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Abstract—In indoor environments, pedestrian dead reckoning
(PDR) is the most used strategy for pedestrian position estimation
from inertial data collected with handheld devices. PDR process
recursively estimates positions using step length estimation
based on parametric models that take into consideration some
physiological parameters, displacement features and acceleration
statistical properties. The coefficients of these models need
frequent adjustment to limit cumulative errors induced by
alteration of gait pattern. A large experimental database
providing information about human locomotion variability is
required for this calibration. However, the development of such
database is costly in terms of time and effort. To make the
collected data as reliable as possible, several gait-affecting factors
should be considered, which highly increases the number of
measurement trials. In this paper, we propose an alternative way
of generating locomotion data that consists in simulating human
walking gait motion under different conditions. We propose a
multibody system simulator taking into account possible step-
level asymmetry induced by handling a device in hand, as well as
the correlation between arms and legs motions during gait. Our
simulation approach was evaluated with data from overground
walking experiments on one test subject. Preliminary results show
some similarities between acceleration profiles related to different
body parts, and the same variation trends of selected acceleration
items in function of carrying mode and gait velocity.

Keywords—Handheld devices, Human walking gait, Multibody
system, Inertial data, Step-level asymmetry.

I. INTRODUCTION

The main issue in indoor positioning is that satellite signals
are weakened in indoor spaces resulting in a degradation
of continuous navigation performance [1]. Pedestrian Dead
Reckoning (PDR) is the most employed approach when
it comes to estimate pedestrian position in such spaces.
It consists on estimating the traveled distance based on
inertial sensors signals [2], since they are available regardless
of surrounding infrastructures. PDR recursively estimates
positions using step detection, step heading and length
estimation. This estimation of step length is more complex
when sensors are handheld due to the complex hand motions
that do not directly reflect the walking pattern, in contrary with
body-fixed sensors. Parametric models that use physiological
parameters (height [3]), step characteristics (frequency [4])
and acceleration signal statistical characteristics [5], either

combined or independently, have been adopted for this
purpose.

Most of these models assume that common gait has
been performed by individuals, who are more likely to
exhibit highly irregular gait motions when walking at extreme
conditions e.g. under fatigue, or when handling an additional
mass in hand [6]. These unpredictable irregular motions can
lead into major alteration of gait pattern, which significantly
affects the performance of displacement features estimation,
since positioning errors at different steps are induced and
accumulated over the duration of displacement. Thus, the step
length models coefficients should be adjusted frequently. A
large experimental database that characterizes the variability
related to human locomotion parameters is needed for this
calibration. In the ideal case, the collected data should
provide information about the substantial variation of walking
parameters across different subjects due to intrinsic body
morphology and motion pattern, i.e. inter-subject variation,
and about their variation induced by a single user under
different walking conditions, i.e. intra-subject variation.
Hence, a challenging task is to validate the models accuracy
on new subjects rather than the ones these models have been
adjusted on.

The development of such a database is costly in terms of
time, effort and material. In effect, many available volunteers
must be found in order to collect enough experimental data,
and they have to provide their written consent to perform the
trials. The main problems are the number of subjects that
is determinant in evaluating the reliability of the empirical
method, as well as subjects’ distribution in terms of age,
gender, and physiological characteristics (e.g. height, weight)
that have to be sufficiently addressed in order to make
the collected data as broadened as possible. In addition,
experimental protocols should include as many gait-impacting
factors as possible (e.g. physiological or sensor-induced), and
these factors have to be well measured and labelled in such
datasets [7]. Yet, it is hard to analyze the coexisting effects of
these factors on gait patterns simultaneously. Besides, several
settings of each factor should be considered in order to conduct
the evaluation in a generalized and efficient way [7], which
highly increases the number of measurement trials included in
the dataset, and then more effort and longer acquisition time
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are needed. To overcome these issues, data collected with wide
population in the wild [8], [9], where several environmental
and physiological factors affect gait patterns, are used to
examine the robustness of gait recognition models. However,
the influence of particular factors cannot be investigated since
its contributions are unlabelled and are somehow merged
within such datasets.

