
HAL Id: hal-01997592
https://hal.science/hal-01997592

Submitted on 29 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LU factorization with errors
Jean-Guillaume Dumas, Joris van der Hoeven, Clément Pernet, Daniel S.

Roche

To cite this version:
Jean-Guillaume Dumas, Joris van der Hoeven, Clément Pernet, Daniel S. Roche. LU factorization
with errors. International Symposium on Symbolic and Algebraic Computation - ISSAC’19, Jul 2019,
Beijing, China. pp.131-138, �10.1145/3326229.3326244�. �hal-01997592�

https://hal.science/hal-01997592
https://hal.archives-ouvertes.fr


LU factorization with errors∗

Jean-Guillaume Dumas† Joris van der Hoeven‡

Clément Pernet† Daniel S. Roche§

January 29, 2019

Abstract

We present new algorithms to detect and correct errors in the lower-
upper factorization of a matrix, or the triangular linear system solution,
over an arbitrary field. Our main algorithms do not require any additional
information or encoding other than the original inputs and the erroneous
output. Their running time is softly linear in the dimension times the
number of errors when there are few errors, smoothly growing to the cost
of fast matrix multiplication as the number of errors increases. We also
present applications to general linear system solving.

1 Introduction
The efficient detection and correction of computational errors is an increasingly
important issue in modern computing. Such errors can result from hardware
failures, communication noise, buggy software, or even malicious servers or com-
munication channels.

The first goal for fault-tolerant computing is verification. Freivalds presented
a linear-time algorithm to verify the correctness of a single matrix product [18].
Recently, efficient verification algorithms for a wide range of computational
linear algebra problems have been developed [24, 14, 15, 16].

Here we go further and try to correct any errors that arise. This approach
is motived by the following scenarios:
∗This work is partly funded by the OpenDreamKit Horizon 2020 European Research In-

frastructures project (#676541) and the French National Research Agency program (ANR-
15-IDEX-02).
†Université Grenoble Alpes. Laboratoire Jean Kuntzmann, CNRS, UMR 5224. 700 avenue

centrale, IMAG - CS 40700, 38058 Grenoble, cedex 9 France. {firstname.lastname}@univ-
grenoble-alpes.fr
‡CNRS. Laboratoire d’informatique de l’École polytechnique. 1, rue Honoré d’Estienne

d’Orves, CS35003. LIX, UMR 7161 CNRS, 91120 Palaiseau, France. vdho-
even@lix.polytechnique.fr

§United States Naval Academy. Annapolis, Maryland, U.S.A. roche@usna.edu

1

http://opendreamkit.org
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
http://cordis.europa.eu/project/rcn/198334_en.html
http://www.agence-nationale-recherche.fr/ProjetIA-15-IDEX-0002
http://www.agence-nationale-recherche.fr/ProjetIA-15-IDEX-0002
mailto:Jean-Guillaume.Dumas@univ-grenoble-alpes.fr,Clement.Pernet@univ-grenoble-alpes.fr
mailto:Jean-Guillaume.Dumas@univ-grenoble-alpes.fr,Clement.Pernet@univ-grenoble-alpes.fr
mailto:vdhoeven@lix.polytechnique.fr
mailto:vdhoeven@lix.polytechnique.fr
mailto:roche@usna.edu


Large scale distributed computing In high-performance computing, the
failure of some computing nodes (fail stop) or the corruption of some bits in
main memory by cosmic radiation (soft errors) become relevant. The latter
type can be handled by introducing redundancy and applying classical error
correction, either at the hardware level (e.g., with ECC RAM), or integrated
within the computation algorithm, as in many instances of Algorithm Based
Fault Tolerance (ABFT) [22, 11, 9, 4].

Outsourcing computation When running some computation on one or sev-
eral third-party servers, incorrect results may originate from either failure or
malicious corruption of some or all of the third parties. The result obtained is
then considered as an approximation of the correct result.

Intermediate expression swell It often happens that symbolic computa-
tions suffer from requiring large temporary values, even when both the input
and output of a problem are small or sparse. It can then be more efficient to
use special methods that are able to determine or guess the sparsity pattern
and exploit this in the computation. Sparse polynomial and rational function
interpolation has been developed [31, 2, 23, 33] as such a technique. The con-
nection with error correction comes from the fact that we may regard a sparse
output as the perturbation of some trivial approximate solution, such as zero
or the identity matrix.

Fault-tolerant computer algebra Some recent progress on fault tolerant
algorithms has been made for Chinese remaindering [21, 28, 3], system solving [5,
25], matrix multiplication and inversion [30, 20, 32], and function recovery [8,
26].

1.1 Our setting
In this paper, we focus on LU-factorization and system solving. We will assume
the input (such as a matrix A to be factored) is known, as well as an approximate
output (such as a candidate LU-factorization) which may contain errors. We
seek efficient algorithms to recover the correct outputs from the approximate
ones.

Our work can be seen as part of a wider effort to understand how techniques
for fault tolerance without extra redundancy extend beyond basic operations
such as matrix multiplication. It turns out that the complexities for other linear
algebra problems are extremely sensitive to the precise way they are stated. For
instance, in the case of system solving, the complexities for error-correction are
quite different if we assume the LU-factorization to be returned along with the
output, or not. The LU-factorization process itself is very sensitive to pivoting
errors; for this reason we will assume our input matrix to admit a generic rank
profile (GRP).

2



From an information theoretic point of view, it should be noted that all
necessary input information in order to compute the output is known to the
client. The approximate output is merely provided by the server in order to
make the problem computationally cheaper for the client. In theory, if the
client has sufficient resources, he could perform the computation entirely by
himself, while ignoring the approximate output. Contrary to what happens in
the traditional theory of error correcting codes, it is therefore not required to
transmit the output data in a redundant manner (in fact, we might even not
transmit anything at all).

In our setting, unlike classical coding theory, it is therefore more appropriate
to measure the correction capacity in terms of the amount of computational work
for the decoding algorithm rather than the amount of redundant information.

We also put no a priori restriction on the number of errors: ideally, the
complexity should increase with the number of errors and approach the cost of
the computation without any approximate output when the number of errors is
maximal.

As a consequence, the error-correcting algorithms we envision can even be
used in an extreme case of the second scenario: a malicious third party might
introduce errors according to patterns that are impossible to correct using tra-
ditional bounded distance decoding approaches. Concerning the third scenario,
the complexity of our error-correcting algorithms is typically sensitive to the
sparsity of a problem, both in the input and output.

