N
N

N

HAL

open science

UNIF: a Simulation Framework for Numerical
Integration Models

Bruno Bachelet, Jean-Francois Soussana, Stéphane Witzmann

» To cite this version:

Bruno Bachelet, Jean-Francois Soussana, Stéphane Witzmann. UNIF: a Simulation Framework for
Numerical Integration Models. [Research Report] FGEP/RR06-10, Unité de Recherche en Agronomie,

INRA. 2006. hal-01997336

HAL Id: hal-01997336
https://hal.science/hal-01997336v1
Submitted on 28 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01997336v1
https://hal.archives-ouvertes.fr

UNIF: a Simulation Framework for Numerical
Integration Models

Bruno Bachelétand Jean-Francgois Soussana
Agronomy Research Unit, INRA
234, Avenue du Brézet, 63100 Clermont-Ferrand, France.

Stéphane Witzmarin
ISIMA, Université Blaise-Pascal
Campus des Cézeaux, BP 10125, 63173 Aubiere, France.

Research Report FGEP/RR06-10
October 31, 2006

Ibachelet@clermont.inra.fr
2spoussana@clermont.inra.fr
Switzmann@poste.isima.fr

Abstract

This paper presents a simulation framework called UNJRified Numerical Integration Frame-
work) to design numerical integration models, i.e. models nyainled by ordinary differential
equations. We describe the object-oriented structure dFRJhhich allows to model a system as
a hierarchical aggregation of subsystems interactingtbegeeach one having a set of inputs, out-
puts and integration variables that are involved in a sefjohttions. The use and the advantages
of this framework are illustrated on a full biological mogdedlled GEMINI Grassland Ecosystem
Model with INdividual-centered Interactiojyshat simulates the life of populations of grassland
plants competing for light and soil resources.

Keywords: simulation, modeling, numerical integration, objecteoted framework.

Résumé

Cet article présente un cadriciel de simulation appelé UNIfified Numerical Integration Fra-
meworl pour concevoir des modéles a intégration numérique, es.modéles principalement
gouvernés par des équations différentielles ordinairesisNIécrivons la structure orientée ob-
jet d’'UNIF, qui permet de modéliser un systéme comme unegagjh hiérarchique de sous-
systémes interagissant entre eux, chacun ayant un ensdiabteées, de sorties et de variables
d’intégration qui sont impliquées dans un ensemble d’égost L'utilisation et les avantages de
ce cadriciel sont illustrés sur un modéle biologique complppelé GEMINI Grassland Ecosys-
tem Model with INdividual-centered Interactigngjui simule la vie de populations de plantes de
prairie en compétition pour des ressources de lumiéere ebldu s

Mots clés :simulation, modélisation, intégration numérique, cadtiorienté obijet.

Abstract

This paper presents a simulation framework called UNJRified Numerical Integration
Framewor} to design numerical integration models, i.e. models nyainled by ordinary
differential equations. We describe the object-orientedcture of UNIF, which allows to
model a system as a hierarchical aggregation of subsystasmadting together, each one
having a set of inputs, outputs and integration variablasdhe involved in a set of equations.
The use and the advantages of this framework are illustaatedfull biological model, called
GEMINI (Grassland Ecosystem Model with INdividual-centered bat&ong, that simulates
the life of populations of grassland plants competing fgihfiand soil resources.

keywords: simulation, modeling, numerical integration, objectemtied framework.

Introduction

The UNIF framework nified Numerical Integration Framewarlpresented in this paper pro-
poses a generic structure to design and simulate numermaélsn More precisely, we consider
here models that can be expressed as sets of ordinary diffdrequations [2]. In this paper, we
call such modelsiumerical integration models

Many tools exist to design this kind of models: Simulink-MAAB, ACSL Sim, Simscript...
However they seldom propose an object-oriented approalichvis necessary when developing
huge models such as GEMING(assland Ecosystem Model with INdividual-centered buter
tions) that will be used here to illustrate the functionalitiestbé UNIF framework. Object-
orientation allows to provide a flexible structure that eabe specialization of models, the acti-
vation / deactivation of submodels, the coupling of models.

