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Modeling Two- and Three-Stage Oxygen Tracer 
Experiments during High-Temperature Oxidation
of Metals with a High Oxygen Solubility

Benoı̂t Mazères1,2,5 
• Clara Desgranges2,4 

• Caroline Toffolon-Masclet3 
• 

Daniel Monceau1

Abstract The numerical tool EKINOX-Zr has been upgraded to simulate oxygen

tracer experiments during the high-temperature oxidation of a metal with a high

oxygen solubility limit. The penetration of 18O tracer is calculated during the

dynamic evolution of the ZrO2-x/aZr(O)/bzr system. The numerical approach allows

to explicitly take into account the variation of the tracer diffusion coefficient

through the oxide scale as a function of the vacancy concentration. A classical two-

stages 16O2/
18O2 tracer experiment has been simulated. It is shown that a classical

fitting procedure on the 18O concentration profile obtained for short-time experi-

ments leads to the identification of the oxygen chemical diffusion coefficient. The

second type of tracer experiment is proposed using a three-stages 16O2/
18O2/
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CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

3 DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay,
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oxidation. It allows the direct estimation of the diffusion coefficient from the

transport of 18O peak in the growing oxide scale.

Keywords Zirconium � Tracer experiment � 18O � Numerical modeling � Diffusion

List of symbols
ai Chemical activity of the specie i

R Universal gas constant

CO Oxygen concentration

R18 Volume ratio of the mix gas 18O2/
16O2

D
p
O Oxygen diffusion coefficient in the metal

T Temperature

Dq
ox Oxygen diffusion coefficient in the oxide

Xr
i Concentration of the specie i in the slab r

e Elementary charge

a Relative electric charge of the oxygen vacancies

fO Correlation factor

Dt Numerical time step

Jri Flux of the specie i from the slab r to the slab r þ 1

lO Chemical potential of oxygen

K Equilibrium constant

rk Electrical conductivity of the specie k

Lij Crossed diffusion coefficient

Xr Molar volume of the slab r

Introduction

Oxygen tracer (O-tracer) experiments are one mode to measure oxygen diffusion 
coefficients and/or to understand the growth mechanisms of an oxide scale. 
Nowadays, these experiments consist in a two-stage oxidation. The first stage is 
generally performed under a natural oxygen atmosphere (majority of 16O2) while the 
second stage is carried out under an 18O2-enriched atmosphere. Then, SIMS, RBS or 
NRA can be used to measure the distribution profile of each isotope and extract the 
expected information.

In order to analyze the isotopic distribution profiles, an analytical theory of 
O-tracer penetration in two-stage oxidation experiments has been formalized by 
Mishin and Borchardt [1]. This theory gives the equations for the O-tracer 
penetration through both grain boundaries and sublattice diffusion in a growing 
oxide layer, with both the anionic and the cationic transports. Hence, their work has 
guided numbers of studies concerning O-tracer experiments to correctly define the 
time ratio between 18O2 and 16O2 sequences [2]. Despite this very useful approach, 
their analytical theory suffers from several restrictions. First, it is not possible to 
handle neither a temperature transient oxidation nor a triple sequence



16O2/
18O2/

16O2. Furthermore, it is assumed in their work that the oxide scale growth

kinetics is fully controlled by the fluxes in the oxide because oxygen dissolution in

the metal can be often neglected.

In this study, the aim was to measure the oxygen diffusion coefficient in specific

phases of the zirconium/zirconia system. Zirconium, as titanium and hafnium, has a

very high oxygen solubility limit [3]. Thus, in order to analyze the isotope

penetration profiles in these specific systems, it was required to develop a numerical

model able to calculate 16O and 18O penetration for the particular case of the oxygen

penetration in the underlying metal. To do that, EKINOX-Zr numerical model [4–6]

has been upgraded in order to calculate the isotopic penetration. Formerly, the

EKINOX-Zr model was developed to simulate the high-temperature (HT) oxidation

of zirconium alloys. Hence, this numerical model is able to calculate the growth of

both the oxide scale and the aZr(O) phase additionally to the penetration of oxygen.

