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Abstract 17	

While large carnivores are recovering in Europe, assessing their distributions can help to predict and 18	

mitigate conflicts with human activities. Because they are highly mobile, elusive and live at very low 19	

density, modeling their distributions presents several challenges due to i) their imperfect detectability, 20	

ii) their dynamic ranges over time and iii) their monitoring at large scales consisting mainly of 21	

opportunistic data without a formal measure of the sampling effort. Not accounting for these issues can 22	

lead to flawed inference about the distribution.  23	

Here, we focused on the wolf (Canis lupus) that has been recolonizing France since the early 90’s. We 24	

evaluated the sampling effort a posteriori as the number of observers present per year in a cell based on 25	

their location and professional activities. We then assessed wolf range dynamics from 1993 to 2014, 26	

while accounting for species imperfect detection and time- and space-varying sampling effort using 27	

dynamic site-occupancy models.  28	

Ignoring the effect of sampling effort on species detectability led to underestimating the number of 29	

occupied sites by 50% on average. Colonization increased with increasing number of occupied sites at 30	

short and long-distances, as well as with increasing forest cover, farmland cover and mean altitude. 31	

Colonization decreased when high-altitude increased. The growth rate, defined as the number of sites 32	

newly occupied in a given year divided by the number of occupied sites in the previous year, decreased 33	

over time, from over 100% in 1994 to 5% in 2014.  This suggests that wolves are expanding in France 34	

but at a rate that is slowing down. Our work shows that opportunistic data can be analyzed with species 35	

distribution models that control for imperfect detection, pending a quantification of sampling effort. 36	

Our approach has the potential for being used by decision-makers to target sites where large carnivores 37	

are likely to occur and mitigate conflicts.  38	

 39	
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Introduction 44	

Large carnivores are often considered as key elements for maintaining ecosystems. Because of 45	

their high position in the trophic chain, their extinction can lead to trophic cascades and detrimental 46	

changes in species abundance and functioning of ecosystems (Ripple et al. 2014). Once widespread in 47	

Europe, many populations of large carnivores were extirpated over the last century, mainly due to 48	

interferences with human activities (Breitenmoser 1998, Ripple et al. 2014). Since the 1970s, all large 49	

carnivores have recovered, benefiting from legal protection and the recovery of wild ungulate 50	

populations, resulting in most of the European countries hosting at least one viable population of large 51	

predators (Chapron et al. 2014). Often used as a conservation success story, the recovery of large 52	

carnivores in human-dominated areas comes with challenges, including the question of whether there 53	

are any sufficiently large and functional areas left for viable populations (Packer et al. 2013). Another 54	

issue is how to coordinate management of these species at large scales, possibly across borders (Linnell 55	

and Boitani 2012, Bischof et al. 2015), in particular in the context of international treaties and 56	

directives (e.g. the Habitats Fauna Flora European Directive).  57	

In this context, mapping the distribution of a species can help to predict and mitigate conflicts. 58	

Species distribution models (SDMs) have become important tools in the ecological, biogeographical 59	

and conservation fields (Guisan and Thuiller 2005). By correlating presence-only or presence-absence 60	

data of a species to environmental factors, SDMs provide an understanding of habitat preferences and 61	

predictions on future species distribution. This is especially relevant for species involved in conflicts, 62	

since predicting their future presence can help targeting contentious areas and guide management to 63	

reduce conflicts (Guillera-Arroita et al. 2015). However, the monitoring of large carnivores remains 64	

challenging to carry out in the field because these species live at low density and occupy wide areas 65	

(Gitlleman et al. 2001). Therefore, assessing the distribution of these species comes with 66	

methodological challenges. 67	

First, standard SDMs such as Maxent (Phillips et al. 2006) rely on the assumption of perfect 68	

detection, assuming that the focal species is detected everywhere it is present (Yackulic et al. 2013). 69	

Going undetected at a given site does not necessarily mean that this species is absent from that site, but 70	
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rather that it may simply be missed for various reasons related to observer abilities, habitat 71	

characteristics or species level of activity (Kéry et al. 2010, Kéry 2011). Ignoring the issue of imperfect 72	

detection can result in false absences that lead to flawed inference in two ways: i) the distribution maps 73	

are biased by underestimating actual presences and can misrepresent certain viable habitat features that 74	

are falsely identified as unfavorable (Kéry and Schaub 2011, Lahoz-Monfort et al. 2014); ii) there may 75	

be confusion in identifying the drivers of the species distribution when detection depends on 76	

environmental explanatory variables that are independent from the variables influencing the species’ 77	

actual presence. For instance, if altitude has a negative effect on detection but not on presence, then as 78	

altitude gets higher, the species is less likely to be detected which can lead to erroneous conclusions 79	

that the species prefers lower altitudes (Lahoz-Monfort et al. 2014). To cope with this first issue, 80	

single-season or static site-occupancy models were developed (Mackenzie et al. 2006) and have been 81	

widely used for carnivores (e.g., Thorn et al. 2011 for brown hyenas Hyaena brunnea; Long et al. 2010 82	

for black bears Ursus americanus, fishers Martes pennant and bobcats Lynx rufus; Sunarto et al. 2012 83	

for Sumatran Tigers Panthera tigris sumatrae). Based on spatial and temporal replicated sampling of 84	

the target species, these models allow assessing the effects of environmental factors on species 85	

occupancy, while making the distinction between non-detections and true absences via the estimation 86	

of species detectability.  87	

Second, most SDMs are implicitly based on the ecological niche concept (Grinnell 1917; 88	

Hutchinson 1957) and therefore rely on two main hypotheses: i) the species is present in areas where 89	

environmental conditions are the most favorable and ii) dispersal is not a limiting factor (Jeschke and 90	