This study intends to provide a simpler way to generate
the database that could be used for calibration of pedestrian
navigation models, by substituting costly experimental
protocols for simulated human locomotion. We limit our study
to straightforward walking scenarios. The presented human
gait simulator, taking into account the correlation between
upper limbs and legs movements [10], enables to predict gait
motion for given displacement features and a given device
carrying mode. In this paper, the model is adjusted to one
test subject and assessed with overground walking experiments
based on acceleration features related to different body parts.

The paper is outlined as follows. In section II, a state of
the art on gait features extraction using inertial sensors is
presented, as well as the walking gait features considered
in this study. Section III is dedicated to the presentation
of the proposed walking gait simulator. Section IV details
the experimental protocol for data collection and the gait
features extraction procedure. It is followed by a discussion
of evaluation results of the simulation approach in Section V.

II. WALKING GAIT FEATURES

A. State of the art on gait features extraction using inertial
sensors

The usage of inertial sensors in gait analysis is a promising
method for features extraction, as they are designed to be
light, cheap and portable, and to escape from the need for
specific experimental environment [11]. They are non-invasive,
do not alter the motion patterns [12] and can identify human
activity in different environments [13], [14]. The use of 3D
sensors provides more information of human motion in three
planes [15]. Inertial sensors are mainly used for human motion
monitoring, as well as activity recognition and advanced
gait analysis [7]. Potential applications of these approaches
are healthcare and disease prevention (i.e. fall detection for
elderly people [16], assessment of physical activity patterns
to detect gait abnormalities [11]) and sports (i.e. gait speed
estimation and step count [17]). Recently, gait recognition
based on inertial sensors for localization purposes has become
indispensable with the appearance of smart devices and
wearable systems including these sensors [7]. Gait patterns
can be explicitly identified as physiological properties, i.e.
3D joint angle estimation [18], detection of gait cycle phases
[13], or estimation of spatio-temporal characteristics (step
length, width of walking base, gait symmetry, cadence, etc.)
[19]. These patterns can be also expressed using feature
extraction techniques that do not exactly provide physiological
parameters but implicitly contain information on walking
motion [7].

Several types of inertial sensors have been employed for gait
analysis either combined, or with other non-inertial sensors

[11]. The most used sensor is accelerometer either biaxial
or tri-axial. In general, accelerometers are combined with
gyroscopes to decrease the error induced by accelerometer
vibration and to constitute an Inertial Measurement Unit
(IMU) system [19] or a self-developed multi-sensors system
[13]. Magnetometers are also included in IMU systems [12].
When using more inertial sensors, the accuracy of features
estimation is improved thanks to data redundancy and data
fusion algorithms [20]. Nevertheless, a compromise between
precision and portability should be considered.

Researchers place these sensors in different parts of the
body, e.g. attached to lower limbs (foot, thigh) to accurately
detect gait phases and displacement features, to upper body
(waist, abdomen) or to the arms [11]. The highest locations
are ears and head [21]. The acceleration of the upper parts can
better assess the body stability and balance during gait [22],
and contribute to a more sophisticated gait analysis [11].

B. Selected walking gait features

Let’s note that a stride is composed of two consecutive
steps. In this study, there are two sets of gait features that
are extracted from experimental dataset:

– The displacement features that are imposed in simulation
tests:
• The gait velocity V ;
• The stride characteristics i.e. length (d) defined as

the distance between two consecutive prints of the
same foot, and width (w) defined as the lateral
distance between the midlines of both feet;

• The step-level symmetry indexes i.e Temporal
Symmetry Index [6] and Spatial Symmetry Index
respectively notated TSI and SSI, and defined as:

TSI =
Time duration of step on the device’s side

Total time duration of the stride
(1)

SSI =
Length of step on the device’s side

Stride length
(2)

Note that stride is defined between two successive initial
contacts (ICs) by same foot, and a right step is the interval
between left IC and following right IC.

– The acceleration features over the gait cycle (GC) related
to different body parts:
• Both feet;
• The waist whose motion reflects the center of mass

(COM) kinematics.
• The hand that is carrying a mass.

The second set of features is used for the validation of the
developed gait simulator.

