
HAL Id: hal-01997590
https://hal.science/hal-01997590v1

Preprint submitted on 29 Jan 2019 (v1), last revised 31 May 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vortex patterns in the almost-bosonic anyon gas
Michele Correggi, Romain Duboscq, Douglas Lundholm, Nicolas Rougerie

To cite this version:
Michele Correggi, Romain Duboscq, Douglas Lundholm, Nicolas Rougerie. Vortex patterns in the
almost-bosonic anyon gas. 2019. �hal-01997590v1�

https://hal.science/hal-01997590v1
https://hal.archives-ouvertes.fr


Vortex patterns in the almost-bosonic anyon gas

Michele Correggi,1 Romain Duboscq,2 Douglas Lundholm,3 and Nicolas Rougerie4

1Dipartimento di Matematica “G. Castelnuovo”, Università degli Studi
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We study theoretically and numerically the ground state of a gas of 2D anyons in an external
trapping potential. We treat anyon statistics in the magnetic gauge picture, perturbatively around
the bosonic end. This leads to a mean-field energy functional, whose ground state displays vortex
lattices similar to those found in rotating Bose-Einstein condensates. A crucial difference is however
that the vortex density is proportional to the underlying matter density of the gas.

PACS numbers: 05.30.Pr, 03.75.Hh

The eventual unambiguous observation of the elusive
exotic particles going under the name of anyons [14, 20,
22, 34] remains one the most exciting prospects of con-
densed matter physics. Apart from speculative applica-
tions [21], much excitement comes from the possibility of
observing quasi-particles [2, 11, 12] who do not fall into
the ubiquitous dichotomy between bosons and fermions.

Contrarily to what happens for bosons and fermions,
the many-body problem for non-interacting anyons is in
general not exactly solvable. Even the most basic pu-
tative experiment thus calls for approximating schemes
for its interpretation. In particular, in view of sev-
eral recent proposals to create anyons in cold quantum
gases [5, 19, 31, 35–37], it seems desirable to develop
numerically amenable models to describe trapped gases
of many anyons. In this note we study such a mean-
field-type model, obtained in an “almost bosonic limit”.
In previous work we have derived this model from the
many-body Hamiltonian (in a somewhat idealized situa-
tion, see the details in [18]) and studied a local density
approximation thereof [6]. Now we aim at a more quan-
titative analysis, for which we numerically simulate the
ground state of the effective functional. Our main finding
(see Figures 1-2 below) is that the ground state develops
triangular vortex lattices akin to those found in rotating
trapped Bose-Einstein condensates [1, 4, 7, 8, 10] or type
II superconductors [26–28]. The important difference is
however that the density of the vortex patterns is directly
related to the underlying matter density profile, that one
can compute to be of Thomas-Fermi (TF) shape, within
local density approximation (LDA).

We begin by recalling a few facts about the basic many-
anyons Hamiltonian before discussing our average-field
(or mean-field) approximation. Then we recall some ex-
plicit computations one can make using the LDA, that
we shall use as benchmarks for the numerical simula-
tions. Finally we discuss briefly our numerical method
and present its results. We find an excellent agreement

between the numerics and the available exact bench-
marks, which gives us confidence in the new findings,
namely, the inhomogeneous vortex lattice.

Many-body Hamiltonian. In the so-called mag-
netic gauge picture, one trades the statistical phase
eiπα, α ∈ [0, 2[ (or better, braiding phase) that the many-
anyons wave function picks after particle exchanges for
a Aharonov-Bohm-like magnetic flux of intensity α at-
tached to each particle. Thus the many-body Hamilto-
nian for a gas of N 2D anyons in an external potential
V becomes (in units where ~ = c = 1 and m = 1/2, and
with x⊥ = (x, y)⊥ = (−y, x))

Hα
N =

N∑
j=1

−i∇xj
+ α

∑
k 6=j

(xj − xk)
⊥

|xj − xk|2

2

+ V (xj) (1)

acting on bosonic wave functions ΨN ∈ L2
sym(R2N ) sym-

metric under particle exchanges. This formulation makes
readily clear the reason why the problem is not exactly
solvable in general: free anyons (that is, with no further
interactions beyond the effect of statistics) correspond to
interacting bosons. It is formally equivalent to consider
the action of Hα−1

N on fermionic wave functions, but we
do not follow that route for reasons that will become clear
below.