The UNIF framework is based on a fully object-oriented dinte. It has been developed
with the C++ language since 2004, and allows to design a modled by ordinary differential
equations using the classical relationships of the olmaented paradigm (mainly inheritance
and composition).

Moreover, it is difficult to model a large system with diffet@l equations only, as proposed
in many tools, and it may be necessary to express some agpdutssystem with discrete events.
The UNIF framework is able to deal with these discrete eyentsle centered on continuous
simulation: events can be triggered before and after edebriation step.

Some classical functionalities of numerical integratioal$ are still necessary, such as a con-
trol on the variables of a model (e.g. negativity or diveiggenheck), and the possibility to change
the integration method (Euler, Runge-Kutta... [7]) to datel the evolution of a system ruled by
ordinary differential equations.

Section 1 presents an overview of the structure of the UNdiéwork. Section 2 briefly
introduces the GEMINI model, which will be used all along graper to illustrate the functional-
ities of the framework. This is a model that simulates the &if populations of grassland plants
competing for light and soil resources. Section 3 shows loodesign a single model, i.e. without
submodels. The specific structure of a model in the UNIF fraomk can thus be presented, and
the simulation process can be described. Section 4 exgiaingo design a complex model, i.e.
with submodels interacting together. A more precise viewhefsimulation process can thus be
described. Section 5 presents briefly the graphical userfawe of the UNIF framework. Finally,
a conclusion summarizes the advantages of the UNIF framkefrom our GEMINI experience,
and also presents some drawbacks and issues that must bessdtiin a near future.

Research Report FGEP/RR06-10
Agronomy Research Unit, INRA, Clermont-Ferrand, Fran€8&2

1 Overview of the UNIF Framework

The UNIF framework provides a generic object-orientedfptat written in C++. The core pack-
age, the numerical integration simulator, is a set of ckadisat can be extended to develop new
models. It is possible to design visual simulation througtetof abstract classes that represents
the graphical interface of the application (Figure 1). $alvenplementations of this graphical
interface can be provided, but only a Windows interface leenlileveloped yet, with the Borland
C++ Builder environment.

UNIF
Graphical Interfaces
Numerical Integration Simulator | « uses » «Abstracty || <
(Euler, Runge-Kutta...) Graphical Interface 8 C-++ Builder
Portable C++ Portable C++ =1

? Platform-Dependent C++

Models « uses »
]
GEMINI L2, Controller
Portable C++

Portable C++

Figure 1:Structure of the UNIF framework.

The graphical interface can also integrate a user interfazea model can be parameterized,
simulated and analyzed through this interface. For thipgae, an intermediate component called
controller has been designed to handle the models. Only those registetigis controller can be
managed by a user interface.

This structure of the UNIF platform makes the simulator gagkand the models independent
of any graphical user interface. They have been designee tally portable and have been tested
yet on several platforms: Borland C++ Builder (Windows) &dC compilers (Cygwin, Linux...).
A command-line user interface has also been developed @n todieploy a simulation experiment
on a cluster or a grid.

2 The GEMINI Model

The GEMINI model aims at representing the life of populagiarf grassland plants that compete
for light and soil resources, under external actions rdladiuman activity like fertilizing, grazing
of animals, cutting... GEMINI is the coupling of previous deds: Soilopt and Canopt, both
developed by th&rassland Ecosystem Reseateam (FGEP) of the INRA French institute.

Soilopt has been developed since 1998. It models a soil anahigrobial population with
compartments (9 organic and 3 mineral ones). These com@atsnmepresent amounts of vari-
ous matters in the soil. The fluxes of carbon and nitrogenaxgid between the compartments

Research Report FGEP/RR06-10
Agronomy Research Unit, INRA, Clermont-Ferrand, Fran€8&2

are ruled by differential equations [6]. More recently,stimodel considers theriming effect
fresh organic matter resulting from plant death allows obess to get more energy, and thus, to
decompose the organic matter inside the soil [3].

