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We calculate optimal safety stock in a periodic review (T,S) Assemble-to-Order system 

having multiple components and multiple finished goods. Customer orders for finished 

goods arrive according to independent Poisson processes, and cannot be neither 

backlogged nor lost. In case of potential component stock-out, the studied system uses 

rush deliveries from suppliers. For this setting, approximate expressions of the optimal 

safety stock that minimize the sum of inventory holding and rush ordering costs are 

developed. Exact optimal safety stocks are calculated using discrete event simulation, and 

compared numerically to the approximate expressions. The model is applied to a first-tier 

automotive supplier and yields to a significant reduction in terms of inventory holding 

and rush ordering costs. A sensitivity analysis on relevant system parameters such as 

components demand, assembly coefficients and unit rush ordering cost is conducted. 

Keywords: inventory control; assemble-to-order; periodic review; rush orders; 

optimization; 

1 Introduction 

In this paper, we develop a new model of components safety stocks calculation in Assemble-

to-Order (ATO) systems. As defined by Song and Zipkin (2003), an ATO system includes 

components and finished goods (FGs) where demands occur for FGs, and inventory is kept for 

components (i.e., there is no inventory for FGs). It has been shown in practice that ATO systems 

can be successfully applied in situations where there is a high diversity of FGs, where FGs can 

be quickly assembled and where holding FGs inventory is costly. For instance, ATO systems 
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are widely applied in automotive, aerospace and computer industries. The replenishment and 

the allocation of components inventory constitute the main inventory decisions in ATO 

systems. The replenishment decision consists in determining when to order components and in 

what quantity. Components inventory allocation is to decide how much inventory to allocate 

per FG and/or customer class. 

The model we develop is inspired from the operating conditions of a production 

environment observed in company “Alpha” plants. Indeed, Alpha is one of the world’s top ten 

auto parts makers (the company name has been altered for confidentiality reasons). Alpha 

customers seek a 100% service level from first-tier suppliers such as Alpha. The activity of 

OEMs is indeed organized in a way that any backorder or waiting time generate important costs. 

As Boysen et al. (2015) detailed, the different reactions that occur when there is a stock-out at 

the assembly line of OEMs cause high penalty costs. Hence, first-tier suppliers have a tendency 

to over-estimate their components safety stocks in order to guarantee the OEMs constraint 

(100% service level). At the same time, satisfying customer demands in ATO systems without 

keeping inventory of FGs makes the control of components inventory of paramount importance. 

Traditional replenishment policies (such as reorder point, order up-to, etc) may reveal 

insufficient to keep high customer service levels. This increases the need to couple those 

policies with alternative (more flexible) replenishment practices. For instance, adding rush 

supply to regular supply (which is used in traditional replenishment policies) has been proved 

to be a promising strategy to improve service level and avoid stock-outs (Tagaras and Vlachos 

2001). Nevertheless, rush orders are subject to a higher ordering cost (higher than the regular 

order cost). The use of rush orders is observed in the automotive industry between first-tier 

suppliers and second-tier suppliers. Companies like Alpha use rush ordering (with an additional 

cost compared to standard ordering) to receive emergency deliveries in case of potential 

components stock-outs. 
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Another important factor that motivates the use of rush deliveries in the automotive 

industry is related to Just-in-Time deliveries. Alpha (as well as other first-tier suppliers) uses 

Just-in-Time delivery, i.e., instead of receiving from their suppliers a shipment in full (one 

shipment for one regular order), the regular order is smoothed into multiple shipments. For 

instance, more than 74% of components in an Alpha plant (situated in France) are delivered in 

multiple shipments. This strategy allows indeed to reduce components inventory levels, but 

increases the risk of stock-outs. Therefore, having the option of rush ordering (which reduces 

the risk of stock-outs) can compensate the drawbacks of reduction of inventory levels. 

At the beginning of the project, Alpha plants were using a safety stock calculation model 

that resulted in over-estimations of components safety stocks. Additionally, this model was 

difficult to interpret for procurement managers and did not take into account inventory holding 

and rush ordering costs in the calculation (all components were considered in the same way 

despite the differences in unit inventory holding and rush ordering costs among product 

categories). Managers then decided to adjust the calculation method by using empirically 

defined reduction percentages that depend on the nature of components (high vs. low runner 

products).  The calculation method obtained was still not fully satisfactory. Hence, the decision 

was to develop a new safety stock calculation model corresponding to Alpha replenishment 

environment. 

In the model we develop, we consider an ATO system with multiple FGs and multiple 

components. A periodic review order up-to (T,S) policy is used to replenish components 

inventory. Suppliers of components deliver an order in multiple shipments (rather than a single 

shipment). In case of potential shortage, suppliers offer the option of using rush orders at a 

higher ordering cost. FGs demand must be satisfied totally without tardiness (neither 

backlogging nor lost sale are possible). 
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We propose an approximate analytical model to calculate numerically the optimal safety 

stock of a component in order to minimize the average inventory holding and rush ordering 

costs. Then, we use a Discrete Event Simulation model developed in Matlab to verify the 

effectiveness of the approximate model. Finally, a sensitivity analysis on the impact of different 

system parameters such as components demand, number of shipments, assembly coefficient, 

and unit rush ordering cost is developed. 

This paper is organized as follows, section 2 provides a summary of the related literature. 

In section 3, we describe the model developed. Expressions of the optimal component safety 

stock and optimal total cost are given in section 4. In section 5, results obtained from the 

approximate model are compared to the optimal values calculated by the Discrete Event 

Simulation model. A sensitivity analysis on the impact of different system parameters is 

conducted in section 6. Finally, section 7 concludes the paper. 

2 Literature review 

Our study is related to two research streams: components inventory control in ATO systems, 

and the use of rush orders (also called emergency shipments in the literature) in inventory 

systems. 

The literature on ATO systems mainly addresses the problems of components inventory 

replenishment and inventory allocation. Agrawal and Cohen (2001) derived expressions to 

calculate optimal base stock levels for components under a constraint on FGs service described 

by order completion rate. Authors assume a fair shares allocation policy where the fraction of 

component inventory allocated to a FG is equal to the quotient of its demand and the total 

demand of FGs. A general literature review of ATO system was provided by Song and Zipkin 

(2003) where they classified the different models into: one period models, discrete time multi-

period models and continuous time models. Atan et al. (2017) gave an update of the literature 



 

5 

 

on ATO systems following the same classification. Akçay and Xu (2004) studied the calculation 

of the optimal base stock levels for an ATO system with multiple products and components 

where products demand is correlated. In a two stage stochastic decision model, the authors 

studied also the optimal allocation problem and proposed a simple component allocation rule. 

In a single FG, multiple components and multiple customer classes (with different lost 

sale costs) ATO system, Benjaafar and ElHafsi (2006) studied the optimal production control 

and inventory allocation problem where each customer class demand follows a Poisson 

distribution. They considered two configurations: backorders and lost sales. Authors found that 

the optimal components production (replenishment) policy is a state-dependent base stock 

policy and the optimal allocation policy is a state-dependent rationing policy. ElHafsi et al. 

(2008) studied a specific ATO configuration (modular nested design) where they provided the 

structure of the optimal production control and allocation policies. They assumed a Poisson 

customer demand with lost sales possibility. The authors found the same optimal structure 

found by Benjaafar and ElHafsi (2006). 

Zhao (2009) gave exact and approximate values of performance metrics for an ATO 

system with multiple components and FGs, which uses a continuous time (R,Q) batch ordering 

policy with possibility of splitting orders (i.e., satisfying an order separately and not in full). In 

a one period ATO system with one FG and multiple components, Xiao et al. (2010) determined 

the optimal inventory and production decisions using a two stage decision model within an 

environment of uncertain demand and uncertain assembly capacity. They assumed the 

possibility of using rush deliveries and in-advance assembly. Fu et al. (2011) studied a multiple 

FGs and components ATO system with backlogging possibility and FCFS allocation policy. 

The authors proposed approximation methods to calculate three performance measures: average 

waiting time, fill rate and average number of backorders. Karaarslan et al. (2013) compared 
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between two inventory control policies (pure base stock policy, and balanced base stock policy) 

for an ATO system with one FG and two components. ElHafsi et al. (2015) determined the 

optimal component production and allocation policy for an ATO system with one FG and 

multiple components. They assumed that demand can occur for both FG and components where 

unsatisfied demand is lost. They compare the optimal policy (state-dependent base stock and 

rationing policy) to three heuristic policies. 

In our paper, we study the calculation of optimal safety stocks (deducted from the 

calculation of optimal order up-to levels) in periodic review ATO systems. Babai et al. (2011) 

proposed a method to calculate the optimal order up-to level in a single stage, single item 

inventory system where customer orders arrive according to a compound Poisson process and 

unmet demand is backordered. Jalali and Nieuwenhuyse (2015) surveyed the literature on 

simulation optimization techniques used to solve complex inventory problems. In a periodic 

review capacitated multi-echelon assembly system, Woerner et al. (2017) proposed an 

approximate method to resolve the joint optimization problem of safety stock and capacity 

allocation. Desmet et al. (2010) proposed an approximation model to calculate optimal safety 

stock in a two-echelon assembly system.  

