

Synthesis of thiophene derivatives: Potential new inhibitors of histidine kinases

Miyanou Rosales-Hurtado, Thibaut Boibessot, Christopher Zschiedrich, Alexandre Lebeau, David Bénimélis, Catherine Dunyach-Remy, Jean-Philippe Lavigne, Hendrik Szurmant, Zohra Benfodda, Patrick Meffre

▶ To cite this version:

Miyanou Rosales-Hurtado, Thibaut Boibessot, Christopher Zschiedrich, Alexandre Lebeau, David Bénimélis, et al.. Synthesis of thiophene derivatives: Potential new inhibitors of histidine kinases. Rencontres en Chimie Organique Biologique (Recob 17), Mar 2018, Aussois, France. . hal-01997587

HAL Id: hal-01997587

https://hal.science/hal-01997587

Submitted on 29 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Synthesis of thiophene derivatives: Potential new inhibitors of histidine kinases

Miyanou ROSALES-HURTADO^{1*}, Thibaut BOIBESSOT¹, Christopher P. ZSCHIEDRICH², Alexandre LEBEAU¹, David BENIMELIS¹, Catherine DUNYACH-REMY³, Jean-Philippe LAVIGNE³, Hendrik SZURMANT², Zohra BENFODDA¹, Patrick MEFFRE¹

¹UNIV. NIMES, EA7352 CHROME, Rue du Dr G. Salan, 30021 Nîmes cedex 1, France ²College of Osteopathic Medicine of the Pacific, Western University of health Sciences, Pomona, CA 91766, USA ³Institut National de la Santé et de la Recherche Médicale, U1047, CHU de Nîmes, Place du Pr R. Debré, 30029 Nîmes

* miyanou.rosales-hurtado@unimes.fr

INTRODUCTION

Nowadays, infections caused by multidrug-resistant bacteria represent one of the biggest challenges in the medical field and there is an urgent need to develop efficient and well tolerated antibacterials targeting unique cellular processes. Two-component signal transduction systems (TCS) are widely used for bacteria to translate an external signal into a cellular response. They are ubiquitous in bacteria, absent in mammals and are integrated into various pathogenic pathways. In order to attenuate these signaling pathways, we aimed at targeting the TCS signal transducer histidine kinase by focusing on their highly conserved ATP-binding domain. Preliminary modeling work carried out in our laboratory led to a serie of thiophene derivatives. Twenty-four new molecules were synthesized and evaluated *in vitro* on bacterial histidine kinases PhoR, ResE and WalK and also as adjuvant to assess their ability to restore the antibacterial activity of existent antibiotics. We identify eight compounds with significant inhibitory activity against these proteins. Nevertheless, only two compounds exhibited broad-spectrum antimicrobial activity and only one behaved as an adjuvant. That is the reason why in order to improve the biological activity of the synthesized molecules, a new series of amino thiophene has been developed.

I- SYNTHESIS OF THE THIOPHENE SERIES

Synthesis of 24 molecules by Suzuki- Miyaura cross coupling reaction

R' S Br + (HO)₂B
$$R_2$$
 R_3 Suzuki coupling R_1 R_2 R_3 R_4 R_5 R_5 R_5 R_6 R_7 R_8 R_8 R_8 R_8 R_8 R_9 R_9

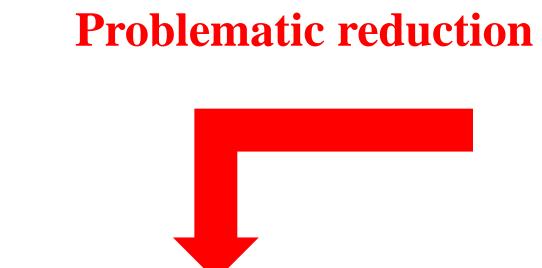
Reagents and conditions: Pd(PPh₃)₄ or PdCl₂(PPh₃)₂, Na₂CO₃ or K₂CO₃ or Cs₂CO₃, Toluene/EtOH or 1,4-dioxane/H₂O or DMF/H₂O or DMF, 70-90°C.

Scheme 1: Synthesis of thiophenes derivatives

Characterisation: IR, ¹H and ¹³C NMR, HPLC, UPLC and HRMS.