To calculate the isotope penetration, 18O was added to the system of equations to be

solved, and it was assumed that 16O and 18O were two distinct species that diffuse

independently but on the same sublattice and under the same driving forces.

This paper deals with the development of theoretical approach to formalize the

flux equations of isotopic tracers in the oxide scale with anionic transport. Then, its

appliance with the EKINOX-Zr numerical model was tested.

Formulation of the Tracer Diffusion Equations

Theoretical Approach

In this part, the equations of the fluxes of 18O2- and 16O2- species in the oxide scale

are detailed. They lead to the numerical model presented in the next part.

The electrochemical potential ~li of a given specie i1 is linked to its chemical

activity ai by the Eq. (1):

8i 2 16; 18f g; ~li ¼ li þ ae/ox ¼ l0i þ RT ln aið Þ þ ae/ox ð1Þ

where /ox is the local electrostatic potential, e is the elementary charge, and a is the

charge of the specie i. Let us assume the case of an oxygen deficient n-type

semiconducting oxide.

In this case, there is a transport of oxygen anions and electrons in the oxide due to

the electrochemical potential gradient across the oxide scale. The diffusion of

charged particles gives rise to partial current densities of oxygen and electrons that

leads to a total current itot [7, 8]. Because of the electroneutrality of the overall oxide

layer, itot ¼ 0, the flux of specie i can be expressed as follows:

1 In order to clarify the notations, all the terms ‘‘A’’ linked to 18O will be mentioned as A18. The same

convention is followed for the terms linked to the 16O. When a generic term is used, it will be mentioned

as Ai.



8i 2 16; 18f g; Ji ¼ � Di:Ci

RT

dli
dx

þ aie
d/ox

dx

� �
ð2Þ

By using the Wagner model of oxidation (see [8]), with the hypotheses of a

semiconducting oxide in which the electronic defects diffuse much faster than the

anions and with the assumption of the local equilibrium across the oxide, it is

possible to write the flux equations of the diffusing species in the oxide scale as a

function of the oxygen activity gradient across the oxide scale:

8i 2 16; 18f g; Ji ¼ �DO � dCi

dx
� Ci �

dlnaO

dx

� �
ð3Þ

In the following, the case of an oxide scale that grows via anionic transport2 only

by a vacancy mechanism is considered. At the oxide/gas interface, the oxygen

adsorption is possible thanks to the annihilation of anionic vacancies following the

Eq. (4) (using Kröger-Vink notations):

1=2O2 þ Va�
O þ ae� ¼ O�

o ð4Þ

The transport mechanism for anions can be described as the transport in the

opposite way of anionic vacancies Va�
O ; anionic vacancies are created at the metal/

oxide interface and annihilated at the oxide/gas interfaces. It is possible to write the

equilibrium constant K of the chemical reaction at the oxide/gas interface (Eq. 5):

K ¼ 1

aOna Va�
O

� � ð5Þ

Expressions of the chemical activities aO, a16, and a18 can be deduced from the

Eq. (5), using the local electroneutrality to remove the electron concentration n

from the equation:

aO ¼ 1

aa Va�
O

� � 1það Þ
K

ð6Þ

8i 2 16; 18f g; ai ¼
Ci

CO

aO ð7Þ

Following Eqs. (1), (6), and (7), the expression of the chemical potential l16
3 is

given by:

l16 ¼ l016 þ RT ln
C16

CO

� �
� 1þ að Þ ln Va�

O

� �
� ln Kaað Þ

� 	� 	� �
ð8Þ

2 In case of an anionic transport in the oxide scale, the anion flux is predominant, whereas the cation flux

is negligible.
3 The same development can be done for l18.