There exists also some papers that studied the use of rush orders as an alternative supply 

mode and evaluated its impact on inventory control problems. Smith (1977) studied the use of 

emergency shipments in an inventory system controlled by the base stock policy (S,S-1). The 

unmet demand is assumed to be lost (no backlogging). The author gave the optimal and 

approximate expression of calculation of the base stock level S. Moinzadeh and Schmidt (1991) 

studied the use of emergency orders in an inventory system that faces a Poisson demand and 

uses the (S,S-1) policy. They proposed a policy to trigger emergency shipments, and evaluated 

the parameters of this policy as well as the optimal base stock level S*. 
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Tagaras and Vlachos (2001) studied the use of emergency shipments in an inventory 

system controlled with a periodic review (T,S) policy, with backlogging possibility for 

unsatisfied customer demand. The authors gave an approximate model to calculate the optimal 

base stock level and the threshold used to trigger emergency replenishments. The approximate 

model is compared to the optimal solution (given by simulation). They justified the efficiency 

of the approximate solution, and showed that the use of emergency shipments can lead for 

interesting cost savings. In another study, the same authors (Vlachos and Tagaras 2001), 

considered a similar model but with a supplier capacity constraint on the rush delivered 

quantity. The authors compared between two emergency ordering policies “Early ordering” and 

“Late ordering”. In the “Early ordering” policy, an emergency order is placed earlier in the 

replenishment cycle (the time interval that separates two regular deliveries) in order to reduce 

potential early stock-outs. On the other hand, the “Late ordering” policy places a replenishment 

order later in order to have more information about demand and stock-outs, hence the 

replenishment order size is better calculated. The “Early ordering” policy seems to be more 

interesting when variability of demand increases, shortage cost decreases, and delivery and 

period lead times become longer. 

In an inventory system with continuous review (R,Q) policy for normal supply, Axsäter 

(2007) proposed a decision rule to use emergency shipments. He showed the interest of using 

the proposed policy in a simulation study and pointed out the situations where it performs well. 

Dhawan et al. (2009) used neuro-dynamic programming to find the best quantity to order from 

two supply sources (regular and emergency) in order to minimize regular ordering, emergency 

ordering, shortage and inventory holding costs. Alvarez et al. (2013) studied the use of 

emergency replenishments in an inventory system that serves multiple customer classes for 

multiple items where the demand of each item follows a Poisson distribution. They proposed a 

policy to select for which item/customer class it is better to apply the emergency shipment 
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option. Mardan et al. (2015) studied the use of emergency supply and emergency production in 

a Make-to-Stock system with multiple FGs and items. They proposed an integrated emergency 

ordering and production planning policy by resolving a two stage stochastic decision problem. 

Zheng et al. (2015) studied a two stage decision problem where a regular (normal) 

supply order is placed in the first stage and an emergency supply order can be placed in the 

second stage based on the update of demand forecast. The authors used dynamic programming 

to determine the optimal ordering quantities within the two stages, and showed the interest of 

using emergency supply. 

Table 1 summarizes the literature concerning rush orders. Each paper is described in terms of: 

inventory control policy used, rush ordering policy, probability distribution, cost parameters 

considered, type of optimization model used to calculate policy parameters. As reported, our 

work considers a multi-period ATO system controlled with a (T,S) policy and assumes that 

customer demand cannot be backlogged nor lost. Since demand has to be totally satisfied, the 

definition of an inventory allocation policy is not required. Tagaras and Vlachos (2001), 

Vlachos and Tagaras (2001) are the nearest papers to ours: they considered a (T,S) inventory 

system and developed an approximate model to calculate the optimal order up-to level S and 

the threshold used to trigger rush orders. Our paper considers the components safety stocks 

problem at Alpha plants. Assumptions related to the industrial context of Alpha are as follows: 

i) we consider an ATO system where regular deliveries are received in multiple shipments (and 

not in a single shipment); ii) the rush ordering policy used triggers rush orders in case of 

potential stock-out; iii) OEM demand has to be totally satisfied (no backlog nor lost sales). To 

our knowledge, such assumptions are not taken altogether in previous studies. Our objective is 

to develop a model for optimal safety stocks for companies working in an ATO configuration 

similar to Alpha.   
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Table 1. Papers dealing with rush orders 

Paper 
System considered and 

regular ordering policy 

Rush ordering policy 

(when is the rush order 

triggered?) 

Demand 

probability 

distribution 

Costs considered 

(fixed/variable) 

Optimization 

model 

Smith (1977) (S,S-1) inventory system 
When an item is in stock-

out 
Poisson 

Rush ordering cost (variable), 

inventory holding cost (variable) 

Analytical model 

(Queueing model) 

Moinzadeh and 

Schmidt (1991) 
(S,S-1) inventory system 

Heuristic that depends on 

the normal and rush 

delivery lead times in 

order to decide whether to 

use a normal or a rush 

order 

Poisson 

Regular ordering cost (variable), 

rush ordering cost (variable), 

inventory holding cost 

(variable), back-order penalty 

cost (variable), lost sale cost 

(variable) 

Analytical model 

(Queueing model) 

Tagaras and 

Vlachos (2001) 
(T,S) inventory system 

A threshold on the 

inventory state 
Normal, Erlang 

Additional cost of an emergency 

order over that of a regular order 

(variable), inventory holding 

cost (variable), back-order 

penalty cost (variable) 

Analytical model, 

simulation 

Vlachos and 

Tagaras (2001) 
(T,S) inventory system 

A threshold on the 

inventory state with 

supplier capacity 

constraint on the rush 

delivered quantity 

Normal 

Additional cost of an emergency 

order over that of a regular order 

(variable), inventory holding 

cost (variable), back-order 

penalty cost (variable) 

Analytical model, 

simulation 

Axsäter (2007) (R,Q) inventory system 

Heuristic decision rule 

which assumes that there 

is no possible future rush 

orders 

Compound 

Poisson 

Regular ordering cost (fixed), 

rush ordering cost 

(fixed+variable), inventory 

holding cost (variable), back-

order penalty cost (variable) 

Simulation 
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Dhawan et al. 

(2009) 

Base stock for an 

inventory/production 

system 

A threshold on the on-

hand inventory 

Unspecified, use of 

historical data 

Regular ordering cost (variable), 

rush ordering cost (variable), 

inventory holding cost 

(variable), back-order penalty 

cost (fixed) 

Analytical model 

(Neuro-dynamic 

programming) 

Alvarez et al. 

(2013) 
(S,S-1) inventory system 

When an item is in stock-

out of an item, the use of 

emergency shipment 

depends on the customer 

class 

Multiple customer 

classes with 

Poisson demand 

Rush ordering cost (fixed), 

inventory holding cost (variable) 

Heuristics (local 

search, integer 

programming) 

Mardan et al. 

(2015) 

Two-stage decision-

making 

inventory/production 

system where optimal 

regular order is 

triggered in the first 

stage 

Optimal rush order is 

triggered in the second 

stage (there is a similar 

two-stage decision-

making process for 

production planning) 

Unspecified 

Regular ordering cost (variable), 

rush ordering cost (variable), 

inventory holding cost 

(variable), back-order penalty 

cost (variable), lost sale cost 

(fixed), salvage cost (fixed) 

Sample average 

approximation 

Zheng et al. 

(2015) 

Two-stage decision-

making newsvendor 

system where optimal 

regular order is 

triggered in the first 

stage 

Optimal rush order is 

triggered in the second 

stage based on the 

forecasts update 

Normal, 

Lognormal 

Regular ordering cost (variable), 

rush ordering cost (variable), 

salvage cost (variable) 

Analytical model 

(Dynamic 

programming) 

Our paper 

(T,S) with possibility of 

receiving a regular order 

in multiple shipments 

for an ATO system 

In case of potential 

component stock-out 

Compound 

Poisson 

Rush ordering cost (fixed), 

inventory holding cost (variable) 

Analytical model, 

simulation 
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Figure 1. Assemble-to-Order system considered 

3 Model formulation 

We consider an ATO system with nc components and nf FGs (cf. Figure 1). The set of 

FGs is denoted by F. Each component i is used by a set of FGs denoted by 𝐹𝑖 where 𝐹𝑖 ⊆

𝐹 and ⋃ 𝐹𝑖
𝑛𝑐
𝑖=1 = 𝐹. Each unit of FG j uses aij units of component i in the assembly 

process. Customer orders for each FG j are assumed to arrive according to an independent 

Poisson process with a mean arrival rate 𝜆𝑗. As a result, each component i is assumed to 

have a compound (batch) Poisson demand: i) the demand of each FG is assumed to be 

independent of the demand of other FGs, hence, the sum of customer orders for FGs that 

use the same component i arrive according to a Poisson process, ii) the mean arrival rate 

of component i demand, i.e., 𝛽𝑖, would be given by: 𝛽𝑖 = ∑ 𝜆𝑗𝑗∈𝐹𝑖
. The number of units 

of component i, denoted by Xi, required for each customer order is a random variable with 

a probability distribution: 𝑃(𝑋𝑖 = 𝑎𝑖𝑗) =
𝜆𝑗

𝛽𝑖
. 

Without loss of generality, we assume that each component i has a constant 

assembly coefficient ai (i.e., 𝑎𝑖𝑗 = 𝑎𝑖, ∀ 𝑗 ∈ 𝐹𝑖). This assumption is not restrictive and is 

frequently observed in various industries (e.g., there are always two headrests in one car 

seats). Hence, each component i has a compound Poisson demand with mean 𝛽𝑖 ∗ 𝑎𝑖 
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where the mean arrival rate is 𝛽𝑖, and size batch size equal to 𝑎𝑖.  

We assume also that the assembly lead time of each FG is negligible, and the 

assembly capacity is sufficient to satisfy customer demand. Customer demand has to be 

totally satisfied and cannot be neither backlogged nor lost. 

We assume the inventory of component i is controlled by the periodic review 

(Ti,Si) policy where Ti is the review time interval and Si is the order up-to level. In this 

policy, an order is sent to an external supplier each time interval Ti. The size of the order 

is the difference between Si and the inventory position at the moment of ordering. 

Components are received after a constant delivery lead time DLTi. More particularly, we 

assume that the order is delivered in multiple shipments, i.e., instead of shipping the total 

quantity ordered after DLTi, the supplier splits the order and sends mi equal parts of the 

order during the time interval Ti (mi is the number of shipments during Ti and 
𝑇𝑖

𝑚𝑖
 is the 

time interval between two consecutive shipments). Delivery in multiple shipments is a 

common practice in order to smooth (reduce) inventory levels. 

In case of a potential stock-out for component i (there is a stock-out when the on-

hand inventory is not sufficient to satisfy demand), the ATO system sends a rush order to 

the supplier with a fixed cost Ri. We assume that the rush order has a negligible lead time. 

We also assume that the supplier has the capacity necessary to satisfy rush orders. 

