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Claudine Manach2 and David S. Wishart1,5* 

Abstract 

Background:  A number of computational tools for metabolism prediction have been developed over the last 
20 years to predict the structures of small molecules undergoing biological transformation or environmental deg‑
radation. These tools were largely developed to facilitate absorption, distribution, metabolism, excretion, and toxic‑
ity (ADMET) studies, although there is now a growing interest in using such tools to facilitate metabolomics and 
exposomics studies. However, their use and widespread adoption is still hampered by several factors, including their 
limited scope, breath of coverage, availability, and performance.

Results:  To address these limitations, we have developed BioTransformer, a freely available software package for 
accurate, rapid, and comprehensive in silico metabolism prediction and compound identification. BioTransformer 
combines a machine learning approach with a knowledge-based approach to predict small molecule metabolism in 
human tissues (e.g. liver tissue), the human gut as well as the environment (soil and water microbiota), via its metabo‑
lism prediction tool. A comprehensive evaluation of BioTransformer showed that it was able to outperform two state-
of-the-art commercially available tools (Meteor Nexus and ADMET Predictor), with precision and recall values up to 7 
times better than those obtained for Meteor Nexus or ADMET Predictor on the same sets of pharmaceuticals, pesti‑
cides, phytochemicals or endobiotics under similar or identical constraints. Furthermore BioTransformer was able to 
reproduce 100% of the transformations and metabolites predicted by the EAWAG pathway prediction system. Using 
mass spectrometry data obtained from a rat experimental study with epicatechin supplementation, BioTransformer 
was also able to correctly identify 39 previously reported epicatechin metabolites via its metabolism identification 
tool, and suggest 28 potential metabolites, 17 of which matched nine monoisotopic masses for which no evidence of 
a previous report could be found.

Conclusion:  BioTransformer can be used as an open access command-line tool, or a software library. It is freely 
available at https​://bitbu​cket.org/djoum​bou/biotr​ansfo​rmerj​ar/. Moreover, it is also freely available as an open access 
RESTful application at www.biotr​ansfo​rmer.ca, which allows users to manually or programmatically submit queries, 
and retrieve metabolism predictions or compound identification data.
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Introduction
Metabolism is key to the production of energy (catabo-
lism), the generation of cellular building blocks (anab-
olism) as well as the activation, detoxification, and 
elimination of metabolic by-products or xenobiotics. 
Over the past 100  years, considerable effort has gone 
into determining the precise molecular details of primary 
metabolism—i.e. the metabolic processes associated with 
the production and breakdown of essential metabolites 
(e.g. lipids, amino acids, and steroids) [1]. Unfortunately, 
somewhat less effort has been devoted to the characteri-
zation or understanding of non-essential or secondary 
metabolism and non-essential metabolites, partly due to 
their much higher number, and greater structural com-
plexity, compared to primary metabolites.

Non-essential metabolites include metabolites gen-
erated through the activation, detoxification and 

elimination of metabolic by-products or xenobiotics. 
Xenobiotics are compounds such as pharmaceuticals 
and personal care products (PPCPs), pesticides, plant or 
food compounds, food additives, surfactants, solvents, 
and other man-made or biologically foreign substances. 
They constitute the largest portion of the human chemi-
cal exposome of which more than 95% remain unknown 
or largely uncharacterized [2, 3]. In many cases, non-
essential metabolites are the products of promiscuous or 
non-specific enzymatic reactions [4, 5], microbial or gut 
metabolism [6, 7], liver-based phase I metabolism (oxida-
tion, reduction or hydrolysis) or general phase II metabo-
lism (conjugation). Metabolism is known to significantly 
influence the pharmacokinetics and pharmacodynam-
ics of xenobiotics and their derivatives within a biologi-
cal system [8] (Fig.  1). Moreover, given the diversity of 
biological systems that constitute our environment, it 

Keywords:  Metabolism prediction, Metabolite identification, Biotransformation, Microbial degradation, Mass 
spectrometry, Machine learning, Knowledge-based system, Structure-based classification, Metabolic pathway, 
Enzyme-substrate specificity

Fig. 1  Effects of metabolism on the pharmacokinetics and pharmacodynamics of small molecules. This figure illustrates how metabolism of a 
xenobiotic can alter its pharmacodynamics (PD), including pharmacological activity (Act), and toxicological effects (Tox). Moreover, the nature of 
the resulting metabolites can influence their involvement in pharmacokinetic processes (i.e. ADME absorption, distribution, metabolism, excretion). 
DETP diethylthiophosphate
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is clear that understanding xenobiotic metabolism is 
critical to accurately linking chemistry and biology, and 
understanding the interactions between those biological 
systems and the environment.

Figure 2 partially describes the “life cycle of a xenobi-
otic”, using pesticides as an example. Pesticides can be 
used to protect plants against insect pests, waterborne 
ailments, other plant competitors and parasites, thus 
enabling the production of larger amounts of high qual-
ity food products, while using less land [9]. In this regard, 
pesticides contribute to a healthier way of life. However, 
exposure to pesticides through inhalation (e.g. by farm-
workers), skin contact, or ingestion of contaminated 
harvested products is known to cause harmful effects 
(Fig.  2). For instance, the organophosphate pesticide 
Chlorpyrifos (see Additional file  1) can be activated in 
humans to become the carcinogenic substance Chlorpy-
rifos-oxon, through CYP450-catalyzed desulfurization 
[10]. Moreover, exposure to Chlorpyrifos has been linked 
to a decrease in the population of probiotic Lactobacillus 
and Bifidobacterium species in the gut microbiota of rats 
[11]. Interestingly, human CYP450-catalyzed metabolism 

of Chlorpyrifos can also lead to the generation of the 
inactive metabolites 3,5,6-trichloro-2-pyridinol, and die-
thyl phosphorothioate (see Additional file 1), via O-dear-
ylation [10].

Once released from the human body into the environ-
ment, the pool of xenobiotics and their derivatives often 
contaminate soil and water, where they are often further 
degraded by soil and/or aquatic microbes. The resulting 
metabolites, which are mostly unknown, can affect soil/
water microbial diversity, and soil fertility [12] and even 
re-enter the food chain [13, 14] (Fig. 2). Such a metabolic 
“life cycle” is applicable to other chemicals, such as phar-
maceuticals, food additives, and other man-made prod-
ucts, as highlighted by a steadily increasing number of 
independent studies [15, 16]. For these reasons, the char-
acterization of xenobiotic metabolites, which has long 
been vitally important to the pharmaceutical industry 
[5], has become increasingly more important to the pesti-
cide industry [17] and to the fields of metabolomics [18], 
exposomics [3], and environmental sciences [19, 20].

The characterization or identification of xenobiotic 
metabolites from biological or environmental samples 

Fig. 2  The life cycle of a xenobiotic: this figure partly illustrates the circulation, transformations, and effects of pesticides in humans and the 
environment. These substances can enhance crop protection, thereby increasing the yield of healthy foods. However, they can also contaminate 
soil and water meaning that they can find their way into non-target organisms, including humans. Moreover, upon exposure to pesticides humans 
usually generate and excrete pesticide metabolites into the environment, which can also contaminate soil and aquatic environments. Some of 
these metabolites, and their microbial degradation products have been isolated from water and food samples, showing that they can re-enter the 
human food chain [15, 16, 21]. This cycle is applicable to other types of xenobiotics, including pharmaceuticals, and personal care products, among 
others
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is quite difficult and is not unlike natural product iden-
tification or dereplication [22]. It can take months or 
even years to purify and positively identify a metabolite 
using standard analytical techniques. As a result, there 
has been a growing focus on using in silico strategies to 
help with this process. Indeed, over the past two dec-
ades, a number of very effective computational tools have 
been developed to predict the metabolism of xenobiot-
ics—especially drugs. These computer programs typically 
require a starting parent molecule and employ pattern 
recognition techniques along with hand-made rules or 
machine learning algorithms to identify: (1) a site of reac-
tion or a site of metabolism (SoM) within the molecule; 
and/or (2) a set of chemical products resulting from a 
biotransformation at the specific SoM. Most in silico 
metabolism prediction tools are quite specific to cer-
tain classes of reactions or metabolic processes, such as 
phase I (only) or phase II (only) reactions. Some in silico 
metabolism predictors, such as SMARTCyp [23, 24] and 
isoCYP [25], are limited to predicting phase I metabo-
lism (or a portion of phase I metabolism), while others 
are more comprehensive (e.g. Meteor Nexus—Lhasa 
Limited, UK) [26] and SyGMa [27] cover a broad range of 
phase I and phase II biotransformations. Some programs 
are commercial such as Meteor Nexus, MetabolExpert 
(CompuDrug, Bal Harbor, FL, USA) [28] and ADMET 
Predictor (Simulation Plus, Lancaster, CA, USA) [29], 
while others are freely available either as web services 
(e.g. XenoSite [30] or as freely accessible standalone soft-
ware packages (e.g. SMARTCyp). Most of these tools are 
focused on mammalian metabolism (e.g. Meteor Nexus). 
In comparison, a smaller number are targeted towards 
environmental microbial degradation. Such tools include 
enviPath, a complete redesign of the EAWAG-BBD/PPS, 
which in turn originates from the UM-BBD and UM-
PPS systems [31–34]. The necessity for such tools, along 
with the aforementioned developments, have motivated 
certain mass spectrometry vendors to integrate metabo-
lism prediction tools into their data processing systems 
[35, 36]. Such integration often simplifies the discovery of 
unknown metabolites, even at low concentration levels.

Unfortunately, even with the growing abundance 
of in silico metabolism prediction tools, there con-
tinues to be a number of significant limitations, espe-
cially with regard to their performance, their scope 
and their accessibility. In particular: (1) very few tools 
predict more than the SoMs; (2) none of the tools 
combine phase I, II, gut microbial metabolism, pro-
miscuous enzymatic metabolism, and environmental 
microbial metabolism together; (3) many tools suffer 
from poor performance [37]; (4) almost all of the tools 
were developed and trained on drug molecules and 
were not adapted for non-drug xenobiotics; (5) only a 

small number of tools provide predicted structures in 
a downloadable or shareable format, and those that 
do place severe restrictions on their distribution; (6) 
almost none of the existing tools are open access or 
open source; and (7) very few of the tools make their 
databases or training sets available. These limitations 
have slowed the development of in silico metabolism 
prediction software and have also restricted the field to 
a tiny number of applications, mainly in the pharma-
ceutical industry.

Addressing these limitations and extending the capa-
bilities of in silico metabolism prediction software 
could lead to substantial benefits in many other scien-
tific disciplines including, but not limited to, analytical 
chemistry, natural product chemistry, agricultural and 
nutrition science, environmental chemistry, exposom-
ics and metabolomics. Potential applications might 
include the in silico expansion of chemical databases of 
drugs (e.g. DrugBank [38]), food compounds (e.g. FooDB 
[39]), phytochemicals (e.g. PhytoHub [40]), environmen-
tal contaminants (e.g. ContaminantDB [41], T3DB [42], 
the CompTox Database [43]), organism-specific metabo-
lites (e.g. HMDB [2], ECMDB [44], YMDB [45]), and 
other chemicals of biological interest (e.g. ChEBI [46], 
KEGG [47]). In fact, a notable effort carried by Jeffryes 
et al., has led to the development of the Metabolic In sil-
ico Network Expansion (MINEs) databases. The MINE 
databases contain close to 600,000 metabolites from 
compounds derived from KEGG [47], EcoCyc [48], and 
YMDB [45]. The metabolites were generated computa-
tionally using reaction rules based on the Enzyme Com-
mission classification system [49], and the Biochemical 
Network Integrated Computational Explorer (BNICE) 
algorithm [50]. Jefrryes et  al. reported that 93% of the 
computationally generated putative metabolites starting 
from KEGG compounds were not found in PubChem, 
the largest publicly accessible chemical database. There-
fore, we anticipate that in silico expansions of the afore-
mentioned databases using BioTransformer, will lead to 
the discovery of new exposure biomarkers, new bioac-
tive metabolites, and consequently to the development 
of better drugs and consumer products (e.g. food, house-
hold and cosmetic products). This may ultimately lead to 
improved toxicology assessment, and the advancement 
of precision medicine [51] Moreover, the integration of 
predicted metabolites with their corresponding in silico 
predicted MS spectra could facilitate the identification of 
unknowns using metabolite identification tools such as 
CFM-ID [52–54], and MetFrag [55]. This would, in turn, 
help to further identify and characterize the so-called 
“dark matter” of the metabolome, which consists of the 
chemical signatures or molecules that remain uncharac-
terized or undiscovered [56].
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Here, we present BioTransformer, an open access 
software tool, and freely accessible web service for 
accurate, and comprehensive in silico metabolism 
prediction and metabolite identification. It has been 
specifically designed to address essentially all of the 
shortcomings previously identified with existing in 
silico metabolism prediction tools. In particular, Bio-
Transformer is freely available and furthermore its 
databases and predictions are free to download and 
use. It consists of two components: a metabolism pre-
diction tool, and a metabolite identification tool. Bio-
Transformer’s metabolism prediction tool (BMPT) 
generates predicted metabolite structures in standard 
electronic formats, and it provides comprehensive 
metabolite predictions. BMPT covers a wide range of 
molecular classes. In particular, BMPT combines a 
knowledge (or rule)-based approach with a machine 
learning approach to predict (1) human CYP450-
calyzed phase I metabolism of xenobiotics, (2) human 
gut microbial metabolism, (3) phase II metabolism, 
(4) promiscuous enzymatic metabolism, and (5) envi-
ronmental microbial metabolism of endogenous and 
exogenous compounds. For the prediction of CYP450 
metabolism, BioTransformer makes use of CypReact 
[57], a tool for CYP450 substrate specificity predic-
tion. BioTransformer also implements a set of rules 
provided by the EAWAG-BBD/PPS system [33] to pre-
dict the products of environmental microbial degrada-
tion. BioTransformer’s Metabolite Identification Tool 
(BMIT) builds upon the metabolite prediction tool, 
and can be used to identify metabolites of a given mol-
ecule that match a given set of masses or molecular 
formulas.