Canopt has been developed since 1996. It models one or mpuéagions of plants that com-
pete for resources. The model simulates a mean individuabfth population, with compartments
for various matters in the plant [9, 10]. The aerial part @heots) of the plant is detailed: the
growth and senescence of each leaf is considered, as wéd gedmetry, to get precise photo-
synthesis representation for the competition for lighg(lfe 2a). The roots of the plant are also
detailed (Figure 2b), to get more precise representatidheoplant uptake in the soil.

7.1 em
16 cm T 4em
413 em \ - Scm : % .
——M
12 crm .
-+ 10cm L
T 16 cm /7/
- Bem S
- 20 cm T \
T 3cm
- 24 cm
10.0 cm
(a) Shoots morphogenesis (b) Roots morphogenesis

71 cm

\

(c) Leaves cutting

Figure 2:Screenshot of a plant simulation with UNIF.

More recently, since 2004, the Canopt and Soilopt modelg l@en coupled to form the
GEMINI model. The basic plant representation in Soilopt ésvrreplaced by Canopt, and re-
versely, the basic soil representation in Canopt is novaggal by Soilopt [8]. Moreover, modules
representing human activity on the plant populations haenhbntroduced, such as cutting, i.e.
removing parts of the leaves from the plants at given datigsi(& 2c).

3 Designing a Single Model

The full GEMINI model has presently around 460 equationsctvimeans that some sophisticated
structure is necessary to get a maintainable and evolutvgem Object-orientation has been
chosen to design the UNIF platform, and is underlying in teeetbpment of models with this

framework. From now on, the UML 2.0 language [5] will be useddescribe the structure of

UNIF with class diagrams.

This section presents how to design a single model with UiNHich means a model that is
not decomposed into submodels. The mineral nitrogen cdmpat of a soil, as it is defined in
the Soilopt model, has been chosen as an illustration hdrehvallows us to introduce first the
fundamental functionalities of UNIF. This compartmentresents, at time, an amountV,,,;,, (t)
of mineral nitrogen, which can vary by many means (Figure 3):

Research Report FGEP/RR06-10
Agronomy Research Unit, INRA, Clermont-Ferrand, Fran€8&

Fertilizing, which provides a quantity¥;,, () of mineral nitrogen to the soil.

A mineralization process in the soil, which provides a qitand M (¢) of mineral nitrogen.

An immobilization process in the soil, which takes up a qirgrD 7 (¢) of mineral nitrogen.

Denitrification and leaching processes, which take up ais@y the quantitiesVye, (¢)
and Njeqer(t) from the soil.

Plants absorption, which takes up a quantity,:(¢) of mineral nitrogen from the soil.

Fertilizing
N m (l)
Mineralization
DM (t)
Mineral Nitrogen
Compartment
N min (l)
\} Immobilization
DI (t)
Denitrification Leaching Plants Uptake
N () N teaen(t) Nt)

Figure 3:Fluxes of the mineral nitrogen compartment.

The equation that rules the mineral nitrogen compartmeamttuas be formulated as follows.

ot

= Nin(t) — Naen(t) — Nieach(t) — Nupe(t) + DM (t) — DI(t)

3.1 Model Structure

The UNIF framework considers a model as an object with sgeatfributes (Figure 4)param-
etersthat are inputs for the model, they can be either constantadale (read from a file);
integration variableghat are the variables ruled by differential equationsy tten be either in-
ternal (they are not meant to be visible from outside) or aputuof the modelyesultsthat trace
the evolution of the output variables of the model; apdionsto select, activate / deactivate...
functionalities of the model.

| ConstantParameter ‘
parameters x| « abstract »
Parameter ‘
| VariableParameter ‘
} InternalVariable ‘
variables «| «abstract »
Variable ‘
| OutputVariable ‘
ient——= Option |

results * Result traces >

Figure 4:Specific attributes of a model with UNIF.