III. 3D WALKING GAIT SIMULATOR OVER A STRIDE

A. Presentation of the 3D biped equipped with handheld mass

An anthropomorphic 3D biped with two identical three-
link legs, a pelvis, a trunk, a head-neck, and two-link arms
is considered (cf. Fig. 1). All segments are supposed rigid
and linked by frictionless rotational joints. Denavit-Hartenberg
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convention [23] is used to express link frames situation w.r.t.
a frame linked to the stance foot in function of joint angles.
The joints degrees of freedom (DOF) are defined in reference
to human gait analysis detailed in [24], [25]. To make the

FIG. 1 –. The 19-link biped model with dimensions and local frames in
accordance with Denavit-Hartenberg convention [23].

biped fit a test subject, anatomical definition found in [26] is
considered to estimate the segments lengths. In addition, the
regression of Dumas [26] are used for BSIPs (body segment
inertial parameters) estimation. These parameters correspond
for each link to its mass, COM relative position and inertias.
The added mass in hand is assumed to be rigidly held, then
its inertial parameters are merged with those of the forearm.

B. Definition of walking gait cycle

The GC of the biped is defined as the stride, it is composed
respectively of a right single support (SS) phase (right support
foot), a DS phase, a left SS phase, and a second DS phase.
The DS phases are instantaneous and these assumptions are
considered:

– There is only flat contact of both feet with the ground.

– There are no roll and yaw rotations of the pelvis, and the
axial rotation between trunk and pelvis segments is null.

We assume joint positions continuity at the impact, then final
positions of each step is determined from initial positions
of the next step using an inversion matrix expressing the
exchange of role of joints after the impact. However, there
is a joint velocity discontinuity at the impact, and velocities
after the impact are function of velocities before the impact
following an impact model.

C. Dynamic and impact models

Using the Newton-Euler algorithm, the biped’s equations of
motion are obtained in the following form:[

R0
Γ

]
= IDM(q,q̇,q̈,R14) (3)

where R0 ∈ R6 is the wrench of ground reaction forces on
the stance foot, R14 ∈ R6 is the wrench of forces exerted by
the swing foot on the ground, Γ ∈ R19 is the vector of joint
torques, q, q̇, q̈ ∈ R19 are respectively the position, velocity
and acceleration vectors. R14 = 06×1 in SS. The biped’s
generalized coordinates are expressed by X = (x0;α0;q) ∈
R25 where x0 and α0 define respectively the position and
orientation of the frame R0 with respect to the reference
frame Rs. The biped velocity is V = (v0;ω0; q̇) ∈ R25 and its
acceleration is V̇ = (v̇0; ω̇0; q̈) ∈R25 where v0 and ω0 are the
linear and angular velocities of the stance foot. The dynamic
model in DS can be written:

D(X)V̇+C(V,q)+G(X)+DJ(q)R14 = DΓΓ+D0R0 (4)

where D ∈ R25×25 is the inertia matrix, C ∈ R25 is the vector
of Coriolis and centrifugal forces, G ∈ R25 is the vector
of gravity, DJ

> ∈ R6×25 is the Jacobian matrix reflecting
the effects of ground reaction on the landing foot, DΓ =
(06×19;I19×19) is a matrix allowing to take into consideration
the joint torques, D0 = (I6×6;019×6) is a matrix allowing to
take into account the effects of ground reaction on the stance
foot. The impact model can be obtained by integrating the
dynamic model (4) during the impact duration which tends to
zero:

D(X(T ))∆V = D0I0−DJI14 (5)

where I0 and I14 are the intensity of Dirac delta functions
for the forces R0 and R14, ∆V = (V+−V-) is the variation of
velocity at the impact, X(T ) is the biped’s configuration at the
impact. After the impact, the previous stance foot takes off the
ground and its impulsive forces are equal to zeros I0 = 06×1.
The velocity of the landing foot after impact is null, then:

DJ
>V+ = 06×1 (6)

Equations (5) and (6) give the impact model:[
D(X(T )) DJ

DJ
> 06×6

][
V+

I14

]
=

[
D(X(T ))V−

06×1

]
(7)