Average-field approximation. We are interested in
the most basic question for the many-body Hamilto-
nian (1): compute the ground state energy and associ-
ated ground states. Since the wave functions we act on
are bosonic, a basic mean-field approximation suggests
itself. For weak interactions [15–17, 24, 25], the ground
state of a bosonic system is close to a Bose-Einstein con-
densate (BEC),

ΨN (x1, . . . ,xN ) ≈ u(x1) . . . u(xN ). (2)

This does not depend much on the particular shape of the
interactions and in fact also holds [18] for ground states
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FIG. 1. Density |uaf
β |2 in quadratic trap V (x) = |x|2, at

β = 5, 15, 25, 140.

of (1) in the limit N →∞ with α being scaled as

α =
β

N
, β fixed, (3)

a limit we refer to as “almost bosonic”. Inserting the
ansatz (2) in (1), the ground state energy and ground
states of (1) are found by minimizing the “average-field”
functional

Eaf
β [u] =

∫
R2

∣∣(−i∇+ βA[|u|2]
)
u
∣∣2 + V |u|2

A[ρ](x) =

∫
R2

(x− y)⊥

|x− y|2
ρ(y)dy. (4)

From now on we shall be concerned only with the effective
ground state problem

Eaf
β = min

{
Eaf
β [u],

∫
R2

|u|2 = 1

}
= Eaf

β [uaf
β ], (5)

which means that we expect our results to be quantita-
tively valid for anyons with small statistics parameter α.
However, we expect the qualitative findings to be general.
Note the kinship of this formalism with that of Chern-
Simons theory, see [9, 13, 23] and references therein.

Local density approximation. In view of (3), β
should actually be a large parameter in the N → ∞
limit. This suggests looking first at the limit β → ∞ of
Problem (5). In this situation, the self-consistent mag-
netic interaction in (4) will make the gas expand, so that
the first approximation that comes to mind is a LDA. We
expect (and, in fact, proved in [6]) that in such a limit

Eaf
β ∼

β→∞
ETF
β

|uaf
β |2 ∼

β→∞
ρTF
β (6)

FIG. 2. Density |uaf
β |2 in quartic trap V (x) = |x|4, at β =

55, 90, 140, 195.

where ETF
β is the local density approximation of the

ground state energy:

ETF
β = min

{
ETF
β [ρ], ρ ≥ 0,

∫
R2

ρ = 1

}
= ETF

β [ρTF
β ]

ETF
β [ρ] =

∫
R2

(e(β, ρ(x)) + V (x)ρ(x)) dx. (7)

Here ρ plays the role of the matter density |u|2 and e(β, ρ)
is the thermodynamic limit [6] of the ground state energy
of the homogeneous analogue of (4), at average density ρ
and scaled statistics parameter β. It follows from simple
scaling considerations that

e(β, ρ) = βρ2e(1, 1).

Thus

ETF
β [ρ] =

∫
R2

(
βe(1, 1)ρ(x)2 + V (x)ρ(x)

)
dx.

The above is similar to the TF functional often used to
describe BECs in first approximation (which in turn is, in
a rather formal way, similar to the true TF functional for
electrons). Note that ETF

β depends on a single unknown
parameter e(1, 1), the thermodynamic ground state en-
ergy per unit area at density ρ = 1 and scaled statistics
parameter β = 1.

Energy and density profile. The TF ground state
problem is exactly solvable, modulo the unknown param-
eter e(1, 1). One finds

ρTF
β (x) =

1

2βe(1, 1)

(
λTF
β − V (x)

)
+

(8)

where the chemical potential λTF
β is set by the normaliza-

tion
∫
R2 ρ

TF
β = 1 and ( . )+ stands for the positive part.
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More explicitly, we shall in the sequel restrict to radial
power-law traps

V (x) = |x|s, s > 0. (9)

The length scale of the cloud is then ∼ β1/(s+2) in the
limit β →∞ and, by scaling,

ETF
β = βs/(s+2)ETF

1 (10)

in terms of the energy at β = 1

ETF
1 =

1

2

s

s+ 1

(
s+ 2

s

)2 s+1
s+2
(

2e(1, 1)