We assume that time is discrete and divided into equal time units (e.g., days). 

Events that occur in a time unit t, for component i are as follows: (cf. Figure 2) 

(1) Inventory position is reviewed and a replenishment order is sent to supplier. 

(2) Supplier shipment is received. 

(3) Inventory holding costs are charged. 
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Figure 2. Sequence of events within each time unit 

(4) FGs demand is received and the required component demand is calculated using 

the assembly coefficients given by the Bill of Materials (BOM). 

(5) If component on-hand inventory is not sufficient to satisfy demand, a rush order 

for the missing quantity is sent to the supplier and fully received (rush order lead 

time is assumed negligible). A fixed rush ordering cost Ri (cost/rush order) is 

charged. Ri is assumed to not depend on quantity (i.e., units of component 

requested) and is assumed to be a fixed cost. 

(6) Components are assembled (assembly capacity is assumed large) and FGs 

demand is totally satisfied. 

Remarks below provide further details regarding the sequence of events: 

 The first review of the inventory position for each component i occurs at the 

beginning of time unit t=1. After, there is a review (and ordering) at the beginning 

of each time unit t where (𝑡 − 1) ≡ 0 (𝑚𝑜𝑑 𝑇𝑖). 

 When a replenishment order for component i is sent to the supplier in time unit t, 

then, the corresponding supplier shipments are received in time units: 

𝑡 + 𝐷𝐿𝑇𝑖 ; 𝑡 + 𝐷𝐿𝑇𝑖 +
𝑇𝑖

𝑚𝑖
 ; 𝑡 + 𝐷𝐿𝑇𝑖 +

2𝑇𝑖

𝑚𝑖
 ; … ; 𝑡 + 𝐷𝐿𝑇𝑖 +

(𝑚𝑖−1)𝑇𝑖

𝑚𝑖
. We assume 

that 
𝑇𝑖

𝑚𝑖
 is an integer. 𝑚𝑖 = 1 corresponds to the (classical) case where the (full) 

order is received in a single shipment. 

The list of notations is given in Appendix 1. 
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Table 2. Inventory units expressed in units or in batches of component 

 Inventory expressed as 

units of component 

Inventory expressed as batches 

where 1 batch= a units of component 

Safety stock 𝑆𝑆 = 𝑎 × 𝑆𝑆𝑏𝑎𝑡𝑐ℎ 𝑆𝑆𝑏𝑎𝑡𝑐ℎ 

Order up-to level 𝑆 = 𝑎 × 𝑆𝑏𝑎𝑡𝑐ℎ 𝑆𝑏𝑎𝑡𝑐ℎ 

Unit inventory 

holding cost per year 
h ℎ𝑏𝑎𝑡𝑐ℎ = 𝑎 × ℎ 

4 Optimization of component safety stock 

The objective of the developed model is to find an optimal overall inventory policy which 

minimizes the expected total annual cost among all components. In our model, we assume 

that each component i inventory is managed independently from the other components, 

hence, the optimal overall policy is deduced from the optimal inventory policy of each 

component. That is why, we determine the optimal inventory policy for a single 

component i and apply it for all components. Henceforth, we omit the subscript i from all 

variables. 

The optimal inventory policy for a component is determined by calculating its 

optimal safety stock SS and its optimal order up-to level S. As shown in section 3, 

component demand arrives in batch where the batch size is equal to a. Due to this 

property, and in order to facilitate understanding, the inventory model will be formulated 

in batches of size a. The corresponding notations and equivalences when inventory is 

expressed either in units of component or in batches of component are given in Table 2. 

Once the optimal values of 𝑆𝑆𝑏𝑎𝑡𝑐ℎ and 𝑆𝑏𝑎𝑡𝑐ℎ are calculated, the optimal values 

of SS and S will be deduced by using the relation given in Table 2. The optimization of 

time interval T is not addressed in this model (T can be optimized using a method such as 

the economic order quantity). 
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The expected total cost per year, denoted by TC, is the sum of the expected annual 

inventory holding cost, denoted by IHC, and the expected annual rush ordering cost, 

denoted by ROC. 

We start by studying the case where there is one shipment (m=1), and then 

generalize results for the multiple shipments system (m>1). 

4.1 Case of one shipment (m=1) 

The expected annual inventory holding cost IHC, is calculated using the following 

expression:  

𝐼𝐻𝐶 = ℎ𝑏𝑎𝑡𝑐ℎ(𝐸𝑆𝑏𝑎𝑡𝑐ℎ + 𝑆𝑆𝑏𝑎𝑡𝑐ℎ) = ℎ𝑏𝑎𝑡𝑐ℎ(𝐸𝑆𝑏𝑎𝑡𝑐ℎ + 𝑆𝑏𝑎𝑡𝑐ℎ − 𝛽(𝑇 + 𝐷𝐿𝑇))    (1) 

where ESbatch represents the economy of scale inventory per time unit (in terms of 

batches). This term does not impact the optimization and can be calculated as presented 

in Appendix 2. Sbatch is equal to the sum of SSbatch and the average component demand 

during T+DLT expressed in terms of batch. 

Calculating the exact expression of the expected annual rush ordering cost is not 

tractable analytically because of interrelationships among demand, regular delivery, and 

rush delivery as reported also by Tagaras and Vlachos (2001). In other words, if we want 

to know the probability of having a rush delivery during a time unit t, we calculate the 

probability P(on-hand inventory is less than component demand in t); nevertheless, the 

on-hand inventory in time unit t depends on what happened (demand, regular delivery, 

rush delivery) before t which makes the calculation intractable. Our approximate 

inventory model uses the following assumption: there is one possible rush delivery during 

T (this approximation is evaluated in the next section). This simplifying assumption 

seems reasonable: since the unit rush ordering cost R would generally be higher than the 
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unit inventory holding cost hbatch, the optimal expected number of rush orders during T is 

expected to be low. The expression of ROC is given by: 

 𝑅𝑂𝐶 = 𝑅 ×
𝑌

𝑇
× 𝑃(𝑆𝑏𝑎𝑡𝑐ℎ < 𝐷𝑇+𝐷𝐿𝑇

𝑏𝑎𝑡𝑐ℎ )    (2) 

where 𝑃(𝑆𝑏𝑎𝑡𝑐ℎ < 𝐷𝑇+𝐷𝐿𝑇
𝑏𝑎𝑡𝑐ℎ ) represents the probability of having one rush order during 

the review time interval T. 𝐷𝑇+𝐷𝐿𝑇
𝑏𝑎𝑡𝑐ℎ  is demand (expressed in batches) in the time interval 

T+DLT and is assumed to follow a Poisson distribution with mean 𝛽(𝑇 + 𝐷𝐿𝑇). 
𝑌

𝑇
 

represents the average number of inventory review cycles per year (Y is the number of 

days per year). ROC is calculated in a way similar to the Cycle Service Level (CSL) 

approach used in literature. 

The expected total cost per year, TC, is thus given by: 

 𝑇𝐶(𝑆𝑏𝑎𝑡𝑐ℎ) =  ℎ𝑏𝑎𝑡𝑐ℎ (𝐸𝑆𝑏𝑎𝑡𝑐ℎ + 𝑆𝑏𝑎𝑡𝑐ℎ − 𝛽(𝑇 + 𝐷𝐿𝑇)) +
𝑅𝑌

𝑇
𝑃(𝑆𝑏𝑎𝑡𝑐ℎ < 𝐷𝑇+𝐷𝐿𝑇

𝑏𝑎𝑡𝑐ℎ )  (3) 

The expected total cost TC is a convex function (proof is given in Appendix 3). 

Therefore, TC accepts a minimum 𝑆𝑏𝑎𝑡𝑐ℎ
∗
. TC is the sum of an increasing function 

IHC(𝑆𝑏𝑎𝑡𝑐ℎ) and a decreasing function ROC(𝑆𝑏𝑎𝑡𝑐ℎ). When 𝑆𝑏𝑎𝑡𝑐ℎ increases by one unit 

(from 𝑆𝑏𝑎𝑡𝑐ℎ to 𝑆𝑏𝑎𝑡𝑐ℎ + 1), IHC increases by ℎ𝑏𝑎𝑡𝑐ℎ and ROC decreases by 

𝑅𝑌

𝑇
[𝑃(𝑆𝑏𝑎𝑡𝑐ℎ + 1 < 𝐷𝑇+𝐷𝐿𝑇

𝑏𝑎𝑡𝑐ℎ ) − 𝑃(𝑆𝑏𝑎𝑡𝑐ℎ < 𝐷𝑇+𝐷𝐿𝑇
𝑏𝑎𝑡𝑐ℎ )]. The optimal value of 𝑆𝑏𝑎𝑡𝑐ℎ is 

attained when: 

ℎ𝑏𝑎𝑡𝑐ℎ +
𝑅𝑌
𝑇
× [𝑃 (𝑆𝑏𝑎𝑡𝑐ℎ+1 < 𝐷𝑇+𝐷𝐿𝑇

𝑏𝑎𝑡𝑐ℎ
)−𝑃(𝑆𝑏𝑎𝑡𝑐ℎ < 𝐷𝑇+𝐷𝐿𝑇

𝑏𝑎𝑡𝑐ℎ )] ≥ 0 

𝑦𝑖𝑒𝑙𝑑𝑠
→      𝑃(𝐷𝑇+𝐷𝐿𝑇

𝑏𝑎𝑡𝑐ℎ ≤ 𝑆𝑏𝑎𝑡𝑐ℎ + 1) − 𝑃(𝐷𝑇+𝐷𝐿𝑇
𝑏𝑎𝑡𝑐ℎ ≤ 𝑆𝑏𝑎𝑡𝑐ℎ) ≤

ℎ𝑏𝑎𝑡𝑐ℎ𝑇

𝑅𝑌
 

𝑦𝑖𝑒𝑙𝑑𝑠
→      

𝑒−𝛽(𝑇+𝐷𝐿𝑇) × (𝛽(𝑇 + 𝐷𝐿𝑇))
𝑆𝑏𝑎𝑡𝑐ℎ+1

(𝑆𝑏𝑎𝑡𝑐ℎ + 1)!
≤
ℎ𝑏𝑎𝑡𝑐ℎ𝑇

𝑅𝑌
 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑓 (𝑆𝑏𝑎𝑡𝑐ℎ + 1) ≤

ℎ𝑏𝑎𝑡𝑐ℎ𝑇

𝑅𝑌
, which implies that: 
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𝑆𝑏𝑎𝑡𝑐ℎ
∗
= 𝑓−1 (