D. Joint motion generation

Joint positions need to be approximated during the SS
phase of the step labelled j on the global time interval
Ω = {t0 = 0,tN+1 = Tj}, j=1,2. For interpolation, we consider
N intermediate configurations in SS that are uniformly spaced
at the time knots: tk = k.h, where h= Tj

(N+1) , k = 1, . . . ,N. Each
model DoF qi is approximated by a function φi(t) defined
on Ω and obtained by the concatenation of N+1 3rd order
polynomial functions successively defined on the intervals
Ωk = {t | tk ≤ t < tk+1}:

ϕi,k(t) =
3

∑
l=0

al
i,k(t− tk)l , k = 0, . . . ,N ∀ t ∈Ωk (8)
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where al
j,k are the polynomial coefficients. There are

N+1 polynomials with 4 coefficients, 4(N+1) independent
conditions are necessary to define each function φi(t):

– Position conditions at SS and DS (N+2 conditions);
– Velocity conditions at DS (two conditions);
– Joint position, velocity and acceleration continuity

conditions at SS (3N conditions);

Note that position and velocity parameters used for
interpolation are deduced from the optimization variables
presented in section III-E1.

E. Optimization process

Parametric optimization algorithm based on Sequential
Quadratic Programming (SQP) method [27] is used to solve
the nonlinear constrained problem.

1) Optimization variables: Due to continuity and cyclicity
conditions, and to the choice of a minimal set of variables
defining the legs configurations at DS instants (cf. Fig.
2), the variables defining the motion over the GC can be
significantly reduced. The optimized set comprises for each
step the variables presented in Table I. The number of
variables is reduced in texting mode due to the constrained
arm configuration. Corresponding joint rate variables are set
to zero and joint positions are fixed so that the hand has a
defined position w.r.t. the head i.e. The position of the origin
O20 linked to the hand w.r.t. the origin O16 linked to the
head is 16P20 = (−L8

2 ,−2L10
3 ,−L7

2 )R16 , where L7, L8, and L10
are respectively the trunk length, the lateral distance between
the head and shoulder joint center, and forearm length.

FIG. 2 –. The six variables determining the locomotor system configuration
at DS: four variables for pelvis situation w.r.t. the stance foot, and two
parameters for step length and width.

2) Cost functional: The gait energy dissipated over the GC
is minimized in this process. Then we define a sthenic criterion
for each step labeled j, of period Tj and length d j, based on
joint torques values [28]:

CΓ, j =
1
d j

ˆ Tj

0
Γ j(t)>Γ j(t) dt (9)

TAB. I –
Optimization variables corresponding to the step labelled j, j=1,2 and to N

intermediate time knots. (S): Swinging mode, (T): Texting mode.

Number of variables
Set of variables (S) (T)

q j(ti, j), i=1,. . . ,N: Intermediate configurations 19N 16N
q̇ j(Tj): Joint velocities just before the impact 19 16
(p1, j,p2, j,p3, j): Hips center position in initial DS 3 3
p4, j: Initial pelvis orientation in the sagittal plane 1 1
q j,arm(t = 0): Arms configuration in initial DS 6 3

where Γ j is the vector of joint torques during the step j. The
energetic cost function of the stride CΓ can be expressed in
function of both steps criteria CΓ,1 and CΓ,2 as follows:

CΓ = SSI ·CΓ,1 +(1−SSI) ·CΓ,2 (10)

Another performance criterion quantifies the trunk’s deviation
from upright position [29] over the stride’s duration:

CUT P =

ˆ T

0
(PO16(t)−PO7(t)) ·g dt (11)

where PO16 is the cartesian position of the trunk’s upper
extremity, PO7 is the cartesian position of the hips middle
point, and g is the gravity vector. Consequently, the cost
functional for a stride is given by:

C f =CΓ +ρ ·CUT P (12)

where ρ > 0 is a penalty factor.
3) Constraints: To obtain human-like walking patterns, the

following constraints are imposed:
– Each joint must not exceed its biomechanical limits on

position, velocity and torque;
– In SS, constraints on the swing foot position are imposed

in order to avoid collision with the ground or with the
support leg;

– To satisfy unilateral contact between the support foot and
the ground, Zero Moment Point (ZMP) is constrained
within the support polygon defined by the four corners
of the stance foot, during SS phases;