In addition to providing a description of BioTrans-
former, we also provide a detailed analysis of its 
performance, including a number of comparative 
analyses of BioTransformer against Meteor Nexus 
[26] and ADMET Predictor [29]. These analyses were 
done using the results of published studies on experi-
mentally determined metabolites identified after spe-
cific exposures to drugs, foods, pesticides, and other 
xenobiotics by various mammalian species. We also 
describe the freely available BioTransformer RESTful 
web service, which allows users to freely predict and 
identify metabolites of diverse types of compounds, 
including but not limited to PPCPs, food compounds, 
phytochemicals, environmental contaminants/pol-
lutants, as well as endogenous and other exogenous 
compounds. BioTransformer is available as an open 
access Java library at https​://bitbu​cket.org/djoum​bou/
biotr​ansfo​rmerj​ar. The JAR library can either be run 
as a command-line executable, or used as an imported 
library within a project. The BioTransformer web 

service is also freely accessible at www.biotr​ansfo​rmer.
ca.

Methods
Structure and implementation of BioTransformer
BioTransformer consists of a metabolism prediction tool 
(BMPT), and a metabolite identification tool (BMIT). 
The BMPT consists of five independent prediction mod-
ules called “transformers”, namely: (1) the Enzyme Com-
mission based (EC-based) transformer, (2) the CYP450 
(phase I) transformer, (3) the phase II transformer, 
(4) the human gut microbial transformer, and (5) the 
environmental microbial transformer. For the predic-
tion of metabolites, BioTransformer implements two 
approaches, a rule-based or knowledge-based approach, 
and a machine learning approach. BioTransformer’s 
knowledge-based system consists of three major compo-
nents: (1) a biotransformation database (called MetXBi-
oDB) containing detailed annotations of experimentally 
confirmed metabolic reactions, (2) a reaction knowl-
edgebase containing generic biotransformation rules, 
preference rules, and other constraints for metabolism 
prediction, and (3) a reasoning engine that implements 
both generic and transformer-specific algorithms for 
metabolite prediction and selection. The BMPT machine 
learning system uses a set of random forest and ensemble 
prediction models for the prediction of CYP450 substrate 
selectivity, and for the Phase II filtering of molecules. 
BioTransformer’s Metabolite Identification Tool builds 
on the BMPT to identify specific metabolites using mass 
spectrometry (MS) data, namely accurate mass or chemi-
cal formula information.

In this section, we describe the structure, content, and 
implementation of MetXBioDB, the knowledgebase, the 
reasoning engine, the CYP450 metabolism and Phase 
II prediction systems, and the metabolite identification 
tool. Figure 3 gives a brief overview of each “transformer” 
module, their tasks, and the type of prediction approach 
they employ. Additional file  2: Figure S1 illustrates the 
design workflow for the aforementioned BioTransformer 
components. Finally, we will describe BioTransformer’s 
workflow, and the RESTful web service.

MetXBioDB: a database of metabolites and experimentally 
confirmed biotransformations and biodegradations
MetXBioDB is a database that consists of a manually 
curated collection of > 2000 experimentally confirmed 
biotransformations derived from the literature. It was 
developed to help with: (1) the design of biotransfor-
mation rules, (2) the training and validation of machine 
learning metabolism prediction models, and (3) the 
design of preference rules. Each biotransformation in 
MetXBioDB includes a starting reactant (structure and 

https://bitbucket.org/djoumbou/biotransformerjar
https://bitbucket.org/djoumbou/biotransformerjar
http://www.biotransformer.ca
http://www.biotransformer.ca
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identifiers), a reaction product (structure and identifiers), 
the name or type of the enzyme catalyzing the biotrans-
formation, the type of reaction, and one or more cita-
tions. For the purposes of this paper, a reactant is defined 
as a small molecule that binds to a specific enzyme and 
undergoes a metabolic transformation catalyzed by that 
enzyme. A biotransformation describes the chemical 
conversion or molecular transformation of a reactant to 
one or more products by a specific enzyme (or enzyme 
class) through a defined chemical reaction. Cytochrome 
P450 enzymes (CYP450s) are responsible for > 90% of 
phase I oxidative reactions and > 75% of drug metabolism 
[58], while UDP-glucuronosyltransferases (UGTs) and 
sulfotransferases (SULTs) are responsible for the phase 
II metabolism of most xenobiotics [59, 60] In the gut 
microbiota, enzymatic reactions are mostly reductive, 
and are carried out by anaerobic bacteria due to the very 
low concentration of oxygen.

The “starting” reactants in the current version 
(version 1.0) of MetXBioDB primarily consist of 
xenobiotics such as drugs, pesticides, toxins and phy-
tochemicals. The database also includes a small number 
of sterol lipids and a selected set of mammalian pri-
mary metabolites. In assembling MetXBioDB we gath-
ered reaction data from the existing literature (> 100 

references) along with data downloaded from publicly 
available databases such as DrugBank [38], PharmGKB 
[61], XMETDB [62], and SuperCYP [63]. These data-
bases list over 1000 enzyme-substrate associations for 
the major CY4P50s and UDP-glucuronosyltransferases 
(UGTs). Along with published scientific reports, Phe-
nolExplorer [64] and PhytoHub [40] were also used to 
compile information about the metabolism of polyphe-
nolic compounds in the gut.

The data curation process consisted of three phases 
including: (1) the collection of biotransformation data, (2) 
the creation and annotation of biotransformation objects 
and, (3) data validation. This process was conducted col-
laboratively with a small team of chemistry experts. A 
detailed description of the data collection and curation 
process is provided in the Additional file  2. Additional 
file  2: Figure S2 illustrates one entry in MetXBioDB, 
corresponding to the oxidation of acetaminophen to 
N-acetyl-p-benzoquinone (NAPQI). Overall, MetXBi-
oDB contains > 2000 biotransformations, which include 
the cytochrome P450-catalyzed phase I reactions of ~ 800 
unique starting reactants (and > 1500 reaction products), 
the phase II reactions of > 500 unique starting reactants 
(and > 600 reaction products) and human gut microbial 
metabolism of > 50 unique polyphenolic compounds.

Fig. 3  An overview of BioTransformer’s five metabolism prediction modules, the Enzyme Commission based (EC-based), Cyochrome P450 
(CYP450), phase II, human gut microbial, and environmental biotransformer modules. ML machine learning-based, KB knowledge-based, CYP 
cytochrome (P450)
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The reaction knowledgebase
BioTransformer’s reaction knowledgebase contains 
chemical reaction descriptions and rules encoded by 
SMARTS [65] and SMIRKS [66] strings that are used 
by the reasoning engine to make biotransformation 
predictions. This knowledgebase encodes information 
about, and contains mapping data between, five dif-
ferent concepts: (1) the biosystem, (2) the metabolic 
enzyme, (3) the metabolic reaction, (4) the metabolic 
pathway, and (5) the chemical class (as determined by 
ClassyFire [67]). These concepts are defined as follows:

(1)	 A biosystem is a living organism or a community 
of living organisms within which the biotransfor-
mation reactions can occur. Currently, the imple-
mented biosystems are: (a) the human organism, 
(b) the human gut microbiome, and (c) the environ-
mental microbiome.

(2)	 A metabolic enzyme is an enzyme that catalyzes or 
accelerates a metabolic reaction.

(3)	 A metabolic reaction is a chemical reaction that 
modifies the structure of a molecule, leading to the 
generation of one or more products.

(4)	 A metabolic pathway is a linked series of chemi-
cal reactions that occur in a specific order in the 
cell or within an organism. A metabolic pathway is 
organism-specific as an enzyme can be expressed 
by some organisms but not by others.

(5)	 A chemical class refers to a group of chemicals 
that share a common structural feature or a group 
thereof as defined using ClassyFire [67].

The interrelationships between the different con-
cepts are illustrated in Additional file 2: Figure S3. The 
construction of the reaction knowledgebase required 
data acquisition and aggregation from several sources, 
including the information captured in MetXBioDB. 
Additional reaction information was gathered from 
resources such as the SIB Bioinformatics Resource 
Portal (ExPASy) [68], the BRENDA enzyme database 
[69], various Cyc databases [70], the UniProt knowl-
edgebase (UniProtKB) [71], the KEGG database [47], 
and enzyme nomenclature information provided by 
the International Union of Biochemistry and Molecular 
Biology (IUBMB) [49]. The collected data was used to: 
(1) design, test, and validate generic reaction/transfor-
mation rules, (2) add constraints and rules that would 
be used by the reasoning engine, and (3) map entities 
from different concepts. An example of the type of con-
cept mapping done for the reaction knowledgebase is 
given here: phosphatidylcholines are a chemical class, 
the glycerophospholipid metabolism pathway is a 
metabolic pathway, a human is a biosystem, therefore 

phosphatidylcholines are mapped to the glycerophos-
pholipid metabolism pathway in humans.

Based on the information gathered from the various 
resources, 423 associations could be established between 
the reaction knowledgebase’s enzymes and reactions. Pri-
ority was given to enzymes with wide substrate specificity 
such as the arylamine N-acetyltransferase (EC 2.3.1.5), as 
the aim was to predict the metabolism of small molecules 
partly based on generic biotransformation rules. Excep-
tions included, for example, serine palmitoyltransferase 
(EC 2.3.1.50), which is a specific enzyme that provides 
the sphingoid base 3-dehydrosphinganine needed for the 
biosynthesis of sphingolipids. All biotransformation rules 
in the knowledgebase were encoded in the SMIRKS lan-
guage [66]. For each biotransformation rule, one or more 
structural constraints (e.g. the known enzyme substrates 
are restricted short-chain fatty acyl chains) were encoded 
separately, either in the SMARTS language [65] or pro-
grammatically (by combining several rules based on the 
structural constraints and/or physicochemical proper-
ties). The reaction SMIRKS descriptions, and SMARTS-
encoded constraints are freely available at https​://bitbu​
cket.org/djoum​bou/biotr​ansfo​rmerj​ar/.

The separate design of structural constraints was nec-
essary for several reasons. First, structural constraints 
can sometimes be difficult or impossible to fully encode 
using the SMIRKS language alone, due to its limited 
expressivity. Second, the juxtaposition of constraints 
within a SMIRKS pattern can make it difficult to under-
stand, and cumbersome to update. A typical reaction 
scheme encoded in the reaction knowledgebase is shown 
in Additional file  2: Figure S4. Once a reaction was 
encoded, several tests were performed to assess its cor-
rectness by applying the reaction to known substrates as 
well as to known non-substrates (i.e. chemicals that were 
known not to satisfy the various constraints). If the reac-
tion passed all the tests, it was added to the database; if 
it failed, the reaction schema was subject to one or more 
iterations and tests until validated.

Some of the encoded reactions in the reaction knowl-
edgebase apply to a very specific set of chemicals, and 
can be used to accurately predict the metabolism of 
compounds belonging to those classes. Such examples 
include the aforementioned conversion of diacyl-sn-
glycero-3-phosphoethanolamines to diacyl-sn-glycero-
3-phosphoserines, and the metabolism of several classes 
of lipids, which are known to follow classic primary met-
abolic pathways. Other reactions are so generic or non-
specific that they would lead to a high number of false 
predictions if applied blindly. Some examples of highly 
non-specific reactions include aliphatic hydroxylation, 
N-dealkylation, and glucuronidation, among many oth-
ers. These reactions are catalyzed by enzymes that have 

https://bitbucket.org/djoumbou/biotransformerjar/
https://bitbucket.org/djoumbou/biotransformerjar/
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broad substrate specificity, such as CYP450s and UGTs. 
To handle these situations, new reaction subtypes and 
constraints were defined, which focused on a specific 
subclass of compounds that fulfilled a defined set of 
structural constraints. The resulting manually generated 
rules were then subject to further testing and validation. 
An example of such a reaction/rule is the N-dealkylation 
of alicyclic tertiary amines catalyzed by CYP3A4, a well-
studied bioactivation pathway of cyclic amines [72].

In addition to the core knowledge provided by text-
books, online databases and journal articles, the design of 
biotransformation rules for the reaction knowledgebase 
often required additional investigation. One approach 
consisted of selecting compounds (from MetXBioDB) 
that triggered a given reaction and labeling them based 
on whether their expected metabolites were reported 
or not. Further analysis of these reaction sets often sug-
gested new reaction schemes or the addition of new con-
straints to existing reaction schemes. A similar process 
was previously used to generate > 300 biotransforma-
tion rules for the prediction of environmental microbial 
metabolism [33, 73]. These rules were also encoded, 
tested, and added to BioTransformer’s reaction knowl-
edgebase. Overall, a total of 797 biotransformation rules 
were encoded, tested, and eventually added to the reac-
tion knowledgebase.

In addition to identifying the mechanisms involved in 
various metabolic reactions, and encoding of biotrans-
formation rules, another challenge to building the reac-
tion knowledgebase was determining the prioritization 
needed for specific metabolic reactions. For any com-
pound that triggers several competing reactions, certain 
reactions are more likely to occur than others. Therefore 
the metabolites resulting from these preferred reactions 
are more likely to be observed. Given a pair of metabolic 
reactions, a common approach to define precedence 
rules involves a detailed analysis of common putative 
and observed metabolites via NMR or mass spectrom-
etry [73]. Another approach involves using NMR or mass 
spectrometry to perform time-course monitoring of bio-
transformations in order to elucidate the preferred meta-
bolic pathways [74]. In this work, our construction of 
precedence rules between pairs of reactions was mostly 
based on data acquired from previously reported scien-
tific studies, as well as observations published in previous 
studies.

