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We calculate optimal safety stock in a periodic review (T,S) Assemble-to-Order system
having multiple components and multiple finished goods. Customer orders for finished
goods arrive according to independent Poisson processes, and cannot be neither
backlogged nor lost. In case of potential component stock-out, the studied system uses
rush deliveries from suppliers. For this setting, approximate expressions of the optimal
safety stock that minimize the sum of inventory holding and rush ordering costs are
developed. Exact optimal safety stocks are calculated using discrete event simulation, and
compared numerically to the approximate expressions. The model is applied to a first-tier
automotive supplier and yields to a significant reduction in terms of inventory holding
and rush ordering costs. A sensitivity analysis on relevant system parameters such as

components demand, assembly coefficients and unit rush ordering cost is conducted.

Keywords: inventory control; assemble-to-order; periodic review; rush orders;

optimization;

1 Introduction

In this paper, we develop a new model of components safety stocks calculation in Assemble-
to-Order (ATO) systems. As defined by Song and Zipkin (2003), an ATO system includes
components and finished goods (FGs) where demands occur for FGs, and inventory is kept for
components (i.e., there is no inventory for FGs). It has been shown in practice that ATO systems
can be successfully applied in situations where there is a high diversity of FGs, where FGs can

be quickly assembled and where holding FGs inventory is costly. For instance, ATO systems



are widely applied in automotive, aerospace and computer industries. The replenishment and
the allocation of components inventory constitute the main inventory decisions in ATO
systems. The replenishment decision consists in determining when to order components and in
what quantity. Components inventory allocation is to decide how much inventory to allocate
per FG and/or customer class.

The model we develop is inspired from the operating conditions of a production
environment observed in company “Alpha” plants. Indeed, Alpha is one of the world’s top ten
auto parts makers (the company name has been altered for confidentiality reasons). Alpha
customers seek a 100% service level from first-tier suppliers such as Alpha. The activity of
OEMs is indeed organized in a way that any backorder or waiting time generate important costs.
As Boysen et al. (2015) detailed, the different reactions that occur when there is a stock-out at
the assembly line of OEMs cause high penalty costs. Hence, first-tier suppliers have a tendency
to over-estimate their components safety stocks in order to guarantee the OEMSs constraint
(100% service level). At the same time, satisfying customer demands in ATO systems without
keeping inventory of FGs makes the control of components inventory of paramount importance.
Traditional replenishment policies (such as reorder point, order up-to, etc) may reveal
insufficient to keep high customer service levels. This increases the need to couple those
policies with alternative (more flexible) replenishment practices. For instance, adding rush
supply to regular supply (which is used in traditional replenishment policies) has been proved
to be a promising strategy to improve service level and avoid stock-outs (Tagaras and Vlachos
2001). Nevertheless, rush orders are subject to a higher ordering cost (higher than the regular
order cost). The use of rush orders is observed in the automotive industry between first-tier
suppliers and second-tier suppliers. Companies like Alpha use rush ordering (with an additional
cost compared to standard ordering) to receive emergency deliveries in case of potential

components stock-outs.



Another important factor that motivates the use of rush deliveries in the automotive
industry is related to Just-in-Time deliveries. Alpha (as well as other first-tier suppliers) uses
Just-in-Time delivery, i.e., instead of receiving from their suppliers a shipment in full (one
shipment for one regular order), the regular order is smoothed into multiple shipments. For
instance, more than 74% of components in an Alpha plant (situated in France) are delivered in
multiple shipments. This strategy allows indeed to reduce components inventory levels, but
increases the risk of stock-outs. Therefore, having the option of rush ordering (which reduces

the risk of stock-outs) can compensate the drawbacks of reduction of inventory levels.

At the beginning of the project, Alpha plants were using a safety stock calculation model
that resulted in over-estimations of components safety stocks. Additionally, this model was
difficult to interpret for procurement managers and did not take into account inventory holding
and rush ordering costs in the calculation (all components were considered in the same way
despite the differences in unit inventory holding and rush ordering costs among product
categories). Managers then decided to adjust the calculation method by using empirically
defined reduction percentages that depend on the nature of components (high vs. low runner
products). The calculation method obtained was still not fully satisfactory. Hence, the decision
was to develop a new safety stock calculation model corresponding to Alpha replenishment
environment.

In the model we develop, we consider an ATO system with multiple FGs and multiple
components. A periodic review order up-to (T,S) policy is used to replenish components
inventory. Suppliers of components deliver an order in multiple shipments (rather than a single
shipment). In case of potential shortage, suppliers offer the option of using rush orders at a
higher ordering cost. FGs demand must be satisfied totally without tardiness (neither

backlogging nor lost sale are possible).



We propose an approximate analytical model to calculate numerically the optimal safety
stock of a component in order to minimize the average inventory holding and rush ordering
costs. Then, we use a Discrete Event Simulation model developed in Matlab to verify the
effectiveness of the approximate model. Finally, a sensitivity analysis on the impact of different
system parameters such as components demand, number of shipments, assembly coefficient,
and unit rush ordering cost is developed.

This paper is organized as follows, section 2 provides a summary of the related literature.
In section 3, we describe the model developed. Expressions of the optimal component safety
stock and optimal total cost are given in section 4. In section 5, results obtained from the
approximate model are compared to the optimal values calculated by the Discrete Event
Simulation model. A sensitivity analysis on the impact of different system parameters is

conducted in section 6. Finally, section 7 concludes the paper.

2 Literature review

Our study is related to two research streams: components inventory control in ATO systems,
and the use of rush orders (also called emergency shipments in the literature) in inventory

systems.

The literature on ATO systems mainly addresses the problems of components inventory
replenishment and inventory allocation. Agrawal and Cohen (2001) derived expressions to
calculate optimal base stock levels for components under a constraint on FGs service described
by order completion rate. Authors assume a fair shares allocation policy where the fraction of
component inventory allocated to a FG is equal to the quotient of its demand and the total
demand of FGs. A general literature review of ATO system was provided by Song and Zipkin
(2003) where they classified the different models into: one period models, discrete time multi-

period models and continuous time models. Atan et al. (2017) gave an update of the literature



on ATO systems following the same classification. Akcay and Xu (2004) studied the calculation
of the optimal base stock levels for an ATO system with multiple products and components
where products demand is correlated. In a two stage stochastic decision model, the authors

studied also the optimal allocation problem and proposed a simple component allocation rule.

In a single FG, multiple components and multiple customer classes (with different lost
sale costs) ATO system, Benjaafar and EIHafsi (2006) studied the optimal production control
and inventory allocation problem where each customer class demand follows a Poisson
distribution. They considered two configurations: backorders and lost sales. Authors found that
the optimal components production (replenishment) policy is a state-dependent base stock
policy and the optimal allocation policy is a state-dependent rationing policy. EIHafsi et al.
(2008) studied a specific ATO configuration (modular nested design) where they provided the
structure of the optimal production control and allocation policies. They assumed a Poisson
customer demand with lost sales possibility. The authors found the same optimal structure

found by Benjaafar and ElHafsi (2006).