Strayer 2006). However, expanding species are often absent from an area not because conditions are 91	

unfavorable but because they have not yet dispersed to this area, or because of geographical barriers or 92	

dispersal constraints (Araújo and Guisan 2006). Hence, static SDMs ignore important dynamic 93	

processes, which may lead to bias in the resulting distributions (Yackulic et al. 2015). Static SDMs 94	

should therefore not be used for predictions (Zurell et al. 2009). To deal with this second issue, 95	

occupancy models have been extended (Mackenzie et al. 2003, Royle and Kéry 2007) to account for 96	

the influence of dynamic processes such as colonization and extinction on the species range dynamics 97	
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(Mackenzie et al. 2003). So-called multi-season or dynamic site-occupancy models are increasingly 98	

used to assess the range dynamics of expanding or invasive species (e.g., Bled et al. 2011 for the 99	

hadeda ibis Bostrychia hagedash and Broms et al. 2016a for the common myna Acridotheres tristis), 100	

but remain rarely applied to carnivores (e.g., Marcelli and Fusillo 2012 for the Eurasian otter Lutra 101	

lutra or Miller et al. 2013 for the grey wolves Canis lupus). 102	

Third, data collection is particularly costly if not unfeasible for elusive species that need wide 103	

areas due to the large presence area required for sampling. In this context, citizen science is considered 104	

as an efficient source of information to assess changes in a species distribution by covering wide areas 105	

(Schmeller et al. 2009). However, data from citizen science are often collected with protocols that do 106	

not control for variation in the sampling effort i) in time: a site can be sampled by several observers 107	

during a given year and not the following year and ii) in space: given two sites where the species is 108	

present, if the sampling effort is higher in one site, this might lead to recording a false absence in the 109	

site with lower sampling effort (Kéry et al. 2010). As a consequence, if sampling effort is not 110	

controlled for, detectability can be underestimated as well as its variability, leading to an 111	

overestimation of the distribution area (Van Strien et al. 2013). 112	

Static and dynamic occupancy models hold promise to analyze population trends from 113	

opportunistic data because the data collection process is formally incorporated (Isaac et al. 2014). 114	

Occupancy models are divided into two types of process; i) the ecological one, governing dynamic 115	

occupancy processes (initial occupancy, local extinction and local colonization) and ii) the observation 116	

process, governing the data collection process (MacKenzie et al. 2003). However, to address the third 117	

issue and apply occupancy models to opportunistic data, one needs to differentiate between a site that 118	

was not sampled and a site that was sampled but the species was not detected. In the case of several 119	

species being monitored, the detection of a species in a site informs about the non-detection of other 120	

species because this site is known to have been sampled (Van Strien et al. 2013). This no longer holds 121	

for single-species settings, and the assumption is sometimes made that all sites where at least one 122	

detection occurred are sampled throughout the whole duration of the study (Molinari-Jobin et al. 2012, 123	

Rich et al. 2013). 124	
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Here, we considered Grey wolves (Canis lupus) as a case study to illustrate the challenges in 125	

using opportunistic data and SDMs to infer the range dynamics of large carnivores. Wolves 126	

disappeared in most of the Western European countries during the twentieth century (Promberger and 127	

Schroder 1993; Boitani 2010) except in Spain, Portugal and Italy (Boitani and Cucci 1993). The species 128	

naturally recolonized the French Alps from the remaining Italian population (Valière et al. 2003, Fabbri 129	

et al. 2007). Because the species is protected by law while being a source of conflicts with 130	

sheepherding, its recolonization process needs to be carefully monitored.  131	

Our main objective was to describe and determine the drivers of wolves recolonization pattern 132	

in France between 1993 and 2014. To account for imperfect detection, we built a dynamic site-133	

occupancy model (Mackenzie et al. 2006) and analyzed opportunistic data collected by a network of 134	

trained volunteers since 1992. To do so, we built a posteriori the sampling effort to account for biases 135	

in data collected through citizen science. To describe the recolonization process over time, we 136	

addressed two main questions: (i) What are the environmental and biological factors influencing 137	

colonization and extinction probabilities? (ii) How can sampling effort be inferred a posteriori, i.e. 138	

after the data were collected, and to what extent does sampling effort correlate with detection 139	

probability?  140	

 141	

Methods 142	

 143	

Study species and area 144	

The first wolf (Canis lupus) occurrence was detected in France in the early 1990s as a consequence of 145	

the Italian population’s expansion (Valière et al. 2003, Ciucci et al. 2009). The species then spread 146	

outside the Alpine mountains to reach the Pyrenees and the Massif Central westward first in 1999, and 147	

the Vosges Mountains northward from 2011. The wolf is an opportunist species that can adapt its diet 148	

depending on available prey species (Poulle et al. 1997, Imbert el al. 2016). In areas with livestock 149	

farming, strong interactions between wolf presence and sheep breeding usually occur. The study area 150	

mostly covered Eastern France and a major part of Central France (Fig. 1).  151	
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 152	

[Figure 1 about here] 153	

 154	

Data collection  155	

Wolf detection data were made of presence signs sampled all year long from 1992 to 2014 thanks to a 156	

network of professional and non-professional observers. The network size has increased from a few 157	

hundred people in 1994, up to 3000 wolf experts in 2015. Every observer is trained during a 3-day 158	

teaching course led by the French National Game and Wildlife Agency (ONCFS) to document signs of 159	

the species presence (Duchamp et al. 2012). Presence signs went through a standardized control 160	

process combining genetic identification tools, and validation standards to prevent misidentification 161	

(Duchamp et al. 2012). For every presence sign, the date and location of collection were stored in a 162	

geo-referenced database. These data are considered opportunistic in the sense that monitoring occurs all 163	

year long in an extensive manner without explicitly quantifying the sampling effort.  164	

 165	

Dynamic site occupancy models  166	

To model the colonization dynamics of wolf, we used dynamic site-occupancy models (Mackenzie et 167	

al. 2003). These models allow the quantification of species occupancy while correcting for imperfect 168	

species detectability based on repeated sampling in time and space. We defined sampling units as 169	