For instance, when absorbed in the intestine, polyphe-
nolic compounds must be deconjugated (via glycosidases 
or carboxylesterases) before undergoing any transforma-
tion [75, 76] Recently, Burapan et al. [74] investigated the 
regioselectivity of O-demethylation of polyphenols by 
the human gut bacterium Blautia Sp. MRG-PMF1, and 
concluded that O-demethylation of polymethoxyflavones 

occurs most preferably at the C-7 position, compared to 
the C-4′ and C-3 positions. Based on these observed pat-
terns, kaempferol 7,4′-dimethyl ether 3-glucoside (see 
Additional file  1) would more likely undergo O-degly-
cosylation, followed by C-7 O-demethylation to give 
kaempferol 4′-methyl ether (see Additional file 1), which 
will then undergo further metabolism (Additional file 2: 
Fig. S5). In total, 190 precedence rules were created for 
49 unique biotransformation rules that were encoded 
for the human and/or human gut microbial biosystems. 
These precedence rules were created based on observa-
tions reported in scientific articles, or personal commu-
nication with experts. In addition, 1960 precedence rules 
for 195 unique biotransformation rules were adopted 
from the EAWAG-BBD/PPS system (environmental 
microbial metabolism). Not all reaction schemes in the 
reaction knowledgebase are fully specified. For instance, 
because relatively little is known about the biology and 
enzymology of the human gut microflora, a large num-
ber of encoded biotransformation rules were either 
assigned to an enzyme superfamily or to an “unspecified 
enzyme”. For the Knowledgebase’s collection of environ-
mental microbial reactions, the biotransformation rules 
were assigned to a single “unspecified enzyme”, as they 
are often consensus rules designed by combining pat-
terns of reactions catalyzed by several enzymes. Overall, 
upon validation of the reactions and the addition of con-
straints, 1716 enzyme-based reaction associations were 
created.

The next step in constructing the reaction knowledge-
base consisted of associating enzymes with metabolic 
pathways, and the corresponding biosystems. This step is 
very important for several reasons. First, many metabolic 
pathways are organism-dependent as different organ-
isms express different enzymes or transporters (Addi-
tional file 2: Figure S3). Thus, as illustrated in Additional 
file 2: Figure S3, the metabolic route linking a compound 
to a metabolite could vary between organisms. While 
sphingomyelins can be directly converted into ceramide-
1-phosphates in Aspergillus Flavus, humans must con-
vert sphingomyelins into ceramides first, which are then 
transformed into ceramide-1-phosphates. Second, the 
mapping also allows one to encode more constraints 
and exclusion rules for certain types of compounds. For 
instance, glycerophospholipids are transformed solely 
within the glycerophospholipid metabolism pathway, 
and do not undergo CYP450- or UGT-catalyzed metab-
olism. In total, seven metabolic pathways were created, 
84 enzyme-pathway associations, and nine chemical 
class-pathway associations were created for the human 
biosystem. A summary of the numbers of rules and 
associations encoded in the reaction knowledgebase are 
shown in Table 1 for each of the five transformer modules 
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(EC-based, human CYP450, human gut microbial, phase 
II, and environmental microbial). The biotransformation 
rules and the list of enzymes cover all six enzyme classes 
EC1 through EC6 of the Enzyme Nomenclature, as 
defined by the IUBMB [49], with deeper focus on classes 
EC1 to EC4. The metabolic pathways are currently lim-
ited to lipid metabolism. The annotation and mapping of 
all enzymes, metabolic reactions, biosystems, metabolic 
pathways, and chemical classes are freely available at 
https​://bitbu​cket.org/djoum​bou/biotr​ansfo​rmerj​ar/.

The reasoning engine
The BMPT’s Reasoning Engine uses the rules in the 
reaction knowledgebase to select the most likely of all 
applicable metabolic biotransformations or pathways. 
In general, two types of reasoning are used for the selec-
tion and ranking of predicted metabolites: absolute rea-
soning, and relative reasoning [77]. Absolute reasoning 
solely focuses on the likelihood of a biotransformation to 
occur, and is used to select the biotransformations with 
an occurrence ratio above a given threshold. Examples 
of biotransformation software using absolute reason-
ing include SyGMA and Meteor Nexus. Relative rea-
soning evaluates the comparative likelihood between 
two independent but competing reactions (e.g. flavone 
7-O-demethylation is more likely to occur than flavone 
4′-O-demethylation [74]. Examples of computational 
tools using relative reasoning include Meteor Nexus and 
the EAWAG-BBD/PPS system. Both absolute and relative 
reasoning have been implemented. However, in the cur-
rent version of BioTransformer all reaction patterns have 
been assigned the same likelihood. The computation of 
more accurate reaction-specific scores requires a larger 
set of data, which is still being assembled and tested. We 
aim to provide more accurate reaction scores in a future 
version of BioTransformer that will be released in 2019.

Besides qualitative attributes (e.g. chemical class), rea-
soning engines often also use quantitative attributes (e.g. 
mass, LogP) to guide their predictions. BioTransformer’s 
reasoning engine uses both types of attributes. While 
chemical classification can help to select the most likely 
biotransformations or discard the unlikely ones, quanti-
tative attributes such as the mass and LogP are used to 
predict the substrate specificity for various enzymes, 
or whether a known molecule is hydrophilic enough 
to be conjugated/eliminated. For the prediction of 
enzyme-substrate specificity, the current version of Bio-
Transformer focuses on nine of the most “active” or best-
studied CYP450 enzymes (CYP1A2, CYP2A6, CYP2B6, 
CYP2C8, CYP2C9, CYP2C18, CYP2D6, CYP2E1, and 
CYP3A4). The prediction of their specificity toward a 
given substrate is made by CypReact [57] a machine 
learning software tool for CYP450 reaction prediction 
that was recently developed by our team. To predict 
whether a compound is hydrophilic enough for conju-
gation/elimination, BioTransformer uses its internal, 
machine learning Phase II filter that use structural finger-
prints, and physicochemical properties (e.g. LogP, mass) 
to select likely Phase II candidates. CypReact, and the 
Phase II filter will be briefly described in the next section.

With the reaction knowledgebase and the machine 
learning tools in hand, the Reasoning Engine was imple-
mented programmatically for each of the five different 
transformer modules. The rationale behind this design 
was to have independent transformer modules that 
could be used separately. This way, one could focus on 
a specific type of metabolism (e.g. CYP450-catalyzed 
metabolism) or a specific type of biosystem (human). 
Among the five transformer modules, three rely solely 
on the application of rules and constraints from the 
reaction knowledgebase. These three are the EC-based 
transformer, the human gut transformer and the envi-
ronmental transformer. The cytochrome P450 (Phase I) 

Table 1  Statistics for  each of  the  five transformer modules: (1) EC-based module (Enzyme Commission-based 
metabolism); (2) CYP450 module (Cytochrome P450 metabolism); (3) human gut microbial module (Human gut microbial 
metabolism); (4) Phase II module (Phase II metabolism), and  (5) environmental microbial module (Environmental 
microbial degradation)

The codes/abbreviations in the first column are the names of options used programmatically to specify the module of interest

Number 
of enzymes

Number 
of biotransformation rules

Number of enzyme-rule 
associations

Number 
of covered 
biosystems

EC-based (ecbased) 285 408 459 2

CYP450 (cyp450) 9 163 712 1

Human gut microbial (hgut) 53 201 204 2

Phase II (phaseII) 9 74 81 2

Environmental microbial (envmicro) 1 301 301 1

https://bitbucket.org/djoumbou/biotransformerjar/
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transformer, which focuses on the metabolism of small 
molecules mediated by CYP450 enzymes, and the Phase 
II transformer, are the only transformers that imple-
ment a machine learning approach in combination with 
a knowledge-based approach. In addition to the five 
transformer modules, the Reasoning Engine is used by 
a combined human “super transformer”, which aims at 
simulating the metabolism of small molecules in humans 
(including the human gut), from their absorption to their 
excretion.

The CYP450 metabolism prediction system
Cytochrome P450 enzymes (CYP450s) constitute a 
superfamily of heme proteins, with over 50 isozymes 
identified in humans [78]. They are predominantly found 
in the liver, but also occur in other organs such as the 
lungs, the kidneys, the gut wall, and the small intestine. 
CYP450s are the major oxidative enzymes in the human 
body, and are responsible for the metabolism of a large 
number of compounds. Nine specific CYP450s have 
been identified as responsible for most of the Phase I 
metabolism of xenobiotics (e.g. drugs, food additives, 
and environmental contaminants) and a small number 
of endogenous compounds. These include the CYP1A2, 
CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, 
CYP2D6, CYP2E1, and CYP3A4 isozymes. Because of 
their broad substrate specificity, a special CYP450-reac-
tant specificity prediction was implemented, in order to 
predict metabolites for the more likely reactants. The 
enzyme-specificity is assessed by a program called Cyp-
React [57].

CypReact is a software tool that uses a machine learn-
ing approach to predict whether a small molecule reacts 
with any of the nine major CYP450 isozymes. CypReact 
uses a random forest model for each of seven isozymes 
(CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, 
CYP2E1, CYP3A4), and ensemble models for two 
isozymes (CYP2C9, CYP2D6). Each of the models uses 
a set of physicochemical properties and structural fea-
tures of a molecule for substrate specificity prediction. 
The substructure fingerprints were partly developed by 
including a subset of SMARTS pattern definitions from 
ClassyFire [67], and a set of SMARTS patterns known to 
trigger CYP450-catalyzed metabolism (e.g. p-substituted 
phenols, or N-substituted piperazine). These finger-
prints encode other pattern definitions for key functional 
groups and structural features relevant to CYP450-cat-
alyzed metabolism, which were obtained through data 
mining. In addition, the corresponding PubChem finger-
print [79] and the MACCS fingerprint [80] were added. 
Feature selection, and parameter optimization, cost-
sensitive learning, and cross-validation based evaluation 
were performed to design highly accurate models for 

each CYP450 model. Empirical results show that CypRe-
act’s classifiers can achieve a very high performance, with 
AUROC scores ranging between 83% and 92%. Moreover, 
they were shown to significantly outperform SmartCyp 
[24], and ADMET Predictor [29]. For a more detailed 
description about the list of fingerprint generation, train-
ing process, and resulting models, the user is referred to 
the CypReact paper [57]. In addition to the nine models, 
CypReact also uses a heuristic approach to filter can-
didates that are known to be out of scope for CYP450 
mediated metabolism, based on their chemical structure 
and/or physicochemical properties. These include inor-
ganic compounds, and several classes of glycero- and 
glycerophospholipids, among others. CypReact is freely 
available at https​://bitbu​cket.org/Leon_Ti/cypre​act/.

Given any small molecule, the CYP450 transformer 
uses CypReact to predict which of the nine CYP450s 
is likely to metabolize the molecule. Subsequently, it 
implements the constraints and biotransformation rules 
encoded within the reaction knowledgebase to predict 
the structures of the resulting metabolites. As for any 
other transformer module, the user can vary the param-
eters, including the number of transformation steps, and 
whether to use certain precedence rules.

The Phase II metabolism prediction system
Phase I reactions tend to render the lipophilic xenobiotics 
more reactive by adding or modifying functional groups, 
such as an amino-, hydroxyl-, or carboxyl group. Some 
examples of Phase I reactions include aliphatic hydroxy-
lation, and epoxide hydrolysis. In Phase II, the more 
reactive metabolites are conjugated to cofactors, mak-
ing them less toxic, more hydrophilic, and thus easier to 
eliminate. Some of the more common Phase II reactions 
include the conjugation of xenobiotics to glucuronic acid 
(glucuronidation), sulphate (sulfation), a methyl group 
(methylation), an N-acetyl group (N-acetylation), glu-
tathione, taurine, and glycine. These reactions are cata-
lyzed by the families of UDP-glucuronosyltransferases 
(UDP-GTs), sulfotransferases (SULTs), methyltrans-
ferases (MTs), N-acetyltransferases (NATs), glutathione 
transferases (GSTs), bile acid-CoA:amino acid N-acyl-
transferase (BACATs), and glycine transferases (GTs), 
respectively. While the presence of adequate attachment 
and functional groups is required for conjugation, the 
lipophilicity of a molecule is also significantly influenced 
by its shape, mass, and functional group composition, 
among other parameters. Therefore, a simple structure-
based chemical classification would not be enough to 
predict whether a candidate molecule is suitable for 
Phase II. In order to provide an accurate prediction, we 
designed the Phase II Filter (P2F).

https://bitbucket.org/Leon_Ti/cypreact/
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The Phase II Filter was designed as a simple machine 
learning model that takes physicochemical properties 
as well as structural features of a molecule to predict 
whether it is ready for Phase II metabolism. A com-
pound is predicted as Phase II ‘ready’ if it can undergo 
one or more transformations catalyzed by any of the six 
aforementioned enzyme families. In contrast to CypRe-
act, which combines nine independent predictors (one 
for each CYP450 isozyme), the P2F consists of a single 
machine learning model.

Because of the broad specificity of the aforementioned 
Phase II enzymes, especially UPD-GTs and SULTs, it 
was important to collect as structurally diverse a set as 
possible. Selected compounds included xenobiotics (e.g. 
pharmaceuticals, pesticides, food additives, toxins, phy-
tochemicals), as well as endobiotics (e.g. steroids, bile 
acids, amino acids). A total of 1113 compounds were 
collected from several databases, including MetXBioDB, 
PubChem [79], BRENDA [69], and the Cyc databases 
[70], as well as the scientific literature. The training set 
contained 807 Phase II substrates, and 306 Phase II non-
substrates. When unavailable from any of the sources, 
the structure of a compound was generated using Che-
mAxon’s MarvinSketch v.17.2.27.0 [81]. Standardization 
operations (e.g. removal of salts, and 3D structure gen-
eration) were also performed. Certain classes of com-
pounds, such as glycerolipids, are known not to undergo 
conjugation by any of the Phase II enzymes. Since these 
compounds could be pre-filtered using a simple structure 
search, they were not included in the training set. Fur-
thermore, compounds that do not contain adequate reac-
tion sites (i.e. functional groups that could be attacked 
by Phase II enzymes) were not included. This is because 
such compounds could be easily filtered by structural 
pattern matching.