Another general approach for error correction is discussed in Section 2: if we
allow the server to communicate some of the intermediate results, then many
linear algebra operations can be reduced in a simple way to matrix multiplication
with error correction.

1.2 General outline and main results
General notations. Throughout our paper, F stands for an effective field with
#F ∈ N∪{∞} elements. We write Fm×n for the set ofm×nmatrices with entries
in F and #M for the number of non-zero entries of a matrix M ∈ Fm×n. The
soft-Oh notation Õ(. . .) is the same as the usual big-Oh notation but ignoring
sub-logarithmic factors: f = Õ(g) if and only if f∈O(g(log g)O(1)) for cost
functions f and g.

Let ω be a constant between 2 and 3 such that two n × n matrices can be
multiplied using O(nω). In practice, we have ω = 3 for small dimensions n
and ω 6 log2 7 ≈ 2.81 for larger dimensions, using Strassen multiplication
(the precise threshold depends on the field F; Strassen multiplication typically
becomes interesting for n of the order of a few hundred). The best asymptotic
algorithm currently gives ω < 2.3728639 [19]. From a practical point of view,
the ω notation indicates whether an algorithm is able to take advantage of fast
low-level matrix multiplication routines.

Generic solution. In Section 2, we first describe a generic strategy for fault-
tolerant computations in linear algebra. However, this strategy may require

3



the server to communicate certain results of intermediate computations. In the
remainder of the paper, we only consider a stronger form of error correction, for
which only the final results need to be communicated.

LU-factorization. Let A ∈ Fn×n be an invertible matrix with generic rank
profile (GRP). Let L,U ∈ Fn×n be (resp.) lower- and upper-triangular matrices
that are “close to” the LU-factorization of A: A ≈ LU . Specifically, suppose
there exist sparse upper- and lower-triangular error matrices E,F ∈ Fn×n with

A = (L+ E)(U + F ), #E +#F 6 k.

In the following we write the (possibly) faulty matrices in calligraphic fonts.
We specify that L has 1’s on the diagonal, so that E is strictly lower-triangular
whereas F may have corrections on the diagonal or above it.

Given A,L,U , the goal is to determine the true L = L+E and U = U+F as
efficiently as possible. Our main result is a probabilistic Monte Carlo algorithm
for doing this in time

Õ
(
t+min{kn, kω−2n4−ω}

)
,

for any constant probability of failure, where t is the number of nonzero terms
in all input matrices, k is the number of errors in L or U , and n is the matrix
dimension (see Theorem 3). Here we measure the complexity in terms of he
number of operations in F, while assuming that random elements in F can be
generated with unit cost. Note that because the number of errors k cannot
exceed the total dense size n2, this complexity is never larger than Õ(nω), which
is the cost of re-computing the LU-factorization with no approximate inputs,
up to logarithmic factors. In Section 3.4, we also show how to generalize our
algorithm to rectangular, possibly rank deficient matrices (still under the GRP
assumption).

System solving. In Section 4, we turn to the problem of solving a linear
system XA = B, where A is as above and B is also given. Given only possibly-
erroneous solution X to such a system, we do not know of any efficient method
to correct the potential errors. Still, we will show how errors can efficiently be
corrected if we require the server to return a few extra intermediate results.

More precisely, if B has few rows, then we require an approximate LU-
factorization A ≈ LU and an approximate solution to the triangular system
YU = B. If B has many rows (with respect to the number of columns), then we
require an approximate LU-factorization A ≈ LU and an approximate inverse
R of U . Given these data, we give algorithms to correct all errors in similar
running time as above, depending on the number of errors in all provided inputs.

2 Generic solution
In [24, § 5] a generic strategy is described for verifying the result of a linear
algebra computation. The complexity of the verification is the same as the

4



complexity of the actual computation under the assumption that matrix prod-
ucts can be computed in time Õ

(
n2
)
. In this section, we show that a similar

strategy can be used to correct errors.
Let A be any algorithm which uses matrix multiplication. We assume that

A is deterministic; any random bits needed in the computation should be pre-
generated by the client and included with the input.

The server runs algorithm A and, each time it performs any matrix multi-
plication, it adds that product to a list. This list of all intermediate products is
sent back to the client. We assume that there may be a small number of errors
in any of the intermediate products, but that these errors do not propagate;
that is, the total number of erroneous entries in any intermediate product is
bounded by some k.

Next, to correct errors, the client also runs algorithm A, except that every
time it needs to multiply matrices, it performs error correction instead, using
the intermediate result sent by the server. All other operations (additions,
comparisons, etc.) are performed directly by the client.

The total cost for the server is the same as the normal computation of A
without error correction. The cost for the client, as well as the communication,
is the cost that the algorithm would have if matrix multiplication could be
performed in O(n2) time.

In particular, typical block matrix algorithms such as LU factorization admit
a worst case complexity of Õ(nω) for the server and only Õ

(
n2
)
for the client

(including communications).
The goal of this paper is to perform better, for instance when k is a bound on

the number of errors only in L and U and not of all intermediate computations.

3 Block recursive algorithm
We will now describe an error cleaning algorithm emulating the steps of an LU
decomposition algorithm, where each computation task is replaced by an error
cleaning task.

The cleaning algorithm to be used needs to satisfy the following properties:
1. it has to be a block algorithm, gathering most operations into matrix

multiplications where error cleaning can be efficiently performed by means
of sparse interpolation, as in [30, 32];

2. it has to be recursive in order to make an efficient usage of fast matrix
multiplication.

3. each block operation must be between operands that are submatrices of
either the input matrix A or the approximate L and U factors. Indeed, the
only data available for the error correction are these three matrices: the
computation of any intermediate results that cannot directly be extracted
from these matrices would be too expensive for achieving the intended
complexity bounds.

In the large variety of LU decomposition algorithms, iterative and block
iterative algorithms range in three main categories depending on the scheduling

5



of the update operation (see [10, § 5.4] and [12] for a description): right-looking,
left-looking and Crout.