π

) s
s+2

,

which can be combined with (10) to recover e(1, 1), given
ETF
β :

e(1, 1) =
π

2

(
2
s+ 1

s

) s+2
s
(

s

s+ 2

)2 s+1
s (ETF

β )
s+2
s

β
. (11)

Vortex density. Concerning the phase of the wave func-
tion we expect the appearance of quantized vortices with
average vorticity density given by

µv = −2πβ|uaf
β |2 ≈ −2πβρTF

β . (12)

Actually, the very fact that a result such as (6) can hold
is an indication that the system nucleates quantized vor-
tices. Indeed, for the LDA to be acceptable, it must be
that the long range forces encoded in the magnetic vector
potential A[|u|2] of (4) are screened. The physics is thus
that a pattern of phase circulation is developed by the
ground state on a “microscopic” length scale. This phase
circulation cancels the long-range component of A[|u|2]
and allows for the TF profile to emerge on the macro-
scopic length scale β1/(s+2). We refer to [6] for details,
in particular for the discussion of a trial state giving the
correct energy by developing phase circulations on length
scales O(β−s/(2(s+2))).

It is intuitively clear that the phase circulation respon-
sible for the validity of the LDA must come from quan-
tized vortices in the gas. Indeed, if one writes the mag-
netic kinetic energy of (4) in the manner∫

R2

|∇√ρ|2 + ρ |∇ϕ+ βA[ρ]|2

by separating density ρ and phase ϕ, minimization of the
second term would suggest

∇ϕ ≈ −βA[ρ]

and thus, taking the curl,

curl∇ϕ ≈ −2πβρ

which is possible only if ϕ has singularities with non-
trivial circulation, i.e. vortices, distributed according

to (12). Just as in a rotating Bose gas [1, 4, 10], we expect
that the vortices are singly quantized, for the self-energy
of a vortex of degree d should be proportional to d2.

Another argument is as follows. Consider the energy
Eaf(β,M) of a homogeneous anyon gas of total mass M
in a fixed container Ω. Minimization of the functional (4)
leads to the variational equation

(
−i∇+ βA[|u|2]

)2
u

− 2β
x⊥

|x|2 *
(
βA[|u|2]|u|2 + J[u]

)
u = λu, (13)

with the current

J[u] :=
i

2
(u∇ū− ū∇u) , (14)

and the chemical potential (Lagrange multiplier)

λ =
∂Eaf(β,M)

∂M
.

In the case of a fixed container, (6)-(10) yield
Eaf(β,M) ∝ βM2, thus we expect that λ ∝ βM . But,
multiplying (13) by ū and integrating yields (boundary
terms vanish because of magnetic Neumann boundary
conditions)∫

Ω

∣∣(−i∇+ βA[|u|2]
)
u
∣∣2 − λ ∫

Ω

|u|2

= 2β2

∫
Ω

|u|2
(

x⊥

|x|2 * K[u]

)
, (15)

with

K[u] := A[|u|2]|u|2 +
1

β
J[u].

The left hand side of (15) is O(β) so we should expect,
for large β∫

Ω

|u|2
(

x⊥

|x|2 * K[u]

)
=

∫
Ω

|u|2 (log |x| ∗ curl K[u])

= O(β−1).

But, on a length scale where the density |u|2 is homoge-
neous enough we may approximate

curl K[u] ≈ 2π|u|4 +
|u|2

β
curl∇ϕ,

so that the above again suggests that (12) must hold on
sufficiently large scales. We vindicate this expectation in
the sequel, by numerical simulations of the full ground
state problem.

Numerical method. To minimize (4) we approximate
the evolution in imaginary time of an initial trial state.
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The actual implementation is by a pre-conditioned conju-
gate gradient method [38, 39] using the differential of the
energy functional (see (13)), with a projection step ensur-
ing the preservation of the mass. The most costly task is
to compute the non-linear non-local terms in (13). Since
they have the form of convolutions, we find it more con-
venient to work in Fourier space. Our numerical window
is thus equipped with periodic boundary conditions and
we use a Fast Fourier Transform with respect to a Carte-
sian grid, so that the non-linearities are simply dealt with
by products in the Fourier domain. Note that the kernel
defining A[ρ] is singular and long range, which forces us
to use a cut-off in the space variable and a rather large
computational domain in the Fourier space to evaluate
it.