10x10km cells, which appears to be the best option in the context of our study (Marboutin et al. 2010) 170	

and also is the recommended surface to produce maps of presence by the European Union (E. C. 2006). 171	

Site occupancy models rely on several assumptions, including the closure assumption which states that 172	

the ecological state of a site (whether it is occupied or not) remains unchanged through occasions (or 173	

surveys) j within a year k. During year k, sites were monitored mainly in winter from December to 174	

March, the most favorable period to detect the species between the two peaks of dispersal events in 175	

spring and fall (Mech and Boitani 2010). We defined the secondary occasions j as December, January, 176	

February and March and yi,j,k, the observed state of site i equal to 1 if at least one sign of presence was 177	

found at site i during occasion  j in the year k (and 0 otherwise).  178	
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We considered a state-space formulation of the dynamic occupancy model (Royle and Kéry 179	

2007) in which the model is viewed as the combination of (i) the ecological process that involves the 180	

latent ecological state of a site, i.e. whether it is occupied or not; (ii) the observation process that leads 181	

to the detections or non-detections by the observer conditional on the state of the system. The 182	

colonization probability γi,k is the probability that an empty site i during year k becomes occupied 183	

during year k+1, while the extinction probability εi,k is the probability that an occupied site i during 184	

year k becomes empty during year k+1.  We define zi,1 as the initial latent state of site i as being drawn 185	

from a Bernoulli distribution with the success probability being Ψi,1, zi,1 ~ Bernoulli (Ψi,1). All other 186	

latent states zi,k for k > 1 are drawn from a Bernoulli distribution as zi,k+1 | zi,k ~ Bernoulli (zi,k (1 - εi,k) + 187	

(1 - zi,k ) γi,k). On top of the ecological process stands the observation process, in which the 188	

detections/non-detections are drawn from a Bernoulli distribution yi,j,k|zi,k ~ Bernoulli(zi,k pi,j,k) where 189	

pi,j,k is the probability that the species is detected at site i for an occasion j during year k. The state-190	

space formulation is appealing as it makes explicit the latent states zi,k that can be used to build 191	

distribution maps.  192	

 193	

Sampling effort  194	

Monitoring the range expansion of wolves at the country level prevented us from implementing any 195	

standardized experimental sampling design. Instead, the presence signs were sampled in an 196	

opportunistic way and the sites were defined a posteriori. When dealing with detection-only data, 197	

various approaches have been adopted to infer the non-detections. In the context of species-list 198	

protocols, if other species are detected at a site but not the focal species, one can assume that observers 199	

were present but did not detect the species of interest and, hence a non-detection for this species is 200	

recorded at this given site (Kéry et al. 2010). In the context of single-species monitoring, several 201	

authors have assumed that the observation effort was sufficient enough to make the assumption that all 202	

occupied cells were monitored during the study period in any year (e.g., Molinari-Jobin et al.  2012). 203	

We adopted an original approach to infer the non-detections based on the available qualitative 204	

information on the observers. When entering the network, observers attended a 3-day training session 205	
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to learn how to identify the species and how it is monitored (Duchamp et al. 2012). During these 206	

training sessions, we recorded the observers’ personal and professional address, socio-professional 207	

category and entry date into the network. The entry date was used to quantify how many observers 208	

were present in the network each year. We calculated a circular buffer for the prospection area for each 209	

observer based on a radius specific to his/her socio-professional category and a center located at his/her 210	

address (Supplementary material, table A1). For instance, for an observer belonging to the category 1 211	

(departmental authority) whose address was located in the French Department number 39, his/her 212	

prospection area would be 4 999 km², which is the size of the Department (Supplementary material, 213	

Fig. A1 and Table A2). For this observer, a circular buffer was built with a radius calculated as Radius 214	

= !"#$!%&'(#) !"#!
!

.  215	

For each 10x10km cell, we then calculated the number of observers monitoring the species per 216	

year by summing the number of prospection areas overlapping the cell (supplementary material, Fig. 217	

A2). We set the species detection probability at a site to zero when the sampling effort was null in that 218	

site, i.e. no observers were present in that cell. When at least one observer was found in a cell in a given 219	

year, we considered that sampling occurred, hence concluding that a presence sign found at a particular 220	

occasion this year was a detection, and a non-detection otherwise. We expected that with more 221	

observers per site per year, the species was more likely to be detected, in other words that the sampling 222	

effort had a positive effect on the detection parameter. We performed a sensitivity analysis to assess 223	

how a change in the construction of the sampling effort influenced the model parameter estimates 224	

(Supplementary material, Fig. A3). 225	

 226	

Habitat covariates  227	

Wolves can adapt to a large range of different habitats, which makes it difficult to identify specific 228	

factors that may influence the species’ presence at a site (Mech and Boitani 2010). However, we 229	

incorporated proxies of variables that might shape the wolf distribution (Table 1). Vegetation 230	

composition can indirectly influence the probability that a site becomes colonized (Marucco 2009) as 231	
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well as altitude (Llaneza et al. 2012, Falcucci et al. 2013). Using the CORINE Land Cover ® database 232	

(U.E – SOeS, Corine Land Cover, 2006), we defined 3 covariates to characterize the landscape of the 233	

study area: forest cover, farming cover and rock cover. We used the IGN BD_ALTI® database (250m 234	

resolution) to calculate the mean altitude of each site as well as the proportion of altitude higher than 235	

2500m. Above this limit, most of the vegetation cover is grassland or rocky area. Altitude may be 236	

linked to colonization. We also predicted a site with a high proportion of high-altitude (>2500m high) 237	

would be less attractive for the species.  Forest cover may structure the ungulate distribution (i.e. prey 238	

species). As a consequence, we expected that a site with higher forest cover would have a higher 239	

probability of being colonized and a site with higher rock cover would have a lower probability of 240	

being colonized. We also used the proportion of agricultural area as a covariate combining all types of 241	

farming activities including pastures areas. Those areas can be occupied by sheep, a possible prey to 242	

wolves, and therefore may have a positive influence on the settlement of the species at a site. Altitude 243	

may be linked to colonization. We also predicted a site with a high proportion of high-altitude (>2500m 244	

high) would be less attractive for the species.  245	

Dispersal capacity is a key factor to explain the dynamic of wolf colonization (Boyd and 246	