After the collection and standardization of our train-
ing set, a total of 32 molecular descriptors were calcu-
lated for each of the 1113 molecules. These included 
nine constitutional descriptors and molecular prop-
erties (e.g. the number of H-bonds, the mass, and 
the AlgoP), as well as 23 structural features, such as 
amine groups (SMARTS = “[NX3+0,NX4+;!$([N]~[!
#6]);!$([N]*~[#7,#8,#15,#16])]”), and carboxyl groups 
(SMARTS = “[#8;A;X2H1,X1-][#6]([#6,#1;A])=O”). The 
molecular descriptors were all computed with the CDK 
library. The structural features are represented as binary 
features in a custom chemical fingerprint to encode their 
absence (0) or presence [1] in the query molecule. A list 
of structural features and physicochemical parameters is 
available in Additional file 3: Table S1.

Feature selection was performed to select a set consist-
ing of the features that are most significant in explaining 
the training data. This not only accelerated the training/

prediction process but also reduced the likelihood of 
overfitting. Feature selection was performed on the Wai-
kato Environment for Knowledge Analysis (WEKA) [82] 
using the information gain criteria and a ranker. Overall, 
25 physicochemical properties and structural features 
were selected to build and evaluate several models (eval-
uated by 10-fold cross validation) using several different 
machine learning algorithms (i.e. decision trees, random 
forest, and naïve Bayes). Upon comparative evaluation of 
the F-1 measure and ROC area, a random forest model 
was selected as the best predictor. The model achieved 
a weighted average F1-measure of 0.88, and a weighted 
average ROC area of 0.94.

Our training was limited to compounds possessing 
necessary structural motifs (e.g. functional groups) that 
are targeted by the aforementioned Phase II enzyme 
classes for conjugation. A number of chemical classes, 
including ether lipids, glycerolipids, and glycerophos-
pholipids, sphingolipids, and acyl-CoA conjugates were 
excluded from the training set, as such compounds are 
known either not to be transformed by any of the seven 
Phase II enzyme classes, or to be conjugated following 
a very specific metabolic pathway. In the latter case, the 
chemical class-to-pathway associations encoded in Bio-
Transformer’s reaction knowledgebase would allow for 
a more accurate biotransformation prediction, if appli-
cable. For these reasons, a simple rule-based filtering 
module was implemented to eliminate the most trivial 
non-candidates, before applying the trained model. The 
rule-based module excludes compounds from the five 
aforementioned chemical classes. Moreover, only com-
pounds with a molecular weight lower than or equal to 
900  Da (selected based on extensive internal analysis of 
our collected data), and containing a limited set of 64 dif-
ferent structural motifs (see Additional file  3: Table  S2) 
are then passed to the machine learning filtering module.

The BioTransformer metabolite identification tool
Metabolite identification is one of the main tasks of 
untargeted metabolomics. The aim of untargeted metab-
olomics is to analyze biofluids (e.g. urine, blood) from 
an organ or organism and to attempt to identify novel 
metabolites that are characteristic of that organism’s 
response to an exposure to a chemical or other stimuli. 
Mass spectrometry (MS) is one of several analytical 
approaches used to perform this task. When coupled 
with (gas or liquid) chromatography, a mass spectrom-
eter produces a set of spectra that contain features (e.g. 
mass-to-charge ratios, peak intensities, calculated molec-
ular formulas) characteristic of metabolites or fragments 
thereof. While spectral searching is a method commonly 
used to identify metabolites, the lack of reference spectra 
for many metabolites is a bottleneck in rapid and accurate 
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compound identification. Therefore, the comparison of 
spectral features (e.g. mass, molecular formula) obtained 
from mass spectra with those obtained from metabolism 
prediction data could help to putatively identify known 
or unknown metabolites and validate predictions.

The BioTransformer metabolite identification tool 
(BMIT) is an additional module within BioTransformer 
that is designed to assist users in metabolite identi-
fication. It relies on the BMPT to find compounds of a 
specific mass (within a user-specified threshold) or chem-
ical formula that are generated upon single- or multistep 
metabolism of a given parent molecule. BMIT takes the 
chemical structure of the starting molecule as input, as 
well as a list of neutral chemical masses or molecular for-
mulas for the metabolites to be identified. BMIT is imple-
mented to only support metabolite identification using 
the allHuman and superbio options (Human + Human 
Gut Microbiome), or the envmicro option (Environmen-
tal Microbiome). The search for metabolites is applied 
iteratively at each step, and stops when at least one 
metabolite has been identified for each given mass (± a 
mass tolerance) or given chemical formula or when the 
maximal number of steps has been reached. If applicable, 
the BMIT returns each matching metabolite, including its 

structure, its chemical formula, its molecular mass, and a 
pathway leading to it, starting from the query compound. 
The results are saved in a single SDF file in which each 
pathway is stored as an ordered list of chemical reactions 
(with reaction name, and a list of catalyzing enzymes).

BioTransformer’s input and workflow
BioTransformer was implemented in the Java program-
ming language, and can be used as a command-line tool 
(on Linux, Mac OSX, and Windows) to perform metabo-
lism prediction and metabolite identification of small 
molecules. Beside CypReact, described earlier, BioTrans-
former uses two other open source tools, namely the 
Chemistry Development Kit (CDK) [83] and the AMBIT 
library [84]. The CDK programming library is used for 
several operations, including the calculation of phys-
icochemical properties, the execution of superstructure 
search operations, and the handling of chemical struc-
tures, among others. The AMBIT library is used for the 
application of biotransformation rules and structure 
generation.

The BioTransformer metabolism prediction tool’s 
workflow is illustrated in Fig.  4. As can be seen in this 
diagram, BioTransformer accepts molecules either in 

Fig. 4  Workflow of BioTransformer’s metabolism prediction and metabolite identification tools. The BioTransformer metabolite prediction tool 
(BMPT) is used solely for metabolism prediction. For metabolite identification tasks, the BioTransformer metabolite identification tool (BMIT) makes 
use of those predictions to suggest putative metabolites of a compound that have a given neutral mass or molecular formula
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SMILES (single molecule), InChI (single molecule), MOL 
(single molecule), or SDF (single or multiple compounds) 
format as input. Each molecule must be an organic mol-
ecule and it must not be a mixture or a salt. Once the 
input is parsed, the structures are subjected to chemical 
validation and standardization. The standardization pro-
cess consists of removing charges from functional groups 
(with some exceptions, such as nitro groups), checking 
and validating bond types and adding explicit hydrogen 
atoms. Subsequently, BioTransformer predicts the bio-
transformations and the resulting metabolite structures 
for each query molecule separately (see Additional file 2: 
Fig. S6). In some cases, the structural representation of 
a molecule upon standardization can differ slightly from 
the original one. Therefore, we encourage users to pro-
vide identifiers (e.g. custom labels, names, etc.) in addi-
tion to the structural representation. This is even more 
relevant when a BioTransformer prediction is used as 
part of an automated workflow.

Each prediction must be run in the single module 
mode, where the user selects one of the five transformer 
modules (CYP450, EC-based, phase II, gut microbial, or 
environmental microbial). The Biotransformer options 
used to specify the modules are cyp450 (CYP450 metab-
olism module), ecbased (EC-based metabolism module), 
phaseII (Phase II metabolism module), hgut (Human 
gut microbial degradation module), and envmicro (Envi-
ronment microbial degradation module). Alternately, 
a human “super transformer” has been implemented to 
mimic the metabolism of small molecules in the human 
“superorganism”, which also includes the gut microbiota. 
This super transformer integrates the CYP450, EC-based, 
phase II, gut microbial transformers and covers a number 
of different reaction types, including hydrolysis, oxida-
tion and reduction, and conjugation. The “super trans-
former” provides two options: (1) allHuman, which uses 
all four human-related transformers at each step of the 
prediction, or; (2) superbio, which uses all the human-
related biotransformers in an ordered sequence of up to 
12 steps, starting with the hydrolysis of the query mol-
ecule (if applicable), and ending with the conjugation of 
its metabolites.

After the metabolite prediction step is completed, 
the structures and biotransformations are annotated 
(Fig.  4). Based on the information from the predicted 
biotransformation(s), BioTransformer builds a metabolic 
tree by associating each metabolite with its parent(s). 
Moreover, each predicted metabolite is annotated with 
additional information that provides structural iden-
tification, reports its physicochemical properties, and 
an explanation of its origin or provenance. The data 
includes: (1) three chemical identifiers (metabolite ID, 
InChI, InChI Key), (2) the molecular formula, (3) the 

monoisotopic mass, (4) the reaction type leading to the 
metabolite, (5) the biosystem that generated the mol-
ecule, (6) the parent compound identifiers (BioTrans-
former ID, InChIKey), (7) the parent monoisotopic 
mass, (8) the metabolite’s and parent’s AlogP, as well as 
(9) the metabolite’s and parent’s synonyms. The results 
are returned in a SDF or CSV file that contains the struc-
ture and annotation of the predicted metabolites. The 
returned information can be used separately to analyze 
metabolic pathways. It can also be used to compute neu-
tral losses for MS-based analyses that can be used to 
experimentally detect each biotransformation.

BioTransformer’s metabolite identification tool (BMIT) 
builds from the metabolism prediction tool (BMPT). 
Given a starting molecule, a set of molecular masses 
and a mass tolerance threshold (in Da) or simply a set of 
molecular formulas, BMIT identifies potential metabo-
lites for each valid mass or molecular formula, via single 
or multi-step metabolism, depending on the user input. 
For mass-based searches, the default number of steps, 
and mass tolerance are set to one, and 0.01, respectively. 
The user can select to explore the human and human 
gut microbiome environments (with the allHuman and 
superbio options), or the environmental microbial metab-
olism (with the option “env”). A metabolic pathway link-
ing the starting structure and each of the metabolites 
is returned, based on the metabolic tree obtained upon 
metabolism prediction. Metadata include the structures, 
identifiers, reaction types, and enzymes.

The BioTransformer web service
The BioTransformer software package can be used as a 
command line tool or as a Java library. In order to fur-
ther facilitate access to this tool, a RESTful web service 
was built using the JRuby on Rails framework. The Bio-
Transformer web service is freely available at www.biotr​
ansfo​rmer.ca. The web service allows users to manually 
or programmatically submit queries, and retrieve the 
corresponding results using the workflow described in 
the previous section. In particular, the web service allows 
users to submit compounds in SMILES, InChI, and SDF 
formats (Additional file  2: Fig. S7). Query results can 
be returned as JSON, SDF, and CSV documents (Addi-
tional file 2: Fig. S8). Moreover, the web server provides 
information about each previously predicted single-step 
metabolic transformation of the compound, including 
the corresponding biosystem, reaction type, metabo-
lizing enzymes, and transformation products. The web 
application offers several advantages compared to the 
command-line tool, namely: (1) it is easier to use than the 
stand-alone program; (2) users need not be programmers 
or need to install a local program to run the web service; 
(3) several queries can be processed simultaneously; (4) 

http://www.biotransformer.ca
http://www.biotransformer.ca
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the computation is faster, as previous prediction results 
are saved in a database to facilitate more rapid retrieval; 
and (5) metabolite prediction and identification data can 
be accessed manually or programmatically and down-
loaded in several formats. While the command-line 
executable does not benefit from the database of com-
puted metabolites, it also does provide some advantages, 
namely: [1] it allows users to submit large sets of com-
pounds; [2] it does not rely on an Internet connection, 
and; [3] queries are executed immediately and not put in 
a queue.

Evaluation of BioTransformer’s metabolism prediction 
and metabolite identification capabilities
In order to evaluate the performance of BioTransformer, 
we performed a comparative analysis with two popular in 
silico metabolism prediction tools, namely Meteor Nexus 
[26], and ADMET Predictor [29]. Moreover, we evalu-
ated BioTransformer’s ability to replicate environmen-
tal microbial metabolism prediction from the EAWAG 
BDD/PPS system [33, 34, 73]. We also tested BioTrans-
former’s ability to predict comprehensive human and gut 
metabolism of small molecules. Building on BioTrans-
former’s metabolism prediction ability, we also tested 
its metabolite identification capabilities with the BMIT 
module. For each of the tests, BioTransformer was run on 
a 2.7 GHz Intel Core i5 MacOSX with 16 GB (1867 MHz 
DDR3) of memory. The procedures and results are pre-
sented in the Results section.

Results
Comparative evaluation of BioTransformer and Meteor 
Nexus in the prediction of human single‑step metabolism 
of small molecules
The first test involved a comparative assessment of the 
performance of BioTransformer and Meteor Nexus 
(v.3.0.1) [26] in predicting single-step human metabo-
lism of 40 pharmaceuticals and pesticides, randomly 
selected from DrugBank [38] and T3DB [42]. This test set 
was limited to these compound classes because Meteor 
Nexus’ biotransformation dictionary and associated 
rule bases are specifically limited to pharmaceuticals 
and pesticides. Both BioTransformer and Meteor Nexus 
were set to use absolute/relative reasoning to prioritize 
the most likely biotransformations. In contrast to Bio-
Transformer, Meteor Nexus clearly defines several levels 
of reasoning that express different levels of confidence. 
Therefore, Meteor Nexus’ predictions were computed 
for each of the equivocal (EQUI), plausible (PLAU), and 
probable (PRO) levels of confidence. For each compound, 
the BioTransformer’s predictions were evaluated against 
a Meteor Nexus prediction obtained at each of the three 
confidence levels. The assessment was performed by 

comparing the precision (i.e. the fraction of true metabo-
lites among the predicted ones) and recall (i.e. the frac-
tion of true metabolites that were predicted over the total 
number of true metabolites) for each setting. For details 
about the evaluation, see Additional files 2 and 4.