II- BIOLOGICAL RESULTS

Among the 24 synthezied molecules: 8 molecules are


- -Specific inhibitors of HK (WalK, PhoR and ResE)
- -None inhibits eukaryotic serine/threonine kinase (IreK)
- -None inhibits DNA gyrase
- -None has hemolytical activity
- -Only molecule 3 and 4 present antibacterial activity
- ⇒Only molecule 3 exhibits an adjuvant activity in association with antibiotics

$$O_2N$$
 O_2N
 O_2N

Figure 1: Structure of molecule 3 and 4

III-SYNTHESIS OF AMINO THIOPHENE SERIES

Scheme 2: Synthesis of amino thiophene derivatives

 O_2N S OH S 3

HCI conc.

0°C

50%

H₂N S .HCI

Solution

3: Diode Array

: TOF MS ES+

Range: 9.414e+1

 \Rightarrow Two different strategies

 \Rightarrow Only one condition reduces the nitro group ⁵

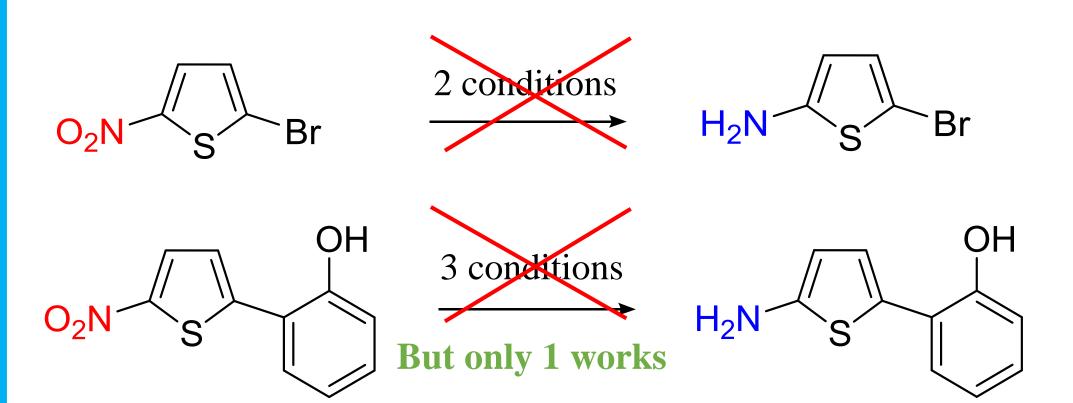