Research Report FGEP/RR06-10
Agronomy Research Unit, INRA, Clermont-Ferrand, Fran€8&2

In our simplistic example, we assumé,,, Nyen, Nieach» Nupt, DM and DI to be constant,
which means they will be considered as constant paramedttre model in the UNIF framework.
The only integration variable of the model§,,;,,, which will also be the only output. To create
this model in the UNIF framework, it is necessary to createw olass, called/ ner al for in-
stance, that inherits from thebdel superclass provided by UNIF. In this new class, we define the
attributesNi n, Nden, NIl each, Nupt , DMandDl of classConst ant Par anet er, corresponding
to the parameters of the model; the attribhteé n of classQut put Vari abl e, corresponding to
the integration variable of the model; and the attribude N n of classResul t , corresponding
to the output of the model. Here is partially the associateéd §burce code.

cl ass M ner al public Model {

prot ected: ConstantParanmeter N n;
prot ected: Constant Paraneter Nden;
prot ected: ConstantParaneter N each;
prot ected: Constant Paraneter Nupt;
prot ected: Constant Parameter DM

prot ected: ConstantParameter DI;
protected: QutputVariable Nmi n;
protected: Result resNm n;

b

These attributes will be initialized in the constructor loé tclass. Mainly, they will be given
a name, a comment to explain their function, sometimes a. uitigure 5). These informations
will be used by the simulator and the user interface. Noties the initial value of the integration
variables is not set in the constructor, but during thedlitation step of the simulation, as it will
be explained later.

- ConstantParameter
Attribute
X « abstract » # default : double
#name : String Parameter # value : double
comment : String
e + restart()
unit : String + nextValue()
+ restart()

+ nextValue()

VariableParameter

filename : String
values : list of double
current : integer

+ restart()
+ nextValue()

« abstract »

Variable

OutputVariable

unit : String
value : double
derivative : double

InternalVariable

+ check(threshold : double) : boolean
+ integrate(step : double)

Option Optionltem

‘ items *

name : String
comment : String

+ select(item : integer)

selects >

Result

unit : String
values : list of double

+ store(value : double)

Figure 5:TheAt tri but e class of UNIF, and its subclasses.

Research Report FGEP/RR06-10
Agronomy Research Unit, INRA, Clermont-Ferrand, Fran€@8&2

3.2 Simulation Sequence

The simulation of a numerical integration model consisth&integration of variables described
by differential equations. For the mineral nitrogen conipant, its simulation means computing,

for each time steff’, the valueN,,,;,, (7).

T ,
Npin(T) = / ON. 2 dt + Nopin (To)

o ot

0

The integration is discretized using known methods likeeEuRunge-Kutta... The Euler
method assumes a constant derivative between two sucedissesstepd” andT' + AT.

ot

(1)

The4™-order Runge-Kutta method attempts to correct the erroremth the Euler method
through a more sophisticated computation, which requirdsri/atives(k;);—1. 4 of the function

at different points [7].

Npin(T + AT) =

Nypin(T) + AT x

k1 + 2ko + 2k3 + k4
6

Independently of the integration method, it appears thaetolution of the integration vari-
ables is reduced to the computation of their derivativesusTthe UNIF simulator will automat-
ically simulate a model from the derivatives of its integratvariables: each model must have a
method nameder i vat e() where to find the code to compute the derivatives. More pebgis
the simulation process is decomposed into five steps for mactel (Figure 6).

Model

#id : String
name : String
dynamic : boolean

parameters : list of Parameter
variables : list of Variable

options : list of Option

results : list of Result

reserveGraphicalResources()
freeGraphicalResources()

checkVariables(threshold : double)
initializeResults()

restartVariableParameters()

updateVariableParameters()

+ load(InputStream)
+ save(OutputStream)

+ initialize()

+ prelntegrate()
+ derivate()

+ postintegrate()
+ terminate()

Figure 6:Themdel class of UNIF.