ℎ𝑏𝑎𝑡𝑐ℎ𝑇

𝑅𝑌
) − 1  (4) 

𝑓 is the probability mass function of Poisson distribution (with mean 𝛽(𝑇 + 𝐷𝐿𝑇)) and 

𝑓−1 is its inverse function. Since the analytical expression of 𝑓−1 is not available, 

numerical evaluation is used to calculate 𝑆𝑏𝑎𝑡𝑐ℎ
∗
. The optimal safety stock 𝑆𝑆𝑏𝑎𝑡𝑐ℎ

∗
 is 

given by: 

𝑆𝑆𝑏𝑎𝑡𝑐ℎ
∗
= 𝑆𝑏𝑎𝑡𝑐ℎ

∗
− 𝛽(𝑇 + 𝐷𝐿𝑇)  (5) 

Equivalently, if inventory is expressed as units of component, the optimal safety stock SS 

would be given by: 

𝑆𝑆∗ = 𝑎 (𝑓−1 (
𝑎ℎ𝑇

𝑅𝑌
) − 1 − 𝛽(𝑇 + 𝐷𝐿𝑇))                                                                    (6)                                                                  

4.2 Case of multiple shipments (m>1): 

For the case of multiple shipments, the probability of using rush orders in a cycle T 

becomes even more complex to calculate.  

We use the same simplifying assumption as for the case m=1: we assume that 

there is one possible rush order during time interval T. The second assumption we use is 

as follows: if a rush order is used, it is requested more probably after receiving the mth 

shipment during T (it is intuitive that the highest probability to have a stock-out would be 

probably after the last shipment). 

The multiple shipment model can be approximated by a single shipment model 

where shipment delivery lead time is equal to GLT where GLT is the time interval 

between sending a replenishment order to supplier and receiving the last shipment (the 

mth shipment). 
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𝐺𝐿𝑇 = 𝐷𝐿𝑇 + ⌈(𝑚 − 1) ×
𝑇

𝑚
⌉  (7) 

As for the case of m=1, we formulate the model in terms of Sbatch and SSbatch. The 

expected total cost function to minimize is: 

𝑇𝐶(𝑆𝑏𝑎𝑡𝑐ℎ) = ℎ𝑏𝑎𝑡𝑐ℎ (𝐸𝑆𝑏𝑎𝑡𝑐ℎ + 𝑆𝑏𝑎𝑡𝑐ℎ − 𝛽(𝑇 + 𝐺𝐿𝑇)) +
𝑅𝑌

𝑇
× 𝑃(𝑆𝑏𝑎𝑡𝑐ℎ < 𝐷𝑇+𝐺𝐿𝑇

𝑏𝑎𝑡𝑐ℎ ) (8) 

Equation (8) is the same as equation (3) where DLT is replaced by GLT. The 

optimal component safety stock SS* is calculated by the following expression (where 

𝑆𝑏𝑎𝑡𝑐ℎ
∗
 is calculated by equation (4)): 

𝑆𝑆∗ = 𝑎 (𝑆𝑏𝑎𝑡𝑐ℎ
∗
− 𝛽(𝑇 + 𝐺𝐿𝑇))  (9) 

𝑆𝑆∗ = 𝑎 ∗ (𝑓−1 (
𝑎ℎ𝑇

𝑅𝑌
) − 1 − 𝛽(𝑇 + 𝐺𝐿𝑇))                                                               (10) 

𝑓 is the probability mass function of Poisson distribution (with mean 𝛽 ∗ (𝑇 + 𝐺𝐿𝑇)). 

5 Numerical study 

In this section, we conduct a numerical study to evaluate the performance of the 

approximate model developed in section 4. Subsection 5.1 details parameters considered 

to compare the approximate model to an exact simulation model. Subsection 5.2 discusses 

the results and subsection 5.3 presents the application of the proposed approximate model 

to the case of an Alpha plant. 

5.1 Approaches and parameters 

We compare the optimal safety stock SS* given by the exact and approximate models in 

a large set of scenarios. Subscripts “e” and “a” are used to indicate the results given by 

the exact and approximate models respectively. 
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For the case of approximate model, we use the expressions developed in section 

4 to calculate 𝑆𝑆𝑎
∗ (given by equation (10)). For the case of exact model, a Discrete Event 

Simulation is developed in Matlab: for each scenario, a numerical enumeration of 

different safety stock values is used to determine the optimal value 𝑆𝑆𝑒
∗. For each safety 

stock value, events described in Figure 2 are run for 1 million time units. The warm-up 

period is set equal to 500 time units. The expected inventory holding cost 𝐼𝐻𝐶𝑒 is the cost 

of the average on-hand inventory over the considered time units (1 million-500), and the 

expected rush ordering cost 𝑅𝑂𝐶𝑒 is the average number of rush orders per year over the 

considered time units multiplied by the unit cost R. 

Ninety six scenarios are obtained from the combinations of the following 

parameters: 

We consider 4 possible values for the average component demand a×β={1,5,20,100}, 

which represent low (1,5), medium (20) and high demand (100). Since it is the ratio 
𝑅

ℎ
 

which impacts the calculation of optimal safety stock, the annual unit holding cost h is 

set equal to 1 for all scenarios. The unit rush ordering cost R can take 4 values: 10, 50, 

100 or 1000. The review time interval T can be equal to 1, 5 or 10. The delivery lead time 

DLT is equal to 2 for all scenarios. 2 values for the number of shipments m are taken: 1 

and 5. The number of days per year, Y, is set equal to 240 days. The list of scenarios is 
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Figure 3. Values of 𝑆𝑆𝑒
∗ and 𝑆𝑆𝑎

∗ 

presented in Appendix 4. The comparison results for each scenario are presented in 

Appendix 5. We also give a summary of these results in Appendix 6: for each value of 

a×β, T, m, and R, we calculate the average comparison results. 

The assembly coefficient a is equal to 1 for all scenarios. Indeed, from equation (8) 

it can be seen that the total cost TC of a system with an assembly coefficient 𝑎 = 1 and a 

unit component inventory holding cost ℎ is equivalent to a system with an assembly 

coefficient 𝑎′ ≥ 1 and a unit inventory holding cost ℎ′ =
ℎ

𝑎′
 (the two systems have the 

same value of hbatch). Hence, studying a system with an assembly coefficient different 

than 1 can be reduced to studying a system with an assembly coefficient equal to 1 (this 

equivalence is verified in the approximate and exact models). The demand of FGs for all 

scenarios follows a discrete time Poisson distribution with mean β. 

5.2 Approximate vs simulation models 

Figure 3 gives a scatter plot of the values of 𝑆𝑆𝑒
∗ and 𝑆𝑆𝑎

∗. It shows that the optimal safety 

stock estimation is good in the approximate model. More precisely, Figure 4 displays a  
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Figure 4. Histogram of ∆ 𝑆𝑆𝑎
∗  % 

 

Figure 5. Values of 𝑇𝐶𝑒
∗ and 𝑇𝐶𝑒(𝑆𝑆𝑎

∗) 

 

Figure 6. Variations of ∆ 𝑇𝐶𝑒(𝑆𝑆𝑎
∗) % 
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Table 3. Evaluation of the approximate model for different values of a×β, T, m, and R 

 
|∆ 𝑺𝑺𝒂

∗ | |∆ 𝑺𝑺𝒂
∗  %| |∆ 𝑻𝑪𝒆(𝑺𝑺𝒂

∗ )| |∆ 𝑻𝑪𝒆(𝑺𝑺𝒂
∗ ) %| 

a×β=1 0.67 6.4% 0.27 1.9% 

a×β=5 1.50 7.0% 0.76 2.5% 

a×β=20 2.79 7.2% 1.23 1.8% 

a×β=100 5.13 6.4% 2.65 1.3% 

m=1 0.46 1.9% 0.09 0.2% 

m=5 4.58 11.6% 2.36 3.5% 

T=1 2.44 8.9% 1.17 2.3% 

T=5 2.16 5.3% 1.03 1.7% 

T=10 2.97 6.0% 1.48 1.7% 

R=10 1.63 5.4% 0.61 0.9% 

R=50 1.96 5.8% 0.72 1.6% 

R=100 2.63 7.8% 1.08 1.9% 

R=1000 3.88 7.9% 2.49 3.1% 

All 

scenarios 
2.52 6.7% 1.23 1.9% 

histogram of 𝑆𝑆𝑎
∗, expressed as a percentage of 𝑆𝑆𝑒

∗. This relative percentage is denoted 

by ∆ 𝑆𝑆𝑎
∗  %, where ∆ 𝑆𝑆𝑎

∗  % =
𝑆𝑆𝑎
∗−𝑆𝑆𝑒

∗

𝑆𝑆𝑒
∗ . The calculated percentages are rounded and 

presented in Figure 4. The average percentage is 5.4%, and the values range between -

22% and 25%. To evaluate the impact of the difference between 𝑆𝑆𝑒
∗ and 𝑆𝑆𝑎

∗, we compare 

the costs 𝑇𝐶𝑒
∗ (optimal total cost obtained by the exact model) and 𝑇𝐶𝑒(𝑆𝑆𝑎

∗). If the 

difference between the two costs is small, we deduce that the difference between 𝑆𝑆𝑒
∗ and 

𝑆𝑆𝑎
∗ has not a great impact and the estimation of the optimal safety stock by the 

approximate model would be good. 