The right-looking variant updates the trailing matrix immediately after a
pivot or a block pivot is found, hence generating blocks containing intermediate
results, not satisfying (3). Differently, the left-looking and the Crout variants
proceed by computing directly the output coefficients in L and U following a col-
umn shape (left-looking) or arrow-head (Crout) frontier. Figure 1 summarizes

Figure 1: Access pattern of the left-looking (left), Crout (center) and right-
looking variants of an LU factorization. Diagonal stripes represent read-only
accesses, crossed stripes read-write accesses.

these 3 variants by exposing the memory access patterns of one iteration.
The left-looking and the Crout schedules consist in delaying the computation

of the Gauss updates until the time where the elimination front deals with the
location under consideration. This is precisely satisfying Condition (3). How-
ever these two schedules are usually described in an iterative or block iterative
setting. To the best of our knowledge, no recursive variant has been proposed so
far. We introduce in Section 3.1 a recursive Crout LU decomposition algorithm
on which we will base the error-correction algorithm of section 3.3. Interestingly,
we could not succeed in writing a recursive version of a left-looking algorithm
preserving Condition (3).

We emphasize that, although our eventual error correction algorithm will
follow the recursive Crout variant, no assumption whatsoever is made on the
algorithm used (e.g., by a remote server) to produce the approximate LU decom-
position used as input.

3.1 Recursive Crout LU decomposition
Algorithm 1 is a presentation of a Crout recursive variant of Gaussian elimi-
nation, for a generic rank profile (GRP) matrix. It incorporates the delayed
update schedule of the classical block iterative Crout algorithm [10, 12] into a
recursive algorithm dividing both row and column dimensions. Note that due to
the delayed updates, the recursive algorithm need to be aware of the coefficients
in L and U previously computed, hence the entirety of the working matrix has
to be passed as input, contrarily to most recursive algorithms [6, 17]. In a nor-
mal context, this algorithm could work in-place, overwriting the input matrix
A with both factors L and U as the algorithm proceeds.

6



In our error-correcting context, the input will eventually consist not only of
A but also of the approximate L and U . Therefore, in Algorithm 1 below, we
treat the matrix A as an unmodified input and fill in the resulting L and U into
a separate matrix M . In Algorithm 3, this matrix M will initially contain the
approximate L and U which will be overwritten by the correct L and U .

The main work of the Crout decomposition consists of dot products (in
the base case), matrix multiplications and triangular solves. We define TRSM
as a triangular system solve with matrix right-hand side, with some variants
depending whether the triangular matrix is lower (’L’) or upper (’U’) triangular,
and whether the triangular matrix is on the left (’L’, for X ← T−1A) or on the
right (’R’, for for X ← AT−1). These always work in-place, overwriting the
right-hand side with the solution. For instance:

• URTrsm(A,U) is a right solve with upper-triangular U which transforms
A to A′ such that A′U = A.

• LLTrsm(L,B) is a left solve with lower-triangular L which transforms B
to B′ such that LB′ = B.

In the algorithms, we use the subscript ♣ to denote “indices 2 and 3”, so for
example n♣ = n2 + n3 and

A♣♣ =

[
A22 A23

A32 A33

]
.

Theorem 1. Crout(M,A, 0, n) overwrites M with a complete LU factorization
of A ∈ Fn×n in O(nω) operations.

Proof. Correctness is proven by induction on n♣. For n♣ = 1 we have[
L11 0
L2 1

] [
U11 U1♣
0 A♣♣ − L♣1U1♣

]
=

[
L11U11 L11U1♣
L♣1U11 A♣♣

]
.

For n♣ > 1, we have

LU =

L11U11 L11U12 L11U13

L21U11 L21U12 + L22U22 L21U13 + L22U23

L31U11 L31U12 + L32U22 L31U13 + L32U23 + L33U33

 .
After the first recursive call in step 7, we have L21U12+L22U22 = A22. In step 10,
we ensured that A23 = L22U23+L21U13. Similarly, A32 = L32U22+L31U12 from
step 12. Finally, after the second recursive call, we have A33 = L31U13+L32U23+
L33U33. This concludes the proof that A = LU at the end of the algorithm.

The complexity bound stems from the fact that the dot products in step 2
cost O(n2) overall, and that the matrix multiplications and system solves require
O(nω) [13].

7



Algorithm 1 Crout(M,A♣♣, n1, n♣)

Require: M =

[
L11\U11 U1♣
L♣1

]
is (n1 + n♣)× (n1 + n♣)

Require: L11 (resp. U11) is unit lower (resp. upper) triangular
Require: A♣♣ is n♣ × n♣

Require: A =

[
L11U11 L11U1♣
L♣1U11 A♣♣

]
has GRP

Ensure: M =
[
L\U

]
such that A = L·U

1: if n♣ = 1 then
2: U♣♣ ← A♣♣ − L♣1·U1♣ . dot product

. L♣♣ is implicitly [1]
3: else
4: Decompose n♣ = n2 + n3 with n2 = dn♣/2e, n3 = bn♣/2c

5: Split M =

 L11\U11 U12 U13

L21

L31


6: Split A♣♣ =

[
A22 A23

A32 A33

]
7: Crout

([
L11\U11 U12

L21

]
, A22, n1, n2

)

8: Here M =

 L11\U11 U12 U13

L21 L22\U22

L31


9: U23 ← A23 − L21U13

10: LLTrsm(U23, L22) . L22U23 = A23 − L21U13

11: L32 ← A32 − L31U12

12: URTrsm(L32, U22) . L32U22 = A32 − L31U12

13: Here M =

 L11\U11 U12 U13

L21 L22\U22 U23

L31 L32


14: Crout (M,A33, n1 + n2, n3)

15: Here M =

L11\U11 U12 U13

L21 L22\U22 U23

L31 L32 L33\U33


16: end if

8



3.2 Error-correcting triangular solves
The cost of Algorithm 1 is dominated by matrix-matrix products of off-diagonal
blocks of L and U and triangular solving in steps 9–12. The first task in adapting
this algorithm for error correction is to perform error correction in this triangular
solving step, treating the right-hand side as an unevaluated black box matrix in
order to avoid the matrix-matrix multiplication.

We explain the process to correct errors in U23 (an equivalent process works
in the transpose for L32): recall steps 9 and 10 of Algorithm 1: U23 ← A23 −
L21U13 and LLTrsm(U23, L22). Mathematically, these steps perform the compu-
tation: U23 ← L−122 (A23 − L21U13). At this point in the error correction, A23

is part of the original input matrix while L21, U13, and L22 have already been
corrected by the recursive calls.