Initialization: The simulator calls thieni ti al i ze() me-
thod of the model. It initializes the integration variabtefs
the model, thus describing the initial state of the simulate
system.

Pre-integration: Before each integration step, the sitoula
calls thepr el nt egr at e() method of the model. The state

of the system can be checked to trigger discrete events, e.g.
the birth of a new leaf in a plant model.

Integration / Derivation: At each integration step, the-sim
ulator calls thederi vat e() method of the model. From
the derivatives of the variables of the model, the integrati
method will compute the new state of the variables. Notice
that depending on the integration method,dbei vat e()
method can be called several times in a same integration
step.

Post-integration: After each integration step, the sitaula
calls thepost I nt egrat e() method of the model. The
state of the system can be checked to trigger discrete events

Termination: The simulator calls theer i nat e() me-

thod of the model. It terminates the simulation of the model.
For instance, treatments can be performed on the data col-
lected during the simulation.

Research Report FGEP/RR06-10

Agronomy Research Unit, INRA, Clermont-Ferrand, Fran€@8&

For the mineral nitrogen compartment, the code ofdéei vat e() method is simply:

void M neral::derivate(void)
{ Nmin.setDerivative(Nin - Nden - N each - Nupt + DM - DI); }

4 Designing a Complex Model

This section presents how to design a complex

model with UNIF, which means a model that is
decomposed into submodels. We propose to con- <&

sider the whole GEMINI model as an illustration. o N |
As mentioned previously, this model is the copt‘a y
pling of two models: Canopt and Soilopt. These
models are also complex models and they are |
coupled in GEMINI with other models: an envi-

ronmental model and management models (fer-

tilizing, grazing and cutting) (Figure 7). Figure 7:Structure of the GEMINI model.

nopt ‘ ‘ Soilopt ‘ ‘ Manag;ment ‘ ‘ Environment ‘

‘ Fertilizing ‘ ‘ Grazing ‘ ‘ Cutting ‘

The overall structure of GEMINI only illustrates the comphias relationship that can exist
between models. Moreover, the relationship is alwayscsiatihis example. The Canopt model
presents other relationships, like inheritance and dyo@minposition. Figure 8 details the struc-
ture of Canopt.

0..1| «abstract » « « abstract »
Shoots ‘ Leaf

«| «abstract »
| Canopt [Plant @

‘ Legume ‘ ‘ Grass F 21T GrassShoots *
? 0"1} LegumeShoots H LegumeLeaf ‘

Figure 8:Structure of the Canopt model.

The model can simulate several populations of plants, ackl piant model can have shoots
and/or roots submodels. These models are also respedtivelyosed of leaf and root submodels.
These models represent elements that will be born duringithalation, and will probably die
before the end of the simulation. Leaf and root models wilkthe created during the simulation
process. Canopt can model various kinds of plants, but embyfamilies of plants have been
designed yet: grasses and legumes. The models of theseefamitend the generic plant model.

4.1 Hierarchical Structure

With the UNIF framework, a model is assumed to be potent@diyposed of other models, called
its children (Figure 9a). This issue is identified as tbempositedesign pattern [4]. There are

many ways to implement this pattern. In the UNIF platform, ¢i@se to design a generic class
that models a hierarchy (i.e. a tree) of elements (Figure 9b)

Research Report FGEP/RR06-10
Agronomy Research Unit, INRA, Clermont-Ferrand, Fran€8&2

T
Tree
children * iy ce<Model>
JZAN

+ addChild(: T) : boolean
+ removeChild(: T) : boolean
+ removeOffspring(: T) : boolean

*

) + begin() : Iterator
children Model +end() : Iterator

+ position(offspring : T) : Iterator

(a) The "composite" design pattern 69

« nested class »

Iterator
(from Tree)

+ operator ++ () : Iterator
+ operator != (: Iterator) : boolean
+ operator * () : T

(b) Implementation of "composite” with genericity

Figure 9:Models hierarchy with UNIF.