Figure 5 gives a scatter plot of the values of 𝑇𝐶𝑒
∗ and 𝑇𝐶𝑒(𝑆𝑆𝑎

∗). Results show that 

values of 𝑇𝐶𝑒
∗ and 𝑇𝐶𝑒(𝑆𝑆𝑎

∗) are close. Figure 6 displays a histogram of 𝑇𝐶𝑒(𝑆𝑆𝑎
∗), 

expressed as a percentage of 𝑇𝐶𝑒
∗. This relative percentage is denoted by ∆ 𝑇𝐶𝑒(𝑆𝑆𝑎

∗) %, 

where ∆ 𝑇𝐶𝑒(𝑆𝑆𝑎
∗) % =

𝑇𝐶𝑒(𝑆𝑆𝑎
∗)−𝑇𝐶𝑒

∗

𝑇𝐶𝑒
∗ . The average is 1.9% and values are between 0% 

and 8%. It can be seen that the approximate model gives interesting results. Even if 

∆ 𝑆𝑆𝑎
∗  % ranges from -22% to 25%, the relative cost difference ∆ 𝑇𝐶𝑒(𝑆𝑆𝑎

∗) % does not 
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vary much (from 0% to 8%). 

For different values of a×β, T, m, and R, Table 3 presents the average of following 

indicators (absolute and relative differences): |∆ 𝑆𝑆𝑎
∗| = |𝑆𝑆𝑎

∗ − 𝑆𝑆𝑒
∗|, |∆ 𝑆𝑆𝑎

∗  %| =
|∆ 𝑆𝑆𝑎

∗ |

𝑆𝑆𝑒
∗ , 

|∆ 𝑇𝐶𝑒(𝑆𝑆𝑎
∗)| = |𝑇𝐶𝑒(𝑆𝑆𝑎

∗) − 𝑇𝐶𝑒
∗| and |∆ 𝑇𝐶𝑒(𝑆𝑆𝑎

∗) %| =
|∆ 𝑇𝐶𝑒(𝑆𝑆𝑎

∗)|

𝑇𝐶𝑒
∗ . We take the 

absolute value |𝑥| of these results because they may have negative values and the 

calculation of average in this case is biased. For instance, the first line represents the 

average results among all scenarios for which a×β=1. 

The average |∆ 𝑆𝑆𝑎
∗| among all scenarios is low (2.52). It increases with increasing 

a×β, m, and R and is not highly impacted by T. The average |∆ 𝑆𝑆𝑎
∗ %| of all scenarios is 

6.7%. It increases with increasing m and R. The averages |∆ 𝑇𝐶𝑒(𝑆𝑆𝑎
∗)| is also low (1.23) 

and increases with increasing a*β, m, and R. The average |∆ 𝑇𝐶𝑒(𝑆𝑆𝑎
∗) %| is 1.9% and 

increases with increasing m and R. These results show that the approximate model gives 

interesting results. The approximation is better in the case of m=1 (|∆ 𝑆𝑆𝑎
∗  %| = 1.9%) 

which enables to confirm that the simplifying assumption taken in section 4 is reasonable 

(there is one possible rush delivery during T).  When m=5, the quality of the 

approximation of optimal safety stock is lower (|∆ 𝑆𝑆𝑎
∗ %| = 11.6%). We think that this 

is probably due to the simplifying assumption of having one possible rush delivery during 

the last shipment. The increasing of |∆ 𝑆𝑆𝑎
∗  %| has not had a great impact on the cost 

(|∆ 𝑇𝐶𝑒(𝑆𝑆𝑎
∗) %| = 3.5%). 

5.3 Managerial insights  

Based on the case of an Alpha plant situated in France, we compared our model for 

components’ safety stocks calculation to the model currently used at Alpha (Alpha 

model). We started by a global comparison which takes into consideration all components 
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in the plant. We calculated the total value of safety stock, IHC, ROC and TC pertaining 

to all components, for both models. We find that the models give approximately the same 

value of safety stock (the reduction percentages allow Alpha model to reduce safety 

stocks). IHC given by both models is also (approximately) the same. Despite this, ROC 

values are different since the safety stock calculated by Alpha model is not optimal. In 

particular, the average probability of using rush ordering in Alpha model is more than ten 

times greater than the average probability obtained in our model (values are 3.31% and 

0.31% respectively). As a result, our model allows to reduce TC by 66%, compared to  

Alpha model. We also realised a more detailed comparison with respect to component 

families. We found that the average probability of using rush ordering is impacted by the 

average ratio h/R. For instance, the average ratios h/R of two components families are 

respectively: 0.13% and 1.27%. As a result, their average rush ordering probabilities are 

respectively 0.03% and 10%. The impact of the different model parameters on TC will be 

studied in the next section. 

6 Sensitivity analysis 

This section assesses the impact of parameters a×β, a, m, T, and R. Figures 7 and 8 depict 

respectively the variations of the optimal safety stock 𝑆𝑆𝑎
∗ and the corresponding expected 

total cost 𝑇𝐶𝑎
∗ as a function of the assembly coefficient a, and the average component 

demand a×β. For the same average component demand, 𝑆𝑆𝑎
∗ and 𝑇𝐶𝑎

∗ increase with 

increasing a. This result lies in the fact that the component demand variability increases 

with increasing values of assembly coefficient a: increasing a reduces the average FGs 

demand β which increases FGs demand variability (the standard deviation of a Poisson 

distribution is 
1

√𝛽
). For example, if the average component demand a×β =20, T=1, m=1, 

h=1 and R=100 then increasing the assembly coefficient from 1 to 5 increases 𝑆𝑆𝑎
∗ from  
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Figure 7. The variation of optimal safety stock 𝑆𝑆𝑎
∗ in function of assembly coefficient a 

and average component demand a*β (T=5, DLT=2, m=1, R=100) 

 

Figure 8. The variation of optimal total cost 𝑇𝐶𝑎
∗ in function of assembly coefficient a 

and average component demand a*β (T=5, DLT=2, m=1, R=100) 

38 to 80 and 𝑇𝐶𝑎
∗ from 102.15 to 149. 𝑆𝑆𝑎

∗ and 𝑇𝐶𝑎
∗ increase also when the average 

component demand a×β increases for a given value of a. Because of the numerical integer 

optimization of the cost function, 𝑆𝑆𝑎
∗ is not strictly increasing when a×β=0.1. 
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Table 4. The impact of system parameters on 𝑆𝑆𝑎
∗, 𝑇𝐶𝑎

∗, 𝐼𝐻𝐶𝑎
∗ and 𝑅𝑂𝐶𝑎

∗ 

 𝑺𝑺𝒂
∗  𝑻𝑪𝒂

∗  𝑰𝑯𝑪𝒂
∗  𝑹𝑶𝑪𝒂

∗  

a×β=0.1 17.75 20.05 17.99 2.07 

a×β=1 33.30 42.27 35.75 6.52 

a×β=5 60.80 85.67 73.03 12.64 

a×β=20 105.30 176.59 154.22 22.37 

a×β=100 187.51 484.91 432.09 52.82 

a=1 35.19 101.86 96.88 4.98 

a=2 46.99 116.37 108.67 7.70 

a=5 68.03 143.38 129.71 13.67 

a=10 89.95 171.73 151.63 20.10 

a=50 164.50 276.15 226.18 49.96 

m=1 72.02 198.37 182.36 16.01 

m=2 81.37 166.65 147.58 19.08 

m=3 83.28 154.82 134.77 20.05 

m=4 83.99 150.34 129.70 20.63 

m=5 83.99 139.30 118.67 20.63 

T=1 74.86 108.71 100.08 8.63 

T=5 81.11 144.72 127.34 17.38 

T=10 84.27 180.31 157.41 22.90 

T=15 83.49 213.85 185.63 28.22 

R=10 33.24 117.31 94.93 22.38 

R=50 71.42 154.98 133.10 21.87 

R=100 89.25 168.82 150.94 17.88 

R=1000 129.81 206.49 191.50 14.99 

For a more comprehensive analysis, we consider 2000 scenarios obtained from 

other combinations of the following parameters: a×β={0.1,1,5,20,100}, a={1,2,5,10,50}, 

T={1,5,10,15}, DLT=2, m={1,2,3,4,5}, R={10,50,100,1000}. Table 4 displays the 

average values of 𝑆𝑆𝑎
∗, 𝑇𝐶𝑎

∗, 𝐼𝐻𝐶𝑎
∗ and 𝑅𝑂𝐶𝑎

∗ for a subset of scenarios (for instance, the 

row a×β=0.1 gives the average values of all scenarios where a×β=0.1). 

Similar to the conclusions of Figures 7 and 8, we find that 𝑆𝑆𝑎
∗, 𝑇𝐶𝑎

∗, 𝐼𝐻𝐶𝑎
∗ and 

𝑅𝑂𝐶𝑎
∗ increase with increasing a*β and a. Increasing the number of shipments m allows 

to reduce the economy of scale inventory and hence reduces 𝐼𝐻𝐶𝑎
∗ and 𝑇𝐶𝑎

∗. On the other 

hand, increasing m increases the risk of using rush deliveries and hence increases 𝑅𝑂𝐶𝑎
∗. 

For that reason, 𝑆𝑆𝑎
∗ increases with increasing values of m. 
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Table 5. Variation of average 𝑆𝑆𝑎
∗ in function of a and T 

 a=1 a=2 a=5 a=10 a=50 

T=1 26.55 37.10 56.91 80.06 173.66 

T=5 34.05 46.28 68.60 91.30 165.30 

T=10 38.86 51.65 71.88 93.33 165.63 

T=15 41.31 52.91 74.71 95.11 153.41 

We find also that 𝑇𝐶𝑎
∗, 𝐼𝐻𝐶𝑎

∗ and 𝑅𝑂𝐶𝑎
∗ increase with increasing T. 𝑆𝑆𝑎

∗ increases 

with increasing T but it is not monotonous (it decreases at T=15) probably because of 

integer optimization (𝑆𝑆𝑎
∗ is always multiple of a). To show the impact of integer 

optimization, it can be seen that 𝑆𝑆𝑎
∗ increases with increasing T, except for the case of 

a=50 (Table 5). 