Zhao (2009) gave exact and approximate values of performance metrics for an ATO
system with multiple components and FGs, which uses a continuous time (R,Q) batch ordering
policy with possibility of splitting orders (i.e., satisfying an order separately and not in full). In
a one period ATO system with one FG and multiple components, Xiao et al. (2010) determined
the optimal inventory and production decisions using a two stage decision model within an
environment of uncertain demand and uncertain assembly capacity. They assumed the
possibility of using rush deliveries and in-advance assembly. Fu et al. (2011) studied a multiple
FGs and components ATO system with backlogging possibility and FCFS allocation policy.
The authors proposed approximation methods to calculate three performance measures: average

waiting time, fill rate and average number of backorders. Karaarslan et al. (2013) compared



between two inventory control policies (pure base stock policy, and balanced base stock policy)
for an ATO system with one FG and two components. EIHafsi et al. (2015) determined the
optimal component production and allocation policy for an ATO system with one FG and
multiple components. They assumed that demand can occur for both FG and components where
unsatisfied demand is lost. They compare the optimal policy (state-dependent base stock and

rationing policy) to three heuristic policies.

In our paper, we study the calculation of optimal safety stocks (deducted from the
calculation of optimal order up-to levels) in periodic review ATO systems. Babai et al. (2011)
proposed a method to calculate the optimal order up-to level in a single stage, single item
inventory system where customer orders arrive according to a compound Poisson process and
unmet demand is backordered. Jalali and Nieuwenhuyse (2015) surveyed the literature on
simulation optimization techniques used to solve complex inventory problems. In a periodic
review capacitated multi-echelon assembly system, Woerner et al. (2017) proposed an
approximate method to resolve the joint optimization problem of safety stock and capacity
allocation. Desmet et al. (2010) proposed an approximation model to calculate optimal safety

stock in a two-echelon assembly system.

There exists also some papers that studied the use of rush orders as an alternative supply
mode and evaluated its impact on inventory control problems. Smith (1977) studied the use of
emergency shipments in an inventory system controlled by the base stock policy (S,S-1). The
unmet demand is assumed to be lost (no backlogging). The author gave the optimal and
approximate expression of calculation of the base stock level S. Moinzadeh and Schmidt (1991)
studied the use of emergency orders in an inventory system that faces a Poisson demand and
uses the (S,S-1) policy. They proposed a policy to trigger emergency shipments, and evaluated

the parameters of this policy as well as the optimal base stock level S™.



Tagaras and Vlachos (2001) studied the use of emergency shipments in an inventory
system controlled with a periodic review (T,S) policy, with backlogging possibility for
unsatisfied customer demand. The authors gave an approximate model to calculate the optimal
base stock level and the threshold used to trigger emergency replenishments. The approximate
model is compared to the optimal solution (given by simulation). They justified the efficiency
of the approximate solution, and showed that the use of emergency shipments can lead for
interesting cost savings. In another study, the same authors (Vlachos and Tagaras 2001),
considered a similar model but with a supplier capacity constraint on the rush delivered
quantity. The authors compared between two emergency ordering policies “Early ordering” and
“Late ordering”. In the “Early ordering” policy, an emergency order is placed earlier in the
replenishment cycle (the time interval that separates two regular deliveries) in order to reduce
potential early stock-outs. On the other hand, the “Late ordering” policy places a replenishment
order later in order to have more information about demand and stock-outs, hence the
replenishment order size is better calculated. The “Early ordering” policy seems to be more
interesting when variability of demand increases, shortage cost decreases, and delivery and
period lead times become longer.

In an inventory system with continuous review (R,Q) policy for normal supply, Axséter
(2007) proposed a decision rule to use emergency shipments. He showed the interest of using
the proposed policy in a simulation study and pointed out the situations where it performs well.
Dhawan et al. (2009) used neuro-dynamic programming to find the best quantity to order from
two supply sources (regular and emergency) in order to minimize regular ordering, emergency
ordering, shortage and inventory holding costs. Alvarez et al. (2013) studied the use of
emergency replenishments in an inventory system that serves multiple customer classes for
multiple items where the demand of each item follows a Poisson distribution. They proposed a

policy to select for which item/customer class it is better to apply the emergency shipment



option. Mardan et al. (2015) studied the use of emergency supply and emergency production in
a Make-to-Stock system with multiple FGs and items. They proposed an integrated emergency

ordering and production planning policy by resolving a two stage stochastic decision problem.

Zheng et al. (2015) studied a two stage decision problem where a regular (normal)
supply order is placed in the first stage and an emergency supply order can be placed in the
second stage based on the update of demand forecast. The authors used dynamic programming
to determine the optimal ordering quantities within the two stages, and showed the interest of

using emergency supply.

Table 1 summarizes the literature concerning rush orders. Each paper is described in terms of:
inventory control policy used, rush ordering policy, probability distribution, cost parameters
considered, type of optimization model used to calculate policy parameters. As reported, our
work considers a multi-period ATO system controlled with a (T,S) policy and assumes that
customer demand cannot be backlogged nor lost. Since demand has to be totally satisfied, the
definition of an inventory allocation policy is not required. Tagaras and Vlachos (2001),
Vlachos and Tagaras (2001) are the nearest papers to ours: they considered a (T,S) inventory
system and developed an approximate model to calculate the optimal order up-to level S and
the threshold used to trigger rush orders. Our paper considers the components safety stocks
problem at Alpha plants. Assumptions related to the industrial context of Alpha are as follows:
i) we consider an ATO system where regular deliveries are received in multiple shipments (and
not in a single shipment); ii) the rush ordering policy used triggers rush orders in case of
potential stock-out; iii) OEM demand has to be totally satisfied (no backlog nor lost sales). To
our knowledge, such assumptions are not taken altogether in previous studies. Our objective is
to develop a model for optimal safety stocks for companies working in an ATO configuration

similar to Alpha.



Table 1. Papers dealing with rush orders

System considered and Rush _orderlng policy Demaf‘?' Costs considered Optimization
Paper regular ordering policy (when 1S the rush order p_rob_abll'lty (fixed/variable) model
triggered?) distribution
. Yy When an item is in stock- , Rush ordering cost (variable), Analytical model
Smith (1977)  (S,5-1) inventory system out Poisson inventory holding cost (variable) (Queueing model)
Heuristic that depends on Regular ordering cost (variable),
the normal and rush rush ordering cost (variable),

Moinzadeh and delivery lead times in Poisson inventory holding cost Analytical model

Schmidt (1991) (S,5-1) inventory system order to decide whether to
use a normal or a rush

order

(variable), back-order penalty
cost (variable), lost sale cost
(variable)

(Queueing model)

Tagaras and A threshold on the

(T,S) inventory system

Normal, Erlang

Additional cost of an emergency
order over that of a regular order
(variable), inventory holding

Analytical model,

Vlachos (2001) inventory state cost (variable), back-order simulation
penalty cost (variable)
A threshold on the Additional cost of an emergency
Vlachos and _ inventory state Wlth order over thgt of a regular (_erer Analytical model,
(T,S) inventory system supplier capacity Normal (variable), inventory holding ; .
Tagaras (2001) . . simulation
constraint on the rush cost (variable), back-order
delivered quantity penalty cost (variable)
Heuristic decision rule Regular orderlng cost (fixed),
Axsater (2007) (R,Q) inventory system which assumes that there Compound (fixe:juf\r/]a?irgt;elr;;]girf\?z:]tor Simulation
' ysy is no possible future rush Poisson ’ y

orders

holding cost (variable), back-
order penalty cost (variable)