The idea is to be able to correct the next parts of an approximate U , namely
U23, without recomputing it. Algorithm 2 below does this following the approach
of [32]: for k 6 mn total errors within c 6 n erroneous columns, less than c/2
columns can have more than s = b2k/cc errors. Therefore, we start with a
candidate for k, then try to correct s errors per erroneous column. If k is
correct, then they will be corrected in fewer than log(c) 6 log(n) iterations. If
fewer than c/2 columns are corrected on some step, this indicates that the guess
for k was too low, so we double the guess for k and continue. This is shown in
Algorithm 2, where as previously mentioned, a normal font is an already correct
matrix block and a calligraphic font denotes a matrix block to be corrected. We
also recall that #X stands for the number of nonzero elements in X, and define
ColSupport of a matrix M to be the indices of columns of M with any nonzero
entries.

Due to the crucial use of sparse interpolation, we require a high-order element
θ in the underlying field F. If no such θ exists, we simply replace F by an
extension field. The cost of computing in such an extension field will only
induce a logarithmic overhead.

Theorem 2. For a failure bound 0 < ε < 1, A ∈ Fm×`, B ∈ F`×n, C ∈ Fm×n,
U ∈ Fn×n, R ∈ Fm×n, with total non-zero entries

t = max{#A,#B,#C,#U,#R} 6 (m+ n)(`+ n),

and k errors in R, Algorithm 2 is correct and runs in time

Õ
(
(t+ k +m)(1 + log#F

1
ε ) + max{n, `} ·min{k, kω−2n3−ω}

)
.

Proof. Without loss of generality, we may assume that m < #F in step 3.
Indeed, in the contrary case, arithmetic in Fqν is only Õ(ν) = Õ(logm) times
more expensive than arithmetic in Fq, which is absorbed by the soft-Oh of the
claimed complexity bound.

Define R as the correct output matrix such that RU = H and consider
the beginning of some iteration through the loop. Line 12 computes with high
probability the column support of the remaining errors R − (R + E), viewing

9



Algorithm 2 URTrsmEC(R, H, U,m, `, n, ε)
Require: R is m× n
Require: H is m×n presented as an unevaluated blackbox H = C−AB where

the inner dimension between A and B is `
Require: U is n× n invertible upper triangular
Require: Failure bound 0 < ε < 1.
Ensure: R is updated in-place s.t. Pr[RU = H] > 1− ε

1: k ← 1 . how many errors exist
2: k′ ← 0 . how many errors have been corrected
3: if m > #F then F← Fqν (q = #F, ν = dlogq(m+ 1)e) end if
4: Pick θ of order > m in F, with precomputed (θj)06j<m
5: λ←

⌈
log#F (3n log2 n/ε)

⌉
6: c′ ← 2n
7: E ← 0m×n

8: repeat
9: Pick W ∈ Fλ×m uniformly at random.

10: X ←WC − (WA)B . X =WH
11: URTrsm(X,U) . X =WHU−1

12: (j1, . . . , jc)← ColSupport(X −WR−WE)
. columns of (R+ E) with errors

13: Clear any entries of E from columns j1, . . . , jc
14: Update R ← R+ E, k′ ← k′ +#E
15: if c > c′/2 then k ← max(2k, c) end if

. too many errors; k must be wrong
16: c′ ← c
17: s← min

(
n,
⌈
2k−k

′

c

⌉)
18: V ← (θij)06i<2s,06j<m . unevaluated
19: P ←

[
ej1 . . . ejc

]
. selects erroneous cols. of R

20: G← V (CP )− (V A)(BP )− (VR)(UP )
21: URTrsm(G,P ᵀUP ) . GP ᵀUP = V (H −RU)P
22: Find S ∈ Fm×c s.t. V S = G by sparse interpolation
23: E ← SP ᵀ

24: until c = 0

10



this as a blackbox HU−1 −R−E. We project this blackbox on the left with a
block of vectors W using a Freivalds check [18].

Hence P is a n×c submatrix of a permutation matrix selecting the erroneous
columns of R. Selecting the same rows and columns in U yields a c× c matrix
P ᵀUP that is still triangular and invertible. With this, one can form a new
blackbox

S = (R−R)P = (H −RU) · P · (P ᵀUP )−1,

using the fact that (R − R)PP ᵀ = (R − R). The columns of this blackbox S
are viewed as c sparse polynomials whose evaluation at powers of θ are used to
recover them via sparse interpolation.

Note that only the columns with at most s nonzero entries are correctly re-
covered by the sparse interpolation, so some columns of S may still be incorrect.
However, any incorrect ones are discovered by the Freivalds check in the next
round and never incorporated into R. From the definition of s, and the fact that
sparse interpolation works correctly for all s-sparse columns of R−R, we know
that every iteration results in either c reducing by half, or k doubling. Therefore
the total number of iterations is at most log2 c+log2 k 6 (1+2) log2 n = 3 log2 n.

According to [32, Lemma 4.1], the probability of failure in each Frievalds
check in step 12 is at most ε/n. By the union bound, the probability of failure
at any of the 6 3 log2 n iterations is therefore at most ε, as required.

Now for the complexity, the calls to compute the ColSupport on Lines 10
to 12 are all performed using sparse matrix-vector operations, taking O(λ(t+k)).
From [32, Lemma 6.1], the multiplication by the Vandermonde 2s×n matrix V
in V (CP ), V A, and VR all take Õ(t+ k +m) operations.

The recovery of S by batched multi-sparse interpolation takes Õ(sc+m logm) =
Õ(k +m) operations [32, Theorem 5.2].

What remains are the cost of computing the following:

• The product (V A)(BP ), which costs O(s`c/min{s, `, c}3−ω) using fast
matrix multiplication.

• The product (VR)(UP ), which costs O(snc/min{s, n, c}3−ω).

• The subroutine URTrsm(G,P ᵀUP ), which costs the same as it would be
to multiply G times P ᵀUP , O(sc2/min{s, c}3−ω).

From the definition of s we have sc ∈ O(k). Let N = max{n, `}. Since s, c 6 n
and n, ` 6 N , all three costs are

O(Nk/min{s, c}3−ω). (1)

Until the algorithm terminates, we always have s, c > 1, so (1) is at most O(Nk),
proving the first part of the min in the complexity.

For the second part, observe that the number of erroneous columns c must
satisfy k/n 6 c 6 n, which means that min{s, c} > k/n by the definition of s.
Then the cost in (1) is bounded above by O

(
Nk

(k/n)3−ω

)
6 O

(
N · kω−2 · n3−ω

)
.