𝑆𝑆𝑎
∗ increases with increasing R because rush ordering costs become more 

expensive and increasing the safety stock will decrease them without impacting largely 

the inventory holding costs. 𝑇𝐶𝑎
∗ increases also with increasing values of R. 

7 Conclusions and perspectives 

In this paper, we study the calculation of optimal safety stocks in an ATO system which 

uses a periodic review policy (T,S) to control inventory, with the possibility of using rush 

orders. The model presented is inspired from the context of Alpha, one of the largest auto 

parts makers in the world. Alpha plants use actually a safety stock calculation model that 

shows some limits. We compared the developed model to Alpha model (the one currently 

used at Alpha). We found that our model can lead to interesting cost reductions (up to 

66% cost reduction). Even if both models use approximately the same safety stock value, 

our model is better in terms of total cost. The safety stock calculated by the proposed 

model law is also easier to interpret since it results from a trade-off between inventory 

holding and rush ordering costs. Based on results obtained, Alpha is actually considering 

the implementation of our model in the inventory management tool used by plant 
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procurement managers. 

In our model, we used a Cycle Service Level type approach in the calculation of 

optimal safety stock. An interesting approach would be the use of a Fill Rate approach 

where the rush order cost would depend on units of products requested. In terms of 

perspectives, it would be of interest also to consider the case of a variable rush order cost 

R which depends on the quantity and the lead time of this order. In our paper, we assumed 

that each component demand follows a compound Poisson distribution. One interesting 

direction lies also in investigating real discrete probability distributions. Indeed, the 

technology of today’s computers has enabled efficient operations with huge amounts of 

data. Consequently, processing of discrete data instead of applying approximate functions 

would provide more accurate results in practical applications. 

Furthermore, in the studied system, we assumed that the supply of each 

component is independent from the other components, however some components can 

have the same supplier. If those components are in stock-out during the same time unit, 

then only one rush delivery would be used instead of using a rush delivery for each 

component. It is analytically complicated to calculate the optimal safety stocks in this 

case. To resolve this problem, we propose to use the expressions developed in our paper 

for this case also. After calculating the optimal safety stocks, the rush ordering costs need 

to be adjusted. We propose the use of the following approximation: the expected annual 

rush ordering cost for each component i is equal to the same cost calculated by our model, 

divided by the number of components supplied by the supplier of component i. 
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Appendix 1: Table of notations 

Notation Definition 

nc number of components 

nf number of finished goods 

a assembly coefficient 

𝜆 mean arrival rate of customer orders for a FG 

𝛽 mean arrival rate of customer orders for a component 

𝑎 × 𝛽 average component demand 

T review time interval 

S order up-to level expressed as units of component 

DLT delivery lead time 

m number of shipments during T 

R unit rush order cost 

SS safety stock expressed as units of component 

𝑆𝑏𝑎𝑡𝑐ℎ order up-to level expressed as batches 

𝑆𝑆𝑏𝑎𝑡𝑐ℎ safety stock expressed as batches 

TC expected total cost per year 

IHC expected annual inventory holding cost 

ROC expected annual rush ordering cost 

h inventory holding cost per unit per year 

ℎ𝑏𝑎𝑡𝑐ℎ inventory holding cost per batch per year 

𝐷𝑇+𝐷𝐿𝑇
𝑏𝑎𝑡𝑐ℎ  demand (expressed in batches) in the time interval T+DLT 

Y number of days per year 

GLT 
time interval between sending a replenishment order to 

supplier and receiving the mth shipment) 

 

Appendix 2: Calculation of the economy of scale term 𝑬𝑺𝒃𝒂𝒕𝒄𝒉 

This appendix explains how the term 𝐸𝑆𝑏𝑎𝑡𝑐ℎ appearing in equations (3) and (8) is 

calculated. In a continuous time model, the term 𝐸𝑆𝑏𝑎𝑡𝑐ℎ would be equal to 
𝛽∗𝑇

2
. In a 

discrete time model, the calculation is different. We use the algorithm below to calculate 

𝐸𝑆𝑏𝑎𝑡𝑐ℎ (this algorithm can be used for any nonnegative value of m). This algorithm 

calculates the average on-hand inventory per day. We remind that 𝐸𝑆𝑏𝑎𝑡𝑐ℎ has not an 

impact on the optimization of component safety stock. This term is used to calculate the 

total cost. 
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𝐸𝑆𝑏𝑎𝑡𝑐ℎ = 0  % Economy of scale term 

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 = [0,0, … , 0]   % Vector of shipments, which contains T elements 

𝑂𝐻𝐼 = [0,0, … , 0]   % Vector of on-hand inventory, which contains T elements 

For i=1 to m 

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 (1 + ⌊(𝑖 − 1)
𝑇

𝑚
⌋) = 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 (1 + ⌊(𝑖 − 1)

𝑇

𝑚
⌋) + 𝛽

𝑇

𝑚
 

End 

𝑂𝐻𝐼(1) = 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑(1) 

For j=2 to T 

𝑂𝐻𝐼(𝑗) = 𝑂𝐻𝐼(𝑗 − 1) + 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑(𝑗) − 𝛽 

End 

𝐸𝑆𝑏𝑎𝑡𝑐ℎ =
∑ 𝑂𝐻𝐼(𝑘)𝑇
𝑘=1

𝑇
 

Algorithm 1. Calculation of the economy of scale term 𝐸𝑆𝑏𝑎𝑡𝑐ℎ 

 

Appendix 3: Proof of convexity 

To study the convexity of the expected total costs function 𝑇𝐶(𝑆𝑏𝑎𝑡𝑐ℎ), we assume that 

𝑆𝑏𝑎𝑡𝑐ℎ is a positive real which can take no integer values. We know also that 𝑆𝑏𝑎𝑡𝑐ℎ ≥

𝛽(𝑇 + 𝐷𝐿𝑇). 

From equation (4), we have: 

𝑇𝐶(𝑆𝑏𝑎𝑡𝑐ℎ) =  ℎ𝑏𝑎𝑡𝑐ℎ(𝐸𝑆𝑏𝑎𝑡𝑐ℎ + 𝑆𝑏𝑎𝑡𝑐ℎ − 𝛽(𝑇 + 𝐷𝐿𝑇)) +
𝑅𝑌

𝑇
× (1 − 𝐹(𝑆𝑏𝑎𝑡𝑐ℎ)) 

𝐹(. ) and 𝑓(. ) are the cumulative distribution function and the probability distribution 

function of Poisson, respectively. We put 𝑥 = 𝛽(𝑇 + 𝐷𝐿𝑇). We use the continuous 

version of Poisson probability distribution function where: 

𝑓(𝑆𝑏𝑎𝑡𝑐ℎ) =
𝑒−𝑥𝑥𝑆

𝑏𝑎𝑡𝑐ℎ

𝑆𝑏𝑎𝑡𝑐ℎ!
=

𝑒−𝑥𝑥𝑆
𝑏𝑎𝑡𝑐ℎ

Γ(𝑆𝑏𝑎𝑡𝑐ℎ + 1)
 

In fact, we replaced the factorial term 𝑆𝑏𝑎𝑡𝑐ℎ! by the continuous function Γ(𝑆𝑏𝑎𝑡𝑐ℎ + 1) 

in order to calculate the derivatives where Γ() is the Gamma function. 

The first and second conditions of convexity yield to: 

 First condition of convexity: 
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𝑑𝑇𝐶

𝑑𝑆𝑏𝑎𝑡𝑐ℎ
= ℎ𝑏𝑎𝑡𝑐ℎ −

𝑅𝑌

𝑇
𝑓(𝑆𝑏𝑎𝑡𝑐ℎ) = 0 

𝑆𝑏𝑎𝑡𝑐ℎ
∗
= 𝑓−1(

ℎ𝑏𝑎𝑡𝑐ℎ𝑇

𝑅𝑌
) 

Where 𝑆𝑏𝑎𝑡𝑐ℎ
∗
 is the optimal solution when𝑆𝑏𝑎𝑡𝑐ℎ is a non-negative real (the value of 

𝑆𝑏𝑎𝑡𝑐ℎ
∗
 in the case of a non-integer 𝑆𝑏𝑎𝑡𝑐ℎ may be different). 

 Second condition of convexity: 

𝑑2𝑇𝐶

𝑑𝑆𝑏𝑎𝑡𝑐ℎ
2
 
=  −

𝑅𝑌

𝑇
(
𝑒−𝑥𝑥𝑆

𝑏𝑎𝑡𝑐ℎ

Γ(𝑆𝑏𝑎𝑡𝑐ℎ + 1)
)

′

 

We have (
𝑒−𝑥𝑥𝑆

𝑏𝑎𝑡𝑐ℎ

Γ(𝑆𝑏𝑎𝑡𝑐ℎ+1)
)

′

=
𝑒−𝑥 ln(𝑥)𝑥𝑆

𝑏𝑎𝑡𝑐ℎ
Γ(𝑆𝑏𝑎𝑡𝑐ℎ+1)−Γ(𝑆𝑏𝑎𝑡𝑐ℎ+1)

′
𝑒−𝑥𝑥𝑆

𝑏𝑎𝑡𝑐ℎ

(Γ(𝑆𝑏𝑎𝑡𝑐ℎ+1))
2  

Knowing that: Γ′(𝑆𝑏𝑎𝑡𝑐ℎ + 1) = Γ(𝑆𝑏𝑎𝑡𝑐ℎ + 1)𝜓(𝑆𝑏𝑎𝑡𝑐ℎ + 1)  where 𝜓() is the 

Digamma function. We have: 

(
𝑒−𝑥𝑥𝑆

𝑏𝑎𝑡𝑐ℎ

Γ(𝑆𝑏𝑎𝑡𝑐ℎ + 1)
)

′

=
𝑒−𝑥 ln(𝑥) 𝑥𝑆

𝑏𝑎𝑡𝑐ℎ
Γ(𝑆𝑏𝑎𝑡𝑐ℎ + 1) − Γ(𝑆𝑏𝑎𝑡𝑐ℎ + 1)𝜓(𝑆𝑏𝑎𝑡𝑐ℎ + 1)𝑒−𝑥𝑥𝑆

𝑏𝑎𝑡𝑐ℎ

(Γ(𝑆𝑏𝑎𝑡𝑐ℎ + 1))
2  

 

(
𝑒−𝑥𝑥𝑆

𝑏𝑎𝑡𝑐ℎ

Γ(𝑆𝑏𝑎𝑡𝑐ℎ + 1)
)

′

=
𝑒−𝑥𝑥𝑆

𝑏𝑎𝑡𝑐ℎ
Γ(𝑆𝑏𝑎𝑡𝑐ℎ + 1)

(Γ(𝑆𝑏𝑎𝑡𝑐ℎ + 1))
2 (ln(𝑥) − 𝜓(𝑆𝑏𝑎𝑡𝑐ℎ + 1)) 

The Gamma function is always positive. 

