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Abstract

This paper presents a simulation framework called UNIF (Unified Numerical Integration Frame-
work) to design numerical integration models, i.e. models mainly ruled by ordinary differential
equations. We describe the object-oriented structure of UNIF, which allows to model a system as
a hierarchical aggregation of subsystems interacting together, each one having a set of inputs, out-
puts and integration variables that are involved in a set of equations. The use and the advantages
of this framework are illustrated on a full biological model, called GEMINI (Grassland Ecosystem
Model with INdividual-centered Interactions), that simulates the life of populations of grassland
plants competing for light and soil resources.

Keywords: simulation, modeling, numerical integration, object-oriented framework.

Résumé

Cet article présente un cadriciel de simulation appelé UNIF(Unified Numerical Integration Fra-
mework) pour concevoir des modèles à intégration numérique, i.e. des modèles principalement
gouvernés par des équations différentielles ordinaires. Nous décrivons la structure orientée ob-
jet d’UNIF, qui permet de modéliser un système comme une agrégation hiérarchique de sous-
systèmes interagissant entre eux, chacun ayant un ensembled’entrées, de sorties et de variables
d’intégration qui sont impliquées dans un ensemble d’équations. L’utilisation et les avantages de
ce cadriciel sont illustrés sur un modèle biologique complet, appelé GEMINI (Grassland Ecosys-
tem Model with INdividual-centered Interactions), qui simule la vie de populations de plantes de
prairie en compétition pour des ressources de lumière et du sol.

Mots clés :simulation, modélisation, intégration numérique, cadriciel orienté objet.
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Abstract

This paper presents a simulation framework called UNIF (Unified Numerical Integration
Framework) to design numerical integration models, i.e. models mainly ruled by ordinary
differential equations. We describe the object-oriented structure of UNIF, which allows to
model a system as a hierarchical aggregation of subsystems interacting together, each one
having a set of inputs, outputs and integration variables that are involved in a set of equations.
The use and the advantages of this framework are illustratedon a full biological model, called
GEMINI (Grassland Ecosystem Model with INdividual-centered Interactions), that simulates
the life of populations of grassland plants competing for light and soil resources.

keywords: simulation, modeling, numerical integration, object-oriented framework.

Introduction

The UNIF framework (Unified Numerical Integration Framework) presented in this paper pro-
poses a generic structure to design and simulate numerical models. More precisely, we consider
here models that can be expressed as sets of ordinary differential equations [2]. In this paper, we
call such modelsnumerical integration models.

Many tools exist to design this kind of models: Simulink-MATLAB, ACSL Sim, Simscript...
However they seldom propose an object-oriented approach, which is necessary when developing
huge models such as GEMINI (Grassland Ecosystem Model with INdividual-centered Interac-
tions) that will be used here to illustrate the functionalities ofthe UNIF framework. Object-
orientation allows to provide a flexible structure that eases the specialization of models, the acti-
vation / deactivation of submodels, the coupling of models...

The UNIF framework is based on a fully object-oriented structure. It has been developed
with the C++ language since 2004, and allows to design a modelruled by ordinary differential
equations using the classical relationships of the object-oriented paradigm (mainly inheritance
and composition).

Moreover, it is difficult to model a large system with differential equations only, as proposed
in many tools, and it may be necessary to express some aspectsof the system with discrete events.
The UNIF framework is able to deal with these discrete events, while centered on continuous
simulation: events can be triggered before and after each integration step.

Some classical functionalities of numerical integration tools are still necessary, such as a con-
trol on the variables of a model (e.g. negativity or divergence check), and the possibility to change
the integration method (Euler, Runge-Kutta... [7]) to simulate the evolution of a system ruled by
ordinary differential equations.

