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This paper presents a simulation framework called UNIF (Unified Numerical Integration Framework) to design numerical integration models, i.e. models mainly ruled by ordinary differential equations. We describe the object-oriented structure of UNIF, which allows to model a system as a hierarchical aggregation of subsystems interacting together, each one having a set of inputs, outputs and integration variables that are involved in a set of equations. The use and the advantages of this framework are illustrated on a full biological model, called GEMINI (Grassland Ecosystem Model with INdividual-centered Interactions), that simulates the life of populations of grassland plants competing for light and soil resources.

Introduction

The UNIF framework (Unified Numerical Integration Framework) presented in this paper proposes a generic structure to design and simulate numerical models. More precisely, we consider here models that can be expressed as sets of ordinary differential equations [START_REF] François | Continuous System Simulation[END_REF]. In this paper, we call such models numerical integration models.

Many tools exist to design this kind of models: Simulink-MATLAB, ACSL Sim, Simscript... However they seldom propose an object-oriented approach, which is necessary when developing huge models such as GEMINI (Grassland Ecosystem Model with INdividual-centered Interactions) that will be used here to illustrate the functionalities of the UNIF framework. Objectorientation allows to provide a flexible structure that eases the specialization of models, the activation / deactivation of submodels, the coupling of models... The UNIF framework is based on a fully object-oriented structure. It has been developed with the C++ language since 2004, and allows to design a model ruled by ordinary differential equations using the classical relationships of the object-oriented paradigm (mainly inheritance and composition).

Moreover, it is difficult to model a large system with differential equations only, as proposed in many tools, and it may be necessary to express some aspects of the system with discrete events. The UNIF framework is able to deal with these discrete events, while centered on continuous simulation: events can be triggered before and after each integration step. Some classical functionalities of numerical integration tools are still necessary, such as a control on the variables of a model (e.g. negativity or divergence check), and the possibility to change the integration method (Euler, Runge-Kutta... [START_REF] William | Numerical Recipes in C -The Art of Scientific Computing[END_REF]) to simulate the evolution of a system ruled by ordinary differential equations. Section 1 presents an overview of the structure of the UNIF framework. Section 2 briefly introduces the GEMINI model, which will be used all along the paper to illustrate the functionalities of the framework. This is a model that simulates the life of populations of grassland plants competing for light and soil resources. Section 3 shows how to design a single model, i.e. without submodels. The specific structure of a model in the UNIF framework can thus be presented, and the simulation process can be described. Section 4 explains how to design a complex model, i.e. with submodels interacting together. A more precise view of the simulation process can thus be described. Section 5 presents briefly the graphical user interface of the UNIF framework. Finally, a conclusion summarizes the advantages of the UNIF framework from our GEMINI experience, and also presents some drawbacks and issues that must be addressed in a near future.

Overview of the UNIF Framework

The UNIF framework provides a generic object-oriented platform written in C++. The core package, the numerical integration simulator, is a set of classes that can be extended to develop new models. It is possible to design visual simulation through a set of abstract classes that represents the graphical interface of the application (Figure 1). Several implementations of this graphical interface can be provided, but only a Windows interface has been developed yet, with the Borland C++ Builder environment. The graphical interface can also integrate a user interface, i.e. a model can be parameterized, simulated and analyzed through this interface. For this purpose, an intermediate component called controller has been designed to handle the models. Only those registered to this controller can be managed by a user interface. This structure of the UNIF platform makes the simulator package and the models independent of any graphical user interface. They have been designed to be fully portable and have been tested yet on several platforms: Borland C++ Builder (Windows) and GCC compilers (Cygwin, Linux...). A command-line user interface has also been developed in order to deploy a simulation experiment on a cluster or a grid.

The GEMINI Model

The GEMINI model aims at representing the life of populations of grassland plants that compete for light and soil resources, under external actions related to human activity like fertilizing, grazing of animals, cutting... GEMINI is the coupling of previous models: Soilopt and Canopt, both developed by the Grassland Ecosystem Research team (FGEP) of the INRA French institute.