The Digamma function is an increasing function, i.e., 𝜓(𝑆𝑏𝑎𝑡𝑐ℎ + 1) ≥ 𝜓(𝑥 + 1)   

∀   𝑆𝑏𝑎𝑡𝑐ℎ ≥ 𝑥 

On the other hand, we can verify numerically, that (𝑥 + 1) ≥ ln(𝑥) ∀   𝑥 ≥ 0. 

Consequently, we can say that:  𝜓(𝑆𝑏𝑎𝑡𝑐ℎ + 1) ≥ ln(𝑥). 

As a result 

𝑑2𝑇𝐶

𝑑𝑆𝑏𝑎𝑡𝑐ℎ
2
 
≥ 0 

Hence the function TC is convex in function of 𝑆𝑏𝑎𝑡𝑐ℎ.□ 
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Appendix 4: List of scenarios considered in the comparison between the approximate 

and exact models 

 

Scenario number a×β a β T DLT m h R 

1 1 1 1 1 2 1 1 10 

2 1 1 1 1 2 1 1 50 

3 1 1 1 1 2 1 1 100 

4 1 1 1 1 2 1 1 1000 

5 1 1 1 1 2 5 1 10 

6 1 1 1 1 2 5 1 50 

7 1 1 1 1 2 5 1 100 

8 1 1 1 1 2 5 1 1000 

9 1 1 1 5 2 1 1 10 

10 1 1 1 5 2 1 1 50 

11 1 1 1 5 2 1 1 100 

12 1 1 1 5 2 1 1 1000 

13 1 1 1 5 2 5 1 10 

14 1 1 1 5 2 5 1 50 

15 1 1 1 5 2 5 1 100 

16 1 1 1 5 2 5 1 1000 

17 1 1 1 10 2 1 1 10 

18 1 1 1 10 2 1 1 50 

19 1 1 1 10 2 1 1 100 

20 1 1 1 10 2 1 1 1000 

21 1 1 1 10 2 5 1 10 

22 1 1 1 10 2 5 1 50 

23 1 1 1 10 2 5 1 100 

24 1 1 1 10 2 5 1 1000 

25 5 1 5 1 2 1 1 10 

26 5 1 5 1 2 1 1 50 

27 5 1 5 1 2 1 1 100 

28 5 1 5 1 2 1 1 1000 

29 5 1 5 1 2 5 1 10 

30 5 1 5 1 2 5 1 50 

31 5 1 5 1 2 5 1 100 

32 5 1 5 1 2 5 1 1000 

33 5 1 5 5 2 1 1 10 

34 5 1 5 5 2 1 1 50 

35 5 1 5 5 2 1 1 100 

36 5 1 5 5 2 1 1 1000 

37 5 1 5 5 2 5 1 10 

38 5 1 5 5 2 5 1 50 

39 5 1 5 5 2 5 1 100 

40 5 1 5 5 2 5 1 1000 

41 5 1 5 10 2 1 1 10 

42 5 1 5 10 2 1 1 50 

43 5 1 5 10 2 1 1 100 

44 5 1 5 10 2 1 1 1000 

45 5 1 5 10 2 5 1 10 

46 5 1 5 10 2 5 1 50 

47 5 1 5 10 2 5 1 100 

48 5 1 5 10 2 5 1 1000 

49 20 1 20 1 2 1 1 10 

50 20 1 20 1 2 1 1 50 
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51 20 1 20 1 2 1 1 100 

52 20 1 20 1 2 1 1 1000 

53 20 1 20 1 2 5 1 10 

54 20 1 20 1 2 5 1 50 

55 20 1 20 1 2 5 1 100 

56 20 1 20 1 2 5 1 1000 

57 20 1 20 5 2 1 1 10 

58 20 1 20 5 2 1 1 50 

59 20 1 20 5 2 1 1 100 

60 20 1 20 5 2 1 1 1000 

61 20 1 20 5 2 5 1 10 

62 20 1 20 5 2 5 1 50 

63 20 1 20 5 2 5 1 100 

64 20 1 20 5 2 5 1 1000 

65 20 1 20 10 2 1 1 10 

66 20 1 20 10 2 1 1 50 

67 20 1 20 10 2 1 1 100 

68 20 1 20 10 2 1 1 1000 

69 20 1 20 10 2 5 1 10 

70 20 1 20 10 2 5 1 50 

71 20 1 20 10 2 5 1 100 

72 20 1 20 10 2 5 1 1000 

73 100 1 100 1 2 1 1 10 

74 100 1 100 1 2 1 1 50 

75 100 1 100 1 2 1 1 100 

76 100 1 100 1 2 1 1 1000 

77 100 1 100 1 2 5 1 10 

78 100 1 100 1 2 5 1 50 

79 100 1 100 1 2 5 1 100 

80 100 1 100 1 2 5 1 1000 

81 100 1 100 5 2 1 1 10 

82 100 1 100 5 2 1 1 50 

83 100 1 100 5 2 1 1 100 

84 100 1 100 5 2 1 1 1000 

85 100 1 100 5 2 5 1 10 

86 100 1 100 5 2 5 1 50 

87 100 1 100 5 2 5 1 100 

88 100 1 100 5 2 5 1 1000 

89 100 1 100 10 2 1 1 10 

90 100 1 100 10 2 1 1 50 

91 100 1 100 10 2 1 1 100 

92 100 1 100 10 2 1 1 1000 

93 100 1 100 10 2 5 1 10 

94 100 1 100 10 2 5 1 50 

95 100 1 100 10 2 5 1 100 

96 100 1 100 10 2 5 1 1000 
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Appendix 5: Results of comparison between the approximate and exact models 

 

 
Exact model (Optimal) Approximate model Exact model with 𝑺𝑺𝒂

∗   

Scenario 

number 
𝑺𝑺𝒆

∗  𝑻𝑪𝒆
∗  𝑰𝑯𝑪𝒆

∗  𝑹𝑶𝑪𝒆
∗  𝑺𝑺𝒂

∗  𝑻𝑪𝒂
∗  𝑰𝑯𝑪𝒂

∗  𝑹𝑶𝑪𝒂
∗  𝑻𝑪𝒆

∗(𝑺𝑺𝒂
∗ ) 𝑰𝑯𝑪𝒆

∗(𝑺𝑺𝒂
∗ ) 𝑹𝑶𝑪𝒆

∗(𝑺𝑺𝒂
∗ ) 

1 7 8.61 8.00 0.61 7 8.70 8.00 0.70 8.61 8.00 0.61 

2 8 9.76 9.00 0.76 8 9.86 9.00 0.86 9.76 9.00 0.76 

3 8 10.51 9.00 1.51 9 10.39 10.00 0.39 10.53 10.00 0.53 

4 10 11.96 11.00 0.96 10 11.82 11.00 0.82 11.96 11.00 0.96 

5 7 8.61 8.00 0.61 8 9.66 9.00 0.66 9.15 9.00 0.15 

6 8 9.76 9.00 0.76 9 10.92 10.00 0.92 10.27 10.00 0.26 

7 8 10.51 9.00 1.51 10 11.48 11.00 0.48 11.10 11.00 0.10 

8 10 11.96 11.00 0.96 11 13.17 12.00 1.17 12.00 12.00 0.00 

9 8 12.35 11.01 1.34 8 12.16 11.00 1.16 12.35 11.01 1.34 

10 10 14.03 13.01 1.02 10 13.87 13.00 0.87 14.03 13.01 1.02 

11 11 14.97 14.00 0.96 11 14.62 14.00 0.62 14.97 14.00 0.96 

12 13 16.96 16.00 0.96 13 16.70 16.00 0.70 16.96 16.00 0.96 

13 9 11.22 10.01 1.22 10 12.08 11.00 1.08 11.49 11.01 0.48 

14 11 13.02 12.01 1.01 12 14.11 13.00 1.11 13.41 13.01 0.41 

15 12 13.82 13.01 0.82 13 14.95 14.00 0.95 14.25 14.01 0.24 

16 14 15.49 15.01 0.48 15 17.57 16.00 1.57 16.01 16.01 0.00 

17 9 16.41 14.52 1.89 9 15.96 14.50 1.46 16.41 14.52 1.89 

18 12 18.71 17.51 1.20 11 18.27 16.50 1.77 18.95 16.51 2.44 

19 13 19.81 18.51 1.30 12 19.15 17.50 1.65 19.91 17.51 2.40 

20 16 22.47 21.51 0.96 15 21.84 20.50 1.34 23.63 20.51 3.12 

21 11 13.64 12.52 1.12 11 14.44 12.50 1.94 13.64 12.52 1.12 

22 13 15.72 14.52 1.20 14 17.29 15.50 1.79 16.20 15.51 0.68 

23 14 16.88 15.51 1.37 15 18.43 16.50 1.93 17.02 16.51 0.50 

24 18 19.51 19.51 0.00 19 21.78 20.50 1.28 20.51 20.51 0.00 

25 13 19.91 18.00 1.90 14 20.00 19.00 1.00 19.97 19.00 0.97 

26 16 21.88 21.00 0.88 16 22.08 21.00 1.08 21.88 21.00 0.88 

27 17 22.67 22.00 0.67 17 22.96 22.00 0.96 22.67 22.00 0.67 

28 19 25.20 24.00 1.20 20 25.72 25.00 0.72 25.72 25.00 0.72 

29 13 19.91 18.00 1.90 15 21.93 20.00 1.93 20.44 20.00 0.44 

30 16 21.88 21.00 0.88 18 24.31 23.00 1.31 23.16 23.00 0.16 

31 17 22.67 22.00 0.67 19 25.28 24.00 1.28 24.12 24.00 0.12 

32 19 25.20 24.00 1.20 22 28.30 27.00 1.30 27.00 27.00 0.00 
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33 16 32.96 31.01 1.95 16 33.05 31.00 2.05 32.96 31.01 1.95 