Section 1 presents an overview of the structure of the UNIF framework. Section 2 briefly
introduces the GEMINI model, which will be used all along thepaper to illustrate the functional-
ities of the framework. This is a model that simulates the life of populations of grassland plants
competing for light and soil resources. Section 3 shows how to design a single model, i.e. without
submodels. The specific structure of a model in the UNIF framework can thus be presented, and
the simulation process can be described. Section 4 explainshow to design a complex model, i.e.
with submodels interacting together. A more precise view ofthe simulation process can thus be
described. Section 5 presents briefly the graphical user interface of the UNIF framework. Finally,
a conclusion summarizes the advantages of the UNIF framework from our GEMINI experience,
and also presents some drawbacks and issues that must be addressed in a near future.
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1 Overview of the UNIF Framework

The UNIF framework provides a generic object-oriented platform written in C++. The core pack-
age, the numerical integration simulator, is a set of classes that can be extended to develop new
models. It is possible to design visual simulation through aset of abstract classes that represents
the graphical interface of the application (Figure 1). Several implementations of this graphical
interface can be provided, but only a Windows interface has been developed yet, with the Borland
C++ Builder environment.

Figure 1:Structure of the UNIF framework.

The graphical interface can also integrate a user interface, i.e. a model can be parameterized,
simulated and analyzed through this interface. For this purpose, an intermediate component called
controller has been designed to handle the models. Only those registered to this controller can be
managed by a user interface.

This structure of the UNIF platform makes the simulator package and the models independent
of any graphical user interface. They have been designed to be fully portable and have been tested
yet on several platforms: Borland C++ Builder (Windows) andGCC compilers (Cygwin, Linux...).
A command-line user interface has also been developed in order to deploy a simulation experiment
on a cluster or a grid.

2 The GEMINI Model

The GEMINI model aims at representing the life of populations of grassland plants that compete
for light and soil resources, under external actions related to human activity like fertilizing, grazing
of animals, cutting... GEMINI is the coupling of previous models: Soilopt and Canopt, both
developed by theGrassland Ecosystem Researchteam (FGEP) of the INRA French institute.

Soilopt has been developed since 1998. It models a soil and its microbial population with
compartments (9 organic and 3 mineral ones). These compartments represent amounts of vari-
ous matters in the soil. The fluxes of carbon and nitrogen exchanged between the compartments
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are ruled by differential equations [6]. More recently, this model considers thepriming effect:
fresh organic matter resulting from plant death allows microbes to get more energy, and thus, to
decompose the organic matter inside the soil [3].

Canopt has been developed since 1996. It models one or more populations of plants that com-
pete for resources. The model simulates a mean individual for each population, with compartments
for various matters in the plant [9, 10]. The aerial part (theshoots) of the plant is detailed: the
growth and senescence of each leaf is considered, as well as its geometry, to get precise photo-
synthesis representation for the competition for light (Figure 2a). The roots of the plant are also
detailed (Figure 2b), to get more precise representation ofthe plant uptake in the soil.

Figure 2:Screenshot of a plant simulation with UNIF.

More recently, since 2004, the Canopt and Soilopt models have been coupled to form the
GEMINI model. The basic plant representation in Soilopt is now replaced by Canopt, and re-
versely, the basic soil representation in Canopt is now replaced by Soilopt [8]. Moreover, modules
representing human activity on the plant populations have been introduced, such as cutting, i.e.
removing parts of the leaves from the plants at given dates (Figure 2c).

3 Designing a Single Model

The full GEMINI model has presently around 460 equations, which means that some sophisticated
structure is necessary to get a maintainable and evolutive model. Object-orientation has been
chosen to design the UNIF platform, and is underlying in the development of models with this
framework. From now on, the UML 2.0 language [5] will be used to describe the structure of
UNIF with class diagrams.

This section presents how to design a single model with UNIF,which means a model that is
not decomposed into submodels. The mineral nitrogen compartment of a soil, as it is defined in
the Soilopt model, has been chosen as an illustration here, which allows us to introduce first the
fundamental functionalities of UNIF. This compartment represents, at timet, an amountNmin(t)
of mineral nitrogen, which can vary by many means (Figure 3):
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• Fertilizing, which provides a quantityNin(t) of mineral nitrogen to the soil.