Soilopt has been developed since 1998. It models a soil and its microbial population with compartments (9 organic and 3 mineral ones). These compartments represent amounts of various matters in the soil. The fluxes of carbon and nitrogen exchanged between the compartments are ruled by differential equations [START_REF] Loiseau | Modélisation et simulation des flux d'azote et de carbone dans les sols prairiaux[END_REF]. More recently, this model considers the priming effect: fresh organic matter resulting from plant death allows microbes to get more energy, and thus, to decompose the organic matter inside the soil [START_REF] Fontaine | Size and Functional Diversity of Microbe Populations Control Plant Persistence and Long-Term Soil Carbon Accumulation[END_REF].

Canopt has been developed since 1996. It models one or more populations of plants that compete for resources. The model simulates a mean individual for each population, with compartments for various matters in the plant [START_REF] Soussana | Un modèle dynamique d'allocation basé sur l'hypothèse d'une co-limitation de la croissance végétale par les absorptions de lumière et d'azote[END_REF][START_REF] Soussana | Un modèle simulant les compétitions pour la lumière et pour l'azote entre espèces herbacées à croissance clonale[END_REF]. The aerial part (the shoots) of the plant is detailed: the growth and senescence of each leaf is considered, as well as its geometry, to get precise photosynthesis representation for the competition for light (Figure 2a). The roots of the plant are also detailed (Figure 2b), to get more precise representation of the plant uptake in the soil. More recently, since 2004, the Canopt and Soilopt models have been coupled to form the GEMINI model. The basic plant representation in Soilopt is now replaced by Canopt, and reversely, the basic soil representation in Canopt is now replaced by Soilopt [START_REF] Soussana | Implémentation des équations d'interface entre un modèle de sol prairial et un modèle de peuplement végétal[END_REF]. Moreover, modules representing human activity on the plant populations have been introduced, such as cutting, i.e. removing parts of the leaves from the plants at given dates (Figure 2c).

Designing a Single Model

The full GEMINI model has presently around 460 equations, which means that some sophisticated structure is necessary to get a maintainable and evolutive model. Object-orientation has been chosen to design the UNIF platform, and is underlying in the development of models with this framework. From now on, the UML 2.0 language [START_REF]Object Management Group[END_REF] will be used to describe the structure of UNIF with class diagrams. This section presents how to design a single model with UNIF, which means a model that is not decomposed into submodels. The mineral nitrogen compartment of a soil, as it is defined in the Soilopt model, has been chosen as an illustration here, which allows us to introduce first the fundamental functionalities of UNIF. This compartment represents, at time t, an amount N min (t) of mineral nitrogen, which can vary by many means (Figure 3):

• Fertilizing, which provides a quantity N in (t) of mineral nitrogen to the soil.

• A mineralization process in the soil, which provides a quantity DM (t) of mineral nitrogen.

• An immobilization process in the soil, which takes up a quantity DI(t) of mineral nitrogen.

• Denitrification and leaching processes, which take up respectively the quantities N den (t)

and N leach (t) from the soil.

• Plants absorption, which takes up a quantity N upt (t) of mineral nitrogen from the soil. The equation that rules the mineral nitrogen compartment can thus be formulated as follows.

δN min δt = N in (t) -N den (t) -N leach (t) -N upt (t) + DM (t) -DI(t)

Model Structure

The UNIF framework considers a model as an object with specific attributes (Figure 4): parameters that are inputs for the model, they can be either constant or variable (read from a file); integration variables that are the variables ruled by differential equations, they can be either internal (they are not meant to be visible from outside) or an output of the model; results that trace the evolution of the output variables of the model; and options to select, activate / deactivate... functionalities of the model.

Figure 4: Specific attributes of a model with UNIF.

In our simplistic example, we assume N in , N den , N leach , N upt , DM and DI to be constant, which means they will be considered as constant parameters of the model in the UNIF framework. The only integration variable of the model is N min , which will also be the only output. To create this model in the UNIF framework, it is necessary to create a new class, called Mineral for instance, that inherits from the Model superclass provided by UNIF. In this new class, we define the attributes Nin, Nden, Nleach, Nupt, DM and DI of class ConstantParameter, corresponding to the parameters of the model; the attribute Nmin of class OutputVariable, corresponding to the integration variable of the model; and the attribute resNmin of class Result, corresponding to the output of the model. Here is partially the associated C++ source code. These attributes will be initialized in the constructor of the class. Mainly, they will be given a name, a comment to explain their function, sometimes a unit... (Figure 5). These informations will be used by the simulator and the user interface. Notice that the initial value of the integration variables is not set in the constructor, but during the initialization step of the simulation, as it will be explained later. 