Base stock for an

Regular ordering cost (variable),

rush ordering cost (variable), Analytical model

Dhawan et al. inventory/production A threshold on the on-  Unspecified, use of inventory holding cost (Neuro-dynamic
(2009) yrp hand inventory historical data . Y g yn:
system (variable), back-order penalty programming)
cost (fixed)
When an item is in stock-
Alvare et al _ out of an item, t_he use of Multiple customer Rush ordering cost (fixed), Heuristics (local
(S,S-1) inventory system  emergency shipment classes with . . ) search, integer
(2013) . inventory holding cost (variable) :
depends on the customer  Poisson demand programming)
class
Two-s:?]geki(:]eusmn- Optimal rush order is Regular ordering cost (variable),
. 9 triggered in the second rush ordering cost (variable),
inventory/production S . i
Mardan et al. . stage (there is a similar - inventory holding cost Sample average
system where optimal . Unspecified . T
(2015) reqular order is two-stage decision- (variable), back-order penalty approximation
reguiar . making process for cost (variable), lost sale cost
triggered in the first . . . ;
stage production planning) (fixed), salvage cost (fixed)
Two-stage decision-
making newsvendor Optimal rush order is . . .
Zheng et al. system where optimal triggered in the second Normal, Regular ordt_armg cost (vgrlable), Analytical n_10de|
X rush ordering cost (variable), (Dynamic
(2015) regular order is stage based on the Lognormal salvage cost (variable) rogramming)
triggered in the first forecasts update g prog g
stage
(T,S) with possibility of
Our paner receiving a regular order In case of potential Compound Rush ordering cost (fixed), Analytical model,
pap in multiple shipments component stock-out Poisson inventory holding cost (variable) simulation

for an ATO system
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Figure 1. Assemble-to-Order system considered
3 Model formulation

We consider an ATO system with nc components and ns FGs (cf. Figure 1). The set of
FGs is denoted by F. Each component i is used by a set of FGs denoted by F; where F; <
F and U<, F; = F. Each unit of FG j uses a; units of component i in the assembly
process. Customer orders for each FG j are assumed to arrive according to an independent
Poisson process with a mean arrival rate 4;. As a result, each component i is assumed to
have a compound (batch) Poisson demand: i) the demand of each FG is assumed to be
independent of the demand of other FGs, hence, the sum of customer orders for FGs that
use the same component i arrive according to a Poisson process, ii) the mean arrival rate
of component i demand, i.e., §;, would be given by: §; = ¥ jcr, 4;. The number of units

of component i, denoted by Xi, required for each customer order is a random variable with

a probability distribution: P(X; = a;;) = %

Without loss of generality, we assume that each component i has a constant
assembly coefficient ai (i.e., a;; = a;,V j € F;). This assumption is not restrictive and is
frequently observed in various industries (e.g., there are always two headrests in one car
seats). Hence, each component i has a compound Poisson demand with mean S; * a;

11



where the mean arrival rate is £3;, and size batch size equal to a;.

We assume also that the assembly lead time of each FG is negligible, and the
assembly capacity is sufficient to satisfy customer demand. Customer demand has to be

totally satisfied and cannot be neither backlogged nor lost.

We assume the inventory of component i is controlled by the periodic review
(Ti,Si) policy where Ti is the review time interval and S; is the order up-to level. In this
policy, an order is sent to an external supplier each time interval Ti. The size of the order
is the difference between S; and the inventory position at the moment of ordering.
Components are received after a constant delivery lead time DLT;. More particularly, we
assume that the order is delivered in multiple shipments, i.e., instead of shipping the total

quantity ordered after DLT;, the supplier splits the order and sends m; equal parts of the

order during the time interval T; (m; is the number of shipments during T; and % is the

time interval between two consecutive shipments). Delivery in multiple shipments is a

common practice in order to smooth (reduce) inventory levels.

In case of a potential stock-out for component i (there is a stock-out when the on-
hand inventory is not sufficient to satisfy demand), the ATO system sends a rush order to
the supplier with a fixed cost Ri. We assume that the rush order has a negligible lead time.

We also assume that the supplier has the capacity necessary to satisfy rush orders.

We assume that time is discrete and divided into equal time units (e.g., days).
Events that occur in a time unit t, for component i are as follows: (cf. Figure 2)

(1) Inventory position is reviewed and a replenishment order is sent to supplier.
(2) Supplier shipment is received.
(3) Inventory holding costs are charged.

12



Beginning of Beginning of
time unit time unit /+1

M l.nventory posttion (3) Inventory holding
reviewed and Order
costs charged

sent to supplier

(6) Customer
order satisfied

T T
| P

(2) Supplier shipment (4) FGs demand (5) Rush delivery used
received received. (Yes/not). If yes, rush
delivery received and

cost charged.

Figure 2. Sequence of events within each time unit

(4) FGs demand is received and the required component demand is calculated using
the assembly coefficients given by the Bill of Materials (BOM).

(5) If component on-hand inventory is not sufficient to satisfy demand, a rush order
for the missing quantity is sent to the supplier and fully received (rush order lead
time is assumed negligible). A fixed rush ordering cost R; (cost/rush order) is
charged. R; is assumed to not depend on quantity (i.e., units of component
requested) and is assumed to be a fixed cost.

(6) Components are assembled (assembly capacity is assumed large) and FGs
demand is totally satisfied.

Remarks below provide further details regarding the sequence of events:

e The first review of the inventory position for each component i occurs at the
beginning of time unit t=1. After, there is a review (and ordering) at the beginning
of each time unit t where (t — 1) = 0 (mod T;).

e When a replenishment order for component i is sent to the supplier in time unit t,

then, the corresponding supplier shipments are received in time units:

(m;—1)T;

Q-...;t+DLTi+ . We assume

T
m; > m;

t+DLT; ; t + DLT, + % t + DLT; +
that % is an integer. m; = 1 corresponds to the (classical) case where the (full)

order is received in a single shipment.

The list of notations is given in Appendix 1.
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Table 2. Inventory units expressed in units or in batches of component

Inventory expressed as Inventory expressed as batches
units of component where 1 batch= a units of component

Safety stock SS = a x Sshatch §gbatch

Order up-to level S = a x Sbatch gbatch

Unit inventory

batch _
holding cost per year h h =aXh

4 Optimization of component safety stock

The objective of the developed model is to find an optimal overall inventory policy which
minimizes the expected total annual cost among all components. In our model, we assume
that each component i inventory is managed independently from the other components,
hence, the optimal overall policy is deduced from the optimal inventory policy of each
component. That is why, we determine the optimal inventory policy for a single
component i and apply it for all components. Henceforth, we omit the subscript i from all
variables.

The optimal inventory policy for a component is determined by calculating its
optimal safety stock SS and its optimal order up-to level S. As shown in section 3,
component demand arrives in batch where the batch size is equal to a. Due to this
property, and in order to facilitate understanding, the inventory model will be formulated
in batches of size a. The corresponding notations and equivalences when inventory is

expressed either in units of component or in batches of component are given in Table 2.

Once the optimal values of SS?%t<h and sbatch gre calculated, the optimal values
of SS and S will be deduced by using the relation given in Table 2. The optimization of
time interval T is not addressed in this model (T can be optimized using a method such as

the economic order quantity).
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The expected total cost per year, denoted by TC, is the sum of the expected annual
inventory holding cost, denoted by IHC, and the expected annual rush ordering cost,

denoted by ROC.

We start by studying the case where there is one shipment (m=1), and then

generalize results for the multiple shipments system (m>1).

4.1 Case of one shipment (m=1)

The expected annual inventory holding cost IHC, is calculated using the following
expression:

IHC = hbatch(ESbatch + SSbatch) = pbatch(ggbatch 4 gbatch _ p(T 4 DLT)) (1)

where ESP¥" represents the economy of scale inventory per time unit (in terms of
batches). This term does not impact the optimization and can be calculated as presented
in Appendix 2. SP" js equal to the sum of SSP®*" and the average component demand

during T+DLT expressed in terms of batch.