BioTransformer’s average computation time was 3.55 s 
per compound whereas Meteor Nexus’ average computa-
tion time was 2.95  s per compound. A summary of the 
comparative assessment of BioTransformer and Meteor 
Nexus (Lhasa Limited, UK) is displayed in Table 2. When 
compared to the Meteor Nexus predictions obtained 
at the “Equivocal” level of reasoning, BioTransformer 
achieved higher precision (49% vs. 35%) and recall (88% 
vs. 71%). As an illustration, BioTransformer predicted 7 
out of 8 true metabolites for 17-Ethinylestradiol, com-
pared to 4, 1, and 0 by Meteor Nexus using its Equivocal, 
Plausible, and Probable levels of confidence, respectively 
(Fig.  5). On the other hand, Meteor Nexus predicted 3 
out of 3 true metabolites for Efavirenz, compared to only 
2 for BioTransformer (Fig.  5). Meteor Nexus achieved 
higher precision at the “Plausible” (56%) and “Probable” 
(59%) levels compared to BioTransformer. However, 
this caused a significant drop of the recall to 45% at the 
Plausible, and 13% at the Probable levels of confidence, 
respectively, compared to an 88% recall by BioTrans-
former (see Table 2).

Evaluation of BioTransformer’s prediction of human 
and human gut microbial single‑step metabolism of small 
molecules
The second test involved an assessment of BioTrans-
former’s performance in predicting single-step human 
and human gut microbial metabolism of 20 well-stud-
ied pharmaceuticals, lipids, polyphenols, and other 
phytochemicals, from the HMDB [2] (none of which 

Table 2  Comparative assessment of  BioTransformer’s 
and  Meteor Nexus’ predictions of  human (not 
including  gut microbiome) single-step metabolism for  40 
pharmaceuticals and pesticides

The different confidence levels implemented by Meteor Nexus (Lhasa Limited) 
are: EQUIVOCAL (EQUI), PLAUSIBLE (PLAU), and PROBABLE (PROB)

BioTransformer Meteor Nexus

EQUI PLAU PRO

True positives 188 152 96 28

False positives 198 279 74 19

False negatives 26 62 118 186

Total no. of predictions 386 433 170 47

Precision 0.49 0.35 0.56 0.59

Recall 0.88 0.71 0.45 0.13

No. of reported metabolites 224
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was included in the first test set), using the super trans-
former’s allHuman option. This was done to assess 
BioTransformer’s performance in a task more related 
to metabolomic or exposomic studies, where the pre-
diction of both endogenous and exogenous metabolites 
arising from human metabolism is highly desirable. To 
our knowledge, no commercial or publicly available 
tool is available that was implemented to perform this 
kind of diverse metabolite prediction, so no compari-
son could be done in a fair manner. BioTransformer’s 
average computation time for this (more comprehen-
sive) analysis was 4.10  s per compound. Overall, Bio-
Transformer achieved a precision of 69% and a recall 
of 87% (Table  3). Although the set is more chemically 
diverse, the performance of BioTransformer is actually 
better than what was achieved for the first test involv-
ing pesticides and pharmaceuticals (described above). 
Examples of predictions by BioTransformer are illus-
trated in Fig. 6. Details of the evaluation are available in 
the Additional file 5.

Comparative Evaluation of BioTransformer and ADMET 
Predictor in the Prediction of Human Single‑step 
CYP450‑mediated Metabolism of Small Molecules
In our third test, the CYP450-catalyzed single-step 
metabolism of the 60 aforementioned molecules was pre-
dicted using ADMET Predictor (v.8.5.1.1) [29]. ADMET 
Predictor is a software tool that allows the prediction 
of sites of metabolism and the resulting metabolites 

Fig. 5  Examples of predicted metabolites: a 16-hydroxy-17-ethinylestradiol, a reported metabolite of 17-Ethinylestradiol was predicted by 
BioTransformer only. b Efavirenz, N-glucuronide, a reported metabolite of Efavirenz predicted by Meteor Nexus only

Table 3  Evaluation of  BioTransformer’s performance 
in predicting human and human gut microbial metabolism 
of 20 small molecules

BioTransformer

True positives 111

False positives 49

False negatives 17

Total no. of predictions 160

Precision 0.69

Recall 0.87

No. of reported metabolites 128
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upon CYP450-catalyzed biotransformation. The set of 
nine CYP450 isoforms supported by ADMET Predictor 
(1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) is 
identical to the one covered by BioTransformer CYP450 
metabolism prediction tool. The resulting metabolites 
were compared to those obtained from BioTransform-
er’s CYP450 metabolism prediction module, and a per-
formance assessment was then carried out (Table  4). 

BioTransformer’s predictions were computed in an aver-
age 2.69  s per compound, while the ADMET Predic-
tor predictions took an average of 0.45 s per compound. 
BioTransformer and ADMET Predictor had comparable 
levels of precision at 46% and 47% respectively. However, 
BioTransformer was able to predict 90% of all experi-
mentally confirmed metabolites, which is significantly 
higher than the 61% predicted by ADMET Predictor. 

Fig. 6  Examples of human (non gut microbial) metabolites predicted by BioTransformer. This figure illustrates the human hepatic metabolites of 
Atrazine, delta-9-tetrahydrocannbinol (Delta-9-THC), and phosphatidylcholine (16:0/16:0), as well as human gut microbial metabolites of L-DOPA 
and Epicatechin, correctly predicted by BioTransformer
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Figure 7 illustrates some examples of CYP450-generated 
metabolites predicted only by BioTransformer, and oth-
ers predicted only by ADMET Predictor. Details of the 
evaluation are available in the Additional file 6.

Comparative evaluation of BioTransformer and the EAWAG 
BBD/PPS system in the prediction of environmental 
microbial metabolism
Meteor Nexus and ADMET Predictor are not capable 
of predicting environmental microbial metabolism/
degradation. Therefore in order to assess BioTrans-
former’s abilities to predict environmental microbial 
metabolism, we compared it to the EAWAG-BBD/PPS 

system using three test compounds, namely Ampicil-
lin (an antibiotic), Nitroglycerin (a plasticizer, a drug), 
and Disulfoton (an insecticide), all of which (along 
with their metabolites) have been found in wastewa-
ter treatment plants [21, 85, 86]. The respective struc-
tures were retrieved from ContaminantDB [41]. Here, 
only BioTransformer’s environmental microbial trans-
former was used, and only a single biotransformation 
step was conducted for each compound. The aim of this 
comparison was to assess the ability of BioTransformer 
to reproduce the EAWAG-BBD/PPS predictions, since 
the rules applicable to environmental degradation were 
encoded using the freely accessible EAWAG Biodegra-
dation and Biocatalysis database. Both BioTransformer 
and the EAWAG-BBD/PPS system were set to apply 
relative reasoning, and both were set to predict all 
microbial transformations (i.e. aerobic and anaerobic).

BioTransformer was able to replicate all 15 biotrans-
formations predicted by the EAWAG system, and to 
successfully predict all 18 metabolites predicted by 
EAWAG. In addition, BioTransformer predicted three 
more metabolites for the degradation of Disulfoton. 
All three metabolites resulted from the correctly used 
biotransformation rule (bt0259), which was applied 
at three different sites of metabolism, producing two 
metabolites in each case. Figure 8 displays the metabo-
lites predicted by BioTransformer and the EAWAG sys-
tem, and highlights the metabolites reported only by 
BioTransformer.

Table 4  Comparative assessment of  BioTransformer 
and  ADMET predictor (Simulations Plus) in  predicting 
single-step human CYP450 metabolism for  60 drugs, 
pesticides, phytochemicals, and other xenobiotics, as well 
as endobiotics (e.g. lipids)

BioTransformer ADMET 
predictor

True positives 162 110

False positives 188 122

False negatives 18 70

Total no. of predictions 350 232

Precision 0.46 0.47

Recall 0.90 0.61

No. of reported metabolites 180

Fig. 7  Examples of predicted metabolites as predicted by BioTransformer and ADMET predictor
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Evaluation of BioTransformer’s metabolite identification 
tool
The final evaluation of BioTransformer consisted of sim-
ply identifying putative human/mammalian metabolites 
of epicatechin using the BioTransformer Metabolite 
Identification Tool (BMIT). This was designed to simu-
late a real case involving the MS-based experimental 
analysis of epicatechin metabolites produced by rats 
upon a five-day treatment with epicatechin, as done by 
two of the co-authors of this manuscript (CM and JF). 
Epicatechin is an important compound from the chemi-
cal class of flavan-3-ols, and is known to exhibit cardio-
vascular health benefits [85–87]. It is a major component 
from cocoa extracts, and is also abundant in apples, 
grapes, berries, and tea. Briefly, rats were fed for 5 days 
a standardized diet supplemented with epicatechin. Spot 
urines were sampled after the supplementation period 
and compared to the spot urines sampled under the same 
conditions after 9 days of the same diet without epicate-
chin. The samples were analysed by high-resolution mass 
spectrometry—UPLC-QToF (Bruker, Impact II), with the 

mass spectrometer operated in the positive ion mode. 
More detailed information about the specific experimen-
tal protocols, the treatment protocols and the mass spec-
tral data extraction/analysis is provided in Additional 
file 2.

In order to identify the metabolites observed in our 
study, the BMIT module used a set of 260 neutral 
monoisotopic masses, derived from the [M + H] + ions 
extracted from the experimental QToF MS data col-
lected from the rat urine samples, ranging from 53.4896 
to 969.8669 Da. Monoisotopic masses were generated by 
subtracting 1.00727 Da from the ions extracted from the 
MS dataset. Details regarding the data extraction process 
are provided in Additional file 2. These masses exhibited 
marked increases in intensity after epicatechin supple-
mentation compared to baseline. The human supertrans-
former (option superbio) was used to facilitate putative 
compound identification. From the 260 monoisotopic 
masses that were extracted, BMIT identified 37 possible 
metabolites of epicatechin corresponding to 20 unique 
masses. These masses do not correspond to adducts or 

Fig. 8  Environmental microbial metabolism of disulfoton, as predicted by BioTransformer and the EAWAG-BBD/PPS system. The metabolites 
BTM0004, BTM0006, and BTM0009 are reported by BioTransformer as by-products of the biotransformation bt0259 that generate BTM0003, 
BTM0005, and BTM0010. These by-products, which should be generated according to the rule bt0259 provided by the EAWAG-BBD/PPS, were not 
reported by the system
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isomers and may therefore be considered parent ions 
(Additional file 7: Table S1). These putative identifications 
will have to be further investigated with MS/MS experi-
ments and validated against authentic standards for 
more definitive identification. In order to acquire addi-
tional support for the identity of the predicted metabo-
lites, the scientific literature was searched manually to 
collect structural data regarding epicatechin metabo-
lites reported in previous experimental studies of both 
humans and rats. A total of 56 single- and multi-step 
metabolites of epicatechin, corresponding to 37 monoi-
sotopic masses were identified (Additional file  7: Tables 
S1 and S2). Of the 37 predicted metabolites matching 
our experimental data, 22 matched 11 unique and previ-
ously reported monoisotopic masses. Among those, 18 
compounds corresponded to previously reported metab-
olites. For the nine other experimental masses that had 
matches with BMIT predictions, 15 possible metabo-
lites (never previously reported) were obtained. Figure 9 
shows examples of the suggested epicatechin metabolites 
with their masses, as identified in our study. A complete 
list of predicted epicatechin metabolites, along with 
their corresponding metabolic pathways leading to each 
metabolite are available in Additional file  8. Moreover, 
metadata (e.g. masses, retention times), and comparisons 
to previously reported data, can be found in Additional 
file 7: Table S1.

We also tested whether BMIT could identify any of 
the remaining 38 known metabolites (correspond-
ing to 26 unique masses) previously reported, but not 
observed in our study, or not selected by our data treat-
ment parameters. The 26 unique masses were provided 
to BioTransformer as input, and the identification was 
performed using the same mass tolerance as before 
(0.01). BMIT was able to suggest 28 molecules for 19 
unique masses. Among those, 21 compounds cor-
responding to 18 unique monoisotopic masses had 
previously been reported as epicatechin metabolites 
(Additional file 7: Table S2). Figure 9 illustrates a num-
ber of epicatechin metabolites exclusively reported in 
previous studies, which were correctly identified by 
BMIT (Fig. 9b), as well as a previously reported metab-
olite that was not identified by BMIT (Fig. 9c). BMIT’s 
identification results are available in Additional file  9, 
and their comparison to previously reported data are 
available in Additional file 7: Table S2.

Overall, BMIT was able to suggest 39 epicatechin 
metabolites that were previously reported in the litera-
ture, 18 of which were observed in our study. Moreover, 
BMIT suggested 28 epicatechin metabolites that had 
not been reported in previous studies (17 correspond-
ing to masses that do not match previously reported 
ones, and 11 extra structures matching previously 
known masses).

Fig. 9  Identification of predicted metabolites of Epicatechin in humans (which are assumed to be nearly identical for rats). The figure 
illustrates: a metabolites correctly identified by BMIT, and corresponding to masses (in Da) observed in our experimental study; b metabolites 
correctly identified by BMIT, and corresponding to masses observed exclusively in previous studies, and; c a previously reported metabolite 
of epicatechin not identified by BMIT. (2R)-2-(3,4-diOH-phenyl)-5,7-diOH-2,4-DBP stands for (2R)-2-(3,4-dihydroxyphenyl)-5,7-dihydr
oxy-2,4-dihydro-1-benzopyran-3-one
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Discussion
BioTransformer’s design and implementation
BioTransformer is a software tool that combines both 
a knowledge-based approach and a machine learning 
approach to predict the metabolism of small molecules, 
and to assist in metabolite identification. The knowl-
edge-based system consists of a biotransformation 
database (MetXBioDB), a knowledgebase (the reaction 
knowledgebase), and a reasoning engine. MetXBioDB 
is a unique resource that is freely available, and cov-
ers a wide range of enzymatic reactions that take place 
in human tissues, the human gut and the environment 
(soil and water microflora). In contrast to most pub-
licly available databases, MetXBioDB provides detailed 
biological and chemical information about all of its 
biotransformations, including the catalyzing enzymes, 
the substrates, the products, and the biotransforma-
tion rule(s) that is/are applied. MetXBioDB describes 
the metabolism of > 2000 compounds catalyzed by ~ 15 
enzyme families. For each biotransformation, at least 
one scientific source or reference is provided. MetXBi-
oDB is stored as a JSON document, which can be easily 
parsed.