– Ground reaction of the stance foot in SS and the impact
forces of the landing foot at instantaneous DS are
constrained inside a friction cone of a coefficient µ to
avoid slipping, and must be directed upward to avoid
take-off;

– The inertial and gravity force (IGF) moment about the
ZMP is given by:

YIGF =
ns

∑
i=1

(pi
COM−pZMP)×mi(g−ai

COM) (13)

where pZMP is the ZMP position, pi
COM and ai

COM
are the ith segment’s COM position and acceleration,
respectively, g is the gravity vector, mi is the ith segment’s
mass, ns is the number of body segments.
In order to generate contralateral swing of the arms, the
Zero Yawing Moment (ZYM) constraint [29] keeps the
resultant yawing component (in the vertical (x) direction)
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under a small upper bound of magnitude (=0.1 N.m in
this study).

– For texting mode, additional constraint keeps the same
distance between the carried mass and the head.

IV. EXPERIMENTATIONS

A. Experimental setup
1) Equipment: Two ULISS devices [30] and two PERSY

systems [31] designed by IFSTTAR-GEOLOC Laboratory are
used for data collection. Each ULISS device contains a nine-
DOF inertial and magnetic unit, a high sensitivity GNSS
receiver, a battery, and a memory card. It weights 129 g which
is approximately the mass of a smartphone. Raw inertial data
are collected at 200 Hz frequency. During trials, one ULISS
device is held in hand by the subject while the other one is
attached to the rear of the belt (cf. Fig. 3).

PERSY systems has been designed for reference positioning
in indoor environments. For this task, they must be attached
to both feet (cf. Fig. 3). They are lightweight, wireless, and
comprise an internal logging system and a battery. To obtain
the best possible position using MEMS technology, three
inertial and GNSS sensors running at 160 Hz are embedded
in each PERSY: a high precision IMU STIM300 with a gyro
ranging up to 800 /̊s, a magnetometer HMC5983, and an M8T
GNSS receiver. All devices have GNSS running at 5 Hz and
autonomy of four hours. All data are timestamped using GPS
time.

(a) (b) (c)
FIG. 3 –. Placement of different devices during walking trials: (a) PERSYs;
(b) ULISS 1; (c) ULISS 2.

2) Environment: Experiments took place at the site of
IFSTTAR institute in Bouguenais, France. Walking tests were
performed indoor in a 55m-long hall, in one of the site’s
buildings. Before each acquisition, magnetometers calibration
in outdoor is needed, as well as a static phase of about
one minute to get GPS time for data synchronization. Data
collection lasts about 30 minutes.

B. Subject and scenarios
One healthy 26-year old volunteer participated in data

collection. The subject’s height is 1.6 m, and he weighs 58
kg.

The following device carrying modes were tested for
straight walking scenarios (cf. Fig. 4):

– Swinging mode (S1): the subject is walking with freely
swinging arms, and handling ULISS 1 in the right hand;

(a) (b)
FIG. 4 –. Tested device carrying modes: (a) Swinging; (b) Texting.

– Texting mode (T): the subject is asked to walk
while watching the device in hand so that right arm
configuration is comfortable for texting or reading;

– Swinging mode (S2): the same as (S1), however an
additional mass is taped to ULISS 1 (cf. Fig. 5) and the
total handled mass is 627 g;

FIG. 5 –. The additional mass taped to ULISS device.

Each walking scenario was performed at three walking
speeds: comfortable (V2), slow (V1) and fast (V3) speeds. These
different speeds were self-selected by the participant relative
to his comfortable pace. To avoid any order effects, the subject
was free to select speeds order and the order of carrying modes
within the same gait speed. For each speed/carrying mode
combination, the participant walked twice along the hall, back
and forth between the start and the end of the walkway. The
trials were separated by static phases of 10 s. The subject was
instructed to maintain the same speed and a straightforward
direction during each trial.

C. Experimental extraction of selected gait features

For each walking condition, selected gait features were
calculated for 25 consecutive strides centered in trials time
interval i.e. out of acceleration/deceleration phases. Since there
are two walks by condition, i.e. back and forth, gait features
are averaged over 50 strides.