Pletscher 1999, Kojola et al. 2006, Ciucci et al. 2009). Because cells occupied by established packs 247	

may act as a source of dispersers, (Yackulic et al. 2012), the neighborhood of an unoccupied cell may 248	

influence its colonization probability (Veran et al. 2015). On the other hand, wolves’  strategies in 249	

colonization aim at avoiding neighbors via long-distance dispersal to avoid territorial competition with 250	

neighboring packs. In that spirit, the presence of individuals at short and long-distance could be 251	

accounted for by using conditional autoregressive models and auto-logistic models (Bled et al. 2013). 252	

However, due to the computational burden and convergence issues, we could not implement this 253	

approach here.  We therefore defined two covariates that consisted of the observed number of 254	

contiguous observed occupied cells at both short and long-distances  around the focal cell. The short-255	

distance covariate was defined as the number of observed occupied cells that were directly contiguous 256	

to the focal cell i.e., situated within a distance of 10 km. The limit for the long-distance parameter was 257	

set to avoid a dilution effect due to the small number of observed occupied cells at very long-distances 258	
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but large enough to account for most long-distance observed occupied cells that could play a role in the 259	

colonization probability. Based on observations of wolf dispersal in the Western Italian Alps (Marucco 260	

and McIntire 2010), we set this limit at 150 km around the focal cell. We expected a positive effect of 261	

these two covariates on the probability of a site to be colonized.  262	

Because dispersal could be driven by the presence of physical barriers (Wabakken et al. 2001, 263	

Blanco et al. 2005), we defined a landscape covariate depicting the distance from the center of the site 264	

to the closest barrier defined as highways or rivers (U.E – SOeS, Corine Land Cover, 2006). We 265	

expected this covariate to impact colonization negatively.  266	

In the first few years after sites become newly colonized, extinction probability is expected to 267	

be high as long as only isolated individuals use them. Once a pack has settled, pack persistence is the 268	

rule for wolves when other packs are present in the surrounding areas (Mech and Boitani 2010). Pack 269	

splitting may rise from various sources including harvest or poaching of alpha pairs (Gehring et al. 270	

2003, Brainerd et al. 2008) leading to a locally extinct site. Within the distribution of an actively 271	

expanding population, extinct sites might be recovered by surrounding individuals, either by dispersers 272	

or by neighboring packs. We therefore expected the extinction probability to decrease over time, which 273	

was tested by using “year” as a continuous covariate.   274	

Finally, in addition to sampling effort, we considered the potential effect of road densities on 275	

the species detectability, first through facilitation of site accessibility for the observers and second, 276	

because cross roads are often used as marking sites (Barja et al. 2004), which can lead to an increase in 277	

the species detection probability. Because presence signs rely partly on track records in the snow, we 278	

considered an ‘occasion effect’ to account for the variation in detection conditions due to weather 279	

variations across the survey months (Marucco 2009).  280	

Last, we considered the initial occupancy probability as constant since only two sites were 281	

occupied in the first year of the study, which was not enough to assess the effects of covariates on this 282	

parameter.  283	

 284	

Model fitting, selection and validation 285	
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We performed covariate selection using stochastic search variable selection (SSVS; George and 286	

McCulloch 1993, O’Hara and Sillanpää 2009). In brief, SSVS builds a model that includes all covariate 287	

combinations as special cases. In practice, this is achieved by adding binary indicator variables, αp 288	

equals 1 or 0, which allows the estimation of the regression parameter βp or excludes it by setting it to a 289	

constant (Supplementary material Table C1). In a Bayesian framework, we excluded a regression 290	

parameter by constraining it to 0 by specifying an informative prior centered on 0, while we estimated 291	

it by using a flat prior, that is β! ∼ 1− α! Normal 0,0.0001 + α!Uniform 0,1  with α! ∼292	

Bernoulli(0.5). Prior to model selection, we ran a Spearman test to check for correlations among 293	

covariates.  294	

 We used the software JAGS (Plummer 2003) and Markov chain Monte Carlo (MCMC) 295	

simulations for model selection and parameter estimation. We ran three MCMC chains with a burn-in 296	

period of 2500 iterations followed by 10000 iterations on which we based our inference. We checked 297	

convergence visually by inspecting the chains and by checking that the R-hat statistic was below 1.2 298	

(Gelman and Shirley 2011). We finally produced distribution maps of the latent states by using a 299	

posteriori means of the zi,k from the best model. To assess the fit of our final model, we used the 300	

posterior predictive checking approach (Gelman et al. 1996) that has recently been applied to 301	

occupancy models (Broms et al. 2016b) (Supplementary material Fig. B1).  302	

 303	

Results 304	

The effect of covariates on detectability and the dynamic of occupancy  305	

The model best supported by the data had detection as a function of sampling effort, road 306	

density and occasion (month) and colonization as a function of forest cover, farmland cover, mean 307	

altitude, proportion of high-altitude and the number of observed occupied cells at a short and long-308	

distance neighborhood (Supplementary material, Table C1). This model appeared to fit the data 309	

adequately well (Supplementary material, Fig. B1).  Posterior medians and 95% credible intervals are 310	
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given for each parameter. To calculate the effect of a covariate, we set the other covariates to their 311	

mean value. 312	

Initial occupancy probability was low, as expected since few sites were detected as occupied at 313	

the beginning of the study (Supplementary material, Table C2).  314	

As predicted, forest cover had a positive influence on the probability that a site became 315	

colonized. The proportion of farmland area within a cell also appeared to have a positive but weak 316	

influence on this probability. Below 1500m of altitude, the probability that a site became colonized was 317	

