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The use of nanotechnologies for biomedical applications took a real development during these last years. To allow an effective

targeting for biomedical imaging applications, the adsorption of plasmatic proteins on the surface of nanoparticles must be

prevented to reduce the hepatic capture and increase the plasmatic time life. In biologic media, metal oxide nanoparticles are not

stable and must be coated by biocompatible organic ligands. The use of phosphonate ligands to modify the nanoparticle surface

drew a lot of attention in the last years for the design of highly functional hybrid materials. Here, we report a methodology to

synthesize bisphosphonates having functionalized PEG side chains with different lengths. The key step is a procedure developed in

our laboratory to introduce the bisphosphonate from acyl chloride and tris(trimethylsilyl)phosphite in one step.

Introduction

Numerous researchers are interested in the development of
superparamagnetic iron oxide nanoparticles (SPIONPs) because
of their biocompatibility which allows there in vivo use both for
diagnosis in magnetic resonance imaging and in therapy [1,2].
Most often, it is necessary to modify the surface of SPIONPs to
increase the metabolic stability.

To overcome this main drawback, the NP surface could be

derivatized by various functional groups. These ligands have to

possess certain chemical and biological properties as the flexi-
bility, the hydrophilicity and an absence of in vivo toxicity. In
addition, the nanoparticulate systems so obtained must be stable
in the various biological compartments and they must be
stealthy to avoid the elimination by macrophages.

For this purpose, appropriate coatings have already been re-

ported [3,4]. Some of which consist in the NP surface
modification using hydrophilic polymers (dextran, PEG) or
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bifunctional molecules substituted by amines, thiols, carboxyl-
ates, sulfonates, phosphonates or bisphosphonates [5-7]. Partic-
ularly, a strong interaction between the NPs and the phos-
phonic moiety was observed and more interestingly the best
results were obtained with bisphosphonate products [8,9]. For
the past years, our group has focused its interest in the synthe-
sis of various functionalized hydroxymethylene bisphospho-
nates (HMBPs) [10] and their applications in health science,
especially in antitumor therapy [11-13]. Herein, we described
the synthesis of novel bifunctional PEG-HMBP compounds in
order to employ them as anchoring agents for SPIONPs
(Figure 1).
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PEG-HMBP 1

Figure 1: Bifunctional PEG-HMBPs 1.

Results and Discussion

For this family of compounds, the HMBP moiety has to be built
starting from a modified PEG chain. The HMBP introduction
could be achieved by several reported methodologies starting
from an acid chloride (Scheme 1).

O 1.PCl;, H3PO;

Q QHO OH
1]
Merck method | HO‘E | _ps

R” ClI 2. HCI/H,0 HO FL ~OH
R = alkyl 56-93%
o . 0O OHO
Our lab method | - 1. P(OSiMes)s HO.g p-OH
R~ ™Cl 2.CH;OH HO OH

R = alkyl, aryl 80-90%

Scheme 1: Direct methods for the 1-hydroxyalkylidenebisphosphonic
acid synthesis.
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The first method, used in the industry, allows accessing the
desired products in one step under rather harsh conditions [14].
1-Hydroxyalkylidenebisphosphonic acids have also been ob-
tained in good yields. However, this widely used method seems
not to be compatible with breakable and delicate functionalized
substrates. In contrast, our lab has developed a new synthetic
strategy starting from an acid chloride and tris(trimethylsilyl)
phosphite, followed by a methanolysis step [15].

This one-pot procedure allows the synthesis of various aliphat-
ic and aromatic bisphosphonic acids under mild conditions.
Moreover, reactions were very fast and pure products were ob-
tained after evaporation of the volatile fraction. The scope of
this reaction was successfully widened in aliphatic and aromat-
ic anhydride [15-21]. The introduction of the HMBP moiety in
presence of the PEG tether seems to be critical due to its high
sensitivity under harsh conditions. Wherefore, our methodolo-
gy, which exhibits a high tolerance to various functionalized
groups, appears to be an adequate way to introduce the HMBP

chain in presence of the PEG moiety.