11



Remark 1. Since the input matrix U is not modified by the algorithm, some
entries of U may be defined implicitly — in particular, if the matrix is unit
diagonal and the 1’s are not explicitly stored.

Remark 2. Transposing the algorithm, we may also correct LR = G, where L
is lower triangular:

LLTrsmEC(R, G, L, n, `,m, ε) = (URTrsmEC(Rᵀ, Gᵀ, Lᵀ,m, `, n, ε))
ᵀ
.

Remark 3. There are two more triangular variants to consider. Computing
LRTrsmEC (or, with Remark 2, ULTrsmEC) could be done exactly the same as in
Algorithm 2, except that the two subroutine calls, lines 11 and 21, would be to
LRTrsm.

3.3 Correcting an invertible LU decomposition
We now have all the tools to correct an LU decomposition. We suppose that the
matrix A is non-singular and has generic rank profile (thus there exist unique L
and U such that A = LU). We are given possibly faulty candidate matrices L, U
and want to correct them: for this we run Algorithm 1, but replace lines 9-12 by
two calls to Algorithm 2. The point is to be able to have explicit submatrices of
A, L, U , L and U for the two recursive calls (no blackbox, nothing unevaluated
there), and that all the base cases represent only a negligible part of the overall
computations (the base case is the part of the algorithm that is recomputed
explicitly when correcting). This is presented in Algorithm 3.

Theorem 3. For A ∈ Fn×n which has GRP, L ∈ Fn×n unit lower triangu-
lar and U ∈ Fn×n upper triangular, with total non-zero entries t = #A +
#L + #U , failure bound 0 < ε < 1, and k errors in L and U , Algorithm
CroutEC(

[
L\U

]
, A, 0, n, ε) is correct and runs in time

Õ
(
(t+ k)(1 + log#F

1
ε ) + min{kn, kω−2n4−ω}

)
.

Proof. Correctness follows from Theorems 1 and 2: we rewrite Algorithm 1, but
replace the intermediate two matrix multiplications and two Trsms by two calls,
with blackboxes, to Algorithm 2. Passing ε/4 to all subroutines ensures that
the total probability of failure in any Frievalds check in any TrsmEC is at most
ε. Note that the shrinking ε does not affect the soft-oh complexity, since at the
bottom level we will have ε′ = ε/(4log2(n)) = ε/n2, and log 1

ε′ is O(log 1
ε +log n).

For the complexity, note that since A has GRP, #A > n. The stated cost
bound depends crucially on the following fact: in each level of recursive calls to
CroutEC, each call is correcting a single diagonal block L♣♣\U♣♣ and uses only
the parts of M and A above and left of that block.

This claim is true by inspection of the algorithm: the blocks L22\U22 and
L33\U33 being corrected in the two recursive calls to CroutEC on Lines 7 and 12
are clearly disjoint diagonal blocks. And we see also that the algorithm never
uses the top-left part ofM , namely L11\U11; all arguments to the calls to TrsmEC

12



Algorithm 3 CroutEC(M,A♣♣, n1, n♣, ε)

Require: M =

[
L11\U11 U1♣
L♣1 L♣♣\U♣♣

]
is (n1 + n♣)× (n1 + n♣)

Require: L11 (resp. U11) is unit lower (resp. upper) triangular
Require: L♣♣,U♣♣ are n♣ × n♣ unit lower/upper triangular

Require: A♣♣ is n♣ × n♣
Require: A =

[
L11U11 L11U1♣
L♣1U11 A♣♣

]
has GRP

Require: Failure bound 0 < ε < 1

Ensure: M =
[
L\U

]
such that Pr[A = L·U ] > 1− ε

1: if n♣ = 1 then
2: U♣♣ ← A♣♣ − L♣1·U1♣ . dot product

. L♣♣ is implicitly [1], must be correct
3: else
4: Decompose n♣ = n2 + n3 with n2 = dn♣/2e, n3 = bn♣/2c

5: Split M =

 L11\U11 U12 U13

L21 L22\U22 U23
L31 L32 L33\U33


6: Split A♣♣ =

[
A22 A23

A32 A33

]
7: CroutEC

([
L11\U11 U12

L21 L22\U22

]
, A22, n1, n2, ε/4

)

8: Here M =

 L11\U11 U12 U13

L21 L22\U22 U23
L31 L32 L33\U33


9: LLTrsmEC(U23, A23 − L21U13, L22, n2, n1, n3, ε/4)

. A23 − L21U13 is left unevaluated

10: URTrsmEC(L32, A32 − L31U12, U22, n3, n1, n2, ε/4)
. A32 − L31U12 is left unevaluated

11: Here M =

 L11\U11 U12 U13

L21 L22\U22 U23

L31 L32 L33\U33


12: CroutEC (M,A33, n1 + n2, n3, ε/4)

13: Now M =

L11\U11 U12 U13

L21 L22\U22 U23

L31 L32 L33\U33

.
14: end if

13



Figure 2: All updates at the third
recursion level at step 9. The figure
indicates the locations of U23, L21,
and U13.

on Lines 9 and 10 are (disjoint) submatrices above and left of L♣♣\U♣♣, as
shown, e.g., in Figure 2.

With this understanding, we can perform the analysis. The work of the
algorithm is entirely in the dot products in the base case, and the calls to
TrsmEC in the recursive case.

For the base case dot products, these are to correct the diagonal entries of U ,
using the diagonal of A and disjoint, already-corrected rows of L and columns
of U . Therefore the total cost of the dot products is O(t+ k).

For the rest, consider the ith recursive level of calls to CroutEC, where 0 6
i < log2 n. There will be exactly 2i+1 calls to TrsmEC on this level, whose inputs
are all disjoint, from the claim above. Write mij , `ij , etc. for the parameters in
the jth call to TrsmEC on level i, for 1 6 j 6 2i+1.

Every call to TrsmEC on the ith level satisfies:

• mij , nij ∈ O(n/2i);

• `ij , Nij = max{nij ; `ij} 6 n;

• εij = ε/4i, so that dlog#F(1/εij)e is O((1 + log#F
1
ε ) + log n);

•
∑2i+1

j=1 tij 6 t because the submatrices are disjoint at the same recursive
level; and

•
∑log2 n
i=0

∑2i+1

j=1 kij 6 k because each error is only corrected once.