Considering that, in the oxide scale, the anionic vacancies and anions are

complement one another in the anionic sublattice: CO ¼ 1� Va�
O

� �
, and that Kaa is a

constant across the scale, an expression of rl16 can be deduced from Eq. (8):

rl16 ¼ RT
rC16

C16

� 1þ a

Va�
O

� �� 1

1� Va�
O

� �
!
rCO

!
ð9Þ

According to the thermodynamic of irreversible processes (e.g. [9]), the flux J16
of 16O2- and the flux J18 of 18O2- can be expressed with the crossed diffusion

coefficients and the chemical potentials of each specie as given in Eq. (10):

8 i; jf g 2 16; 18f gji 6¼ j; Ji ¼ � Liirli � Lijrlj ð10Þ

Knowing that LOO
CO

¼ L1616
C16

, it can be assumed that: DO ¼ RT
CO

LOOfO. It is chosen to fix

that fO ¼ 1� COL1618
C18LOO

and L1618 ¼ 0, thus fO ¼ 1. Then, by a combination of the

Eqs. (9) and (10), one can obtain an expression of the flux J16 and J18:

8i 2 16; 18f g; Ji ¼ �DOrCi � DOCi

1þ a

Va�
O

� �� 1

1� Va�
O

� �
!
rCO ð11Þ

In the flux expression (Eq. 11), we can find two distinct parts in the RHS. The

first part, �DOrCa, corresponds to the diffusion (Brownian motion) while the

second part, �DOCi
1þa
Va�
O½ � �

1

1� Va�
O½ �

� �
rCO, is the transport induced by the gradient

of the electrochemical potential. Considering that CODO ¼ Va�
O

� �
DVa�

O
and defining

c ¼ Va�
O½ �

1það Þ 1� Va�
O½ �ð Þ and si ¼ Ci

CO
, one can express the fluxes J16 and J18 as given by

Eq. (17):

8i 2 16; 18f g; Ji ¼ � c 1þ að ÞDVa�
O
rCi � si 1� cð Þ 1þ að ÞDVa�

O
r Va�

O

� �
ð12Þ

In the case where Va�
O

� �
� 1 ) c � Va�

O½ �
1þa , one can simplify the Eq. (12):

J18 ¼ � Va�
O

� �
DVa�

O
rC18 � s18 1þ að ÞDVa�

O
r Va�

O

� �
ð13Þ

It is possible to obtain an expression of ~DO (the chemical diffusion coefficient of

oxygen) from the Eq. (13):

J18 ¼ � Va�
O

� �
DVa�

O
rC18 � s18 1þ að ÞDVa�

O
r Va�

O

� �
¼ � ~DOrC18

) ~DO ¼ 1þ 1þ a

Va�
O

� �� 1

CO

!
C18

r Va�
O

� �
rC18

 !
Va�
O

� �
CO

DVa�
O

ð14Þ

Knowing that 1þ að ÞDVa�
O
r Va�

O

� �
¼ �JVa�

O
¼ JO, the Eq. (18) becomes:



J18 ¼ s18JO � CODOrC18 ð15Þ

In [1], Mishin and Borchardt defined the oxygen tracer flux as the following

equation (Eq. (10) p. 867 in [1]):

J	O ¼ cJO � COD
	
Orc ð16Þ

A one-to-one identification between Eqs. (15) and (16) can be done. J	O is the flux

of O-tracer, noticed J18 in the present work; c is the ratio of O-tracer, corresponding

to s18 in the present work; rc is the gradient of the tracer concentration, that is to

say rC18 in the present work; and D	
O ¼ fDO, where the correlation factor f is

named fo and it is equal to the unity.

Thus, when Vz�
O

� �
� 1 the Eqs. (15) and (16) are equivalent, this corresponds to

the conditions of Mishin and Borchardt’s work.

The isotope fluxes in the metallic matrix are governed by the Brownian’s motion

and are given by Eq. (17). In those two equations, the approximation on the activity

coefficient ca ¼ 1 is assumed.