34 19 36.24 34.00 2.23 19 36.56 34.00 2.56 36.24 34.00 2.23 

35 20 37.60 35.00 2.59 21 37.87 36.00 1.87 37.64 36.00 1.63 

36 25 41.68 40.00 1.68 25 42.06 40.00 2.06 41.68 40.00 1.68 

37 18 24.90 23.01 1.89 19 26.86 24.00 2.86 25.13 24.01 1.12 

38 22 28.06 27.00 1.06 24 31.20 29.00 2.20 29.33 29.00 0.32 

39 22 29.12 27.00 2.11 26 32.92 31.00 1.92 31.34 31.00 0.34 

40 27 33.68 32.00 1.68 31 37.98 36.00 1.98 36.24 36.00 0.24 

41 18 48.32 45.53 2.79 17 48.00 44.50 3.50 48.35 44.55 3.81 

42 23 53.12 50.50 2.62 23 52.86 50.50 2.36 53.12 50.50 2.62 

43 25 54.78 52.50 2.28 25 54.72 52.50 2.22 54.78 52.50 2.28 

44 31 60.18 58.50 1.68 31 60.30 58.50 1.80 60.18 58.50 1.68 

45 21 31.09 28.52 2.57 21 32.84 28.50 4.34 31.09 28.52 2.57 

46 26 35.37 33.51 1.86 28 39.14 35.50 3.64 36.46 35.50 0.96 

47 27 37.15 34.50 2.64 31 41.54 38.50 3.04 38.96 38.50 0.46 

48 32 42.14 39.50 2.64 38 48.63 45.50 3.13 45.50 45.50 0.00 

49 24 47.04 43.99 3.05 25 47.22 45.00 2.22 47.08 44.99 2.09 

50 28 51.51 47.99 3.52 29 51.17 49.00 2.17 51.51 48.99 2.52 

51 31 52.93 50.99 1.94 31 52.80 51.00 1.80 52.93 50.99 1.94 

52 34 57.35 53.99 3.36 36 57.67 56.00 1.67 57.67 55.99 1.68 

53 24 47.04 43.99 3.05 28 50.85 48.00 2.85 48.69 47.99 0.70 

54 28 51.51 47.99 3.52 33 55.41 53.00 2.41 53.26 52.99 0.28 

55 31 52.93 50.99 1.94 35 57.24 55.00 2.24 55.23 54.99 0.24 

56 34 57.35 53.99 3.36 41 62.84 61.00 1.84 60.99 60.99 0.00 

57 28 92.33 88.01 4.32 28 92.54 88.00 4.54 92.33 88.01 4.32 

58 35 99.68 94.98 4.71 36 99.49 96.00 3.49 99.72 95.98 3.75 

59 38 102.61 97.97 4.63 38 102.15 98.00 4.15 102.61 97.97 4.63 

60 49 110.65 108.97 1.68 47 110.10 107.00 3.10 111.29 106.97 4.32 

61 32 56.67 51.99 4.68 33 59.41 53.00 6.41 56.74 52.98 3.76 

62 40 62.97 59.96 3.01 43 68.18 63.00 5.18 64.40 62.96 1.44 

63 42 65.73 61.96 3.77 47 71.53 67.00 4.53 67.68 66.96 0.72 

64 51 72.40 70.96 1.44 57 81.51 77.00 4.51 77.20 76.96 0.24 

65 30 146.28 140.12 6.16 29 146.25 139.00 7.25 146.28 139.15 7.13 

66 41 156.32 150.98 5.34 41 156.32 151.00 5.32 156.32 150.98 5.34 

67 45 160.20 154.96 5.23 45 160.06 155.00 5.06 160.20 154.96 5.23 

68 55 171.44 164.95 6.48 57 171.02 167.00 4.02 171.76 166.95 4.80 

69 36 71.97 66.03 5.94 35 74.45 65.00 9.45 72.16 65.05 7.11 



 

38 

 

70 46 81.03 75.94 5.09 50 87.82 80.00 7.82 82.27 79.93 2.34 

71 49 84.60 78.93 5.67 56 92.72 86.00 6.72 86.89 85.93 0.96 

72 61 94.77 90.93 3.84 71 106.93 101.00 5.93 101.65 100.92 0.72 

73 49 154.67 149.02 5.65 49 155.25 149.00 6.25 154.67 149.02 5.65 

74 58 163.45 158.00 5.45 59 164.04 159.00 5.04 163.49 159.00 4.49 

75 62 167.14 162.00 5.14 63 167.51 163.00 4.51 167.37 163.00 4.37 

76 75 177.40 175.00 2.40 74 178.01 174.00 4.01 178.08 174.00 4.08 

77 49 154.67 149.02 5.65 56 162.72 156.00 6.72 157.68 156.00 1.67 

78 58 163.45 158.00 5.45 67 172.92 167.00 5.92 167.95 167.00 0.95 

79 62 167.14 162.00 5.14 71 176.93 171.00 5.93 171.76 171.00 0.77 

80 75 177.40 175.00 2.40 84 189.04 184.00 5.04 184.72 184.00 0.72 

81 52 363.34 352.24 11.11 52 363.82 352.00 11.82 363.34 352.24 11.11 

82 72 380.15 372.02 8.13 71 380.25 371.00 9.25 380.21 371.02 9.18 

83 78 385.47 378.01 7.47 78 386.40 378.00 8.40 385.47 378.01 7.47 

84 97 402.76 396.99 5.76 97 404.34 397.00 7.34 402.76 396.99 5.76 

85 64 173.60 164.14 9.47 62 176.69 162.00 14.69 173.85 162.17 11.68 

86 79 187.74 179.01 8.73 86 197.86 186.00 11.86 189.59 186.00 3.59 

87 86 193.18 186.00 7.18 95 205.69 195.00 10.69 197.20 194.99 2.21 

88 103 209.23 202.99 6.24 119 228.40 219.00 9.40 219.23 218.99 0.24 

89 49 617.36 600.17 17.19 49 617.53 599.00 18.53 617.36 600.17 17.19 

90 79 642.18 629.16 13.03 79 642.74 629.00 13.74 642.18 629.16 13.03 

91 89 651.28 639.08 12.20 89 651.66 639.00 12.66 651.28 639.08 12.20 

92 117 677.35 667.02 10.33 117 676.93 667.00 9.93 677.35 667.02 10.33 

93 69 233.36 219.52 13.85 54 230.84 204.00 26.84 241.16 205.38 35.78 

94 92 253.24 242.09 11.15 97 265.16 247.00 18.16 254.42 247.06 7.36 

95 100 261.22 250.05 11.17 111 277.02 261.00 16.02 264.94 261.02 3.91 

96 127 283.50 277.01 6.48 147 310.25 297.00 13.25 297.73 297.01 0.72 
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Appendix 6: Results of numerical experiments for different values of a×β, T, m, and R 

 

  

Exact model (Optimal) Approximate model Exact model with 𝑺𝑺𝒂
∗   

𝑺𝑺𝒆
∗  𝑻𝑪𝒆

∗  𝑰𝑯𝑪𝒆
∗  𝑹𝑶𝑪𝒆

∗  𝑺𝑺𝒂
∗  𝑻𝑪𝒂

∗  𝑰𝑯𝑪𝒂
∗  𝑹𝑶𝑪𝒂

∗  𝑻𝑪𝒆
∗(𝑺𝑺𝒂

∗ ) 𝑰𝑯𝑪𝒆
∗(𝑺𝑺𝒂

∗ ) 𝑹𝑶𝑪𝒆
∗(𝑺𝑺𝒂

∗ ) 

a×β=1 10.83 14.03 13.01 1.02 11.25 14.55 13.42 1.13 14.30 13.42 0.87 

a×β=5 20.92 33.57 31.76 1.82 22.33 35.30 33.17 2.13 34.33 33.17 1.16 

a×β=20 38.00 85.30 81.32 3.99 40.46 88.15 83.79 4.36 86.54 83.77 2.76 

a×β=100 76.71 301.68 293.48 8.20 80.25 307.58 296.92 10.67 304.32 297.06 7.27 

m=1 35.04 138.79 134.83 3.96 35.13 138.85 134.88 3.97 138.89 134.91 3.97 

m=5 38.19 78.50 74.95 3.55 42.02 83.94 78.77 5.17 80.86 78.80 2.06 

T=1 28.69 62.62 60.19 2.44 31.06 64.94 62.56 2.38 63.79 62.56 1.23 

T=5 37.59 104.21 100.60 3.60 39.44 106.97 102.44 4.53 105.24 102.45 2.79 

T=10 43.56 159.11 153.88 5.23 45.22 162.28 155.47 6.81 160.58 155.56 5.02 

R=10 27.33 100.26 95.68 4.58 27.29 101.39 95.54 5.84 100.87 95.68 5.19 

R=50 35.00 107.12 103.26 3.86 36.79 109.66 105.04 4.62 107.84 105.05 2.79 

R=100 37.79 109.79 106.04 3.75 40.33 112.75 108.58 4.17 110.87 108.58 2.29 

R=1000 46.33 117.42 114.58 2.84 49.88 121.79 118.13 3.66 119.91 118.12 1.79 

All scenarios 36.61 108.65 104.89 3.76 38.57 111.40 106.82 4.57 109.87 106.86 3.02 

 

 