close to zero, whereas above this limit the probability reached up to 0.26 (0.16; 0.41) (Fig. 2). This 318	

probability decreased with the high-altitude proportion in a site. Finally, as predicted, both the short 319	

and long-distance count of observed occupied neighboring cells had a strong influence on the 320	

probability that a site became colonized over a year and was dependent of the early vs. late period of 321	

the wolf recovery trend. Over time, the number of observed occupied neighboring cells increased at 322	

both short and long-distance (Supplementary material, Fig. D1). If all of the 8 neighboring cells were 323	

observed as occupied, the probability that the target site became colonized was 0.37 (0.23; 0.54) 324	

compared to a colonization probability of 2.71x10-3 (2.11x10-3; 3.47x10-3) if the target site had only 0 325	

to 2 contiguous neighboring cells observed occupied. As this number increased, the probability that a 326	

site became colonized increased accordingly (Fig. 2).  327	

[Figure 2 about here] 328	

Sites located within the Alps had the highest number of observed occupied sites at both short 329	

and long-distance. Colonization probability was the highest in this area (Fig.3). The highest part of the 330	

Alps (i.e. sites with the greatest proportions of high-altitude) remained with a low colonization 331	

probability (Supplementary material, Fig. D2). Overall, this probability was higher than zero in 332	

mountainous areas and increased with time as the number of occupied sites increased (Fig. 3).  333	

[Figure 3 about here] 334	

Finally, and as expected, detection probability varied according to the survey month with the 335	

lowest mean value of 0.07 (0.06; 0.09) in December and the highest value of 0.11 (0.09; 0.14) in 336	

January, and intermediate values of 0.10 (0.08; 0.13) in February and 0.10 (0.08; 0.12) in March when 337	
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road density and sampling effort were set to their mean values (Fig. 4). As expected, detection 338	

probability increased when the number of observers per site increased but, in contrast with what we 339	

expected, decreased with increasing road density. The sensitivity analysis showed weak effects of 340	

variations in the prospection areas used to build the sampling effort, except for the number of observed 341	

occupied sites (Supplementary Material, Fig. A3). 342	

[Figure 4 about here] 343	

Distribution map 344	

From 1992 to 2014, 13,554 presence signs were recorded by the network and used in our 345	

analysis. The species was initially spotted in 2 cells in 1993 and was detected in 143 cells in 2014 346	

(around 70-fold increase, see top panel in Fig. 5). This led to an apparent occupancy (proportion of 347	

occupied sites on the total number of sites in the study area) varying from 0.001 in 1993 to 0.046 in 348	

2014. 349	

Accounting for both sampling effort and imperfect detection, we estimated the number of 350	

occupied sites as up to 10 (1; 20) in 1993 and up to 193 (178; 208) in 2014 (top panel in Fig. 5); 351	

overall, the estimates were higher than the naïve estimates of occupancy. When we ignored the 352	

sampling effort in the detection process, we found an estimated number of occupied sites equal to 3 (1; 353	

5) in 1993 and up to 184 (171; 196) in 2014 leading to an average of 9 (8; 10) newly occupied sites per 354	

year. Most discrepancies between the two models (accounting for vs. ignoring the sampling effort) 355	

were found at the early stage of the colonization process when the network of observers was 356	

implemented mainly in the southeastern part of the Alps (compare bottom left and right panels in Fig. 357	

5; see also Supplementary material, Fig. D3). Accounting for the sampling effort allowed us to infer the 358	

species presence on sites that were not prospected or prospected with a low sampling effort. As soon as 359	

the number of observers increased, the network was more homogeneously spread in space and 360	

estimates of the number of occupied sites became similar whether the sampling effort was included in 361	

the model or not (top panel in Fig. 5).  362	

[Figure 5 about here] 363	
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Our results showed that in 1994 the species was found only in the Southern Alps, then actively 364	

colonized towards the Northern Alps at the beginning of the 2000’s. The colonization process started to 365	

reach the Pyrenees and Massif Central area in early 2000 and the Vosges area in the very northern part 366	

of France, at the beginning of the 2010’s,indicating that the French wolf population is still in a phase of 367	

expansion. On average 9 (6; 12) new sites became occupied per year with a minimum of 0 newly 368	

occupied sites in 2002 and a maximum of 29 newly occupied sites in 2012. This led to an average 369	

growth rate (i.e. number of new sites divided by the total number of sites the previous year) of 18% 370	

(15%; 19%) (Fig. 6). This growth rate decreased over time, from 125% at the early stage of the wolf 371	

colonization in 1994 to 5% in 2014, but the species is still in an expanding phase mainly thanks to the 372	

colonization outside of the alpine range. 373	

[Figure 6 about here] 374	

The model did not predict absence in places where presence signs were found (Fig. 7). Sites 375	

with high occupancy probability were mainly those close to the sites where the species had been 376	

previously detected, mostly due to the effect of short-distance neighbors. Some sites had a high 377	

probability of being occupied (> 0.75), however the uncertainty associated with those predictions was 378	

also high (standard deviation [SD] > 0.30). We found sites with high probability of occupancy (> 0.75) 379	

with low uncertainty (SD < 0.20), and some of those sites were observed as occupied in the following 380	

year because the model propagates information backwards in time and so zk is informed directly by zk+1.  381	

 382	

[Figure 7 about here] 383	

 384	

Discussion 385	

Determining favorable areas is often accomplished by building distribution maps using habitat 386	

suitability models (e.g., Mladenoff et al. 1999) or occupancy models (e.g., Marucco 2009). However, 387	

these studies often rely on a static relationship between the species of interest and its environment 388	
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(Jedrzejewski et al. 2008). Here, we used dynamic site-occupancy models and brought new insights on 389	

the processes governing the dynamic of recolonization of a keystone carnivore species. By controlling 390	

for species detectability and heterogeneous sampling effort, our approach can be used to assess the 391	

distribution dynamics of any species based on opportunistic data, pending relevant information is 392	

gathered on the people collecting the data.  393	

 394	

Model assumptions 395	

 396	

Site occupancy models rely on several assumptions that need to be discussed (Mackenzie et al. 2003, 397	