One potential application of MetXBioDB is in the 
design of biotransformation rules with narrow speci-
ficity, which can be used for in silico metabolism pre-
diction. In fact, this resource has already been used 
(in addition to other data) to successfully design > 300 
biotransformation rules, which were used to annotate 
the biotransformations in the database and predict 
metabolites via the BioTransformer Reasoning Engine. 
Despite the aforementioned strengths of MetXBioDB, 
the database still has a number of limitations. Although 
it covers a large number of enzymatic reactions, it is 
clear that more data is needed in order to cover an even 
larger set of reactions (e.g. oxidation reactions) cata-
lyzed by enzymes other than CYP450s. It is also clear 
that there is a need to define more constraints and/or 
build additional models that would increase the qual-
ity of the predictions. Moreover, users could benefit 
from data about the different sites of metabolism for 
each specific biotransformation, as it would serve as a 
training set for the development of models for the pre-
diction of sites of metabolism (SoMs). For the current 
version of MetXBioDB, the intent was simply to pro-
vide an easily readable and comprehensible data set. 
However, providing MetXBioDB in a database format 
that can be parsed and queried in a more sophisticated 
way (e.g. SQL) would make the database much more 
useful to a broader number of users. Efforts are under-
way to do so for the next release of MetXBioDB. We 
welcome and encourage contributions in regard to the 
curation, improvement, and expansion of this resource.

Evaluation of BioTransformer’s predictions
In our first test, BioTransformer was evaluated against 
Meteor Nexus (v.3.0.1). Meteor Nexus is a commercially 
available software tool that is considered to be the gold 
standard for predicting biotransformations of xenobiot-
ics. While BioTransformer achieved a better prediction 
(49%) and recall (88%) than Meteor Nexus at the equivo-
cal level of confidence (35% precision, and 71% recall), 
Meteor Nexus’ precision improved significantly at the 
plausible (56%), and probable (59%) levels. The increase 
in Meteor Nexus’ precision matched our expectations, as 
the minimum likelihood threshold for metabolite selec-
tion increased, thus reducing its probability of selecting 
unconfirmed metabolites. However, the 68% increase 
in precision (from Equivocal to Probable) led to an 82% 
decrease in recall. As a consequence, while Meteor 
Nexus’ predicted a higher percentage of true metabolites 
at these levels, compared to BioTransformer, it returned a 
significantly lower number of true metabolites.

It is worth noting that BioTransformer heavily relies on 
the selective nature of the biotransformation rules and 
other structural constraints, in addition to its implemen-
tation of relative reasoning. On the other hand, Meteor 
Nexus combines the continuous absolute scoring of 
biotransformations with relative reasoning, providing 
binned data for different levels of reasoning through a 
more dynamic scoring system. Overall, the performance 
of BioTransformer suggests that the freely accessible 
BioTransformer tool could be used to assist scientists in 
various drug discovery and environmental safety studies.

In our second test, we evaluated BioTransformer’s per-
formance in predicting single-step human and human gut 
microbial metabolism of 20 endobiotics and xenobiotics. 
Overall, 69% of BioTransformer predictions matched 
experimentally confirmed metabolites. Moreover, Bio-
Transformer was able to predict 87% of all reported 
(and experimentally confirmed) metabolites. The better 
performance, compared to the first test, can be partly 
explained by the fact that some endobiotics, such as 
sphingo- and glycerophospholipids, follow very classical 
and well-known metabolic pathways (Additional file  2: 
Fig. S3), which were encoded in the reaction knowledge-
base. However, these compounds represent only 15% of 
the second test set. Therefore, these results still show that 
BioTransformer was also able to accurately predict the 
metabolism of compounds with a more complex metab-
olism (Fig.  7). In fact, BioTransformer was able to cor-
rectly predict the human and human gut metabolism of 
polyphenols (e.g. Epicatechin), and pharmaceuticals (e.g. 
L-DOPA). This is very promising, as little is known about 
gut microbial metabolism of those classes of compounds. 
Even for the well-studied, and biologically relevant class 
of polyphenols, a lot of experimental work is needed to 
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validate the metabolic pathways for hundreds of known 
compounds. BioTransformer could be used to provide 
accurate suggestions about the identity of their metabo-
lites and propose metabolic pathways, which could then 
in turn be validated experimentally.

The third evaluation involved the comparative assess-
ment of BioTransformer’s and ADMET Predictor’s capa-
bilities to accurately predict CYP450 metabolism of 60 
pharmaceuticals, pesticides, food metabolites, and other 
endogenous and exogenous compounds. The comparable 
precision of BioTransformer and ADMET Predictor (46% 
and 47%, respectively) shows that on average, about half 
of their predictions matched experimentally confirmed 
metabolites. However, BioTransformer was able to pre-
dict 90% of all experimentally confirmed metabolites, 
which is significantly higher than the 61% predicted by 
ADMET Predictor.

Overall, the first three tests demonstrate BioTrans-
former ability to accurately predict human and human 
gut microbial metabolism for a very diverse set of 
metabolites, covering endogenous metabolites, pharma-
ceuticals and personal care products, food compounds, 
as well as other exogenous compounds. The compara-
tive assessments of BioTransformer with Meteor Nexus 
and ADMET Predictor show that while BioTransformer 
is slightly slower, it consistently performs better, and 
it also addresses some of their shortcomings. In par-
ticular, BioTransformer is open access, and it covers a 
much wider range of chemical substrates and metabolic 
biotransformations.

In order to evaluate BioTransformer’s ability to pre-
dict environmental metabolism, we compared its pre-
diction results with the EAWAG-BBD/PPS system. It is 
worth noting that the biotransformation and preference 
rules we encoded in BioTransformer were based on the 
same set of rules defined by the EAWAG-BBD/PPS. The 
key difference was that the rules were encoded in the 
same common SMIRKS/SMARTS format used by all of 
BioTransformer’s other transformer tools. Based on the 
sample tests provided in the Results section, it is clear 
that BioTransformer was able to accurately replicate the 
predictions provided by the EAWAG-BBD/PPS system. 
These results suggest that BioTransformer could also 
be used to accurately predict environmental microbial 
metabolism.

In a fourth test, we evaluated BioTransformer’s ability 
to identify metabolites using its BMIT module. This task 
tacitly relies on the metabolism prediction task, and Bio-
Transformer was able to suggest 37 metabolites match-
ing 20 masses from a list of 260 monoisotopic masses 
extracted from the MS analysis of urine samples col-
lected after exposure to epicatechin (Additional file  7: 
Table  S1). Of those, 18 metabolites were identified as 

previously known metabolites. Twenty-six monoisotopic 
masses matching to 36 reported epicatechin metabolites 
were not observed in our experimental study. This vari-
ation in the observed metabolites may be caused by dif-
ferent experimental settings and analytical conditions 
(e.g. length of the treatment, species, gender, dietary 
background, sample preparation and analysis methods) 
in different studies. For example, rats are expected to per-
form less sulfonation of epicatechin than humans [87]. In 
a second run, BMIT was used to search metabolites cor-
responding to monoisotopic masses that were observed 
in previous studies but not in our experimental dataset. 
In this test it was able to correctly identify another 21 
known epicatechin metabolites. Overall, BMIT was able 
to predict 39 out of 56 previously reported compounds. 
The discrepancy between the number of metabolites sug-
gested by BMIT and the number of previously reported 
metabolites could be explained by several factors. First, 
ten of the known epicatechin metabolites not predicted 
by BMIT (3 masses observed in our study) are products 
of a 2-step conjugation, but the superbio option simulates 
only one conjugation step, as it is often sufficient to make 
a molecule stable and hydrophilic enough for excretion 
(based on experimental data from MetXBioDB).

Second, in some cases (e.g. mass = 195.0532 Da), BMIT 
predicted two isobaric metabolites, but only one peak 
(retention time = 5.94  min.) was found in the spectra, 
indicating that only one metabolite was present in the 
sample or that the analytical conditions did not allow 
the resolution of isobaric compounds (Supplemental 
Table  1). Often, the same reaction (especially conjuga-
tions) can occur at several locations within a molecule, 
thus producing regioisomers. The opposite was seen 
in the case of mass = 314.064 Da, which corresponds to 
3 predicted metabolites (glucuronic acid conjugates), 
with 5 observed peaks exclusively found in samples col-
lected after exposure to epicatechin at 8, 11, 11.40, 
11.64, 11.75  min. These examples illustrate a common 
problem with metabolism prediction in the identifica-
tion of the correct sites of metabolism. We believe that 
increasing the number of true positives, as well as reduc-
ing the number of false positives could be achieved by 
integrating models that more accurately predict sites of 
metabolism.

BMIT was able to identify metabolites such as (2R)-
2-(3,4-diOH-phenyl)-5,7-diOH-2,4-DBP (Fig.  9a), and 
other conjugated metabolites corresponding to masses 
not previously reported. It is worth mentioning that 
these are only putative predicted metabolites, and that 
the results of the BMIT must be validated experimen-
tally, through further MS-based investigations. However, 
it was beyond the scope of this particular experimental 
study to fully investigate the metabolism of epicatechin. 
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Indeed, we believe that complementary analytical plat-
forms such as GC–MS would be necessary to cover the 
whole chemical space of epicatechin metabolites. Thor-
ough identification of the observed metabolites using 
MS/MS or authentic (synthesized) standards was not 
performed in our assessment of the metabolites present 
in urine. Epicatechin is metabolized in the liver, and more 
extensively by the gut microbiome. The ability of BMIT 
to identify/predict both human and human microbial 
epicatechin metabolites suggests that this module would 
be a useful asset in elucidating the dark matter in host-
microbiome metabolomics [88]. BMIT should also be a 
very useful tool for general metabolism prediction and 
metabolite identification using MS or MS/MS data. In 
addition, the predictions generated by BMPT could be 
very useful for suspect-screening analysis, and thereby 
permit faster non-targeted data analysis and more fac-
ile putative compound identification. Thanks to in silico 
MS/MS fragmentation tools such as CFM-ID, the com-
putation of MS/MS-spectra for those metabolites could 
be used to provide additional evidence.

We believe the examples used here nicely demon-
strate the ability of BioTransformer to accurately pre-
dict a wide range of metabolic reactions, for a number 
of different types of small molecules (endogenous and 
xenobiotic compounds) and a number of different bio-
systems (humans, microbial/environmental). BioTrans-
former is unique in its ability to cover almost all aspects 
of non-essential metabolism (drug/xenobiotic metabo-
lism, endogenous compound metabolism, gut microbial 
metabolism, environmental metabolism). This makes it 
particularly useful for the wide-ranging applications seen 
in metabolomics and other small molecule studies. Fur-
thermore, the accuracy, coverage, precision and recall of 
BioTransformer appear to be as good as, or even much 
better than some of the most highly regarded metabolic 
prediction systems now available. It is also notable that 
BioTransformer, unlike most of its competitors, is freely 
available.

Certainly a more extensive analysis of a much larger 
set of query compounds would likely better illustrate 
the strengths and weaknesses of BioTransformer. How-
ever, it is important to remember that there are relatively 
few experimentally validated, comprehensive sets of 
metabolic “biotransformation trees” and that the exam-
ples selected here (which required hundreds of hours to 
assemble, curate and validate) cover a good portion of 
the better known trees.

While there are a number of strengths to BioTrans-
former, we believe that certain improvements could still 
be made to the program. First, the addition of more bio-
transformation data would certainly provide additional 
reaction “fodder” to create more biotransformation rules. 

Additional biotransformation data would also provide 
further statistical evidence to fine tune the reaction pref-
erence rules (relative reasoning) and occurrence ratios 
for absolute/relative reasoning. In particular, adding 
an option for absolute reasoning would give BioTrans-
former the ability to select candidates with a set cut-off 
score. Currently BioTransformer’s biotransformation 
database (MetXBioDB) and its reaction knowledgebase 
cover only a small portion of gut microbial metabo-
lism (i.e. metabolism of plant-derived polyphenols). As 
many xenobiotics as well as endogenous compounds are 
known to be metabolized in the gut [75, 89–92], it will be 
important to further expand the coverage of gut micro-
bial metabolism in BioTransformer. We plan to make 
these improvements in upcoming versions of BioTrans-
former. Over the longer term we are hoping to integrate 
more machine learning prediction models (e.g. SoMs for 
CYP450 metabolism, and SoMs for phase II metabolism). 
This integration depends mostly on the amount of data 
available as machine learning hinges on having large and 
diverse training sets to optimize its performance. Given 
that the number of experimentally confirmed biotrans-
formations is still quite low for the systems of interest, it 
is likely that this will take a number of years to complete.

Conclusion
In this work, we have presented BioTransformer, a freely 
available, open access software tool that supports the 
rapid, accurate, comprehensive prediction of metabo-
lism of small molecules in both mammals and environ-
mental microorganisms. BioTransformer can also assist 
in metabolite identification using experimental MS data. 
BioTransformer can be used either as a command-line 
tool or as an imported library. The Java executable and 
Java library are open access, and freely available at https​
://bitbu​cket.org/djoum​bou/biotr​ansfo​rmerj​ar/. Moreo-
ver, BioTransformer is also freely accessible as a web ser-
vice at www.biotr​ansfo​rmer.ca. The web service provides 
users with the possibility to manually or programmati-
cally submit queries, and retrieve data generated by the 
BioTransformer software tool.