Now we wish to compute the total cost of all calls to TrsmEC, which by Theorem 2
and the notation just introduced, is soft-oh of

log2 n∑
i=0

2i+1∑
j=1

[
(tij + kij +mij)(1 + log#F

1
εij

) +Nij ·min{kij , kω−2ij n3−ωij }
]
.

14



Taking the first term of the sum, this is

log2 n∑
i=0

2i+1∑
j=1

(tij + kij +
n
2i )(1 + log#F

1
ε + log n)

6 O
(
(t log n+ k + 2n log n)(1 + log#F

1
ε + log n)

)
= Õ

(
(t+ k + n)(1 + log#F

1
ε )
)
,

which gives the first term in our stated complexity.
The second term of the sum simplifies to

n ·
log2 n∑
i=0

2i+1∑
j=1

min{kij , kω−2ij (n/2i)3−ω}. (2)

Now observe that, by definition, each individual summand is less than or
equal to both parts of the min expression. Therefore we bound the sum of
minima by the minimum of sums; that is, the previous summation is at most

n ·min
{∑

i

∑
jkij ,

∑
i

∑
jk
ω−2
ij (n/2i)3−ω

}
.

Because each error is only corrected once,
∑
i

∑
j kij 6 k. Using Hölder’s

inequality and 0 6 ω − 2 < 1, this yields

r∑
j=1

kω−2ij 6 r

(∑r
j=1 kij

r

)ω−2
6 r3−ωkω−2,

for all r. Applying this to the second summation above gives

log2 n∑
i=0

2i+1∑
j=1

kω−2ij (n/2i)3−ω = n3−ω
log2 n∑
i=0

2(ω−3)i
2i+1∑
j=1

kω−2ij

6 n3−ω
log2 n∑
i=0

2(ω−3)i · 2(i+1)(3−ω) · kω−2

6 O(kω−2n3−ω log n).

Then the entirety of (2) becomes just Õ
(
min{kn, kω−2n4−ω}

)
, which gives

the second term in the stated complexity.

3.4 Correcting a rectangular, rank-deficient LU
For m 6 n, assume first that A = [A1 A2] is a rectangular m×n matrix such
that A1 is square m×m with GRP. Assume also that [L\U1 U2] is an approx-
imate LU decomposition. Then we may correct potential errors as follows:

1. CroutEC([L1\U1], A1, 0, n, ε/2); . corrects L1\U1

15



2. LLTrsmEC(U2, A2, L1,m,m, n−m, ε/2). . corrects U2

Second, if A1 is rank deficient, but still GRP, then the first occurrence of a
zero pivot U♣♣, line 2 in Algorithm 3, reveals the correct rank: at this point
L11, U11, and the upper (resp. left) part of L♣1 (resp. U1♣) are correct. It is
thus sufficient to stop the elimination there, and recover the remaining parts of

L =

[
L11

L♣1

]
∈ Fm×r, U =

[
U11 U1♣

]
∈ Fr×n,

using (corrected) triangular system solves, as follows:

1. Let r = rank A and A =

[
A11 A1♣
A♣1 A♣♣

]
, where A11 is r×r.

2. CroutEC(
[
L11\U11

]
, A11, 0, r, ε/3)

3. LLTrsmEC(U1♣, A1♣, L11, r, r, n− r, ε/3). . corrects U1♣
4. URTrsmEC(L♣1, A♣1, U11,m− r, r, r, ε/3). . corrects L♣1

4 System solving
One application of LU factorization is linear system solving. Say A is n×n
invertible, and B is m×n. Ideally, correcting a solution X to the linear sys-
tem XA = B, should depend only on the errors in X . Indeed, our algorithm
URTrsmEC does exactly this in the special case that A is upper-triangular.

Unfortunately, we do not know how to do this for a general non-singular A
using the previous techniques, as we for instance do not know of an efficient way
to compute the nonzero columns of the erroneous entries in (X−X ) = BA−1−X .

By adding some data to the solution X (and therefore, unfortunately, po-
tentially more errors), there are several possibilities:

• Generically, a first solution is to proceed as in Section 2. One can use [24],
but then the complexity depends not only on errors in X , but on errors
in all the intermediate matrix products.

• A second solution is to invert the matrixA using [32, Algorithm 6] (InverseEC)
and then multiply the right-hand side using [32, Algorithm 5] (MultiplyEC).
This requires some extra data to correct, namely a candidate inverse ma-
trix, and the complexity depends on errors appearing now both in the
system solution and in that inverse candidate matrix as follows:

1. Z ← InverseEC(A,Z); .Z = A−1

2. X ← MultiplyEC(B,Z,X ). .X = BA−1

Now, computing an inverse, as well as correcting it, is more expensive than
using an LU factorization: for the computation itself, the inverse is more ex-
pensive by a constant factor of 3 (assuming classic matrix arithmetic), and for
InverseEC the complexity of [32, Theorem 8.3] requires the fast selection of
linearly independent rows using [7], which might be prohibitive in practice.

16



For these reasons, we prefer to solve systems using an LU factorization. The
goal of the remainder of this section is to do this with a similar complexity as for
Algorithm 3 and while avoiding to rely on the sophisticated algorithm from [7].

4.1 Small right-hand side
An intermediate solution, requiring the same amount of extra data as the version
with the inverse matrix, but using only fast routines, can be as follows. Use
as extra data a candidate factorization LU and a candidate intermediate right-
hand side Y of dimension m×n, such that Y,U are approximations to the true
Y,U with Y U = B. We simultaneously correct errors in X , L, U , and Y as
follows:

1. CroutEC(L\U , A, 0, n, ε/3); . L and U with A = LU

2. URTrsmEC(Y, B, U,m, 0, n, ε/3); . Y with Y U = B

3. LRTrsmEC(X , Y, L,m, 0, n, ε/3). . X with XL = Y

Note, of course, that if the number of rows m in B is very small, say only
m 6 no(1), then it is faster to recover L and U only, by running CroutEC,
and then compute Y and X directly from the corrected L and U with classical
TRSMs.

4.2 Large right-hand side
If the row dimension m of B is large with respect to the column dimension n,
then the matrix Y from above will be larger than U . The client can instead ask
the server to provide as extra data R as a candidate for U−1, to correct it with
U , and then to use L and U−1 to correct X directly:

1. CroutEC(L\U , A, 0, n, ε/3); . L and U with A = LU

2. TrInvEC(R, U, n, ε/3); .R = U−1

3. LRTrsmEC(X , BR,L,m, n, n, ε/3), .XL = BR = BU−1

with TrInvEC a variant of InverseEC sketched below as Algorithm 4 (where
TRSV is a triangular system solve with a column vector and TRMV is a matrix-
vector multiplication). This does not require the expensive algorithm of [7] to
select independent columns, as the matrix is triangular.