2006). First, the species should not be detected when absent from a site (i.e. no false positives). This is 398	

unlikely to happen in our case since we did not account for presence signs that were rejected because 399	

they did not fulfill the standardized criteria used to avoid species misidentification (Duchamp et al. 400	

2012). If doubts persist about the occurrence of false positives, this assumption could be relaxed by 401	

using site-occupancy models that account for misidentifications (Miller et al. 2011, Rich et al. 2013). 402	

Second, detection histories of all sampling units are assumed to be independent. However, detection 403	

histories were likely dependent in space because of a non-homogeneous spatial sampling effort inherent 404	

to opportunistic data. We partly accounted for this non-independence by quantifying the sampling 405	

effort. Furthermore, by accounting for the number of observed occupied neighboring cells, we made the 406	

detection history of a focal cell dependent partly on the detection histories of the neighboring cells. If 407	

the source of dependence is unknown, spatial autocorrelation can be modeled using geostatistical tools 408	

on occupancy or extinction/colonization parameters and also on detection (Bled et al. 2013). Third, the 409	

status of a site should not change during primary occasions - the closure assumption (Rota et al. 2009). 410	

If movements or mortality occurred inside or outside of the sampling sites, it is likely that the 411	

probability of occupancy in a given time interval did not depend on the occupancy status of a site in the 412	

previous time interval (Mackenzie and Royle 2005). In this situation of so-called random temporary 413	

emigration, the bias in parameter estimates is minimal, but occupancy should be interpreted as use of 414	

the sampling area rather than the proportion of area occupied by the species (Mackenzie et al. 2004). 415	
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To prevent for this potential bias, we used the data provided within the winter period from November 416	

to March as a primary occasion because it corresponds to the most stable period in the social 417	

organization of the packs, between two main dispersal events in October (pup integration into the 418	

packs’ hunting activities) and the next mating season in March. Fourth, there should be no unmodelled 419	

heterogeneity in the model parameters. In our study, heterogeneity might remain in species detection 420	

even after accounting for spatio-temporal variation in the sampling effort or in the colonization 421	

parameter after accounting for the effect of environmental covariates. Regarding the detection 422	

probability, some heterogeneity might remain due to a difference of detection in the presence signs, e.g. 423	

tracks vs. hair (Graves et al. 2011). This was unlikely to occur in our study because the vast majority of 424	

presence signs are tracks. Regarding the colonization parameter, even though we had data on the 425	

number of killed preys during the hunting season, we did not have information on wild prey density at 426	

such a large scale . During winter (i.e. our primary occasions), wild preys consist mainly of Chamois 427	

(Rupicapra rupicapra), mouflons (Ovis ammon), roe deer (Capreolus capreolus) and red deer (Cervus 428	

elaphus) (Duchamp et al. 2012), for which we used characteristics of their habitats as a proxy for their 429	

presence (Jedrzejewski et al. 2008).  430	

 Besides the usual assumptions of occupancy models, we also had to deal with opportunistic data 431	

that are collected through non-standardized sampling protocols. To cope with opportunistic data, we 432	

defined a grid of spatial units that was overlaid on the map of detections/non-detections. In doing so, 433	

the size and shape of these sampling units might have an impact on inference about the wolf 434	

distribution. Indeed, if the size of the sampling unit is too small, then there is a risk of having very few 435	

detections within a year, which would make the estimation of the detection probability difficult. On the 436	

other hand, if the size of the sampling units is too large, then there is at least one detection in any cell, 437	

which is of little use to estimate the distribution. We used 10x10km cells as sampling units, a choice we 438	

made in agreement with what was recommended by the European Union and also shown to be the best 439	

tradeoff between the species home range and sensitivity of the distribution to the size and shape of the 440	

unit cell (Marboutin et al. 2010). The average size of wolf home ranges vary between 100 and 400 km² 441	

in Western and central Europe (Ciucci 1997, Mech and Boitani 2010, Duchamp et al. 2012). Although 442	
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these cells might not entirely cover wolves territories, Latham et al. (2014) studied the effect of grid 443	

size to assess wolf’s occupancy and found that taking a large grid size may not be appropriate for areas 444	

with moderate to high wolf density as it can overestimate occupancy rate.   445	

Last, we assumed that observers were prospecting homogeneously inside the prospection area 446	

we assigned to them. This assumption may have been violated for two reasons. First, we believe that an 447	

observer was more likely to prospect more intensively near the center of the prospecting area, because 448	

it was defined as a home or work location, or near places where she/he already found presence signs. 449	

We also assumed that observers were prospecting homogeneously in time. This hypothesis can also be 450	

violated because observers may show different patterns in sampling frequency and some might not be 451	

prospecting during the months of winter. Finally, we made the assumption that once entered in the 452	

network, observers did not leave it unless we had information indicating the contrary such as a change 453	

of job or social status. Consequently, we might have overestimated the number of observers actually 454	

prospecting in the network for a given year. We therefore recommend recording carefully the activity 455	

of observers within the network to get a realistic picture of the actual sampling effort (Beirne and 456	

Lambin 2013).  457	

 458	

Effects of environmental covariates 459	

 460	

We used road density as a proxy of human presence and found a negative influence on the detection 461	

probability. When defining the road density covariate, we accounted for all types of roads (except 462	

highways) and assumed that this covariate could be a proxy for site accessibility. Because many 463	

observers from the network are wildlife professionals who are familiar with opportunistic surveys, 464	

main roads may not be used and accessibility to a site may consist mostly in dirt and forest roads or 465	

pathways. The negative influence could be explained by the fact that a high road density may also 466	

affect the spatial distribution of wolves. Because wolves tend to avoid roads (Whittington et al. 2005), 467	

there might be fewer presence marks. As expected, we found that detection probability increased when 468	

sampling effort increased, therefore highlighting the importance to account for imperfect detection 469	
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when it is likely to be inhomogeneous in time and space. Finally, detection varied according to the 470	

month of the survey, which can be explained by the variability in snow conditions in the study area, 471	

with higher detectability within the alpine range than in the Massif Central or lowlands for instance. 472	