Within mammals, we have shown that BioTrans-
former was able to accurately predict single-step 
biotransformations for a diverse set of xenobiotics, 
including drugs, pesticides, and food compounds. The 
reactions that BioTransformer predicts cover Phase 
I and Phase II metabolism in mammals, as well as the 
human gut microbial metabolism. Overall, BioTrans-
former was shown to perform better than Meteor 
Nexus and ADMET Predictor, two highly regarded 
commercial software tools for in silico metabolism 
prediction. Unlike most other metabolic prediction 
tools, BioTransformer also supports the prediction 

https://bitbucket.org/djoumbou/biotransformerjar/
https://bitbucket.org/djoumbou/biotransformerjar/
http://www.biotransformer.ca


Page 23 of 25Djoumbou‑Feunang et al. J Cheminform            (2019) 11:2 

of metabolism of small molecules by environmental 
microbes. The integration of environmental metab-
olism with endogenous human and gut microbial 
metabolism allows BioTransformer to address many 
of the predictive metabolic needs of metabolomics or 
exposomics researchers, which tend to span a much 
wider range than, say, drug researchers, food chemists 
or environmental scientists.

Despite its strengths, BioTransformer is not without 
some limitations. Addressing these would certainly make 
the program much more flexible, more accurate, and 
more comprehensive. Obvious improvements for the 
current version of BioTransformer include: (1) the vali-
dation of BioTransformer’s predictions for a larger and 
more diverse test set of molecules; (2) the experimen-
tal validation of BioTransformer’s BMIT predictions for 
a larger set of molecules and experimental data; (3) the 
expansion of the reaction knowledgebase to cover more 
reactions, and (4) the addition of new options for metab-
olite prediction/ranking.

Additional files

Additional file 1. Cited structures.

Additional file 2. Additional-Notes-Introduction-Methods-Evaluation.

Additional file 3. Phase-II-Filter-Features.

Additional file 4. Predictions: BioTransformer vs. Meteor Nexus.

Additional file 5. BioTransformer—human and human gut microbial 
metabolism.

Additional file 6. BioTransformer vs. ADMET Predictor.

Additional file 7. Epicatechin metabolite identification tables.

Additional file 8. Epicatechin metabolites identification part 1.

Additional file 9. Epicatechin metabolites identification part 2.

Abbreviations
ADMET: absorption distribution metabolism excretion toxicology; BMIT: Bio‑
Transformer metabolite identification tool; BMPT: BioTransformer metabolism 
prediction tool; CYP450: cytochrome P450; CSV: comma-separated values; EC: 
enzyme classification; JSON: JavaScript object notation; KB: knowledgebase; 
PPC: pharmaceutical and personal care product; SDF: structure data file; 
SMILES: simplified molecular-input line-entry system; InChI: international 
chemical identifier; SULT: sulfotransferase; UGT​: UDP-glucuronosyltransferase.

Authors’ contributions
DSW conceived, initiated and supervised the project. RG provided feedback 
for the conceptualization of the machine learning system. YDF conceptual‑
ized the project, developed the knowledgebase and machine learning 
systems, designed the prediction algorithms, implemented the algorithms 
and engines, created the JAR library and Java software, the Rails API, and 
performed iterative test and evaluations. JF and CM provided expertise in 
the generation of validation of rules for the gut microbial biotransformation 
of polyphenols. They also provided expertise and experimental data for the 
evaluation of BioTransformer’s metabolite identification tool. YDF and AG 
collaborated in the configuration and optimization of the web service. Every 
co-author provided significant feedback in the editing of this manuscript, and 
approved it. All authors read and approved the final manuscript.

Author details
1 Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 
2E9, Canada. 2 INRA, Human Nutrition Unit, Université Clermont Auvergne, 
63000 Clermont‑Ferrand, France. 3 Department of Food and Experimental 
Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São 
Paulo, Brazil. 4 Department of Information Technology, CEU San Pablo Univer‑
sity, Madrid, Spain. 5 Department of Computing Science, University of Alberta, 
Edmonton, AB T6G 2E8, Canada. 6 Alberta Machine Intelligence Institute, 
University of Alberta, Edmonton, AB T6G 2E8, Canada. 

Acknowledgements
We would like to thank Nazanin Assempour (NA), Ithayavani Iynkkaran (II), 
David Arndt (DA), Carin Li(CL), Xuan Cao (XC), Zachary Budinski (ZB), An ChI 
Guo (AG), and Hasan Bradan (HB) from the Wishart lab for their contributions. 
NA, and II helped coordinating early efforts in the development of MetXBioDB. 
DA, XC, ZB contributed in the curation of MetXBioDB. DA, XC, ZB, CL, HB, and 
AG contributed in improving the design and functionality of the webserver. 
We would also like to thank Kathrin Fenner from the Swiss Federal Institute of 
Aquatic Science and Technology (EAWAG) for answering some of our ques‑
tions in regard to the EAWAG-BBD/PPS system.

Competing interests
The authors declare that they have no competitive interests.

Availability and requirements
Project name: BioTransformer. Project home page: Server http://www.biotr​
ansfo​rmer.ca; Command-line tool/Library https​://bitbu​cket.org/djoum​bou/
biotr​ansfo​rmerj​ar. Operating system(s): Web service—platform independ‑
ent. Command-line tool/Library—Windows, Linux, MacOS. Programming 
language: Java. Other requirements: Java 1.8. Any restrictions to use by non-
academics: No login requirement for running or accessing the results using 
the web service. Permission of the authors is required for use in commercial 
applications. License: GPLv2.1.

Funding
This work was supported by grants from Alberta Innovates (the Collaborative 
Research and Innovation Opportunity Fund), Genome Alberta (a division of 
Genome Canada), the Canadian Institutes of Health Research (CIHR), and the 
Agence Nationale de la Recherche (#ANR-14-HDHL-0002-02) for the FoodBAll 
project (JPI HDHL). JF was an AgreenSkills + fellow (app. ID 1007).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 17 September 2018   Accepted: 22 December 2018

References
	1.	 Nelson DL, Cox MM (2012) Lehninger principles of biochemistry, 6th edn. 

W H Freeman & Co (Sd), New York
	2.	 Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno 

R et al (2018) HMDB 4.0: the human metabolome database for 2018. 
Nucleic Acids Res 46(D1):D608–D617

	3.	 Uppal K, Walker DI, Liu K, Li S, Go Y, Jones DP (2016) Computational 
metabolomics: a framework for the million metabolome. Chem Res 
Toxicol 29(12):1956–1975

	4.	 Arora B, Mukherjee J, Nath Gupta M (2014) Enzyme promiscuity: using 
the dark side of enzyme specificity in white biotechnology. Sustain Chem 
Process 2:25

	5.	 Testa B, Pedretti A, Vistoli G (2012) Reactions and enzymes in the 
metabolism of drugs and other xenobiotics. Drug Discov Today 
17(11–12):549–560

	6.	 Dueñas M, Muñoz-González I, Cueva C, Jiménez-Girón A, Sánchez-Patán F, 
Santos-Buelga C et al (2015) A survey of modulation of gut microbiota by 
dietary polyphenols. Biomed Res Int. https​://doi.org/10.1155/2015/85090​
2

https://doi.org/10.1186/s13321-018-0324-5
https://doi.org/10.1186/s13321-018-0324-5
https://doi.org/10.1186/s13321-018-0324-5
https://doi.org/10.1186/s13321-018-0324-5
https://doi.org/10.1186/s13321-018-0324-5
https://doi.org/10.1186/s13321-018-0324-5
https://doi.org/10.1186/s13321-018-0324-5
https://doi.org/10.1186/s13321-018-0324-5
https://doi.org/10.1186/s13321-018-0324-5
http://www.biotransformer.ca
http://www.biotransformer.ca
https://bitbucket.org/djoumbou/biotransformerjar
https://bitbucket.org/djoumbou/biotransformerjar
https://doi.org/10.1155/2015/850902
https://doi.org/10.1155/2015/850902


Page 24 of 25Djoumbou‑Feunang et al. J Cheminform            (2019) 11:2 

	7.	 Koppel N, Rekdal VM, Balskus EP (2017) Chemical transformation of xeno‑
biotics by the human gut microbiota. Science 356(6344):1246–1257

	8.	 Testa B (2009) Drug metabolism for the perplexed medicinal chemist. 
Chem Biodivers 6(11):2055–2070

	9.	 Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in 
agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

	10.	 Tang J, Cao Y, Rose RL, Brimfield AA, Dai D, Goldstein JA et al (2001) 
Metabolism of chlorpyrifos by human cytochrome p450 isoforms 
and human, mouse, and rat liver microsomes. Drug Metab Dispos 
29(9):1201–1204

	11.	 Joly C, Gay-Quéheillard J, Léké A, Chardon K, Delanaud S, Bach V et al 
(2013) Impact of chronic exposure to low doses of chlorpyrifos on 
the intestinal microbiota in the simulator of the human intestinal 
microbial ecosystem (SHIME®) and in the rat. Environ Sci Pollut Res 
20(5):2726–2734

	12.	 Supreeth M, Chandrashekar MA, Sachin N, Raju NS (2016) Effect of 
chlorpyrifos on soil microbial diversity and its biotransformation by Strep-
tomyces sp. HP-11. 3 Biotech 6(2):147

	13.	 Benzidane C, Dahamna S (2013) Chlorpyrifos residues in food plant in the 
region of Setif-Algeria. Commun Agric Appl Biol Sci 78(2):157–160

	14.	 Shamasunder B (2017) Chlorpyrifos contamination across the food sys‑
tem: shifting science, regulatory challenges, and implications for public 
health. In: Hoflund AB, Jones JC, Pautz MC (eds) The intersection of food 
and public health: current policy challenges and solutions. Routledge, 
New York, pp 107–120

	15.	 Ebele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and 
personal care products (PPCPs) in the freshwater aquatic environment. 
Emerg Contam 3(1):1–16

	16.	 Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and 
personal care products found in the Great Lakes above concentrations of 
environmental concern. Chemosphere 93(9):2116–2123

	17.	 Coleman S, Linderman R, Hodgson E, Rose RL (2000) Comparative metab‑
olism of chloroacetamide herbicides and selected metabolites in human 
and rat liver microsomes. Environ Health Perspect 108(12):1151–1157

	18.	 Wishart DS (2009) Computational strategies for metabolite identification 
in metabolomics. Bioanalysis 1(9):1579–1596

	19.	 Celiz M, Tso J, Aga D (2009) Pharmaceutical metabolites in the environ‑
ment: analytical challenges and ecological risks. Environ Toxicol Chem 
28(12):173

	20.	 Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, van der Ploeg M et al 
(2015) Emerging pollutants in the environment: a challenge for water 
resource management. Int Soil Water Conserv Res 3(1):57–65

	21.	 Basheer C, Alnedhary AA, Rao BSM, Lee HK (2007) Determination of 
organophosphorous pesticides in wastewater samples using binary-
solvent liquid-phase microextraction and solid-phase microextraction: a 
comparative study. Anal Chim Acta 605(2):147–152

	22.	 Hubert J, Nuzillard J, Renault J (2017) Dereplication strategies in natural 
product research: How many tools and methodologies behind the same 
concept? Phytochem Rev 16(1):55–95

	23.	 Liu R, Liu J, Tawa G, Wallqvist A (2012) 2D SMARTCyp reactivity-based site 
of metabolism prediction for major drug-metabolizing cytochrome P450 
enzymes. J Chem Inf Model 52(6):1698–1712

	24.	 Rydberg P, Gloriam DE, Olsen L (2010) The SMARTCyp cytochrome P450 
metabolism prediction server. Bioinformatics 26(23):2988–2989

	25.	 Terfloth L, Bienfait B, Gasteiger J (2007) Ligand-based models for the 
isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J 
Chem Inf Model 47(4):1688–1701

	26.	 Marchant CA, Briggs KA, Long A (2008) In silico tools for sharing data and 
knowledge on toxicity and metabolism: Derek for windows, meteor, and 
vitic. Toxicol Mech Methods 18(2–3):177–187

	27.	 Ridder L, Wagener M (2008) SyGMa: combining expert knowledge and 
empirical scoring in the prediction of metabolites. ChemMedChem 
3(5):821–832

	28.	 COMPUDRUG (2013) Metabolexpert. http://www.compu​drug.com/
metab​olexp​ert. Accessed 1 Jan 2017

	29.	 ADMET Predictor (2018) Simulations Plus, Inc., Lancaster, California, USA. 
https​://www.simul​ation​s-plus.com/softw​are/admet​predi​ctor/metab​
olism​. Accessed 1 Jan 2018

	30.	 Zaretzki J, Matlock M, Swamidass SJ (2013) XenoSite: accurately predict‑
ing cyp-mediated sites of metabolism with neural networks. J Chem Inf 
Model 53(12):3373–3383

	31.	 Wicker J, Lorsbach T, Gütlein M, Schmid E, Latino D, Kramer S et al (2016) 
enviPath—the environmental contaminant biotransformation pathway 
resource. Nucleic Acids Res 44:D502

	32.	 Gao J, Ellis LBM, Wackett LP (2009) The University of Minnesota biocataly‑
sis/biodegradation database: improving public access. Nucleic Acids Res 
38(Suppl. 1):D488–D491

	33.	 Ellis LB, Gao J, Fenner K, Wackett LP (2008) The University of Minnesota 
pathway prediction system: predicting metabolic logic. Nucleic Acids Res 
36(Web Server issue):W427–W432

	34.	 Wicker J, Fenner K, Ellis L, Wackett L, Kramer S (2010) Predicting biodeg‑
radation products and pathways: a hybrid knowledge- and machine 
learning-based approach. Bioinformatics 26(6):814–821