Calculating the exact expression of the expected annual rush ordering cost is not
tractable analytically because of interrelationships among demand, regular delivery, and
rush delivery as reported also by Tagaras and Vlachos (2001). In other words, if we want
to know the probability of having a rush delivery during a time unit t, we calculate the
probability P(on-hand inventory is less than component demand in t); nevertheless, the
on-hand inventory in time unit t depends on what happened (demand, regular delivery,
rush delivery) before t which makes the calculation intractable. Our approximate
inventory model uses the following assumption: there is one possible rush delivery during
T (this approximation is evaluated in the next section). This simplifying assumption

seems reasonable: since the unit rush ordering cost R would generally be higher than the

15



unit inventory holding cost h®2"  the optimal expected number of rush orders during T is
expected to be low. The expression of ROC is given by:

ROC = R x ; x P(Sbatch < phatch )
where P(Sbatch < phateh y represents the probability of having one rush order during
the review time interval T. D22 is demand (expressed in batches) in the time interval
T+DLT and is assumed to follow a Poisson distribution with mean B(T + DLT). ;
represents the average number of inventory review cycles per year (Y is the number of

days per year). ROC is calculated in a way similar to the Cycle Service Level (CSL)

approach used in literature.

The expected total cost per year, TC, is thus given by:
Tc(SbatCh) — pbatch (ESbatCh + Shatch _ ,B(T + DLT)) +¥P(5batch < D??—tDCI},lT (3)

The expected total cost TC is a convex function (proof is given in Appendix 3).
Therefore, TC accepts a minimum $?%¢%" TC is the sum of an increasing function
IHC(S?at") and a decreasing function ROC(S?%¢<"), When SP#t<" increases by one unit
(from sbatch o gbatch 4 1) |HC increases by hbeth and ROC decreases by
RT—Y [P(SPatch + 1 < DRYich) — p(SPatch < b4l )]. The optimal value of SPatch js

attained when:

RY
hoaten + =g X [P (S"" +1 < De¥pir) — P(S™" < D1¥5ir)] 2 0

hbatchT
RY

yields
batch batch batch batch
_)P(DT+DLTSSaC +1)_P(DT+DLTSSaC)S

—ﬁ(T+DLT) Sbatch+1 batch
yields e x (B(T + DLT)) _h atch

(Sbatch 4 1)1 = RY

yields pbatchp
_)f (Sbatch + 1) < —

, Which implies that:

16



batch® _ -1 hbatehy _
ghateh’ = f=1 (A1) =1 (4)

f is the probability mass function of Poisson distribution (with mean S(T + DLT)) and
f~1is its inverse function. Since the analytical expression of f~! is not available,

numerical evaluation is used to calculate S?#t¢"” The optimal safety stock SSPatch™ js

given by:
ggbatch™ — gbatch™ _ B(T + DLT) ©)

Equivalently, if inventory is expressed as units of component, the optimal safety stock SS

would be given by:

ahT

SS* =a (f-l (42) ~1— (T + DLT)) (6)

RY

4.2 Case of multiple shipments (m>1):

For the case of multiple shipments, the probability of using rush orders in a cycle T
becomes even more complex to calculate.

We use the same simplifying assumption as for the case m=1: we assume that
there is one possible rush order during time interval T. The second assumption we use is
as follows: if a rush order is used, it is requested more probably after receiving the m™
shipment during T (it is intuitive that the highest probability to have a stock-out would be
probably after the last shipment).

The multiple shipment model can be approximated by a single shipment model
where shipment delivery lead time is equal to GLT where GLT is the time interval
between sending a replenishment order to supplier and receiving the last shipment (the

m'" shipment).

17



GLT = DLT +|(m — 1) x 1 @)

As for the case of m=1, we formulate the model in terms of SPa" and SSPalch The

expected total cost function to minimize is:
Tc(sbatch) — hbatch (Esbatch 4+ Sbatch _ B(T + GLT)) +¥ % P(sbatch < D’llzgifGCLhT) (8)

Equation (8) is the same as equation (3) where DLT is replaced by GLT. The

optimal component safety stock SS” is calculated by the following expression (where

shatch™ s calculated by equation (4)):
§5* = a(SPaen" — B(T + GLT)) (9)

ahT

SS* = a * (f—l (5F)-1-p+ GLT)) (10)
f is the probability mass function of Poisson distribution (with mean g * (T + GLT)).

5 Numerical study

In this section, we conduct a numerical study to evaluate the performance of the
approximate model developed in section 4. Subsection 5.1 details parameters considered
to compare the approximate model to an exact simulation model. Subsection 5.2 discusses
the results and subsection 5.3 presents the application of the proposed approximate model

to the case of an Alpha plant.

5.1 Approaches and parameters

We compare the optimal safety stock SS” given by the exact and approximate models in
a large set of scenarios. Subscripts “e” and “a” are used to indicate the results given by
the exact and approximate models respectively.

18



For the case of approximate model, we use the expressions developed in section
4 to calculate SS; (given by equation (10)). For the case of exact model, a Discrete Event
Simulation is developed in Matlab: for each scenario, a numerical enumeration of
different safety stock values is used to determine the optimal value SS;. For each safety
stock value, events described in Figure 2 are run for 1 million time units. The warm-up
period is set equal to 500 time units. The expected inventory holding cost IHC, is the cost
of the average on-hand inventory over the considered time units (1 million-500), and the
expected rush ordering cost ROC, is the average number of rush orders per year over the

considered time units multiplied by the unit cost R.

Ninety six scenarios are obtained from the combinations of the following

parameters:

We consider 4 possible values for the average component demand axf={1,5,20,100},
which represent low (1,5), medium (20) and high demand (100). Since it is the ratio %

which impacts the calculation of optimal safety stock, the annual unit holding cost h is
set equal to 1 for all scenarios. The unit rush ordering cost R can take 4 values: 10, 50,
100 or 1000. The review time interval T can be equal to 1, 5 or 10. The delivery lead time
DLT is equal to 2 for all scenarios. 2 values for the number of shipments m are taken: 1

and 5. The number of days per year, Y, is set equal to 240 days. The list of scenarios is
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presented in Appendix 4. The comparison results for each scenario are presented in
Appendix 5. We also give a summary of these results in Appendix 6: for each value of

axp, T, m, and R, we calculate the average comparison results.

The assembly coefficient a is equal to 1 for all scenarios. Indeed, from equation (8)
it can be seen that the total cost TC of a system with an assembly coefficienta = 1 and a

unit component inventory holding cost h is equivalent to a system with an assembly
coefficient a’ > 1 and a unit inventory holding cost h' = % (the two systems have the

same value of h®@"_ Hence, studying a system with an assembly coefficient different
than 1 can be reduced to studying a system with an assembly coefficient equal to 1 (this
equivalence is verified in the approximate and exact models). The demand of FGs for all

scenarios follows a discrete time Poisson distribution with mean £.