We found that colonization was mainly influenced by the number of observed occupied 473	

neighbors at short and long-distances, showing that dispersal is a key factor of the dynamic of 474	

occupancy. These results corroborate those of Adams et al. (2008) who showed that dispersal was the 475	

main component explaining wolf population dynamics. Several long-distance dispersal events have 476	

been documented across the alpine area (Wolf Alpine Group. 2014) and in France from the very south 477	

eastern part to the northern Alps, from the Alps to the Massif Central or the northern Alps to the very 478	

northeastern part of France (Duchamp et al. unpublished data). Further studies explicitly modeling 479	

dispersal processes could help to better predict wolves colonization by accounting for factors that could 480	

enhance or slow down the dispersal rate for instance (Broms et al. 2016a). 481	

 We found that mean altitude had a positive effect on colonization probability. Wolves are 482	

highly flexible and are able to live in various areas from maize cultures to high mountains (Kazcenski 483	

et al. 2013). Starting from Italy westward to the Alps (Lucchini et al. 2002, Fabbri et al. 2007), wolves 484	

reached the alpine range via the natural Apennine mountain corridor. Therefore, the effect of mean 485	

altitude may be related to the history of the wolves’ natural recovery process. However, we also found 486	

a negative effect of the proportion of altitude higher than 2500m, i.e. the higher the proportion of high-487	

altitude, the less likely a site was to become colonized. Above 2500m, high vegetation turns from 488	

forested ecosystems to sparse vegetation, above alpine meadows with rocky covers and snow. In 489	

contrast, more forest cover associated with lower altitudes (<2500m) increased the probability that a 490	

site become colonized mainly because these habitats’ structure and composition are much more suitable 491	

to the presence of key prey species like deer (Suter et al. 2004) or mountain ungulates (Darmon et al. 492	

2012). To a lesser extent, the effect of farmland cover was also found to have a positive but weak 493	

influence on the colonization probability, possibly because pasture areas host domestic preys during the 494	

summer period (Meriggi and Lovari 1996). The inclusion of more explicit covariates related to pastoral 495	
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activity, such as the number of sheep in space, may provide a better understanding of the interaction 496	

between domestic prey and wolf presence, but these were not available to us. 497	

 498	

Trends in wolf recolonization  499	

 500	

Colonization patterns have been studied during recent decades (Wabakken et al. 2001). It appears that 501	

in Scandinavia, wolves were showing a colonization process that is typical of species with high 502	

dispersal capacities and pre-saturation dispersal (Swenson et al. 1998). This process is characterized by 503	

single long leaps forward and as a consequence, the colonization front is less well defined (Hartman 504	

1994) compared to a stepping stone dispersal strategy. Wolves seem to follow a similar pattern in 505	

France (Fig. 6) with an effect of long-distance neighborhood on colonization probability. This 506	

biological trait used by wolves is mainly known as a mechanism to avoid competition with other packs 507	

(Hayes and Harestad 2000). Once the area becomes more saturated, dispersers may fulfill remaining 508	

gaps in between other established territories, settling at long-distance unoccupied sites with higher risks 509	

of mortality due to an Allee effect (Hurford et al. 2006, Sanderson et al. 2013) or demographic 510	

stochasticity (Vucetich et al. 1997). In line with Marescot et al. (2011) who estimated a positive rate of 511	

increase in abundance, we demonstrated that the spatial dynamic mechanism of the wolves’ natural 512	

recovery is still going on, particularly outside the alpine range both northward and westward. However, 513	

this recovery appeared to slow down in proportion with the total number of occupied sites per year, 514	

mainly due to sites becoming saturated within the alpine range and/or a recent increase in official wolf 515	

controls held by the government aimed to deter damage on livestock.  516	

We used dynamic occupancy models to assess the current and dynamic distribution of a species 517	

that is expanding since it returned; there is a temptation to go a step forward and aim at forecasting its 518	

future distribution. However, we emphasize the difficulty of achieving this objective because we used 519	

environmental variables to explain colonization of the species that had already occurred; by definition, 520	

we could not incorporate the drivers that may appear relevant to explain future colonization events. For 521	

instance, now that wolves have settled in the alpine range and continue to expand, they are likely to 522	
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encounter new environments such as lowlands in the next few years, a landscape that may drive future 523	

colonization. Consequently, use our model as a predictive tool should be considered in an adaptive 524	

framework, i.e. by updating the management rules and the distribution maps every year during the 525	

active colonization phase.	526	

The outcomes of our analyses have important consequences for managing animal species 527	

because their conservation statuses must be assessed partly through trends in their distributions (see 528	

art.1 of the Habitats Fauna Flora European Directive). Dynamic occupancy models are therefore 529	

relevant tools to the decision-making process by providing maps and spatio-temporal trends. In the case 530	

of the wolf, these models can help in preventing damage to livestock (Miller 2015). The identification 531	

of areas where the species may or may not occur along with the surrounding uncertainty may be used to 532	

target specific sites and determine priorities for implementing mitigation measures.  533	
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Figure 1: Maps of cumulated species detections (blue dots) for the period 1993-2014. Red stars 
represent the first detections made in 1992. Sites were defined as 10x10km cells within a grid 
covering all detections. Red areas represent mountainous areas with an altitude higher than 1500 
meters.	
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Figure 2: Relationship between the estimated colonization probability and (A) short-distance 
occupied neighboring cells, (B) long-distance occupied neighboring cells, (C) forest cover, (D) 
altitude, (E) farmland cover, and (F) site proportion of altitude higher than 2500 m.  
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Figure 3: Maps of estimated colonization probability between 1993 and 1994, 2003 and 2004 and 
2013 and 2014 from the best model (Table 2). Black dots represent detections made in 1993, 2003 
and 2013.  
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Figure 4: Joint effects of road density, sampling effort and occasion (month) on the species 
detection probability. 
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Figure 5: 

Up:	Number of 10 x 10 km quadrats observed (black), estimated occupied ignoring sampling effort (red) and 
estimated occupied accounting for sampling effort (blue). Blue and Pink parts represent the 95% credible interval 
associated to the estimated number of occupied sites.  