8i 2 16; 18f g; Ji ¼ �DOrCi ð17Þ

Fig. 1 Schematic of the EKINOX-Zr architecture [6]

Modifications of EKINOX-Zr Model

Detailed presentations of the EKINOX-Zr model are available in [5, 6]. It is 
reminded that in this model, the fuel cladding tube is modeled as a one-dimensional 
planar domain divided into n slabs (Fig. 1). The growth kinetics of both the oxide 
scale and the aZr(O) layer is calculated by EKINOX-Zr model. A numerical 
resolution of Fick’s equations (thanks to an explicit finite difference algorithm) with 
boundary conditions on moving interfaces allows determining the penetration 
profile of oxygen. The interfaces are considered at local equilibrium, and the 
thermodynamic database Zircobase [10] (CALPHAD formalism) is used to 
calculate the boundary concentrations.

Given that EKINOX-Zr model is already able to calculate the overall oxygen 
penetration, one can follow the penetration of each isotope by adding only the



calculation of the penetration of 16O and calculating 18O by the difference. Firstly, it

is assumed that the Eq. (18)4 is valid in the bulk metal (O diffuses as an interstitial)

and that the Eq. (19) is valid in the oxide. Then, the whole penetration profile of
18O can be deduced from Eqs. (18) and (19) once the O, 16O, and vacancies

concentrations have been calculated by the EKINOX-Zr model.

metalð Þ 8p 2 Nj1
 p
 i;Xp
O ¼ X

p
18 þ X

p
16 ð18Þ

oxideð Þ 8q 2 Njiþ 1
 q
 n;Xq
O ¼ 1� X

q
VO

¼ X
q
18 þ X

q
16 ð19Þ

A discretized expression of Eq. (17) for the flux J
p
16 in the bulk metal is given by

the Eq. (20). If one defines the diffusion coefficient Dox as Dox ¼ 1þ að ÞDVa�
O
, a

discretized expression of the Eq. (12) for the flux J
q
16 can be provided by Eq. (21).

metalð Þ 8p 2 Nj1
 p
 i; Jp16 ¼ �D
p
O

X
pþ1
16 � X

p
16

epþepþ1

2

ð20Þ

oxideð Þ 8q 2 Njiþ 1
 q
 n; Jq16 ¼ �cqDq
ox

X
qþ1
16 � X

q
16

eqþeqþ1

2

þ sq16 1� cqð ÞDq
ox

X
qþ1
VO

� X
q
VO

eqþeqþ1

2

ð21Þ

From the Eqs. (20) and (21), it is possible to obtain the evolution of isotopic

concentrations as follows:

8r 2 Nn j; jþ 1; i; iþ 1f gj2
 p
 n� 1;
dXr

16

dt
¼ Xr J

r
16 � Jrþ1

16

er
ð22Þ

The variations of isotopic concentrations in the slabs around each interface are

given by Eqs. (23–28):

_X1
16 ¼ �

J116;met

e1
ð23Þ

_X j
16 ¼

J
j�1
16;met

e j
ð24Þ

_Xjþ1
16 ¼ �

J
jþ1
16;met

ejþ1
ð25Þ

_Xi
16 ¼

Ji�1
16;met

ei
ð26Þ

_Xiþ1
16 ¼ �

Jiþ1
16;ox

eiþ1
ð27Þ

4 The superscript p is linked to the metallic slabs whereas the superscript q is linked to the oxide slabs.



_Xn
16 ¼

Jn�1
16;ox

en
ð28Þ

It is now possible to express the equations of the variation of isotopic

concentrations between two time steps:

8r 2 Nj1
 r
 n� 1;Xr
16 t þ Dtð Þ ¼ Xr

16 tð Þ þ Dt
dXr

16

dt
ð29Þ

8r 2 Nj1
 r
 n� 1;Xr
18 t þ Dtð Þ ¼ 1� Xr

O t þ Dtð Þ � Xn
16 t þ Dtð Þ ð30Þ

At the oxide/gas interface, the proportion of each isotope changes as a function of

the incoming flux of mixed 16O2/
18O2 gas. The fraction of 18O isotope in the

16O2/
18O2 mixed gas is called R18. Then, the concentrations of

16O and 18O at each

time step in the slab n are given by Eqs. (31) and (32):