Note that, in the call to LRTrsmEC in the last step, the right-hand side BR
is left unevaluated, just as in the calls to TrsmEC from Algorithm 3.

5 Conclusion
We have shown how to efficiently correct errors in an LU factorization, and how
to apply this error correction to system solving.

A few remaining challenges are to:

17



Algorithm 4 TrInvEC(U,R, n, ε) corrects R+ E = U−1

1: PJ = ColSupport(U−1v −Rv); . U−1v via TRSV with U , Rv via TRMV
with candidate

2: T = (PTJ UPJ)
−1; . O(rω)

3: E′ = (EPJ) = (I − RU)PJT
−1, so it can be recovered via multi-sparse

interpolation as V E′ = (V PJ − (VR)(UPJ))T−1.

• Generalize our error-correcting algorithms to matrices A which do not
have GRP, correcting more general factorizations such as A = PLUQ
where P,Q are permutation matrices. Our approach works directly if the
permutations P andQ are known to be error-free, but correcting erroneous
permutations P and Q is more difficult.

• Directly correct errors in L and R such that AR = L, i.e., R = U−1. This
would be useful for system solving, as we have seen above.

• More generally, correcting errors only in the solution X of a linear system,
without any extra information from the server, would be an even more
ambitious goal.

References
[1] Carlos Arreche, editor. ISSAC’2018, New York, USA. ACM Press, New

York, July 2018.

[2] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse
multivariate polynomial interpolation. In STOC ’88: Proceedings of the
twentieth annual ACM symposium on Theory of computing, pages 301–309,
New York, NY, USA, 1988. ACM Press.

[3] Janko Böhm, Wolfram Decker, Claus Fieker, and Gerhard Pfister. The use
of bad primes in rational reconstruction. Math. Comput., 84(296):3013–
3027, 2015. doi:10.1090/mcom/2951.

[4] Aurelien Bouteiller, Thomas Herault, George Bosilca, Peng Du, and Jack
Dongarra. Algorithm-based fault tolerance for dense matrix factorizations,
multiple failures and accuracy. ACM Trans. Parallel Comput., 1(2):10:1–
10:28, February 2015. doi:10.1145/2686892.

[5] Brice Boyer and Erich L. Kaltofen. Numerical linear system solving with
parametric entries by error correction. In Proceedings of the 2014 Sympo-
sium on Symbolic-Numeric Computation, SNC ’14, pages 33–38, New York,
NY, USA, 2014. ACM. doi:10.1145/2631948.2631956.

[6] James R. Bunch and John E. Hopcroft. Triangular factorization and
inversion by fast matrix multiplication. Mathematics of Computation,
28(125):231–236, 1974. doi:10.1090/S0025-5718-1974-0331751-8.

18

http://dx.doi.org/10.1090/mcom/2951
http://dx.doi.org/10.1145/2686892
http://dx.doi.org/10.1145/2631948.2631956
http://dx.doi.org/10.1090/S0025-5718-1974-0331751-8


[7] Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. Fast Matrix Rank
Algorithms and Applications. J. ACM, 60(5):31:1–31:25, October 2013.
doi:10.1145/2528404.

[8] Matthew T. Comer, Erich L. Kaltofen, and Clément Pernet. Sparse poly-
nomial interpolation and berlekamp/massey algorithms that correct outlier
errors in input values. In Joris van der Hoeven and Mark van Hoeij, editors,
ISSAC’2012, Grenoble, France, pages 138–145. ACM Press, New York, July
2012. doi:10.1145/2442829.2442852.

[9] Teresa Davies and Zizhong Chen. Correcting soft errors online in lu fac-
torization. In Proceedings of the 22Nd International Symposium on High-
performance Parallel and Distributed Computing, HPDC ’13, pages 167–
178, New York, NY, USA, 2013. ACM. doi:10.1145/2493123.2462920.

[10] Jack J. Dongarra, Lain S. Duff, Danny C. Sorensen, and Henk A. Vander
Vorst. Numerical Linear Algebra for High Performance Computers. SIAM,
Philadelphia, PA, USA, 1998. doi:10.1137/1.9780898719611.

[11] Peng Du, Piotr Luszczek, and Jack Dongarra. High performance dense
linear system solver with soft error resilience. In 2011 IEEE International
Conference on Cluster Computing, pages 272–280, Washington, D.C., USA,
Sep. 2011. IEEE Computer Society. doi:10.1109/CLUSTER.2011.38.

[12] Jean-Guillaume Dumas, Thierry Gautier, Clément Pernet, and Ziad Sultan.
Parallel computation of echelon forms. In Fernando Silva, Inês Dutra,
and Vítor Santos Costa, editors, Euro-Par 2014 Parallel Processing, pages
499–510, Cham, 2014. Springer International Publishing. doi:10.1007/
978-3-319-09873-9_42.

[13] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. Dense linear
algebra over prime fields. ACM Transactions on Mathematical Software,
35(3):1–42, November 2008. URL: http://hal.archives-ouvertes.fr/
hal-00018223, doi:10.1145/1391989.1391992.

[14] Jean-Guillaume Dumas and Erich Kaltofen. Essentially optimal inter-
active certificates in linear algebra. In Nabeshima [29], pages 146–
153. URL: http://hal.archives-ouvertes.fr/hal-00932846, doi:10.
1145/2608628.2608644.

[15] Jean-Guillaume Dumas, Erich Kaltofen, Emmanuel Thomé, and Gilles
Villard. Linear time interactive certificates for the minimal polynomial
and the determinant of a sparse matrix. In Xiao-Shan Gao, editor, IS-
SAC’2016, Waterloo, ON, Canada, pages 199–206. ACM Press, New York,
July 2016. URL: http://hal.archives-ouvertes.fr/hal-01266041,
doi:10.1145/2930889.2930908.