To obtain the PEG-HMBP 1 compound family, the synthetic
strategy consists in mono-protecting and/or mono-functional-
izing commercially available PEGs followed by the lab-made
HMBP methodology introduced previously (Scheme 2).

Starting materials, the free alcohol PEG and monomethyl ether
PEGs (compounds 3a,b) with various chain lengths (n =4, 7
and 12) were commercially available. Firstly, the free alcohol
PEG was selectively monoprotected with a benzyl group
(Scheme 3).

Only one alcohol function was indeed deprotonated with one
equivalent of sodium hydride at =78 °C in THF after the solu-
tion was stirred for 12 hours at room temperature. The alcohol-
ate intermediate reacted smoothly with benzyl bromide at room
temperature to afford the monobenzylated PEG 2 in 77% yield
(Table 1, entry 1). Afterwards, the alcohols 2 and 3a,b have to
be oxidized to the corresponding carboxylic acids 6 and 7a,b.
First of all, the direct oxidation reported in the literature in one
step has been performed. Thus, tested oxidants were the Jones

HO OH
o) P=0

HO’<\/OZH S OMOH e FG{\/OMC' T FG{\/OMSS
HG OH

PEG-HMBP 1

Scheme 2: Synthetic strategy of PEG-HMBPs 1.
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H OH
R(o/\%’g\/go m R(o/\kg\/&o

H<O/\>:OH THF, 12 h R<o/\>;OH EtzN
2.BnBr, rt, 24 h CHClp —55 °C, CH3CN, 0 °C,
12 h 12h
R=Bn,n=4 2 77% R=Bn,n=4 4 89% R=Bn,n =4 6 72%

R=Me,n=7,12 3a,b
commercially available

R=Me n =7,12 5a,b 79-80%

R=Me,n=7,127a,b 82-72%

(cocl),
NaO HO 1. 2 equiv 24 h, 1t
HO-P” 1) Ha, PA/C (10%) HO-P L, P(OSiMes)s, cl
Hig~J0 \)<P$O H,0, rt, 24 h R{o~)0 \)<PZO 0°Ctort, 12h g <o/\)/0\/§o
" NaG oH then NaOH " UGS o 2. MeOH, rt, 24 h -
1™
n=4 10 72% R=Bn,n =4 1 78% R=Bn,n=4 8 quant.

R=Me n=7,12 1'a,b 47-43%

Scheme 3: Synthesis of PEG-HMBPs 1 and 1°.

Table 1: Synthesis of PEG-HMBPs 1,1’and 10.

Entry Compound R n Yield (%) 3'P & (ppm)
1 2 Bn 4 77 -
2 4 Bn 4 89 -
3 5a Me 7 79 -
4 5b Me 12 80 -
5 6 Bn 72 -
6 7a Me 7 82 -
7 7b Me 12 72 -
8 8 Bn quant. -
9 9a Me 7 quant. —
10 9b Me 12 quant. -
11 1 Bn 4 78 16.8
12 1’a Me 7 47 17.2
13 1’b Me 12 43 17.2
14 10 H 4 72 16.2

aJsolated yield. Pproton decoupling 3'P NMR experiment.

reagent [22], potassium permanganate [23], with catalytic
o-iodoxybenzoic acid (IBX) in oxone [24] and catalytic 2,2,6,6-
tetramethyl-1-piperidinyloxy (TEMPO) with bis(acetoxy)iodo-
benzene (BAIB) [25]. The first two conditions led to a PEG
chain cleavage and the recovery of benzoic acid from alcohol 2.
Besides, the mixture IBX/oxone gave the expected product
inseparable of IBX byproducts. Only oxidation using TEMPO
and BAIB furnished the pure corresponding carboxylic acid.
Nevertheless, the low obtained yields encouraged us to test a
strategy in two steps via an aldehyde. Fortunately, the following
two-step procedure was more effective. The alcohol derivatives
2 and 3a,b were treated with dimethyl sulfoxide, oxalyl chlo-
ride and triethylamine in dichloromethane at =55 °C. Under
these classical Swern conditions, the corresponding products 4
and 5a,b were isolated in excellent yields from 79% to 89%
(Table 1, entries 2—4). The aldehydes 4 and 5a,b were next