• A mineralization process in the soil, which provides a quantity DM(t) of mineral nitrogen.

• An immobilization process in the soil, which takes up a quantity DI(t) of mineral nitrogen.

• Denitrification and leaching processes, which take up respectively the quantitiesNden(t)
andNleach(t) from the soil.

• Plants absorption, which takes up a quantityNupt(t) of mineral nitrogen from the soil.

Figure 3:Fluxes of the mineral nitrogen compartment.

The equation that rules the mineral nitrogen compartment can thus be formulated as follows.

δNmin

δt
= Nin(t) − Nden(t) − Nleach(t) − Nupt(t) + DM(t) − DI(t)

3.1 Model Structure

The UNIF framework considers a model as an object with specific attributes (Figure 4):param-
eters that are inputs for the model, they can be either constant or variable (read from a file);
integration variablesthat are the variables ruled by differential equations, they can be either in-
ternal (they are not meant to be visible from outside) or an output of the model;resultsthat trace
the evolution of the output variables of the model; andoptions to select, activate / deactivate...
functionalities of the model.

Figure 4:Specific attributes of a model with UNIF.
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In our simplistic example, we assumeNin, Nden, Nleach, Nupt, DM andDI to be constant,
which means they will be considered as constant parameters of the model in the UNIF framework.
The only integration variable of the model isNmin, which will also be the only output. To create
this model in the UNIF framework, it is necessary to create a new class, calledMineral for in-
stance, that inherits from theModel superclass provided by UNIF. In this new class, we define the
attributesNin, Nden, Nleach, Nupt, DM andDI of classConstantParameter, corresponding
to the parameters of the model; the attributeNmin of classOutputVariable, corresponding to
the integration variable of the model; and the attributeresNmin of classResult, corresponding
to the output of the model. Here is partially the associated C++ source code.

class Mineral : public Model {
protected: ConstantParameter Nin;
protected: ConstantParameter Nden;
protected: ConstantParameter Nleach;
protected: ConstantParameter Nupt;
protected: ConstantParameter DM;
protected: ConstantParameter DI;
protected: OutputVariable Nmin;
protected: Result resNmin;
...
};

These attributes will be initialized in the constructor of the class. Mainly, they will be given
a name, a comment to explain their function, sometimes a unit... (Figure 5). These informations
will be used by the simulator and the user interface. Notice that the initial value of the integration
variables is not set in the constructor, but during the initialization step of the simulation, as it will
be explained later.

Figure 5:TheAttribute class of UNIF, and its subclasses.
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3.2 Simulation Sequence

The simulation of a numerical integration model consists inthe integration of variables described
by differential equations. For the mineral nitrogen compartment, its simulation means computing,
for each time stepT , the valueNmin(T ).

Nmin(T ) =

∫ T

T0

δNmin

δt
dt + Nmin(T0)

The integration is discretized using known methods like Euler, Runge-Kutta... The Euler
method assumes a constant derivative between two successive time stepsT andT + ∆T .

Nmin(T + ∆T ) = Nmin(T ) + ∆T ×

δNmin

δt
(T )

The4th-order Runge-Kutta method attempts to correct the error made with the Euler method
through a more sophisticated computation, which requires 4derivatives(ki)i=1..4 of the function
at different points [7].

Nmin(T + ∆T ) = Nmin(T ) + ∆T ×

k1 + 2k2 + 2k3 + k4

6

Independently of the integration method, it appears that the evolution of the integration vari-
ables is reduced to the computation of their derivatives. Thus, the UNIF simulator will automat-
ically simulate a model from the derivatives of its integration variables: each model must have a
method namedderivate() where to find the code to compute the derivatives. More precisely,
the simulation process is decomposed into five steps for eachmodel (Figure 6).

Figure 6:TheModel class of UNIF.

• Initialization: The simulator calls theinitialize() me-
thod of the model. It initializes the integration variablesof
the model, thus describing the initial state of the simulated
system.