Numerical results: energy and density. We first
plot the density in color levels for two model choices of
the trapping potential in Figures 1 and 2. The main
virtue of these plots is to make the vortex lattice appar-
ent. For quantitative tests we first extract from the nu-
merical data the value of the unknown parameter e(1, 1)
using (11). In Figure 3 we plot the value of e(1, 1) so ob-
tained, as a function of β for two types of traps, quadratic
and quartic. The convergence for large β to the same
value for the two traps is a clear sign of agreement be-
tween theory and numerics.

Note that we find e(1, 1) ≈ 2π× 1.18 ≈ 2π× (2
√
π/3),

which is different from a frequently used [3, 13, 29, 30,
32, 33] first guess which is as follows. If one imagines the
homogeneous gas as bosons in the lowest Landau level
of the approximately constant magnetic field of intensity
2πβρ, the energy per unit area is e(β, ρ) = 2πβρ2 per
particle, hence e(1, 1) = 2π.

A further benchmark is given by a comparison of the
theoretical and numerical density profiles. Now that
e(1, 1) has been extracted from the numerically computed
energies, we can use its value to compute the TF density
profile (8). For a reliable comparison with the numerical
densities, one must first average out the fast oscillations
of the latter, due to the vortex lattice. Comparisons of
the theoretical TF profile and rotationally-averaged nu-
merical profile are shown in Figure 4. We find an excel-
lent agreement, in particular as regards the essential size
of the cloud (TF radius).

Numerical results: vorticity. The vortex lattice in
Figures 1 and 2 is clearly visible, as expected. For large
values of β, its inhomogeneity becomes apparent, see in
particular the plot for β = 140 of Figure 1 where vortices
are much more tightly packed at the center of the cloud
than at the boundary. For a more quantitative test, we
can compare the numerical data to the expected find-
ing (12). More precisely we count the number Nnum

v (r)
of vortices (spotted as zeros in the density) present on the
numerical figures within a disk of radius r and compare

β
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FIG. 3. Determination of the thermodynamic energy e(1, 1),
for quadratic (above) and quartic (below) traps.
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FIG. 4. Theoretical (red) and numerical (blue) density pro-
files, V (x) = |x|2, β = 90 (above) and V (x) = |x|4, β = 140
(below).

this to the expected number

N theo
v (r) = 4π2β

∫ r

0

ρTF
β (s)sds.

Plots of the theoretical and numerical quantities are pro-
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(blue) V (x) = |x|2, β = 140 (above) and V (x) = |x|4, β = 195
(below)

FIG. 6. Density and phase of minimizer uaf
β , quartic trap

V (x) = |x|4, at β = 5, 25.

vided in Figure 5.

Also note that the expected single quantization of vor-
tices may readily be checked by plotting the phase of the
wave function, see Figure 6.

Conclusions. We have studied a mean-field approxima-
tion of the ground state of the many-anyons gas, valid
for “almost bosonic anyons”. A local density approxima-
tion suggests a Thomas-Fermi type density profile, whose

emergence is due to the screening of long-range effective
magnetic interactions. This and further theoretical con-
siderations suggest the nucleation of vortex patterns in
the gas. Our numerical simulations confirm this picture
and are found to be in very good agreement with the
local density approximation. In particular, the vortex
density is directly linked to the matter density, and thus
inhomogeneous.
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[18] D. Lundholm and N. Rougerie, The average field ap-
proximation for almost bosonic extended anyons, J. Stat.
Phys., 161 (2015), pp. 1236–1267.

[19] , Emergence of fractional statistics for tracer par-
ticles in a Laughlin liquid, Phys. Rev. Lett., 116 (2016),
p. 170401.

[20] J. Myrheim, Anyons, in Topological aspects of low di-
mensional systems, A. Comtet, T. Jolicœur, S. Ouvry,
and F. David, eds., vol. 69 of Les Houches - Ecole d’Ete
de Physique Theorique, 1999, pp. 265–413.

[21] C. Nayak, S. H. Simon, A. Stern, M. Freedman,
and S. Das Sarma, Non-abelian anyons and topologi-
cal quantum computation, Rev. Mod. Phys., 80 (2008),
pp. 1083–1159.

[22] S. Ouvry, Anyons and lowest Landau level anyons,
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