Xn
16 t þ Dtð Þ ¼ Xn

16 tð Þ þ 1� R18ð ÞDt _Xn
16 ð31Þ

Xn
18 t þ Dtð Þ ¼ 1� Xn

VO
t þ Dtð Þ � Xn

16 t þ Dtð Þ ð32Þ

As stated before, the oxygen concentrations at the interface are fixed to the

equilibrium values. Then, the isotopic concentrations in the slabs 1, j, jþ 1, i, and

iþ 1 are fixed to the boundary concentrations as a function of the ratio of each

isotope in the slab. For example, the isotopic concentrations in the slab i (metal/

oxide interface in aZr(O)) are given by the Eqs. (33) and (34):

Xi
16 t þ Dtð Þ ¼ Xi

16 tð Þ
Xi
16 tð Þ þ Xi

18 tð Þ

� �
CaZr=ox ð33Þ

Xi
18 t þ Dtð Þ ¼ 1� Xi

18 tð Þ
Xi
16 tð Þ þ Xi

18 tð Þ

� �
CaZr=ox ð34Þ

Results and Discussion

Tables 1 and 2 summarize all the thermodynamic and diffusion data used to perform

calculations shown in this part. Please note that in the oxide scale, the boundary

concentrations of vacancies and oxygen are defined with reference to the

stoichiometry of ZrO2-x. Notice that a constant value for diffusion coefficient of

vacancies in the oxide is used as the only input parameter for diffusion in the oxide

Table 1 Oxygen boundary concentrations calculated with ThermoCalc and the Zircobase [10]

T CbZr=aZr CaZr=bZr CaZr=ox Va�
O

� �
ox=aZr

Va�
O

� �
ox=gas

(�C) (at)

1200 2.76 9 10-2 1.15 9 10-1 3.00 9 10-1 6.92 9 10-2 1.00 9 10-8



for EKINOX calculation. Considering the gradient of vacancies in the oxide, this

leads to variation of the O intrinsic diffusion coefficient across the oxide. Table 2

also gives in the two last columns the corresponding values for O intrinsic diffusion

coefficient at ox/aZr interface and oxide/gas interface.

Figure 2 shows a comparison between Mishin and Borchardt study [1] and

EKINOX-Zr calculations. Figure 2 presents two isotopic distribution profiles

calculated for the oxidation of zirconium during 1000 s at 1200 �C. The first 500 s

corresponds to an oxidation under 16O2 (natural stage) and the last 500 s are under
18O2 (tracer stage). The total oxygen concentration profile is also depicted in the

figure. Hence, one can follow both the growth of the zirconia scale and aZr(O) layer.
The shape of the 18O concentration profiles corresponds to the typical profiles for

systems where diffusion takes place only by lattice diffusion. Notice that the 18O

distribution profile would be very different in the case of short-circuit contribution

[12].

Mishin and Borchardt [1] report that the tracer penetration profile can be fitted by

the Eq. (35) where ~DO is the average chemical diffusion coefficient of the tracer:

Table 2 Oxygen diffusion coefficients used in EKINOX-Zr calculations [11]

T DbZr DaZr Dox ¼ 1þ að ÞDVa�
O

DOjox=aZr DOjox=gas
(�C) (cm2 s-1)

1200 1.55 9 10-6 1.10 9 10-7 9.36 9 10-7 2.16 9 10-8 3.12 9 10-15

Fig. 2 EKINOX-Zr calculation: two sets of distribution profiles of O, 16O, and 18O plotted for an
oxidation of zirconium alloy during 1000 s at 1200 �C, the first stage (500 s) is performed under 16O2

while the second stage (500 s) is performed under 18O2. Comparison between the analytical solution
‘‘erf’’ (Eq. 38) and the 18O penetration profile calculated by EKINOX-Zr



