation of the synthetic route for H4aobtc. 

 

 5-nitroisophthalic acid (2.10 g, 10 mmol), Zn (1.30 g, 20 mmol), and NaOH (0.80 g, 

20 mmol) were suspended in a water/ethanol mixture (20 mL/50 mL) and refluxed overnight. 

Precipitation occurred and the yellow precipitate was filtered. It was then dissolved in 50 mL 

of an aqueous solution of NaOH (1 mol.L-1) and the resulting solution was filtered to remove 

insoluble residues. Then, pH of the filtrate was adjusted to pH ≈ 3 using an aqueous solution 

of HCl (3 mol.L-1). Precipitation of a yellow solid occurred that was filtered and dried in air. 
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Yield was about 80% (1.53 g). Elemental analysis for H4aobtc (MW = 374.26 g.mol-1): Found 

(Calc.): C 50.9% (51.3%); H 2.9% (2.7%); N 7.7% (7.5%); O 38.9% (38.5%). 

 IR spectrum (Figure S1) shows characteristic bands for protonated carboxylic function 

(1680 cm­1 for the ν(C=O) stretching mode), for N=N-O groups in azoxy compounds 

(1300 cm­1 and 1440 cm­1 for the νs symmetric and νas antisymmetric stretching modes, 

respectively) and finally for C-OH groups and water (broad band at 3350 cm­1 for the ν(O-H) 

stretching modes) [40]. 

 

Synthesis of [Ln(Haobtc)(H2O)2∙2H2O]∞ with Ln = Nd - Er plus Y. 

 0.2 mmol of a lanthanide nitrate (Ln(NO3)3.6H2O), 0.1 mmol (37.4 mg) of H4aobtc, 

0.8 mL of aqueous HCl (12.5 mol.L-1), 4 mL of water and 8 mL of acetonitrile were put in a 

24 mL Parr autoclave. Parr autoclave was heated at 110°C during four days. Then autoclave 

was cooled down at a cooling rate of 3°C per hour. The obtained microcrystalline powder was 

filtered and dried at ambient air. Single crystals suitable for X-ray diffraction crystal structure 

determination were obtained with the yttrium-derivative (Figure 1). 

 

Figure 1. Picture of a single crystal of [Y(Haobtc)(H2O)2∙2H2O]∞ 

 

 Isostructurality of the microcrystalline powders, that were obtained with other 

lanthanide ions, with [Y(Haobtc)(H2O)2∙2H2O]∞, was assumed on the basis of their powder 

X-ray diffraction diagrams (Figure S2). 

 IR spectrum [Y(Haobtc)(H2O)2∙2H2O]∞ (Figure S1) is similar to the one of the ligand 

except that it shows characteristic bands for deprotonated carboxylate function (1380 and 
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1590 cm­1) as well as for protonated carboxylic function (1680 cm­1) which suggests that at 

least one carboxylate group is protonated in the crystal structure [40]. 

 Elemental analyzes of [Ln(Haobtc)(H2O)2∙2H2O]∞ with Ln = Nd - Er plus Y are listed 

in Table S1. 

 

Single crystal X-ray diffraction. 

 A single crystal of [Y(Haobtc)(H2O)2∙2H2O]∞ was mounted on a Bruker D8 Venture. 

Crystal data collection was performed with MoKα radiation (λ = 0.70713 Å) at 150 K. Crystal 

structure was solved by direct methods using the SIR97 program [41] and then refined with 

full matrix least-squares methods based on F2 (SHELX97) [42] with the aid of WINGX 

program [43]. All non-hydrogen atoms were refined anisotropically using the SHELXL 

program. Hydrogen atoms bound to the organic ligand were located at ideal positions. 

Hydrogen atoms of water molecules were not located. Absorption correction were performed 

using WinGX program facilities [43-44]. Full details of the X-ray structure determination of 

the crystal structure have been deposited with the Cambridge Crystallographic Data Center 

under the depositary number CCDC- 1871493. Crystal and final structure refinement data are 

listed in Table 1. 
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Table 1. Crystal and final structure refinement data for 

[Y(Haobtc)(H2O)2∙2H2O]∞ 

Molecular formula  YC16H15N2O13 

System  triclinic 

Space group (No.)  P-1 (2) 

a (Å)  6.6890(18) 

b (Å)  10.052(3) 

c (Å)  13.879(4) 

α (°)  75.756(9) 

β (°)  77.551(9) 

γ (°)  83.964(9) 

V (Å3)  881.9(4) 

Z  2 

Formula weight (g.mol-1)  532.21 

Dcalc (g.cm­3)  2.004 

µ (mm­1)  3.391 

R (%)  9.03 

RW (%)  20.79 

GoF  1.145 

N° CCDC  1871493 

 

Powder X-ray diffraction.  