1) Extraction of displacement features: To extract the
characteristics of each stride, step events need to be detected
for both feet. For this purpose, ZVD (Zero velocity detection)
method [32] was applied to PERSYs specific force in the
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navigation frame NED (North-East-Down). Specific force
is projected in NED using MAGYQ algorithm [33] that
estimates attitude angles of the IMU in the navigation frame.
ZVD method calculates variance on a sliding window on
acceleration signal, then compares it to a threshold to get the
period when the foot is stationary. The detected step events
correspond, for each foot, to the end of flat foot phase. The
variance threshold and the width of the sliding window are
adapted so that there is no under/over detection of steps.
The sliding window is wider for lower gait speeds, and the
variance threshold increases for higher gait velocities. Note
that the same values of width and threshold are used for a
given subject/gait speed combination, regardless the carrying
mode.

Once steps are detected, average temporal characteristics
were determined for each walking condition. Step instants
were used to calculate strides durations. Since there was no
difference in mean values between left and right steps, stride
duration was calculated in terms of the mean values for both
feet. Relative durations between right and left steps detections
were used to calculate TSI indexes.

A developed software was used to calculate reference
trajectories of both feet w.r.t. a base station located in
the test site, based on data collected with each PERSY.
Novel data fusion algorithms are used to obtain trajectories
with drift errors less than 0.5%, based on results found in
[31]. These trajectories allow to obtain footprints coordinates
corresponding to step instants. Stride length was calculated
from distances between each two consecutive footprints,
averaged on both feet. Then, gait velocity was determined
from mean stride length and duration. Using relative positions
of right footprints w.r.t. to left footprints, as well as walking
direction proper to each stride, step width values and SSI
indexes were calculated.

2) Extraction of acceleration profiles: Due to the
cyclostationary nature of steady gait, a segmentation of inertial
data is conducted in order to calculate averaged patterns
that can be compared with profiles generated by simulation.
Acceleration signals collected from different devices can be
synchronized and divided into GCs. One GC lasts from the
beginning of left rotation subphase about the toe until the end
of next flat foot phase of the same foot (cf. Fig. 6). GCs time
intervals are then defined between successive step events of
the left foot. Perturbations caused by small variations in gait

FIG. 6 –. The subdivisions of GC [24].

velocity can result in temporal variations in walking patterns.
First, the lengths of extracted GCs are normalized to the
mean length, while preserving the same shape of each signal
pattern. Spline interpolation is used for this normalization.
Second, an optimal matching of stride-specific profiles is
needed since alignment impacts the temporal shape of the
averaged pattern. Progressive cycle alignment is performed by
dynamic time warping (DTW) approach [34] so that amplitude
attenuation and phase shift are avoided for aligned signals.
Then, acceleration signal pattern is obtained by averaging the
aligned profiles.

V. RESULTS

Preliminary results show a difference in magnitude
between signals from experiments and simulation due to
the simplifying assumptions considered in the model, then a
qualitative evaluation of our simulation results is conducted.
This evaluation includes comparison with experimental data
based on normalized acceleration patterns corresponding to
the speed/carrying mode combination V2/(S1), as well as
variation tendencies of some acceleration items across walking
scenarios. Normalized signals are obtained by dividing each
signal by its maximum value throughout the GC.

A. 3D acceleration of the feet
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FIG. 7 –. 3D acceleration profile of the right (blue) and left (red) foot during
a GC for the walking condition V2/(S1): (a) experimental data, (b) simulation
data. The dashed lines indicate SS phases.

Fig. 7 shows 3D acceleration profiles of both feet for
experimentation and simulation. For both cases, two main
peaks of acceleration are observed in SS: the first occurs at
initial swing (about 30% of SS) serving as a base for swinging
leg advancement, and the second occurs at the landing foot IC
with the ground which marks the end of SS. For simulation,
there is an abrupt transition from peak acceleration to zero at
the impact instant because the DS is considered instantaneous.
In contrast, this transition is smooth in experimental signal due
to heel rotation of the front foot in DS. A smaller acceleration
peak is observed in simulation (around 70% of SS) as a result
of foot deceleration for preparation of flat foot contact with
the ground.