	35.	 Molecular Discovery (2017) Mass-MetaSite. https​://www.moldi​scove​
ry.com/softw​are/massm​etasi​te/. Accessed 15 Jan 2017

	36.	 SCIEX—LightSight® Software (2018) https​://sciex​.com/produ​cts/softw​
are/light​sight​-softw​are. Accessed 20 Apr 2018

	37.	 Kirchmair J, Göller AH, Lang D, Kunze J, Testa B, Wilson ID et al (2015) 
Predicting drug metabolism: experiment and/or computation? Nat Rev 
Drug Discov 14(6):387–404

	38.	 Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR et al (2018) 
DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic 
Acids Res 46(D1):D1074–D1082

	39.	 FooDB (2016) The Food Metabolome Database. http://foodb​.ca/. 
Accessed 1 Jan 2017

	40.	 PhytoHub (2017). http://phyto​hub.eu. Accessed 1 Jan 2017
	41.	 Wishart DS (2017) ContaminantDB. http://conta​minan​tdb.ca. Accessed 

15 June 2017
	42.	 Wishart D, Arndt D, Pon A, Sajed T, Guo AC, Djoumbou Y et al (2015) T3DB: 

the toxic exposome database. Nucleic Acids Res 43(D1):D928–D934
	43.	 McEachran AD, Sobus JR, Williams AJ (2017) Identifying known unknowns 

using the US EPA’s CompTox Chemistry Dashboard. Anal Bioanal Chem 
409(7):1729–1735

	44.	 Sajed T, Marcu A, Ramirez M, Pon A, Guo AC, Knox C et al (2016) ECMDB 
2.0: a richer resource for understanding the biochemistry of E. coli. 
Nucleic Acids Res 44(D1):D495–D501

	45.	 Ramirez-Gaona M, Marcu A, Pon A, Guo AC, Sajed T, Wishart NA et al 
(2017) YMDB 2.0: a significantly expanded version of the yeast metabo‑
lome database. Nucleic Acids Res 45(D1):D440–D445

	46.	 Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V et al 
(2016) ChEBI in 2016: improved services and an expanding collection of 
metabolites. Nucleic Acids Res 44(D1):D1214–D1219

	47.	 Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: 
new perspectives on genomes, pathways, diseases and drugs. Nucleic 
Acids Res 45(D1):D353–D361

	48.	 Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, 
Bonavides-Martínez C et al (2013) EcoCyc: fusing model organism data‑
bases with systems biology. Nucleic Acids Res 41:D605

	49.	 International Union of Biochemistry and Molecular Biology—IUBMB 
Nomenclature Committee Recommendations 2017. http://www.chem.
qmul.ac.uk/iubmb​/. Accessed 15 Apr 2017

	50.	 González-Lergier J, Broadbelt LJ, Hatzimanikatis V (2005) Theoretical con‑
siderations and computational analysis of the complexity in polyketide 
synthesis pathways. J Am Chem Soc 127(27):9930

	51.	 Wishart DS (2016) Emerging applications of metabolomics in drug 
discovery and precision medicine. Nat Rev Drug Discov 15(7):473–484

	52.	 Allen F, Pon A, Wilson M, Greiner R, Wishart D (2014) CFM-ID: a web server 
for annotation, spectrum prediction and metabolite identification from 
tandem mass spectra. Nucleic Acids Res 42(W1):W94–W99

	53.	 Allen F, Greiner R, Wishart D (2014) Competitive fragmentation modeling 
of ESI-MS/MS spectra for putative metabolite identification. Metabo‑
lomics 11(1):98–110

	54.	 Allen F, Pon A, Greiner R, Wishart D (2016) Computational prediction of 
electron ionization mass spectra to assist in GC/MS compound identifica‑
tion. Anal Chem 88(15):7689–7697

	55.	 Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S (2016) Met‑
Frag relaunched: incorporating strategies beyond in silico fragmentation. 
J Cheminform 8(1):3

	56.	 Da Silva RR, Dorrestein PC, Quinn RA (2015) Illuminating the dark matter 
in metabolomics. Proc Natl Acad Sci U S A 112(41):12549–12550

http://www.compudrug.com/metabolexpert
http://www.compudrug.com/metabolexpert
https://www.simulations-plus.com/software/admetpredictor/metabolism
https://www.simulations-plus.com/software/admetpredictor/metabolism
https://www.moldiscovery.com/software/massmetasite/
https://www.moldiscovery.com/software/massmetasite/
https://sciex.com/products/software/lightsight-software
https://sciex.com/products/software/lightsight-software
http://foodb.ca/
http://phytohub.eu
http://contaminantdb.ca
http://www.chem.qmul.ac.uk/iubmb/
http://www.chem.qmul.ac.uk/iubmb/


Page 25 of 25Djoumbou‑Feunang et al. J Cheminform            (2019) 11:2 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	57.	 Tian S, Djoumbou Y, Greiner R, Wishart DS (2018) CypReact: a software 
tool for in silico reactant prediction for human cytochrome P450 
enzymes. J Chem Inf Model 58:1282–1291

	58.	 Delaney KA, Kleinschmidt KC (2010) Biochemical and metabolic princi‑
ples. Goldfrank’s toxicologic emergencies, 9th edn. McGraw-Hill Profes‑
sional, New York, p 170

	59.	 Miners JO, Smith PA, Sorich MJ, McKinnon RA, Mackenzie PI (2004) Pre‑
dicting human drug glucuronidation parameters: application of in vitro 
and in silico modeling approaches. Annu Rev Pharmacol Toxicol 44:1–25

	60.	 Jančová P, Šiller M (2012) Topics on drug metabolism. In: Paxton J (ed) 
Phase II drug metabolism. InTech, Croatia

	61.	 Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF 
et al (2012) Pharmacogenomics knowledge for personalized medicine. 
Clin Pharmacol Ther 92(4):414–417

	62.	 Spjuth O, Rydberg P, Willighagen EL, Evelo CT, Jeliazkova N (2016) 
XMetDB: an open access database for xenobiotic metabolism. J Chemin‑
form 8(1):47

	63.	 Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D et al 
(2009) SuperCYP: a comprehensive database on Cytochrome P450 
enzymes including a tool for analysis of CYP-drug interactions. Nucleic 
Acids Res 38(Suppl. 1):D237–D243

	64.	 Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remón A, M’Hiri N, García-
Lobato P et al. (2013) Phenol-Explorer 3.0: a major update of the Phenol-
Explorer database to incorporate data on the effects of food processing 
on polyphenol content. Databases. https​://doi.org/10.1093/datab​ase/
bat07​0

	65.	 Daylight Chemical Information Systems, Inc. (2008) SMARTS—a language 
for describing molecular patterns. http://www.dayli​ght.com/dayht​ml/
doc/theor​y/theor​y.smart​s.html. Accessed 20 May 2009

	66.	 SMIRKS (2007) A reaction transform language. http://dayli​ght.com/dayht​
ml/doc/theor​y/theor​y.smirk​s.html. Accessed 15 Sept 2014

	67.	 Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G 
et al (2016) ClassyFire: automated chemical classification with a compre‑
hensive, computable taxonomy. J Cheminform 8(1):1–20

	68.	 Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) 
ExPASy: the proteomics server for in-depth protein knowledge and 
analysis. Nucleic Acids Res 31(13):3784–3788

	69.	 Placzek S, Schomburg I, Chang A, Jeske L, Ulbrich M, Tillack J et al (2017) 
BRENDA in 2017: new perspectives and new tools in BRENDA. Nucleic 
Acids Res 45(D1):D380–D388

	70.	 Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM et al 
(2016) The MetaCyc database of metabolic pathways and enzymes and 
the BioCyc collection of pathway/genome databases. Nucleic Acids Res 
44(D1):D471–D480

	71.	 Bateman A, Martin MJ, O’Donovan C, Magrane M, Alpi E, Antunes R et al 
(2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 
45(D1):D158–D169

	72.	 Kalgutkar AS, Gardner I, Obach RS, Shaffer CL, Callegari E, Henne KR et al 
(2005) A comprehensive listing of bioactivation pathways of organic 
functional groups. Curr Drug Metab 6(3):161–225

	73.	 Fenner K, Gao J, Kramer S, Ellis L, Wackett L (2008) Data-driven extraction 
of relative reasoning rules to limit combinatorial explosion in biodegrada‑
tion pathway prediction. Bioinformatics 24(18):2079–2085

	74.	 Burapan S, Kim M, Han J (2017) Demethylation of polymethoxyflavones 
by human gut bacterium, Blautia sp. MRG-PMF1. J Agric Food Chem 
65(8):1620–1629

	75.	 Selma MV, Espín JC, Tomás-Barberán FA (2009) Interaction between 
phenolics and gut microbiota: role in human health. J Agric Food Chem 
57(15):6485–6501

	76.	 Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E (2016) The 
reciprocal interactions between polyphenols and gut microbiota and 
effects on bioaccessibility. Nutrients 8(2):78

	77.	 Button WG, Judson PN, Long A, Vessey JD (2003) Using absolute and rela‑
tive reasoning in the prediction of the potential metabolism of xenobiot‑
ics. J Chem Inf Comput Sci 43(5):1371–1377

	78.	 Chen C-H (2013) Activation and detoxification enzymes: functions and 
implications. Springer, New York, pp 1–177

	79.	 Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A et al (2016) 
PubChem substance and compound databases. Nucleic Acids Res 
44(D1):D1202–D1213

	80.	 BIOVIA (2011) The keys to understanding MDL keyset technology. http://
accel​rys.com/produ​cts/pdf/keys-to-keyse​t-techn​ology​.pdf. Accessed 1 
Oct 2012

	81.	 ChemAxon’s Marvin Suite (2017). https​://www.chema​xon.com/downl​
oad/marvi​n-suite​/. Accessed 15 Jan 2017

	82.	 Frank E, Hall MA, Witten IH (eds) (2016) The WEKA workbench. Online 
appendix for “data mining: practical machine learning tools and tech‑
niques”, 4th edn. Morgan Kaufmann, Burlington

	83.	 Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova 
N et al (2017) The Chemistry Development Kit (CDK) v2.0: atom typing, 
depiction, molecular formulas, and substructure searching. J Cheminform 
9(1):33

	84.	 Jeliazkova N, Kochev N (2011) AMBIT-SMARTS: efficient searching of 
chemical structures and fragments. Mol Inform 30(8):707–720

	85.	 Wang H, Wang N, Wang B, Zhao Q, Fang H, Fu C et al (2016) Antibiotics in 
drinking water in Shanghai and their contribution to antibiotic exposure 
of school children. Environ Sci Technol 50(5):2692–2699

	86.	 Cyplik P, Marecik R, Piotrowska-Cyplik A, Olejnik A, Drozdzynska A, 
Chrzanowski L (2012) Biological denitrification of high nitrate process‑
ing wastewaters from explosives production plant. Water Air Soil Pollut 
223(4):1791–1800

	87.	 Ottaviani JI, Borges G, Momma TY, Spencer JPE, Keen CL, Crozier A et al 
(2016) The metabolome of [2-14C](–)-epicatechin in humans: implica‑
tions for the assessment of efficacy, safety, and mechanisms of action of 
polyphenolic bioactives. Sci Rep 6:29034

	88.	 Peisl BYL, Schymanski EL, Wilmes P (2018) Dark matter in host-microbi‑
ome metabolomics: tackling the unknowns—a review. Anal Chim Acta 
1037:12–27

	89.	 Das A, Srinivasan M, Ghosh TS, Mande SS (2016) Xenobiotic metabolism 
and gut microbiomes. PLoS ONE 11(10):e0163099

	90.	 Ridlon JM, Harris SC, Bhowmik S, Kang D, Hylemon PB (2016) Con‑
sequences of bile salt biotransformations by intestinal bacteria. Gut 
Microbes 7(1):22–39

	91.	 Ghazalpour A, Cespedes I, Bennett BJ, Allayee H (2016) Expanding role of 
gut microbiota in lipid metabolism. Curr Opin Lipidol 27(2):141–147

	92.	 Carmody RN, Turnbaugh PJ (2014) Host-microbial interactions in the 
metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest 
124(10):4173–4181

https://doi.org/10.1093/database/bat070
https://doi.org/10.1093/database/bat070
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://daylight.com/dayhtml/doc/theory/theory.smirks.html
http://daylight.com/dayhtml/doc/theory/theory.smirks.html
http://accelrys.com/products/pdf/keys-to-keyset-technology.pdf
http://accelrys.com/products/pdf/keys-to-keyset-technology.pdf
https://www.chemaxon.com/download/marvin-suite/
https://www.chemaxon.com/download/marvin-suite/

	BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Introduction
	Methods
	Structure and implementation of BioTransformer
	MetXBioDB: a database of metabolites and experimentally confirmed biotransformations and biodegradations
	The reaction knowledgebase
	The reasoning engine
	The CYP450 metabolism prediction system
	The Phase II metabolism prediction system
	The BioTransformer metabolite identification tool
	BioTransformer’s input and workflow
	The BioTransformer web service
	Evaluation of BioTransformer’s metabolism prediction and metabolite identification capabilities


	Results
	Comparative evaluation of BioTransformer and Meteor Nexus in the prediction of human single-step metabolism of small molecules
	Evaluation of BioTransformer’s prediction of human and human gut microbial single-step metabolism of small molecules
	Comparative Evaluation of BioTransformer and ADMET Predictor in the Prediction of Human Single-step CYP450-mediated Metabolism of Small Molecules
	Comparative evaluation of BioTransformer and the EAWAG BBDPPS system in the prediction of environmental microbial metabolism
	Evaluation of BioTransformer’s metabolite identification tool

	Discussion
	BioTransformer’s design and implementation
	Evaluation of BioTransformer’s predictions


	Conclusion
	Authors’ contributions
	References