19

http://dx.doi.org/10.1145/2528404
http://dx.doi.org/10.1145/2442829.2442852
http://dx.doi.org/10.1145/2493123.2462920
http://dx.doi.org/10.1137/1.9780898719611
http://dx.doi.org/10.1109/CLUSTER.2011.38
http://dx.doi.org/10.1007/978-3-319-09873-9_42
http://dx.doi.org/10.1007/978-3-319-09873-9_42
http://hal.archives-ouvertes.fr/hal-00018223
http://hal.archives-ouvertes.fr/hal-00018223
http://dx.doi.org/10.1145/1391989.1391992
http://hal.archives-ouvertes.fr/hal-00932846
http://dx.doi.org/10.1145/2608628.2608644
http://dx.doi.org/10.1145/2608628.2608644
http://hal.archives-ouvertes.fr/hal-01266041
http://dx.doi.org/10.1145/2930889.2930908


[16] Jean-Guillaume Dumas, David Lucas, and Clément Pernet. Certificates for
triangular equivalence and rank profiles. In Safey El Din [34], pages 133–
140. URL: http://hal.archives-ouvertes.fr/hal-01466093, doi:10.
1145/3087604.3087609.

[17] Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. Simultaneous
computation of the row and column rank profiles. In Kauers [27], pages
181–188. doi:10.1145/2465506.2465517.

[18] Rūsin, š Freivalds. Fast probabilistic algorithms. In J. Bečvář, editor, Mathe-
matical Foundations of Computer Science 1979, volume 74 of Lecture Notes
in Computer Science, pages 57–69, Olomouc, Czechoslovakia, September
1979. Springer-Verlag. doi:10.1007/3-540-09526-8_5.

[19] François Le Gall. Powers of tensors and fast matrix multiplication. In
Nabeshima [29], pages 296–303. doi:10.1145/2608628.2608664.

[20] Leszek Gąsieniec, Christos Levcopoulos, Andrzej Lingas, Rasmus Pagh, and
Takeshi Tokuyama. Efficiently correcting matrix products. Algorithmica,
79(2):428–443, Oct 2017. doi:10.1007/s00453-016-0202-3.

[21] O. Goldreich, D. Ron, and M. Sudan. Chinese remaindering with errors.
IEEE Transactions on Information Theory, 46(4):1330–1338, July 2000.
doi:10.1109/18.850672.

[22] Kuang-Hua Huang and Jacob A. Abraham. Algorithm-based fault toler-
ance for matrix operations. IEEE Trans. Computers, 33(6):518–528, 1984.

[23] Erich Kaltofen and Lakshman Yagati N. Improved sparse multivariate
polynomial interpolation algorithms. In ISSAC ’88, pages 467–474, Berlin,
Heidelberg, 1988. Springer Verlag.

[24] Erich L. Kaltofen, Michael Nehring, and B. David Saunders. Quadratic-
time certificates in linear algebra. In Anton Leykin, editor, ISSAC’2011,
San Jose, California, USA, pages 171–176. ACM Press, New York, June
2011. URL: http://www.math.ncsu.edu/~kaltofen/bibliography/11/
KNS11.pdf, doi:10.1145/1993886.1993915.

[25] Erich L. Kaltofen, Clément Pernet, Arne Storjohann, and Cleveland Wad-
dell. Early termination in parametric linear system solving and rational
function vector recovery with error correction. In Safey El Din [34], pages
237–244. doi:10.1145/3087604.3087645.

[26] Erich L. Kaltofen and Zhengfeng Yang. Sparse multivariate function recov-
ery from values with noise and outlier errors. In Kauers [27], pages 219–226.
doi:10.1145/2465506.2465524.

[27] Manuel Kauers, editor. ISSAC’2013, Boston, USA. ACM Press, New York,
June 2013.

20

http://hal.archives-ouvertes.fr/hal-01466093
http://dx.doi.org/10.1145/3087604.3087609
http://dx.doi.org/10.1145/3087604.3087609
http://dx.doi.org/10.1145/2465506.2465517
http://dx.doi.org/10.1007/3-540-09526-8_5
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1007/s00453-016-0202-3
http://dx.doi.org/10.1109/18.850672
http://www.math.ncsu.edu/~kaltofen/bibliography/11/KNS11.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/11/KNS11.pdf
http://dx.doi.org/10.1145/1993886.1993915
http://dx.doi.org/10.1145/3087604.3087645
http://dx.doi.org/10.1145/2465506.2465524


[28] Majid Khonji, Clément Pernet, Jean-Louis Roch, Thomas Roche, and
Thomas Stalinski. Output-sensitive decoding for redundant residue sys-
tems. In Wolfram Koepf, editor, ISSAC’2010, Munich, Germany, pages
265–272. ACM Press, New York, July 2010. doi:10.1145/1837934.
1837985.

[29] Katsusuke Nabeshima, editor. ISSAC’2014, Kobe, Japan. ACM Press, New
York, July 2014.

[30] Rasmus Pagh. Compressed matrix multiplication. ACM Trans. Comput.
Theory, 5(3):9:1–9:17, August 2013. URL: http://doi.acm.org/10.1145/
2493252.2493254, doi:10.1145/2493252.2493254.

[31] Gaspard de Prony. Essai expérimental et analytique sur les lois de la dilata-
bilité des fluides élastiques et sur celles de la force expansive de la vapeur
de l’eau et de la vapeur de l’alkool, à différentes températures. J. de l’École
Polytechnique Floréal et Plairial, an III, 1(cahier 22):24–76, 1795.

[32] Daniel S. Roche. Error correction in fast matrix multiplication and inverse.
In Arreche [1], pages 343–350. doi:10.1145/3208976.3209001.

[33] Daniel S. Roche. What can (and can’t) we do with sparse polynomials? In
Arreche [1], pages 25–30.

[34] Mohab Safey El Din, editor. ISSAC’2017, Kaiserslautern, Germany. ACM
Press, New York, July 2017.

21

http://dx.doi.org/10.1145/1837934.1837985
http://dx.doi.org/10.1145/1837934.1837985
http://doi.acm.org/10.1145/2493252.2493254
http://doi.acm.org/10.1145/2493252.2493254
http://dx.doi.org/10.1145/2493252.2493254
http://dx.doi.org/10.1145/3208976.3209001

	Introduction
	Our setting
	General outline and main results

	Generic solution
	Block recursive algorithm
	Recursive Crout LU decomposition
	Error-correcting triangular solves
	Correcting an invertible LU decomposition
	Correcting a rectangular, rank-deficient LU

	System solving
	Small right-hand side
	Large right-hand side

	Conclusion