C18 xð Þ ¼ C
oxide=gaz
18 erf

x

2

ffiffiffiffiffiffiffiffi
~DOt

q
0
B@

1
CA ð35Þ

Following this statement, Fig. 2 presents a comparison between the 18O

penetration profile calculated by EKINOX-Zr and the analytical solution of

C18 xð Þ given by Eq. (35). The parameters of the analytical formula were chosen as

followed: C
oxide=gaz
18 = 0.988 at (equal to the value of Xn

18 given by EKINOX-Zr

calculation), t = 550 s (that corresponds to the calculation duration). With an

adjusted value of ~DO ¼ 4.5 9 10-10 cm2 s-1 in Eq. (35), a good fit is obtained

between the analytical solution and the numerical calculation. Following the

Eq. (14), it is possible to calculate the values of ~DO close to the oxide/gas interface

and at the ‘‘end’’ of the 18O penetration profile. All the values are summarized in

Table 3 that clearly shows that the value of ~DO used in the Eq. (35) is consistent

with two values of ~DO calculated with the Eq. (14).

Initially, the Eq. (35) is provided in [1] to measure the self-diffusion coefficient

DOeff of the oxygen tracer. To do so, authors assumed that the self-diffusion

coefficient is constant in the whole oxide scale, even if they clearly mentioned that

the self-diffusion coefficient depends strongly on the local vacancy concentration.

Finally, they conclude that their assumption is available for short-term oxidation

(i.e., in the case when the diffusion is largely predominant over the transport). In the

case of zirconium oxidation, if we take a look at the Eq. (14), we can see that close

to the oxide/gas interface, because of the very small value of the vacancy

concentration; the global diffusion coefficient of the diffusion part (first term in

RHS of Eq. 14) is equal to 3.12 9 10-15 cm2 s-1, whereas the global diffusion

coefficient of the transport part (second term in RHS of Eq. 14) is equal to

9.36 9 10-7 cm2 s-1. Thus, the transport part cannot be neglected even for short-

time tracer stage. So, we can say that the Eq. (35) allows us to measure only an

average chemical diffusion coefficient and not the self-diffusion coefficient.

The numerical model has also been used to imagine a new type of tracer

experiments with a short-time 18O2 stage surrounded by two 16O2 stages of longer

durations. Hence, a calculation has been realized considering that the entire

oxidation is performed under the natural stage with 100% 16O2 except between 200

and 230 s when the tracer stage is performed under 100% 18O2.

Table 3 Comparison between the values of ~DO calculated with the Eqs. (14) and (35)

X (lm) 280 320-329 329

‘‘End of 18O profile’’ ~DO
Oxide/gas interface

Calculated from Eq. (14) Eq. (35) Eq. (14)

~DO (cm2.s-1) 1.4 9 10-8 4.5 9 10-10 3.1 9 10-10



Figure 3a shows the time evolution of the concentration of 18O in the first

numerical slab of oxide besides the oxide/gas interface, that is to say the evolution

of 18O concentration at the oxide scale surface for this specific calculation. The

evolution of 18O concentration at the surface results from the Eqs. (31) and (32)

which differ from the drastic assumption usually made by imposing a constant

surface concentration. Figure 3a shows that the enrichment in 18O at the oxide

surface is rapid and the maximum value is reached 30 s after the introduction of
18O2 in the atmosphere. Figure 3b shows the evolution and displacement of the peak

of 18O tracer for three different durations. The evolution of the 18O distribution

Fig. 3 a Time evolution of 18O concentration in the first numerical slab of oxide. b Isotope diffusion
profiles calculated at 240, 280 and 360 s by EKINOX-Zr for an oxidation of zirconium containing a
30 lm prior-oxide layer. The following sequences have been ordered as follows: 200 s under 16O2 ?
30 s under 18O2 ? 970 s under 16O2. For a better understanding, we chose to set all the oxide/gas
interfaces at the same abscissa