• Pre-integration: Before each integration step, the simulator
calls thepreIntegrate()method of the model. The state
of the system can be checked to trigger discrete events, e.g.
the birth of a new leaf in a plant model.

• Integration / Derivation: At each integration step, the sim-
ulator calls thederivate() method of the model. From
the derivatives of the variables of the model, the integration
method will compute the new state of the variables. Notice
that depending on the integration method, thederivate()

method can be called several times in a same integration
step.

• Post-integration: After each integration step, the simulator
calls thepostIntegrate() method of the model. The
state of the system can be checked to trigger discrete events.

• Termination: The simulator calls theterminate() me-
thod of the model. It terminates the simulation of the model.
For instance, treatments can be performed on the data col-
lected during the simulation.
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For the mineral nitrogen compartment, the code of thederivate() method is simply:

void Mineral::derivate(void)
{ Nmin.setDerivative(Nin - Nden - Nleach - Nupt + DM - DI); }

4 Designing a Complex Model

This section presents how to design a complex
model with UNIF, which means a model that is
decomposed into submodels. We propose to con-
sider the whole GEMINI model as an illustration.
As mentioned previously, this model is the cou-
pling of two models: Canopt and Soilopt. These
models are also complex models and they are
coupled in GEMINI with other models: an envi-
ronmental model and management models (fer-
tilizing, grazing and cutting) (Figure 7). Figure 7:Structure of the GEMINI model.

The overall structure of GEMINI only illustrates the composition relationship that can exist
between models. Moreover, the relationship is always static in this example. The Canopt model
presents other relationships, like inheritance and dynamic composition. Figure 8 details the struc-
ture of Canopt.

Figure 8:Structure of the Canopt model.

The model can simulate several populations of plants, and each plant model can have shoots
and/or roots submodels. These models are also respectivelycomposed of leaf and root submodels.
These models represent elements that will be born during thesimulation, and will probably die
before the end of the simulation. Leaf and root models will thus be created during the simulation
process. Canopt can model various kinds of plants, but only two families of plants have been
designed yet: grasses and legumes. The models of these families extend the generic plant model.

4.1 Hierarchical Structure

With the UNIF framework, a model is assumed to be potentiallycomposed of other models, called
its children (Figure 9a). This issue is identified as thecompositedesign pattern [4]. There are
many ways to implement this pattern. In the UNIF platform, wechose to design a generic class
that models a hierarchy (i.e. a tree) of elements (Figure 9b).
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Figure 9:Models hierarchy with UNIF.

A classical design of generic tree structure would provide adata structure to store the models.
But we wanted, in UNIF, a generic tree structure that could beextended such that a model can
be a tree of models. That explains the specificity of the generic classTree<T> (Figure 9): a tree
does not contain explicitly subtrees (of classTree<T>), but only elements of typeT. However, it
is implicitly assumed in the design of the generic class thatT is a tree (i.e. of classTree<T>).
Thus, this generic class, instantiated for theModel class, is inherited by theModel class itself.

4.2 Overall Simulation Process

In the UNIF framework, the simulation is controlled by an object of classSimulator. A simu-
lator is actually a model: theSimulator class inherits from theModel class (Figure 10). The
Simulator class has a specific method, calledrun(), that performs and controls all the steps of
the simulation of the model. This method can indifferently use the Euler or Runge-Kutta meth-
ods, or any other integration technique. This functionality has been modeled with the well-known
strategydesign pattern [4].