A classical design of generic tree structure would providata structure to store the models.
But we wanted, in UNIF, a generic tree structure that couleextended such that a model can
be a tree of models. That explains the specificity of the demtaissTr ee<T> (Figure 9): a tree
does not contain explicitly subtrees (of classe<T>), but only elements of typ&. However, it
is implicitly assumed in the design of the generic class Thiast a tree (i.e. of clas$r ee<T>).
Thus, this generic class, instantiated for kibelel class, is inherited by thigbdel class itself.

4.2 Overall Simulation Process

In the UNIF framework, the simulation is controlled by anetijof classSi nmul at or. A simu-
lator is actually a model: th&i mul at or class inherits from th&bdel class (Figure 10). The
Si mul at or class has a specific method, caltath() , that performs and controls all the steps of
the simulation of the model. This method can indifferentye uhe Euler or Runge-Kutta meth-
ods, or any other integration technique. This functiopdis been modeled with the well-known
strategydesign pattern [4].

< integrates

Model

i _integrationMethod _| « abstract »
Simulator IntegrationMethod

time : double
step : double + run(: Model)

startTime : double

endTime : double

negativityThreshold : double
stop : boolean

Euler RungeKutta4
+ run(: Model) + run(: Model)

+ newDrawing() : Drawing
+ deleteDrawing(: Drawing)

+ run()

Figure 10:Thesi mul at or class of UNIF.

Research Report FGEP/RR06-10
Agronomy Research Unit, INRA, Clermont-Ferrand, Fran€8&2

In a complex model, the simulator will be the top-model, ¢hg. GEMINI model in our illus-
tration. Itsr un() method controls the five steps of the simulation of the togleh¢as defined in
Section 3.2): initialization, pre-integration, intedost / derivation, post-integration, termination.
At each one of these phases, the top-model calls the cordsgpphase of its submodels. For in-
stance, the derivation step of GEMINI consists first in thevdéion of its own variables, and then
in the derivation (i.e. a call to theeri vat e() method) of each one of its submodels (Canopt,
Soilopt, environment and management models). Recursitreyderivation step of any submodel
consists in the derivation of its own submodels. Finallyghis an overview of theun() method
of a simulator.

fal se;
startTi ne;

st op
tine

reserveG aphi cal Resources();
initializeResults();

restart Vari abl eParanet ers();
initialize();

while (tine < endTime and not stop) {
updat eVari abl ePar aneters();
prelntegrate();

i ntegrati onMet hod. run(this); // Calls derivate()
time += step;

checkVari abl es(negativityThreshold); // Optional
postintegrate();

}

term nate();
freeG aphi cal Resources();

Notice that the five simulation steps mentioned previoustyracursive, and that other fully
automated and recursive steps may be necessary:

e initializeResults() toprepare the results for data collection;
e restart Vari abl ePar anet er s() to initialize the variable parameters;
e updat eVari abl ePar anet er s() to read the next value of each variable parameter;

e checkVari abl es() to check whether a variable becomes negative.

The order by which a model derivates its submodels has not @etomated yet. This is a
difficult issue, especially when coupling models, that werads in another paper [1]. For instance,
the coupling between Canopt and Soilopt requires a precider do derivate each integration
variable of both models. In [1], we propose a new prototyp&MfF with automatic ordering of
the derivation process.

5 Graphical User Interface

A model can provide visual simulation with the UNIF frameWwdFigure 2). For this purpose,
a set of abstract classes is available, which makes the ddtle simulator and the models fully
independent of any graphical user interface (Figure 1).

Research Report FGEP/RR06-10
Agronomy Research Unit, INRA, Clermont-Ferrand, Fran€8&2

10

A model can ask for a drawing area (of cl&@sawi ng) to the simulator model (Figure 11), by
calling itsnewDr awi ng() method (Figure 10). The simulator delegates then the oreafi the
drawing to a manager (of clags awi ngManager). The simulator is associated with a manager
during its construction phase (this is the user interfaeg ¢theates the simulator, providing thus
the manager). Once a model has a drawing area, it is able fioripedrawing actions, through
theDr awi ng interface, that are updated on the screen at the next timpekthe simulation. The
drawing areas of each model are created in the recursi¢er veG aphi cal Resour ces()
method (Figure 6). They are deleted in theeeG aphi cal Resour ces() method.