5.2 Approximate vs simulation models

Figure 3 gives a scatter plot of the values of SS; and SS;;. It shows that the optimal safety

stock estimation is good in the approximate model. More precisely, Figure 4 displays a
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Table 3. Evaluation of the approximate model for different values of axg, T, m, and R

ASS|  IASS, %] IATC,(SS)| |ATC,(SSy) %l

axp=1 0.67 6.4% 0.27 1.9%
axf=5 1.50 7.0% 0.76 2.5%
axp=20 2.79 7.2% 1.23 1.8%
axp=100 5.13 6.4% 2.65 1.3%
m=1 0.46 1.9% 0.09 0.2%
m=5 4.58 11.6% 2.36 3.5%
T=1 2.44 8.9% 1.17 2.3%
T=5 2.16 5.3% 1.03 1.7%
T=10 2.97 6.0% 1.48 1.7%
R=10 1.63 5.4% 0.61 0.9%
R=50 1.96 5.8% 0.72 1.6%
R=100 2.63 7.8% 1.08 1.9%
R=1000 3.88 7.9% 249 3.1%
All
SCenarios 2.52 6.7% 1.23 1.9%

histogram of SS;;, expressed as a percentage of SS;. This relative percentage is denoted

SSL—SS}

by ASS; %, where ASS; % = o5t

. The calculated percentages are rounded and

presented in Figure 4. The average percentage is 5.4%, and the values range between -
22% and 25%. To evaluate the impact of the difference between SS; and SS;;, we compare
the costs TC; (optimal total cost obtained by the exact model) and TC.(SS}). If the
difference between the two costs is small, we deduce that the difference between SS; and
SS; has not a great impact and the estimation of the optimal safety stock by the

approximate model would be good.

Figure 5 gives a scatter plot of the values of TC; and TC,(SS,). Results show that
values of TC; and TC,.(SS,) are close. Figure 6 displays a histogram of TC,(SS;),

expressed as a percentage of TC;. This relative percentage is denoted by A TC,(SS;;) %,

SSL)-TCE

where ATC,(SS;) % = T e . The average is 1.9% and values are between 0%

and 8%. It can be seen that the approximate model gives interesting results. Even if
A SS; % ranges from -22% to 25%, the relative cost difference A TC,.(SS;) % does not
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vary much (from 0% to 8%).

For different values of ax, T, m, and R, Table 3 presents the average of following

indicators (absolute and relative differences): |A SS;| = |SS; — SS;|, |A SS; %| = 'Asi‘i‘;l,
* * * * |ATCe(SSa)
|ATC,(SS;)| = |TC,(SS;) —TC;| and |ATC.(SS;) %| = — We take the

absolute value |x| of these results because they may have negative values and the
calculation of average in this case is biased. For instance, the first line represents the

average results among all scenarios for which axf=1.

The average |A SS;| among all scenarios is low (2.52). It increases with increasing
axp, m, and R and is not highly impacted by T. The average |A SS; %]| of all scenarios is
6.7%. It increases with increasing m and R. The averages |A TC.(5S;)| is also low (1.23)
and increases with increasing a*$, m, and R. The average |A TC,(SS;) %] is 1.9% and
increases with increasing m and R. These results show that the approximate model gives
interesting results. The approximation is better in the case of m=1 (|A SS; %]| = 1.9%)
which enables to confirm that the simplifying assumption taken in section 4 is reasonable
(there is one possible rush delivery during T). When m=5, the quality of the
approximation of optimal safety stock is lower (|A SS; %| = 11.6%). We think that this
is probably due to the simplifying assumption of having one possible rush delivery during
the last shipment. The increasing of |A SS; %| has not had a great impact on the cost

(IATC,(SS2) %| = 3.5%).

5.3 Managerial insights

Based on the case of an Alpha plant situated in France, we compared our model for
components’ safety stocks calculation to the model currently used at Alpha (Alpha
model). We started by a global comparison which takes into consideration all components
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in the plant. We calculated the total value of safety stock, IHC, ROC and TC pertaining
to all components, for both models. We find that the models give approximately the same
value of safety stock (the reduction percentages allow Alpha model to reduce safety
stocks). IHC given by both models is also (approximately) the same. Despite this, ROC
values are different since the safety stock calculated by Alpha model is not optimal. In
particular, the average probability of using rush ordering in Alpha model is more than ten
times greater than the average probability obtained in our model (values are 3.31% and

0.31% respectively). As a result, our model allows to reduce TC by 66%, compared to

Alpha model. We also realised a more detailed comparison with respect to component
families. We found that the average probability of using rush ordering is impacted by the
average ratio h/R. For instance, the average ratios h/R of two components families are
respectively: 0.13% and 1.27%. As a result, their average rush ordering probabilities are
respectively 0.03% and 10%. The impact of the different model parameters on TC will be

studied in the next section.

6 Sensitivity analysis

This section assesses the impact of parameters ax$, a, m, T, and R. Figures 7 and 8 depict
respectively the variations of the optimal safety stock SS;; and the corresponding expected
total cost TC, as a function of the assembly coefficient a, and the average component
demand axp. For the same average component demand, SS; and TC, increase with
increasing a. This result lies in the fact that the component demand variability increases
with increasing values of assembly coefficient a: increasing a reduces the average FGs

demand S which increases FGs demand variability (the standard deviation of a Poisson

distribution is Jiﬁ)' For example, if the average component demand axp =20, T=1, m=1,

h=1 and R=100 then increasing the assembly coefficient from 1 to 5 increases SS, from
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Figure 7. The variation of optimal safety stock SS; in function of assembly coefficient a
and average component demand a*f (T=5, DLT=2, m=1, R=100)
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Figure 8. The variation of optimal total cost TC, in function of assembly coefficient a
and average component demand a*p (T=5, DLT=2, m=1, R=100)

38 to 80 and TC,; from 102.15 to 149. SS; and TC, increase also when the average
component demand axf increases for a given value of a. Because of the numerical integer

optimization of the cost function, SS; is not strictly increasing when ax/=0.1.
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Table 4. The impact of system parameters on SS,, TC,, IHC, and ROC,

ss?, TC, IHC, ROC,

axf=0.1 17.75 20.05 17.99 2.07
axp=1 33.30 42.27 35.75 6.52
axp=5 60.80 85.67 73.03 12.64
axf=20 105.30 176.59 154.22 22.37
ax =100 187.51 484.91 432.09 52.82
a=1 35.19 101.86 96.88 4.98
a=2 46.99 116.37 108.67 7.70
a=b 68.03 143.38 129.71 13.67
a=10 89.95 171.73 151.63 20.10
a=50 164.50 276.15 226.18 49.96
m=1 72.02 198.37 182.36 16.01
m=2 81.37 166.65 147.58 19.08
m=3 83.28 154.82 134.77 20.05
m=4 83.99 150.34 129.70 20.63
m=5 83.99 139.30 118.67 20.63
T=1 74.86 108.71 100.08 8.63
T=5 81.11 144.72 127.34 17.38
T=10 84.27 180.31 157.41 22.90
T=15 83.49 213.85 185.63 28.22
R=10 33.24 117.31 94.93 22.38
R=50 71.42 154.98 133.10 21.87
R=100 89.25 168.82 150.94 17.88
R=1000 129.81 206.49 191.50 14.99

For a more comprehensive analysis, we consider 2000 scenarios obtained from
other combinations of the following parameters: ax={0.1,1,5,20,100}, a={1,2,5,10,50},
T={1,5,10,15}, DLT=2, m={1,2,3,4,5}, R={10,50,100,1000}. Table 4 displays the
average values of SS;;, TC;, IHC,; and ROC,, for a subset of scenarios (for instance, the

row axf=0.1 gives the average values of all scenarios where ax/=0.1).

Similar to the conclusions of Figures 7 and 8, we find that SS;, TC;, IHC, and
ROC; increase with increasing a*$ and a. Increasing the number of shipments m allows
to reduce the economy of scale inventory and hence reduces IHC,; and TC,. On the other
hand, increasing m increases the risk of using rush deliveries and hence increases ROC,.