Figure 10:TheSimulator class of UNIF.
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In a complex model, the simulator will be the top-model, e.g.the GEMINI model in our illus-
tration. Itsrun() method controls the five steps of the simulation of the top-model (as defined in
Section 3.2): initialization, pre-integration, integration / derivation, post-integration, termination.
At each one of these phases, the top-model calls the corresponding phase of its submodels. For in-
stance, the derivation step of GEMINI consists first in the derivation of its own variables, and then
in the derivation (i.e. a call to thederivate() method) of each one of its submodels (Canopt,
Soilopt, environment and management models). Recursively, the derivation step of any submodel
consists in the derivation of its own submodels. Finally, here is an overview of therun() method
of a simulator.

stop = false;
time = startTime;

reserveGraphicalResources();
initializeResults();
restartVariableParameters();
initialize();

while (time < endTime and not stop) {
updateVariableParameters();
preIntegrate();

integrationMethod.run(this); // Calls derivate()
time += step;

checkVariables(negativityThreshold); // Optional
postIntegrate();
}

terminate();
freeGraphicalResources();

Notice that the five simulation steps mentioned previously are recursive, and that other fully
automated and recursive steps may be necessary:

• initializeResults() to prepare the results for data collection;

• restartVariableParameters() to initialize the variable parameters;

• updateVariableParameters() to read the next value of each variable parameter;

• checkVariables() to check whether a variable becomes negative.

The order by which a model derivates its submodels has not been automated yet. This is a
difficult issue, especially when coupling models, that we address in another paper [1]. For instance,
the coupling between Canopt and Soilopt requires a precise order to derivate each integration
variable of both models. In [1], we propose a new prototype ofUNIF with automatic ordering of
the derivation process.

5 Graphical User Interface

A model can provide visual simulation with the UNIF framework (Figure 2). For this purpose,
a set of abstract classes is available, which makes the code of the simulator and the models fully
independent of any graphical user interface (Figure 1).
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A model can ask for a drawing area (of classDrawing) to the simulator model (Figure 11), by
calling itsnewDrawing() method (Figure 10). The simulator delegates then the creation of the
drawing to a manager (of classDrawingManager). The simulator is associated with a manager
during its construction phase (this is the user interface that creates the simulator, providing thus
the manager). Once a model has a drawing area, it is able to perform drawing actions, through
theDrawing interface, that are updated on the screen at the next time step of the simulation. The
drawing areas of each model are created in the recursivereserveGraphicalResources()

method (Figure 6). They are deleted in thefreeGraphicalResources()method.

Figure 11:The drawing interface of UNIF.

Only a Windows interface has been developed yet, with the Borland C++ Builder environment.
This interface allows to activate / deactivate submodels (left of Figure 12a), to modify the value or
the input file of each parameter (right of Figure 12a), to select options (Figure 12b), and after the
simulation, to select results (Figure 13a) for display (Figure 13b) or for export.

Figure 12:Screenshot of a model configuration with UNIF.

Research Report FGEP/RR06-10
Agronomy Research Unit, INRA, Clermont-Ferrand, France, 2006.



11

Figure 13:Screenshot of results display with UNIF.

Conclusion

The UNIF framework allows the design and the simulation of numerical integration models, i.e.
models mainly formulated with ordinary differential equations. The simulator is fully independent
of the integration method, which allows to select the adequate technique for a specific model.
Moreover, the integrity of the variables of a model (mainly their divergence) can be checked at
any step of the simulation. Discrete events can also be introduced in the simulation process:
events can be triggered before and after each integration step.

It is possible to design complex models, structured in a hierarchy of submodels. This struc-
ture is usually static, i.e. it remains the same during the whole simulation, but submodels can
be dynamically added to a model during the simulation (e.g. aplant that produces a new leaf).
The integration process is partially automatic, and is actually able to manage the simulation of a
hierarchy of models. However, further investigations mustbe conducted on:

• How to provide some flexibility in the granularity of the models ? How to replace a
submodel by another one, with the same function, but with a different level of details ? This
implies to think of means to achieve the coupling of models, and more precisely, on means
to represent the interface between two models.

• How to allow the coupling of models ?If we assume that two models have been developed
independently with the UNIF framework, how to make their coupling possible ? The main
difficulty that appears is the reordering of the integrationvariables of both models for the
derivation process.

We propose a new prototype of the UNIF framework that attempts to address these two main
issues [1]. We use the coupling of Canopt and Soilopt as an illustration for these problems, and
present an experiment based on simplified versions of these models to test our prototype.
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