R =Me, n =7,129a,b quant.

smoothly oxidized in the presence of a catalytic amount of PCC
and a the co-oxidative agent H51Og in acetonitrile at 0 °C. The
PEG 6 and 7a,b were obtained in good yields (Table 1, entries
5-7).

Finally, the optimized two-step procedure enabled us to isolate
the expected carboxylic acids 6 and 7a,b which are key inter-
mediates in the synthesis of PEG-HMBPs.

The carboxylic acids 6 and 7a,b reacted quantitatively with
oxalyl chloride to give acyl chlorides 8 and 9a,b at room tem-
perature after 24 hours (Table 1, entries 8-10). The completion
of the reaction was monitored by infrared spectroscopy with the
disappearance of the hydroxy absorption band and the shifting
of the carbonyl vibration band to about 1800 cm™'. The addi-
tion of two equivalents of tris(trimethylsilyl) phosphite to the
acyl chloride derivatives 8 and 9a,b yielded the corresponding
silylated PEG-HMBP.

The formation of silylated bisphosphonate was monitored by
31p NMR. After evaporation of volatile compounds under
vacuum the silylated PEG-HMBP was hydrolyzed with methan-
ol at room temperature for 24 hours. After methanol evapora-
tion, the crude PEG-HMBP containing phosphorous acid was
purified by successive washes with dry diethyl ether. The pure
targeted PEG-HMBPs 1 and 1°a,b were then obtained in moder-
ate yields (Table 1, entries 11-13). The treatment of 1 with
dihydrogen and palladium on charcoal in water allowed
cleavage of the benzyl moiety and led to the HO-PEG-HMBP
10 in 72% yield (Table 1, entry 14). The ligand 10 permitted to
obtain new gadolinium phosphate nanocrystals with lumines-
cent properties [26].

Therefore, we considered the syntheses of other compounds

which possess azido or amino functional groups. The azido
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products will allow us to perform click chemistry to introduce
various functionalities. Moreover, the amino derivatives will be
casily obtained by reducing the azido group. As previously
mentioned, the first step was a selective mono-activation of
PEG using para-toluenesulfonyl chloride in the presence of so-
dium hydroxide in a water/THF mixture (Scheme 4).

The tosylated products 11a,b were obtained after three hours at
0 °C with a 95% yields. Next, the monoactivated compounds
11a,b were substituted by sodium azide in DMF at 60 °C within
five hours. The azido compounds 12a,b were obtained in 83%
and 81% yield, respectively. The alcohols 12a,b were subse-
quently firstly deprotonated with NaH in DMF and the gener-
ated alcoholates were stirred 16 hours with ethyl bromoacetate

giving the expected esters 13a,b in moderate yields.

The saponification reactions of the esters 13a,b were carried out
with sodium hydroxide in methanol. The completion of the
reactions was controlled by TLC. After neutralization with a

cationic exchange Dowex® 50WX2 resin, the corresponding

p-TsCl, NaOH

Ht oy OH THE. Hy0

0°C,3h 60

H(O/\%OTS

°C,5h

NaN;, DMF

Beilstein J. Org. Chem. 2016, 12, 1366-1371.

carboxylic acids 14a,b were isolated in quantitative yields. The
HMBP moiety was subsequently incorporated by the lab-made
methodology previously described. The carboxylic acids 14a,b
were converted into the expected HMBP-PEG-N3 16a,b via the
corresponding acyl chloride 15a,b. The reactions were moni-
tored by 3!P NMR, compounds 16a and 16b were obtained after
12 and 18 hours, respectively.