For both simulation and experiments, peak values of
acceleration profiles significantly increase with the gait
velocity, and within the same velocity, there is no significant
impact of carrying mode on these values.
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FIG. 8 –. Vertical acceleration profile of the COM during a GC for the
walking condition V2/(S1): (a) experimental data, (b) simulation data. The
black dashed lines indicate DS phases, and red dashed lines indicate impact
instants.
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FIG. 9 –. The peak-trough differences of COM vertical acceleration for
different walking conditions: (a) experimental data, (b) simulation data.

B. COM’s vertical acceleration

Similar shapes of COM’s vertical acceleration profiles are
obtained for simulation and experimental cases (cf. Fig. 8).
In experiments, two peaks occur in each DS corresponding to
front foot heel rotation and rear foot rotation about the toe. For
simulation, peaks occur at initial and final subphases of SS.
Differences in peaks values are mainly due to the difference
between joint velocities and accelerations before and after the
instantaneous impact. In both experimentation and simulation,
the negative peak amplitude is about half of the positive one.

Fig. 9 shows the differences between peak and trough
values of COM vertical acceleration for different walking
conditions. Our simulator provides the same variation trend in
terms of gait velocity as in experimentation. Within the same
device carrying mode, the peak-trough difference significantly
increases with walking speed. For a given walking velocity,
differences in vertical acceleration items are mainly due to
differences between step length values.

C. Hand’s 3D acceleration

For swinging mode scenarios, experimental data show that
peaks of 3D acceleration of the hand occur in DS phases (cf.
Fig. 10). In simulation, maximum values of 3D acceleration
are obtained just after the impact instants. In both experiments
and simulation, minimum acceleration values occur in SS
phases during arm swing motion.
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FIG. 10 –. 3D acceleration profile of the hand during a GC for the walking
condition V2/(S1): (a) experimental data, (b) simulation data. The black
dashed lines indicate DS phases, and red dashed lines indicate impact instants.
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FIG. 11 –. RMS values of hand’s 3D acceleration for different walking
conditions: (a) experimental data, (b) simulation data.

Root mean square (RMS) values of hand’s 3D acceleration
for different walking scenarios are shown in Fig. 11. A slight
decrease of the RMS value is observed for the mode (S2)
compared to (S1) because of the additional mass carried by
the hand. This difference in RMS value is more remarkable
in simulation data since the additional mass considerably
decreases the optimal swing magnitude of the loaded arm
during GC. In addition, both data show a significant decrease
of RMS levels for the mode (T) w.r.t. swinging modes as a
result of the constrained arm configuration. Both results show
that, within the same carrying mode, RMS value increases in
function of the gait velocity.

VI. CONCLUSION AND FUTURE WORK

For indoor positioning, PDR is the most used strategy when
it comes to estimate pedestrian position from inertial data
sensed by handheld devices. In PDR process, step length is
estimated using parametric models taking into account some
physiological parameters of the user, displacement features and
acceleration statistical properties. These models are suitable
for the common human gait, and alterations of gait pattern
induced by irregular motions lead to increased positioning
error at each step. Consequently, frequent adjustment of step
length models coefficients is required. This calibration needs
large experimental database that characterizes inter/intra-
subject variation of human gait parameters. The collection
of such a database is costly in terms of time and effort
since it should include as many gait-impacting factors as
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possible, which highly increase the number of measurement
trials. In this paper, we aim to introduce a human gait
simulator based on a multibody system in order to provide
a simpler way to generate human locomotion database. To
evaluate our simulator, simulation outputs were compared
with overground walking data collected with one test subject.
Despite the simplifying assumptions considered in simulation,
preliminary results showed similarities between acceleration
profiles related to different body parts. Furthermore, the same
variation tendencies of some acceleration items as function of
carrying mode and gait velocity are observed for both data.
Based on these results, our simulator stands useful for finding
correlations between acceleration signals and displacement
characteristics, and more accurate calibration of step length
models is foreseen.

Future work will mainly be dedicated to introducing DS
phases in GC definition in order to obtain shapes and
amplitudes of acceleration profiles closer to those of real
walking. Validation with experimental data of several subjects
is also targeted in order to qualify the model’s capability of
coping with gait pattern variability.
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