For that reason, SS, increases with increasing values of m.
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Table 5. Variation of average SS; in function of aand T

a=1 a=2 a=5 a=10 a=50
T=1 26.55 37.10 56.91 80.06 173.66
T=5 34.05 46.28 68.60 91.30 165.30
T=10 38.86 51.65 71.88 93.33 165.63
T=15 41.31 52.91 74.71 95.11 153.41

We find also that TC,;, IHC,; and ROC, increase with increasing T. SS, increases
with increasing T but it is not monotonous (it decreases at T=15) probably because of
integer optimization (SS; is always multiple of a). To show the impact of integer
optimization, it can be seen that SS,; increases with increasing T, except for the case of

a=50 (Table 5).

SS, increases with increasing R because rush ordering costs become more
expensive and increasing the safety stock will decrease them without impacting largely

the inventory holding costs. TC, increases also with increasing values of R.

7  Conclusions and perspectives

In this paper, we study the calculation of optimal safety stocks in an ATO system which
uses a periodic review policy (T,S) to control inventory, with the possibility of using rush
orders. The model presented is inspired from the context of Alpha, one of the largest auto
parts makers in the world. Alpha plants use actually a safety stock calculation model that
shows some limits. We compared the developed model to Alpha model (the one currently
used at Alpha). We found that our model can lead to interesting cost reductions (up to
66% cost reduction). Even if both models use approximately the same safety stock value,
our model is better in terms of total cost. The safety stock calculated by the proposed
model law is also easier to interpret since it results from a trade-off between inventory
holding and rush ordering costs. Based on results obtained, Alpha is actually considering

the implementation of our model in the inventory management tool used by plant
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procurement managers.

In our model, we used a Cycle Service Level type approach in the calculation of
optimal safety stock. An interesting approach would be the use of a Fill Rate approach
where the rush order cost would depend on units of products requested. In terms of
perspectives, it would be of interest also to consider the case of a variable rush order cost
R which depends on the quantity and the lead time of this order. In our paper, we assumed
that each component demand follows a compound Poisson distribution. One interesting
direction lies also in investigating real discrete probability distributions. Indeed, the
technology of today’s computers has enabled efficient operations with huge amounts of
data. Consequently, processing of discrete data instead of applying approximate functions

would provide more accurate results in practical applications.

Furthermore, in the studied system, we assumed that the supply of each
component is independent from the other components, however some components can
have the same supplier. If those components are in stock-out during the same time unit,
then only one rush delivery would be used instead of using a rush delivery for each
component. It is analytically complicated to calculate the optimal safety stocks in this
case. To resolve this problem, we propose to use the expressions developed in our paper
for this case also. After calculating the optimal safety stocks, the rush ordering costs need
to be adjusted. We propose the use of the following approximation: the expected annual
rush ordering cost for each component i is equal to the same cost calculated by our model,

divided by the number of components supplied by the supplier of component i.
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Appendix 1: Table of notations

Notation Definition
Ne number of components
N number of finished goods
a assembly coefficient
A mean arrival rate of customer orders for a FG
B mean arrival rate of customer orders for a component
axpf average component demand
T review time interval
S order up-to level expressed as units of component
DLT delivery lead time
m number of shipments during T
R unit rush order cost
SS safety stock expressed as units of component
Az order up-to level expressed as batches
S§batch safety stock expressed as batches
TC expected total cost per year
IHC expected annual inventory holding cost
ROC expected annual rush ordering cost
h inventory holding cost per unit per year
s inventory holding cost per batch per year
D2ateh, demand (expressed in batches) in the time interval T+DLT
Y number of days per year
GLT time interval between sending a replenishment order to

supplier and receiving the m" shipment)

Appendix 2: Calculation of the economy of scale term ESbatch

This appendix explains how the term ESP%h gppearing in equations (3) and (8) is

calculated. In a continuous time model, the term ES?%¢" would be equal to % In a

discrete time model, the calculation is different. We use the algorithm below to calculate

ESPateh (this algorithm can be used for any nonnegative value of m). This algorithm

calculates the average on-hand inventory per day. We remind that ES?#t¢" has not an

impact on the optimization of component safety stock. This term is used to calculate the

total cost.
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Esbatch = 0 9% Economy of scale term
Delivered = [0,0, ...,0] % Vector of shipments, which contains T elements

OHI = [0,0, ...,0] % Vector of on-hand inventory, which contains T elements
Fori=1tom

T T T
Delivered (1 + l(i -1) —J) = Delivered (1 + l(i -1) —J) + L —

m m m
End

OHI(1) = Delivered(1)

Forj=2to T
OHI(j) = OHI(j — 1) + Delivered(j) — B
End

T
gbatch — Yi=1 OHI (k)
T

E

Algorithm 1. Calculation of the economy of scale term ESbatch

Appendix 3: Proof of convexity

To study the convexity of the expected total costs function TC(S?#t¢"), we assume that
Sbatch s a positive real which can take no integer values. We know also that S?at¢h >
B(T + DLT).

From equation (4), we have:
RY
TC(SbatCh) — hbatch(EsbatCh + Sbatch _ ﬁ(T + DLT)) _|_T X (1 _ F(sbatch))

F(.) and f(.) are the cumulative distribution function and the probability distribution
function of Poisson, respectively. We put x = B(T + DLT). We use the continuous

version of Poisson probability distribution function where:

_ batch _ batch
e *x* e xS

Sbatch! = F(sbatch + 1)

f(Sbatch) —

In fact, we replaced the factorial term S?4t¢*1 py the continuous function I'(S?%t¢" + 1)
in order to calculate the derivatives where I'() is the Gamma function.
The first and second conditions of convexity yield to:

e First condition of convexity:
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dTC RY
TSbatch = pbatch _ T]c(sbatch) =0

hbatchT
RY )
Where §Patch” js the optimal solution whenS?@tc" is a non-negative real (the value of

Sbatch* — f—l(

sbatch™ in the case of a non-integer St may be different).

e Second condition of convexity:

!

batch
d?TC RY [ e™*x5""¢
dSbatChz - T F(Sbatch _I_ 1)
e~ Xy SPALER ' e‘xln(x)xsbatChF shatchq)_p(gbatch 1)’ g=x, sPAtCh
We have |- ey

(F(Sbatch+1))2
Knowing that: T'(SPatch + 1) = (SPath + 1)y (SP4h + 1)  where () is the

Digamma function. We have:

e—xxsbatCh ! B e *In(x) beatChl—-(sbatch +1)— F(Sbatch + 1)¢(Sbatch + 1)e—xx5ba”h
r(Sbateh + 1) - ([‘(Sbatch + 1))2

e_xxsbatch ! e_xxsbatchl_, Sbatch + 1
( - ( ) (nGo) — (staen + 1))

r(Sbatch 4 1) (r(spateh 4 1))2
The Gamma function is always positive.
The Digamma function is an increasing function, i.e., Y(S?%" + 1) > (x + 1)
\"4 Sbatch > x
On the other hand, we can verify numerically, that (x +1) >In(x) V x > 0.
Consequently, we can say that: (53" + 1) > In(x).
As a result

d*TC
dsbatch? —

Hence the function TC is convex in function of S?atch
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Appendix 4: List of scenarios considered in the comparison between the approximate

and exact models

Scenario number axfp a p T DLT m h R
1 1 1 1 1 2 1 1 10
2 1 1 1 1 2 1 1 50
3 1 1 1 1 2 1 1 100
4 1 1 1 1 2 1 1 1000
5 1 1 1 1 2 5 1 10
6 1 1 1 1 2 5 1 50
7 1 1 1 1 2 5 1 100
8 1 1 1 1 2 5 1 1000
9 1 1 1 5 2 1 1 10
10 1 1 1 5 2 1 1 50
11 1 1 1 5 2 1 1 100
12 1 1 1 5 2 1 1 1000
13 1 1 1 5 2 5 1 10
14 1 1 1 5 2 5 1 50
15 1 1 1 5 2 5 1 100
16 1 1 1 5 2 5 1 1000
17 1 1 1 10 2 1 1 10
18 1 1 1 10 2 1 1 50
19 1 1 1 10 2 1 1 100