Thus, HMBP-PEG-N3 16a,b were obtained after purification in
72% and 74% yield and characterized by a singlet in 3P [27]
NMR at about 17 ppm. Finally, the reduction of the azido com-
pounds 16a,b in the presence of palladium on charcoal and
dihydrogen led to the targeted amino-PEG-HMBPs 17a and
17b, respectively in moderate 62% and 68% yields.

In order to access available PEG-HMBPs functionalized with a
primary amine or a carboxylic acid group usable in peptidic
coupling with various molecules for example, the HMBP-PEG-
COOH 23 was synthesized (Scheme 5). This compound was ob-

tained in six steps starting from a free alcohol four-unit PEG. It

NaH, Br-CH,-COOEt
H N3 2
f/\%:’ DMF,0°Ctort, 16 h

Etozc/\(o/\q”nN3

n=46 11a n =4 94% 12a n =4 83% 13a n =4 48%
11b n =6 97% 12b n =6 81% 13b n =6 53%
NaOH/H,0
1. P(OSiMeg); MeOH
0o o) 0°Ctort rt,15 min
HO-p-O- Hz, PAIC Ho 5_oH n=4,12h; (Ci?g'l)z,
(10%) I n=6,18h N3 212 N
HO- C/\fo/\/fNH3 °) Ho—c/\(o/\%; 3. 12200 o Yo Ho,c Yo ™)
o 50, mt, 2. MeOH, it 0°Ctort,
HO~ 5\OH 24 h HOfi L~OH 48 h

17a n =4 62%
17b n =6 68%

Scheme 4: Syntheses of HMBP-PEG-N3 16 and HMBP-PEG-NH3* 17.

331P=16.1ppm 16a n =4 72% &3P =16.8 ppm
531P =16.1 ppm 16b n =6 74% &3'P =16.6 ppm

14a n =4 quant.
14b n =6 quant.

15a n =4 quant.
15b n =6 quant.

1. NaH, THF (coc)) PCC.
-78°Ctort (0] 2,
’ HslO
12h o DMSO o H Hsl0s J\/ %\H/OH
"o } o’ o CHCly, EtOJ\/ o, CHiCN, o
Br 18 35% —55°C 19 67% 0O°Ctort 20 66%
OEt
rt, 24 h (COCl),,
rt, 24 h
HO OH HO OH 1. 2 equiv P(OSiMe3)3, o
1.0.1 M KOH =0 O°Ctort
)J\/O N )J\/ N J\/O %/\”/Cl
HO o OH 2. H'resin  E©O o OCH) 2.MeOH, it,24h  E© o 3 8
HO OH HO OH
23 85% 22 65% 21 quant.

Scheme 5: Synthesis of HUBP-PEG-COOH 23.
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reacted with ethyl bromoacetate after mono-deprotonation using

sodium hydride in THF at —78 °C for 12 hours at room temper-
ature giving PEG 18. HMBP-PEG 22 was next synthesized in
four steps with satisfying yields in a similar strategy previously

described for compounds 1 and 1°a,b. The last step was the

saponification of the ethyl ester group. Different usual condi-

tions were tested, leading to partial degradation of the HMBP.

The use of a diluted aqueous solution of potassium hydroxide
(0.1 M) followed by a protonation with a Dowex® 50WX2 H*
resin allowed us to obtain the expected HMBP-PEG-COOH 23
in 85% yield.

Conclusion
In summary, novel bifunctional PEG-HMBPs ligands for the

coating of iron oxide nanoparticles have been synthesized. The

procedure is efficient to introduce different functional groups

such as azide, carboxylic acid, amine permitting further cou-

pling reactions with a drug, protein or antibody. The use of PEG

polymers with chains of different lengths has also given satis-

fying results. This modulation would allow improving the nano-

particles stealth in vivo. Further studies in this area and their ap-

plications will be reported in due course.

Supporting Information

Supporting Information File 1

Experimental and analytical data of all new compounds as
well as copies of their 1Y, 31p and 13C NMR spectra.
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