Simulation Sequence

The simulation of a numerical integration model consists in the integration of variables described by differential equations. For the mineral nitrogen compartment, its simulation means computing, for each time step T , the value N min (T ).

N min (T ) = T T 0 δN min δt dt + N min (T 0 )
The integration is discretized using known methods like Euler, Runge-Kutta... The Euler method assumes a constant derivative between two successive time steps T and T + ∆T .

N min (T + ∆T ) = N min (T ) + ∆T × δN min δt (T )
The 4 th -order Runge-Kutta method attempts to correct the error made with the Euler method through a more sophisticated computation, which requires 4 derivatives (k i ) i=1..4 of the function at different points [START_REF] William | Numerical Recipes in C -The Art of Scientific Computing[END_REF].

N min (T + ∆T ) = N min (T ) + ∆T × k 1 + 2k 2 + 2k 3 + k 4 6
Independently of the integration method, it appears that the evolution of the integration variables is reduced to the computation of their derivatives. Thus, the UNIF simulator will automatically simulate a model from the derivatives of its integration variables: each model must have a method named derivate() where to find the code to compute the derivatives. More precisely, the simulation process is decomposed into five steps for each model (Figure 6). • Initialization: The simulator calls the initialize() method of the model. It initializes the integration variables of the model, thus describing the initial state of the simulated system.

• Pre-integration: Before each integration step, the simulator calls the preIntegrate() method of the model. The state of the system can be checked to trigger discrete events, e.g. the birth of a new leaf in a plant model.

• Integration / Derivation: At each integration step, the simulator calls the derivate() method of the model. From the derivatives of the variables of the model, the integration method will compute the new state of the variables. Notice that depending on the integration method, the derivate() method can be called several times in a same integration step.

• Post-integration: After each integration step, the simulator calls the postIntegrate() method of the model. The state of the system can be checked to trigger discrete events.

• Termination: The simulator calls the terminate() method of the model. It terminates the simulation of the model. For instance, treatments can be performed on the data collected during the simulation.

For the mineral nitrogen compartment, the code of the derivate() method is simply:

void Mineral::derivate(void) { Nmin.setDerivative(Nin -Nden -Nleach -Nupt + DM -DI); }

Designing a Complex Model

This section presents how to design a complex model with UNIF, which means a model that is decomposed into submodels. We propose to consider the whole GEMINI model as an illustration.

As mentioned previously, this model is the coupling of two models: Canopt and Soilopt. These models are also complex models and they are coupled in GEMINI with other models: an environmental model and management models (fertilizing, grazing and cutting) (Figure 7). Figure 7: Structure of the GEMINI model.

The overall structure of GEMINI only illustrates the composition relationship that can exist between models. Moreover, the relationship is always static in this example. The Canopt model presents other relationships, like inheritance and dynamic composition. The model can simulate several populations of plants, and each plant model can have shoots and/or roots submodels. These models are also respectively composed of leaf and root submodels. These models represent elements that will be born during the simulation, and will probably die before the end of the simulation. Leaf and root models will thus be created during the simulation process. Canopt can model various kinds of plants, but only two families of plants have been designed yet: grasses and legumes. The models of these families extend the generic plant model.

Hierarchical Structure

With the UNIF framework, a model is assumed to be potentially composed of other models, called its children (Figure 9a). This issue is identified as the composite design pattern [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF]. There are many ways to implement this pattern. In the UNIF platform, we chose to design a generic class that models a hierarchy (i.e. a tree) of elements (Figure 9b). A classical design of generic tree structure would provide a data structure to store the models. But we wanted, in UNIF, a generic tree structure that could be extended such that a model can be a tree of models. That explains the specificity of the generic class Tree<T> (Figure 9): a tree does not contain explicitly subtrees (of class Tree<T>), but only elements of type T. However, it is implicitly assumed in the design of the generic class that T is a tree (i.e. of class Tree<T>). Thus, this generic class, instantiated for the Model class, is inherited by the Model class itself.