Table 4 Values of ~DO measured by following the 18O peak displacement from Fig. 3. The maximum

value of the 18O at the oxide/gas interface is reached for t = 230 s

t (s) 240 280 360

Dt (s) 10 50 130

Dx (lm) 3 8.6 18

~DO (cm2 s-1) 9.0 9 10-9 1.5 9 10-9 2.5 9 10-8

Fig. 4 Schematic illustration of the evolution of each diffusion coefficients along the oxide scale



profiles illustrates both contributions: diffusion and transport. The transport term

induced the inward displacement of the 18O peak position in the oxide scale while

the diffusion term induced the spreading of the O peak with time.

If one follows the abscissa of the summit of the 18O peak as a function of time,

we can obtain values of ~DO considering that Dx ¼
ffiffiffiffiffiffiffiffiffiffiffi
~DODt

p
[13]. The values are

summarized in Table 4.

Table 4 shows the same evolution of ~DO than in Table 3. Tables 3 and 4 clearly

show that ~DO is increasing from the oxide/gas interface to the metal/oxide interface,

as for DO. This is due to the increase of the vacancy concentration.

Figure 4 presents a schematic illustration of the evolution of each diffusion

coefficient. We can see that all the values are consistent with each other.

Furthermore, Fig. 4 shows that the assumption made in [1] on the constant value of

the self-diffusion coefficient is not relevant in the case of zirconium oxidation.

Conclusions

In this work, our aim was to simulate O-tracer experiments at high temperature

taking into account a high oxygen solubility limit of oxygen in the metal. A second

objective was to obtain a numerical model able to simulate any kind of tracer

diffusion during the oxidation, even in non-stationary regimes. The diffusion

equations of 16O and 18O were deduced from classical diffusion equations taking

into account the electrochemical potential gradient across the oxide scale through

the large gradient of anionic vacancy concentration. The numerical implementation

of these equations in the existing EKINOX-Zr model enabled direct calculation of

isotope fluxes without making the approximation of a constant oxygen intrinsic

diffusion coefficient which was done in Mishin and Borchardt’s work [1]. Indeed,

the oxygen diffusion coefficient is proportional to the local vacancy concentration;

therefore, it is best to use a flux equation expressed as a function of a constant

diffusion coefficient of the oxygen vacancies. Two examples of numerical
18calculations illustrated how the shape of the O-tracer distribution profile is 

governed by both the diffusion by Brownian motion and the transport under the 
large gradient of defects through the growing oxide scale.

Firstly, the simulation of a classical two-stage tracer experiment is consistent

with the analytical solution given in [1]. The average value of D~O used in the 
Eq. (35) is clearly included between the two values of D~O obtained from the 
Eq. (14). Despite what is reported in [1], in the case of zirconium oxidation, the 
transport contribution cannot be neglected in the isotope flux expression, even for 
short-term oxidation.

Secondly, a new type of O-tracer experiment is proposed to evaluate oxygen 
chemical diffusion and transport contributions from the drift of a 18O peak. In this 
case, the values of D~O were calculated using the peak drift. The values of D~O 
obtained by this way and reported in Table 4 are consistent with the one reported in
Table 3. By three different ways of calculation, all the values of D~O are consistent



with each other. Thus, we can conclude that the ‘‘peak shift’’ method together with

Eq. 14 should be used to determine the values of oxygen diffusion coefficient in

growing oxide scales.

Next step to improve the EKINOX-Zr will be to express the flux as a function of

the gradient of the local chemical potential gradients calculated using the

thermodynamic database Zircobase [11]. This improvement would avoid the strong

assumption of the constant value of the coefficient of activity in the metal. For

example, thermodynamic calculations show that in aZr(O) the activity coefficient

evolves over two order of magnitude.
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