@ asks for drawing >

Simulator

drawingManager

‘
« uses » |

« interface »
DrawingManager

drawings ‘

+ create() : Drawing
+ delete(: Drawing)

< creates A

! « implements »
‘

*

« interface »
Drawing

+ drawLine(...)

+ drawLineTo(...)

+ drawRectangle(...)
+ drawText(...)

‘ BorlandDrawingManager ‘

+ moveTo(...) drawings
+ setBrushColor(...)
*+ setPenColor(... 4——«—{’—"—’3@@@{3{"‘ Borlan(;Drawing ‘

Figure 11:The drawing interface of UNIF.

Only a Windows interface has been developed yet, with théeBdrC++ Builder environment.
This interface allows to activate / deactivate submodels @f Figure 12a), to modify the value or
the input file of each parameter (right of Figure 12a), tocedptions (Figure 12b), and after the
simulation, to select results (Figure 13a) for display (Fégg13b) or for export.

_lo x|
File Simulation Display Help
| Dl2(E[x| Plo|r| &/ 2| |
B Gemini Paiameter | Description [walue urit [Input Data F\Ieﬂ
- Envionment ngl { tverage number of green leaves per asis |35 leat?ans
L@ CutSwad 1 — ! | !
S : nfe Murnber of grawing leaves per axis 13 leat/auis
5 Cang s gl .
%E i 1 Actualipol fact length S (a) Parameters initialization
& 5 hoots [Girass| asll Iit. leaf arealength mult, coef 00143 cmZ leal/cm leaf
? FoatSystem ALb Leal areadlenath power cael. 1.84 no unit
aw/L0 Leaf weightAength mult. coet 000011 |em3 waterfem leaf
Wilb Leal weight/length power coef. 203 no unit B
| |
= |UNIF (& 1o
[Shoats (15
M File Simulation Display Help £

J

o|=E|x| Plo[r| &8 2

Gemini Optian IDaschlion Selected IGroup |
~&§ Ervionment Drawleaves | Draw leaves 7
% Dt Sward ‘Ves Diraw leaves yes Drawleaves (b) Options selection
Bl Canopt
El-ﬁ Grass Mo Do not draw leaves | no Drawleaves
-7 B
‘Shoots {iarass) (grass_shoots) A

Figure 12:Screenshot of a model configuration with UNIF.

Research Report FGEP/RR06-10

Agronomy Research Unit, INRA, Clermont-Ferrand, Fran€@8&

11

_1ol x|
File Simulstion Display Help
| Dl{EIx] plojr| &j8] 3] |
Elzj Gemini Fesult Description Selected Unit =
€ Environment HbGiow Humber of growing leaves no leat
B Cul Sward
< MEbMat Murber of mature leaves] leaf
B Sanoet HES Hurber of [leat
o ﬁ Grass en umber of senescent leaves no el
‘@ Fh Phyllachrone 3} “d
@ FoolSystem ShootRR Achual to potential shool growth ratio | no [no unit]
LoLasttdaturele Length of last mature leaf no cm
crpot Potential shaot grovith na o/aisdday
Sl Specific Leaf Area yes
KT

IShoots {Grass) (gr

4

a5eH

90EH

85541

80E+

75EH

TOEH

B5EH

BOEH

S5E4 h“

S0E4 |

4sE |-

40EH

0

100 200 300 400 500 600 TOD 8O0 @00 A 000
tlday]

5L (Shoots (Grassy imewil

ik T
- .
4

=1olx|

Conclusion

Figure 13:Screenshot of results display with UNIF.