Overall Simulation Process

In the UNIF framework, the simulation is controlled by an object of class Simulator. A simulator is actually a model: the Simulator class inherits from the Model class (Figure 10). The Simulator class has a specific method, called run(), that performs and controls all the steps of the simulation of the model. This method can indifferently use the Euler or Runge-Kutta methods, or any other integration technique. This functionality has been modeled with the well-known strategy design pattern [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF]. In a complex model, the simulator will be the top-model, e.g. the GEMINI model in our illustration. Its run() method controls the five steps of the simulation of the top-model (as defined in Section 3.2): initialization, pre-integration, integration / derivation, post-integration, termination. At each one of these phases, the top-model calls the corresponding phase of its submodels. For instance, the derivation step of GEMINI consists first in the derivation of its own variables, and then in the derivation (i.e. a call to the derivate() method) of each one of its submodels (Canopt, Soilopt, environment and management models). Recursively, the derivation step of any submodel consists in the derivation of its own submodels. Finally, here is an overview of the run() method of a simulator. Notice that the five simulation steps mentioned previously are recursive, and that other fully automated and recursive steps may be necessary:

• initializeResults() to prepare the results for data collection;

• restartVariableParameters() to initialize the variable parameters;

• updateVariableParameters() to read the next value of each variable parameter;

• checkVariables() to check whether a variable becomes negative.

The order by which a model derivates its submodels has not been automated yet. This is a difficult issue, especially when coupling models, that we address in another paper [START_REF] Bachelet | Coupling Numerical Integration Models: Granularity and Computational Sequence[END_REF]. For instance, the coupling between Canopt and Soilopt requires a precise order to derivate each integration variable of both models. In [START_REF] Bachelet | Coupling Numerical Integration Models: Granularity and Computational Sequence[END_REF], we propose a new prototype of UNIF with automatic ordering of the derivation process.

Graphical User Interface

A model can provide visual simulation with the UNIF framework (Figure 2). For this purpose, a set of abstract classes is available, which makes the code of the simulator and the models fully independent of any graphical user interface (Figure 1).

A model can ask for a drawing area (of class Drawing) to the simulator model (Figure 11), by calling its newDrawing() method (Figure 10). The simulator delegates then the creation of the drawing to a manager (of class DrawingManager). The simulator is associated with a manager during its construction phase (this is the user interface that creates the simulator, providing thus the manager). Once a model has a drawing area, it is able to perform drawing actions, through the Drawing interface, that are updated on the screen at the next time step of the simulation. The drawing areas of each model are created in the recursive reserveGraphicalResources() method (Figure 6). They are deleted in the freeGraphicalResources() method. Only a Windows interface has been developed yet, with the Borland C++ Builder environment. This interface allows to activate / deactivate submodels (left of Figure 12a), to modify the value or the input file of each parameter (right of Figure 12a), to select options (Figure 12b), and after the simulation, to select results (Figure 13a) for display (Figure 13b) or for export. 

Conclusion

The UNIF framework allows the design and the simulation of numerical integration models, i.e. models mainly formulated with ordinary differential equations. The simulator is fully independent of the integration method, which allows to select the adequate technique for a specific model. Moreover, the integrity of the variables of a model (mainly their divergence) can be checked at any step of the simulation. Discrete events can also be introduced in the simulation process: events can be triggered before and after each integration step. It is possible to design complex models, structured in a hierarchy of submodels. This structure is usually static, i.e. it remains the same during the whole simulation, but submodels can be dynamically added to a model during the simulation (e.g. a plant that produces a new leaf). The integration process is partially automatic, and is actually able to manage the simulation of a hierarchy of models. However, further investigations must be conducted on:

• How to provide some flexibility in the granularity of the models ? How to replace a submodel by another one, with the same function, but with a different level of details ? This implies to think of means to achieve the coupling of models, and more precisely, on means to represent the interface between two models.

• How to allow the coupling of models ? If we assume that two models have been developed independently with the UNIF framework, how to make their coupling possible ? The main difficulty that appears is the reordering of the integration variables of both models for the derivation process.

We propose a new prototype of the UNIF framework that attempts to address these two main issues [START_REF] Bachelet | Coupling Numerical Integration Models: Granularity and Computational Sequence[END_REF]. We use the coupling of Canopt and Soilopt as an illustration for these problems, and present an experiment based on simplified versions of these models to test our prototype.
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