20 1 1 1 10 2 1 1 1000
21 1 1 1 10 2 5 1 10
22 1 1 1 10 2 5 1 50
23 1 1 1 10 2 5 1 100
24 1 1 1 10 2 5 1 1000
25 5 1 5 1 2 1 1 10
26 5 1 5 1 2 1 1 50
27 5 1 5 1 2 1 1 100
28 5 1 5 1 2 1 1 1000
29 5 1 5 1 2 5 1 10
30 5 1 5 1 2 5 1 50
31 5 1 5 1 2 5 1 100
32 5 1 5 1 2 5 1 1000
33 5 1 5 5 2 1 1 10
34 5 1 5 5 2 1 1 50
35 5 1 5 5 2 1 1 100
36 5 1 5 5 2 1 1 1000
37 5 1 5 5 2 5 1 10
38 5 1 5 5 2 5 1 50
39 5 1 5 5 2 5 1 100
40 5 1 5 5 2 5 1 1000
41 5 1 5 10 2 1 1 10
42 5 1 5 10 2 1 1 50
43 5 1 5 10 2 1 1 100
44 5 1 5 10 2 1 1 1000
45 5 1 5 10 2 5 1 10
46 5 1 5 10 2 5 1 50
47 5 1 5 10 2 5 1 100
48 5 1 5 10 2 5 1 1000
49 20 1 20 1 2 1 1 10
50 20 1 20 1 2 1 1 50
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51 20 1 20 1 2 1 1 100
52 20 1 20 1 2 1 1 1000
53 20 1 20 1 2 5 1 10
54 20 1 20 1 2 5 1 50
55 20 1 20 1 2 5 1 100
56 20 1 20 1 2 5 1 1000
57 20 1 20 5 2 1 1 10
58 20 1 20 5 2 1 1 50
59 20 1 20 5 2 1 1 100
60 20 1 20 5 2 1 1 1000
61 20 1 20 5 2 5 1 10
62 20 1 20 5 2 5 1 50
63 20 1 20 5 2 5 1 100
64 20 1 20 5 2 5 1 1000
65 20 1 20 10 2 1 1 10
66 20 1 20 10 2 1 1 50
67 20 1 20 10 2 1 1 100
68 20 1 20 10 2 1 1 1000
69 20 1 20 10 2 5 1 10
70 20 1 20 10 2 5 1 50
71 20 1 20 10 2 5 1 100
72 20 1 20 10 2 5 1 1000
73 100 1 100 1 2 1 1 10
74 100 1 100 1 2 1 1 50
75 100 1 100 1 2 1 1 100
76 100 1 100 1 2 1 1 1000
77 100 1 100 1 2 5 1 10
78 100 1 100 1 2 5 1 50
79 100 1 100 1 2 5 1 100
80 100 1 100 1 2 5 1 1000
81 100 1 100 5 2 1 1 10
82 100 1 100 5 2 1 1 50
83 100 1 100 5 2 1 1 100
84 100 1 100 5 2 1 1 1000
85 100 1 100 5 2 5 1 10
86 100 1 100 5 2 5 1 50
87 100 1 100 5 2 5 1 100
88 100 1 100 5 2 5 1 1000
89 100 1 100 10 2 1 1 10
90 100 1 100 10 2 1 1 50
91 100 1 100 10 2 1 1 100
92 100 1 100 10 2 1 1 1000
93 100 1 100 10 2 5 1 10
94 100 1 100 10 2 5 1 50
95 100 1 100 10 2 5 1 100
96 100 1 100 10 2 5 1 1000
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Appendix 5: Results of comparison between the approximate and exact models