(a) Results selection

(b) Results display

The UNIF framework allows the design and the simulation ahetical integration models, i.e.
models mainly formulated with ordinary differential egoas. The simulator is fully independent
of the integration method, which allows to select the adextechnique for a specific model.
Moreover, the integrity of the variables of a model (mairtigit divergence) can be checked at
any step of the simulation. Discrete events can also beduated in the simulation process:

events can be triggered before and after each integratign st

It is possible to design complex models, structured in aanidry of submodels. This struc-
ture is usually static, i.e. it remains the same during thelevilsimulation, but submodels can
be dynamically added to a model during the simulation (e.glaat that produces a new leaf).
The integration process is partially automatic, and isaltytiable to manage the simulation of a
hierarchy of models. However, further investigations niestonducted on:

e How to provide some flexibility in the granularity of the models ? How to replace a
submodel by another one, with the same function, but witlfardint level of details ? This
implies to think of means to achieve the coupling of modetsl more precisely, on means
to represent the interface between two models.

e How to allow the coupling of models ?If we assume that two models have been developed
independently with the UNIF framework, how to make theirglng possible ? The main
difficulty that appears is the reordering of the integratiamiables of both models for the
derivation process.

We propose a new prototype of the UNIF framework that attertgpaddress these two main
issues [1]. We use the coupling of Canopt and Soilopt as astrifition for these problems, and
present an experiment based on simplified versions of theskelsito test our prototype.

Research Report FGEP/RR06-10
Agronomy Research Unit, INRA, Clermont-Ferrand, Fran€8&2

12

References

[1] Bruno Bachelet, Jean-Christophe Gay, and Vincent Mai@oupling Numerical Integra-
tion Models: Granularity and Computational Sequence. fieeth report, INRA / FGEP,
Clermont-Ferrand, France, 2006.

[2] Francois E. Cellier and Ernesto Kofma@ontinuous System Simulatio8pringer, 2005.

[3] Sébastien Fontaine and Sébastien Barot. Size and Buoatiiversity of Microbe Popu-
lations Control Plant Persistence and Long-Term Soil Garocumulation. InEcology
Letters volume 8, pages 1075-1087. Blackwell Publishing Ltd, 2005

[4] Erich Gamma, Richard Helm, Ralph Johnson, and JohndissDesign Patterns: Elements
of Reusable Object-Oriented Softwareddison-Wesley, 1995.

[5] Object Management Group. Unified Modeling Language: eBsfpucture (Version 2).
http://ww. ong. or g/ cgi - bi n/ doc?pt c/ 2003- 08- 02, 2003.

[6] Pierre Loiseau and Yannick Bergia. Modélisation et datian des flux d’azote et de carbone
dans les sols prairiaux. Technical report, INRA / FGEP, @temt-Ferrand, France, 1998.

[7] William H. Press, Saul A. Teukolsky, William T. Vettenly, and Brian P. Flanneridumerical
Recipes in C - The Art of Scientific Computing, 2nd Editi@ambridge University Press,
1992.

[8] Jean-Frangois Soussana and Jean-Philippe Brassigolérmantation des équations d'in-
terface entre un modéle de sol prairial et un modéle de pegpievégétal. Technical report,
INRA / FGEP, Clermont-Ferrand, France, 2000.

[9] J.F. Soussana, F. Teyssonneyre, and J. Thiéry. Un madgakmique d’allocation basé sur
I'hypothése d’'une co-limitation de la croissance végépaleles absorptions de lumiére et
d’'azote. InFonctionnement des peuplements végétaux sous contraimi@ennementales
pages 87-116. INRA, France, 2000.

[10] J.F. Soussana, F. Teyssonneyre, and J. Thiéry. Un exsdallant les compétitions pour la
lumiéere et pour I'azote entre espéces herbacées a croéssklomale. InFonctionnement des
peuplements végétaux sous contraintes environnemengelges 325-350. INRA, France,
2000.

Research Report FGEP/RR06-10
Agronomy Research Unit, INRA, Clermont-Ferrand, Fran€8&2