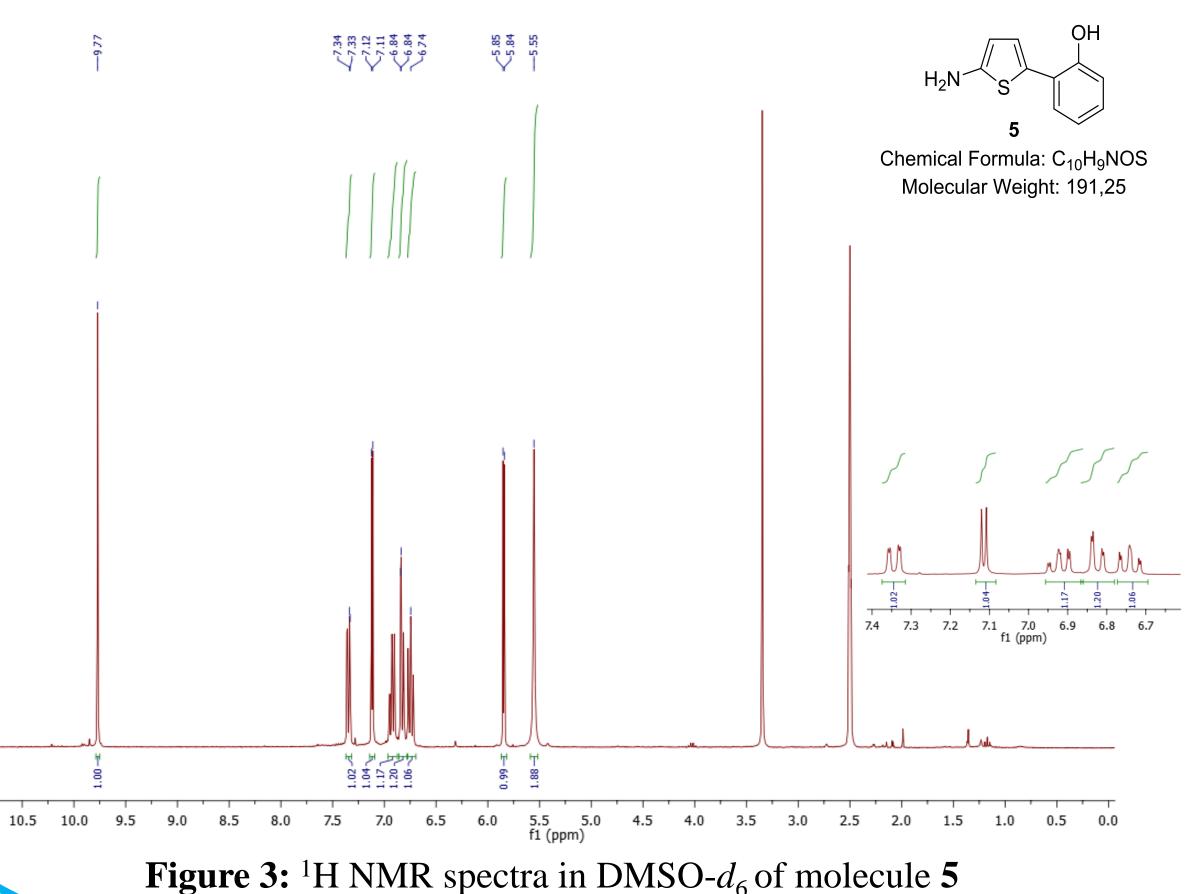
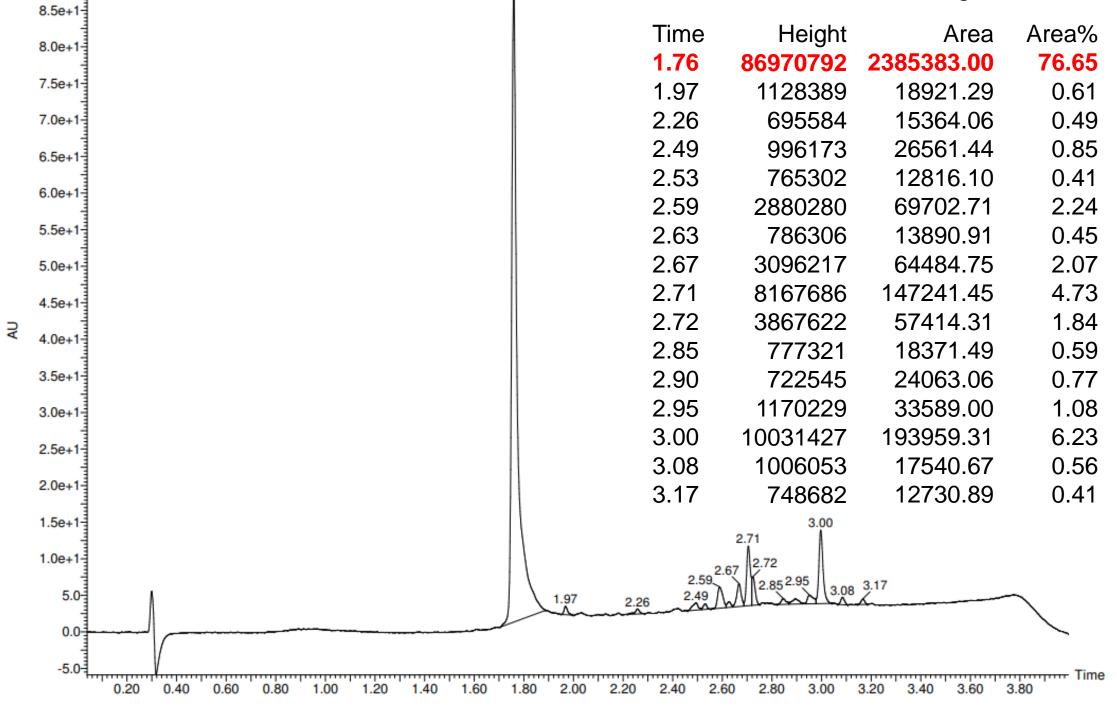




Figure 2: Different strategies for nitro reduction

- ⇒ Confimation of the stucture of the desired product by NMR
- ⇒NRM spectra doesn't reveal any secondary product or impurities
- ⇒HRMS comfirms that molecule 5 have been synthezied
- ⇒ UPLC shows that the purity of the compound is 76%

Does the product degrade under UPLC conditions?

Elemental Composition Report

Single Mass Analysis
Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons
132 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-100 H: 0-100 N: 0-10 O: 0-20 S: 1-1
SYNAPT G2-S#UEB205
Z-PM17091502 449 (1.782)

Figure 4: Ultra-performance liquid chromatography and High resolution mass spectra of molecule **5**

CONCLUSION

REFERENCES