Exact model (Optimal) Approximate model Exact model with SS,
sr‘lcue;";‘)re'f §S; TC. [IHC, ROC., SS, TC, IHC, ROC, TC.(SS.) IHC.(SS,) ROC.(SS.)
1 7 861 800 061 7 870 800 070 861 8.00 0.61
2 8 976 900 076 8 986 900 086 9.7 9.00 0.76
3 8 1051 900 151 9 1039 1000 039  10.53 10.00 0.53
4 10 11.96 11.00 096 10 11.82 11.00 082  11.96 11.00 0.96
5 7 86l 800 061 8 966 900 066 9.5 9.00 0.15
6 8 976 900 076 9 1092 1000 092  10.27 10.00 0.26
7 8 1051 900 151 10 1148 11.00 048  11.10 11.00 0.10
8 10 1196 11.00 096 11 1317 1200 117  12.00 12.00 0.00
9 8 1235 1101 134 8 1216 11.00 116 1235 11.01 1.34
10 10 1403 1301 1.02 10 13.87 1300 087  14.03 13.01 1.02
11 11 1497 1400 096 11 1462 1400 062  14.97 14.00 0.96
12 13 1696 1600 096 13 1670 1600 070  16.96 16.00 0.96
13 9 1122 1001 122 10 1208 11.00 1.08  11.49 11.01 0.48
14 11 1302 1201 101 12 1411 1300 111  13.41 13.01 0.41
15 12 1382 1301 082 13 1495 1400 095  14.25 14.01 0.24
16 14 1549 1501 048 15 1757 16.00 157  16.01 16.01 0.00
17 9 1641 1452 189 9 1596 1450 146  16.41 14.52 1.89
18 12 1871 1751 120 11 1827 1650 177  18.95 16.51 2.44
19 13 1981 1851 130 12 1915 1750 1.65  19.91 17.51 2.40
20 16 2247 2151 096 15 21.84 2050 1.34  23.63 20.51 3.12
21 11 1364 1252 112 11 1444 1250 194 1364 12.52 1.12
22 13 1572 1452 120 14 17.29 1550 179  16.20 15.51 0.68
23 14 1688 1551 137 15 1843 1650 1.93  17.02 16.51 0.50
24 18 1951 1951 000 19 2178 2050 128 2051 20.51 0.00
25 13 1991 18.00 190 14 20.00 19.00 1.00  19.97 19.00 0.97
26 16 21.88 2100 088 16 2208 21.00 1.08  21.88 21.00 0.88
27 17 2267 2200 067 17 2296 2200 096  22.67 22.00 0.67
28 19 2520 2400 120 20 2572 2500 0.72  25.72 25.00 0.72
29 13 1991 1800 1.90 15 21.93 2000 1.93  20.44 20.00 0.44
30 16 21.88 21.00 088 18 2431 2300 131  23.16 23.00 0.16
31 17 2267 2200 067 19 2528 2400 128 2412 24.00 0.12
32 19 2520 2400 120 22 2830 27.00 130  27.00 27.00 0.00
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33 16 3296 31.01 195 16 33.05 31.00 2.05 32.96 31.01 1.95
34 19 36.24 3400 223 19 36.56 34.00 2.56 36.24 34.00 2.23
35 20 3760 3500 259 21 3787 36.00 1.87 37.64 36.00 1.63
36 25 4168 40.00 1.68 25 42.06 40.00 2.06 41.68 40.00 1.68
37 18 2490 2301 189 19 2686 24.00 2.86 25.13 24.01 1.12
38 22 2806 27.00 1.06 24 3120 29.00 220 29.33 29.00 0.32
39 22 2912 2700 211 26 3292 3100 1.92 31.34 31.00 0.34
40 27 33.68 3200 1.68 31 3798 36.00 1.98 36.24 36.00 0.24
41 18 4832 4553 279 17 48.00 4450 3.50 48.35 44.55 3.81
42 23 5312 5050 262 23 5286 5050 2.36 53.12 50.50 2.62
43 25 5478 5250 228 25 5472 5250 222 54.78 52.50 2.28
44 31 60.18 5850 168 31 6030 5850 1.80 60.18 58.50 1.68
45 21 3109 2852 257 21 3284 2850 434 31.09 28.52 2.57
46 26 3537 3351 186 28 39.14 3550 3.64 36.46 35.50 0.96
47 27 3715 3450 264 31 4154 3850 3.04 38.96 38.50 0.46
48 32 4214 3950 264 38 48,63 4550 3.13 45.50 45.50 0.00
49 24 47.04 4399 3.05 25 4722 4500 222 47.08 44.99 2.09
50 28 5151 4799 352 29 5117 49.00 217 51.51 48.99 2.52
51 31 5293 5099 194 31 5280 51.00 1.80 52.93 50.99 1.94
52 34 5735 5399 336 36 57.67 56.00 1.67 57.67 55.99 1.68
53 24 4704 4399 3.05 28 5085 48.00 2.85 48.69 47.99 0.70
54 28 5151 4799 352 33 5541 53.00 241 53.26 52.99 0.28
55 31 5293 5099 194 35 5724 5500 224 55.23 54.99 0.24
56 34 5735 5399 336 41 6284 61.00 1.84 60.99 60.99 0.00
57 28 9233 88.01 432 28 9254 88.00 454 92.33 88.01 4.32
58 35 99.68 9498 471 36 99.49 96.00 3.49 99.72 95.98 3.75
59 38 102.61 9797 4.63 38 102.15 98.00 4.15 102.61 97.97 4.63
60 49 110.65 108.97 1.68 47 110.10 107.00 3.10 111.29 106.97 4.32
61 32 56.67 51.99 4.68 33 5941 53.00 6.41 56.74 52.98 3.76
62 40 6297 5996 3.01 43 6818 63.00 5.18 64.40 62.96 1.44
63 42 6573 6196 377 47 7153 67.00 4.53 67.68 66.96 0.72
64 51 7240 7096 144 57 8151 77.00 451 77.20 76.96 0.24
65 30 146.28 140.12 6.16 29 146.25 139.00 7.25 146.28 139.15 7.13
66 41 156.32 15098 5.34 41 156.32 151.00 5.32 156.32 150.98 5.34
67 45 160.20 154.96 5.23 45 160.06 155.00 5.06 160.20 154.96 5.23
68 55 171.44 16495 6.48 57 171.02 167.00 4.02 171.76 166.95 4.80
69 36 7197 66.03 594 35 7445 65.00 9.45 72.16 65.05 7.11
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70 46 81.03 7594 509 50 87.82 80.00 7.82 82.27 79.93 2.34
71 49 8460 7893 567 56 9272 86.00 6.72 86.89 85.93 0.96
72 61 94.77 9093 384 71 106.93 101.00 5.93 101.65 100.92 0.72
73 49 154.67 149.02 5.65 49 15525 149.00 6.25 154.67 149.02 5.65
74 58 163.45 158.00 545 59 164.04 159.00 5.04 163.49 159.00 4.49
75 62 167.14 162.00 514 63 167.51 163.00 451 167.37 163.00 4.37
76 75 177.40 175.00 240 74 178.01 17400 4.01 178.08 174.00 4.08
77 49 154.67 149.02 5.65 56 162.72 156.00 6.72 157.68 156.00 1.67
78 58 163.45 158.00 5.45 67 17292 167.00 5.92 167.95 167.00 0.95
79 62 167.14 162.00 514 71 176.93 171.00 5.93 171.76 171.00 0.77
80 75 177.40 175.00 240 84 189.04 184.00 5.04 184.72 184.00 0.72
81 52 363.34 35224 11.11 52 363.82 352.00 11.82 363.34 352.24 11.11
82 72 380.15 372.02 8.13 71 380.25 371.00 9.25 380.21 371.02 9.18
83 78 38547 378.01 7.47 78 386.40 378.00 8.40 38547 378.01 7.47
84 97 402.76 396.99 5.76 97 404.34 397.00 7.34  402.76 396.99 5.76
85 64 173.60 164.14 9.47 62 176.69 162.00 14.69 173.85 162.17 11.68
86 79 187.74 179.01 8.73 86 197.86 186.00 11.86 189.59 186.00 3.59
87 86 193.18 186.00 7.18 95 205.69 195.00 10.69 197.20 194.99 2.21
88 103 209.23 202.99 6.24 119 228.40 219.00 9.40  219.23 218.99 0.24
89 49 617.36 600.17 17.19 49 617.53 599.00 18.53 617.36 600.17 17.19
90 79 642.18 629.16 13.03 79 642.74 629.00 13.74 642.18 629.16 13.03
91 89 651.28 639.08 1220 89 651.66 639.00 12.66 651.28 639.08 12.20
92 117 677.35 667.02 10.33 117 676.93 667.00 9.93  677.35 667.02 10.33
93 69 233.36 219.52 13.85 54 230.84 204.00 26.84 241.16 205.38 35.78
94 92 25324 242.09 11.15 97 265.16 247.00 18.16 254.42 247.06 7.36
95 100 261.22 250.05 11.17 111 277.02 261.00 16.02 264.94 261.02 3.91
96 127 28350 277.01 6.48 147 310.25 297.00 13.25 297.73 297.01 0.72
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Appendix 6: Results of numerical experiments for different values of axg, T, m, and R

Exact model (Optimal) Approximate model Exact model with SS,

SS; TC, IHC, ROC, SS, TC, IHC, ROC, TC,(SS,) IHC.(SS,) ROC.(SS.)

axp=1 10.83 14.03 13.01 1.02 1125 1455 1342 1.13 14.30 13.42 0.87
axp=5 20.92 3357 3176 182 2233 3530 3317 213 34.33 33.17 1.16
axp=20 38.00 8530 8132 399 4046 88.15 83.79 4.36 86.54 83.77 2.76
axp=100 76.71 301.68 293.48 8.20 80.25 307.58 296.92 10.67 304.32 297.06 7.27
m=1 35.04 138.79 134.83 3.96 35.13 138.85 134.88 3.97 138.89 134.91 3.97
m=5 38.19 7850 7495 355 4202 8394 7877 517 80.86 78.80 2.06
T=1 28.69 6262 6019 244 3106 6494 6256 2.38 63.79 62.56 1.23
T=5 37.59 104.21 100.60 3.60 39.44 106.97 102.44 4.53 105.24 102.45 2.79
T=10 4356 159.11 153.88 5.23 45.22 162.28 15547 6.81 160.58 155.56 5.02
R=10 27.33 100.26 95.68 458 27.29 101.39 9554 584 100.87 95.68 5.19
R=50 35.00 107.12 103.26 3.86 36.79 109.66 105.04 4.62 107.84 105.05 2.79
R=100 37.79 109.79 106.04 3.75 40.33 112.75 108.58 4.17 110.87 108.58 2.29
R=1000 46.33 117.42 11458 2.84 49.88 121.79 118.13 3.66 119.91 118.12 1.79
All scenarios 36.61 108.65 104.89 3.76 38.57 111.40 106.82 4.57 109.87 106.86 3.02

39