 Experimental diagrams have been collected with a Panalytical X'pert Pro 

diffractometer equipped with a X'Celerator detector. Typical recording conditions were 

45 kV, 40 mA for CuK ( = 1.542Å) in / mode. Calculated pattern were produced using 

the Mercury and WinPLOTR software programs [45-47]. 

 

Thermal analysis.  

 Thermal analysis was performed with a Perkin-Elmer Pyris-Diamond analyzer in a 

platinum crucible between room temperature and 1000°C under N2 atmosphere with a heating 

rate of 5°C.min-1. The compound was maintained at 1000°C under air atmosphere for one 

hour to insure complete combustion. 

 

Optical measurements. 
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 Solid and aqueous solution UV-visible absorption spectra have been recorded with a 

Perkin Elmer Lambda 650 spectrometer equipped with a 60 mm integrated sphere. 

 Solid state luminescence measurements have been performed on a Horiba Jobin-Yvon 

Fluorolog III fluorescence spectrometer equipped with a Xe lamp 450 W, a UV-Vis 

photomultiplier (Hamamatsu R928, sensitivity 190-860 nm) and an infrared-photodiode 

cooled by liquid nitrogen (InGaAs, sensitivity 800-1600 nm) at room temperature. The visible 

phosphorescence of the ligand and the infrared emission of the Nd(III) were measured directly 

on powder samples introduced in quartz capillary tubes or on powder samples pasted on 

copper plates with a silver lacquer. The phosphorescence of the ligand has been measured at 

77 K inside a small Dewar that contained liquid nitrogen. Appropriate filters were used to 

remove the residual excitation laser light, the Rayleigh scattered light and associated 

harmonics from spectra. All spectra were corrected for the instrumental response function. 

The lifetime for the phosphorescence was measured directly with Horiba Jobin-Yvon 

Fluorolog III fluorescence spectrometer coupled with an additional TCSPC module 

(Time-Correlated-Single-Photon-Counting) and a 320 nm pulsed Delta-Diode. 

 FT-IR spectra were obtained from solid samples with a Perkin Elmer Frontier FT-IR 

spectrometer equipped with a MIR-ATR module between 4000 cm­1 and 650 cm­1. 

 

RESULTS AND DISCUSSION. 

Description of the crystal structure of [Y(Haobtc)(H2O)2∙2H2O]∞. 

 The crystal structure contains only one independent Y3+ ion. This ion is linked to eight 

oxygen atoms that form a slightly distorted dodecahedron. Two out of these oxygen atoms 

belong to coordination water molecules. The six other belong to carboxylate groups from five 

different ligands: one according to a bidentate mode and the four other according to a 

monodentate one. The crystal structure presents only one independent ligand that is 
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coordinated to five lanthanide ions (see Figure 2). One out of the four carboxylic functions is 

protonated. This is supported by the IR spectrum (Figure S1) that shows the characteristic 

peak of a protonated carboxylic acid (1680 cm­1). In the ligand, oxygen atoms bound to the 

nitrogen atoms have 0.5 occupancy factors. Surprisingly, this crystal structure is very close to 

that of a Dy3+-based coordination polymer with azobenzene-3,3’,5,5’-tetracarboxylic acid 

(H4abtc) as ligand that has been recently reported (CCDC-1855292) [48]. 

  

Figure 2. Projection views of coordination modes of the Y3+ ion (left) and of the Haobtc3- 

ligand (right) in [Y(Haobtc)(H2O)2∙2H2O]∞. 

 

 This crystal structure can be described as the superimposition of double-planes that 

spread perpendicular the a axis. In the double-plane molecular motif, there are four different 

Ln-Ln distances depending on the ligand coordination: 5.452 Å between two lanthanide ions 

linked by the same carboxylate group, 10.052 Å or 8.997 Å between lanthanide ions linked by 

two different carboxylate groups bound to the same benzene ring and 8.996 Å between 

lanthanide ions linked by two carboxylate groups bound to two different benzene rings (See 

Figure 3). Between two adjacent double-plans, the shortest Ln-Ln distance is 6.689 Å. 
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Figure 3. Lanthanide distances in a double-plane molecular motif (top), between two adjacent 

double-planes (bottom right) and depending on the ligand coordination modes (bottom left) in 

[Y(Haobtc)(H2O)2∙2H2O]∞. 

 

 The crystal structure presents channels, that spread along the a and b axes, in which 

crystallization water molecules are located. These crystallization water molecules are strongly 

bound to the molecular framework via a hydrogen-bonds network that involve crystallization 

and coordination water molecules, oxygen atoms of the carboxylate groups and of the azoxy 

groups of the ligands (Figure 4 and Table S2). 
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Figure 4. Hydrogen-bonds network (light blue broken lines) in [Y(Haobtc)(H2O)2∙2H2O]∞. 

 

Thermal analysis of [Y(Haobtc)(H2O)2∙2H2O]∞. 

 Thermal analysis of the coordination polymer (Figure 5) shows a first weight loss 

before 200°C (14%) that can be attributed to the departure of the four crystallization and 

coordination water molecules (calc. 13.7%). Then, the anhydrous compound [Y(Haobtc)]∞ is 

stable between 200°C and 350°C. Above this temperature the decomposition of the ligand 

occurs. At 1000°C, the yttrium oxide is obtained. This result is confirmed by the powder 

X-ray diffraction diagram of the residual solid (Figure S3) that can be indexed by 

JCPDS-05-0574. 
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Figure 5. Thermal analysis of [Y(Haobtc)(H2O)2∙2H2O]∞. 

 

Optical measurements. 

 Excitation spectra that have been recorded for the homo-lanthanide compounds, 

[Ln(Haobtc)(H2O)2∙2H2O]∞ with Ln = Nd-Er plus Y, show that none of them present antenna 

effect [49]. Commonly, energy of the first excited triplet state is estimated on the basis of the 

first edges of the phosphorescence spectrum of the Gd3+-derivative. This spectrum has been 

recorded at 77 K (Figure S4). The lowest wavelength emission edge of the spectrum is about 

360 nm (27780 cm-1) which does not favor an efficient ligand-to-metal energy transfer 

according to Latva's empirical rules [50] that are commonly evoked for Tb3+- and Eu3+-based 

compounds. Moreover, luminescence decay of [Gd(Haobtc)(H2O)2∙2H2O]∞ has been 

measured. It is bi-exponential with 1 = 3.50(2) µs and 2 = 18.9(4) µs. These lifetimes are 

very short for phosphorescence that is three to four orders of magnitude smaller than what is 

usually observed for lanthanide-based coordination polymers.[51] 

 Additionally, except for the Nd3+-derivative (Figure 6), no luminescence is observed 

by direct excitation of the lanthanide ion. This can be related to the optical properties of the 
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ligand. Indeed, absorption spectrum of the Gd3+-based compound has been recorded (Figure 

S5). It shows that the ligand absorbs up to 550 nm (18180 cm-1) which prevents direct 

excitation of lanthanide ions that present absorption bands below 400 nm such as Eu3+, Tb3+ 

or Dy3+, for instance. Furthermore, we observe a significant overlap between the absorption 

band (singlet states) and the phosphorescence band (triplet states). This indicates that energy 

levels of the triplet are lower than the energy levels of the different lanthanides that emit in 

the visible (Sm, Eu, Tb, Dy). So, a back transfer probably occurs and quenches any 

luminescence of the rare earth in the visible. 

 On the opposite, the Nd3+-derivative emission spectrum shows sizeable luminescence 

in the IR domain: the energy of the excited state of the Nd(III) (11400 cm-1) is lower than the 

energy state of the ligand and the IR emission occurs without significant back transfer. The 

three classical emissions for the Nd(III) are observed at 878, 1059 and 1338 nm (assigned 

4F3/2 → 4I9/2, 
4F3/2 → 4I11/2 and 4F3/2 → 4I13/2, respectively), under direct excitation at 586 nm 

(4I9/2 → 2G7/2, 
2G5/2), 747 nm (4I9/2 → 4F7/2, 

4S3/2) and 805 nm (4I9/2 → 4F5/2, 
2H9/2) (Figure 6). 
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Figure 6. Solid state excitation and emission spectra of [Nd(Haobtc)(H2O)2∙2H2O]∞ measured 

at room temperature under different excitation wavelengths in the visible and the IR. 

 

 Excitation bands for [Nd(Haobtc)(H2O)2∙2H2O]∞ are observed beyond 450 nm and the 

more efficient excitation wavelength is 586 nm. This is in agreement with the absorption 

spectrum of [Gd(Haobtc)(H2O)2∙2H2O]∞ (Figure S5) that shows that the main absorption band 

is observed before 450 nm and that absorption becomes almost zero at about 550 nm. 

 

CONCLUSION AND OUTLOOKS 

 A series of lanthanide-based coordination polymers with 

azoxybenzene-3,3’,5,5’-tetracarboxylic acid as ligand has been synthesized and structurally 

characterized. Compounds that constitute this family don't show luminescence in the visible 

region. However the Nd3+-derivative shows sizeable emission band in the IR region, under 
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excitation wavelengths comprised between 586 nm and 805 nm that are compatible with 

potential applications in biological media. 
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