Down: Maps of differences between estimates of occupancy from the model accounting for sampling effort and the 
one ingnoring sampling effort. Dark red sites are sites that appeared estimated occupied by the model accounting for 
sampling effort but did not  appear occupied once ignoring sampling effort. Both maps are associated with maps of 
the sampling effort for the years 1997 and 2014. 
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Figure 6:  Growth rate (i.e. number of new sites rated by the total number of sites the previous 
year, multiplied by 100) given for each year from 1994 to 2014 
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Figure 7: Maps of estimated occupancy (top) and associated standard deviation (bottom) for 
years 1994 and 2014. Black dots represent detections made in 1994 and 2014. 
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Covariate Abbreviation Parameter Description Expected 

effect 

Reference 

Forest cover Forest Colonisation ( γ ) Percentage of mixt, coniferous or deciduous forests 

cover 

+ Oakleaf et al. 2006, 

 Fechter & Storch 2013 

Farmland cover Agr Colonisation ( γ ) Percentage of pasture lands and other farming 

activities cover 

+/- Glenz et al. 2001 

Rock cover Rock Colonisation ( γ ) Percentage of rock cover -  

High altitude Halt Colonisation ( γ ) Proportion of altitude higher than 2500 meters - Glenz et al. 2001 

Altitude Alt Colonisation ( γ ) Mean altitude +/- Llanneza et al. 2012  

 Falcucci et al. 2013  

Distance to the 

closest barrier 

Dbarr Colonisation ( γ ) Minimal distance between a highway or one of the 

five main rivers in France. 

- Falcucci et al. 2013 

Short distance 

occupied 

neighboring cells 

SDAC Colonisation ( γ ) Proportion of observed occupied contiguous cells + Bled et al. 2011 

Long distance LDAC Colonisation ( γ ) Proportion of observed occupied cells within a 150   

Table 1: Description and expected effects of covariates used to describe the occupancy dynamics of wolf in France.  
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occupied 

neighboring cells 

km radius without the contiguous cells. + 

Year 

(continuous) 

Trend-year Extinction     ( ε ) Year as a linear effect - Marucco, 2009 

Sampling effort SEff   Detection  (p) Number of observers per site per year +  

Road density Rdens Detection (p) Percentage of site covered by roads +  

Month-survey survey Detection (p) Occasion of survey (categorical) +/- Marucco, 2009 
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Table A1: Size of prospection areas as a function of socio-professional category of observers. 
Observers were classified according to 8 entities to capture the diversity of their professional 
and personal field activities. People working for the departmental authorities (Category 1) 
display a field effort all over that departmental area. Observers belonging to the category 2 are 
state employees affected to the protected area they are working in. Details were not given for 
Regional Natural Park agents and Natural reserve agents. Their prospection area corresponds 
to the mean area of the protected area they are affiliated to. ONCFS agents (category 8) are 
attributed half a French Department as field areas when assigned for species monitoring. ONF 
agents (category 9) are attributed 1/10 of a French Department. Farmers (category 4) and 
hunters (category 5) usually focus on the restricted area (“municipality”) where they farm, 
breed sheep or hunt. Scientists (category 3), members of a naturalist association (category 6) 
and volunteers (category 7) were given ¼ of their affiliated department as their main activity 
might not be focused on species monitoring. 
 
 
 
Socio-professional category Prospection area Number of observers
Administrative (e.g., department authorities)
(category 1)

Area of the affiliated French department 230

National Park agent (category 2) Area of the affiliated National Park 156
Regional Natural Park agent (category 2) 450 km² 69
Natural Reserve agent (category 2) 10 km² 20
Scientist (category 3) ¼ of the affiliated department’s surface 6
Agricultural profession (category 4) Area of the affiliated municipality 59
Hunter (category 5) Area of the affiliated municipality 313
Member of a naturalist association (category 6) ¼ of the affiliated department’s surface 216
Volunteer (category 7) ¼ of the affiliated department’s surface 311
ONCFS agent (category 8) ½  of the affiliated department’s surface 513
French Forest Agency (ONF) agent (category 9) 1/10 of the affiliated department’s surface 284  
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Table A2: French departments where observers are present in 2014 along with their area and 
the number of observers affiliated to each department depending on their socio-professional 
category. Categories 2, 4 and 5 are not shown because their prospection areas do not depend 
on the size of the affiliated department. See also Figure A1. 
 
Department code Surface (km²) Category 1 Category 3 Category 6 Category 7 Category 8 Category 9

1 5762 5 0 8 8 22 11
4 6925 20 0 5 24 12 12
5 5549 8 0 4 17 19 6
6 4299 5 0 0 18 14 1
7 5529 5 0 6 0 12 4
8 5229 0 0 0 3 1 0
9 4890 0 0 4 1 11 7
10 6004 0 1 1 0 2 0
11 6139 0 0 0 0 3 2
12 8735 4 0 0 3 11 4
13 5087 0 0 1 1 10 1
15 5726 5 0 4 3 11 2
19 5857 0 0 0 0 2 0
21 8763 2 0 0 1 11 0
23 5565 0 0 0 0 1 0
24 9060 0 0 0 0 2 0
25 5234 14 0 11 4 22 11
26 6530 9 0 6 10 14 18
30 5853 4 0 3 0 7 1
31 6309 1 1 0 6 12 1
32 6257 0 0 0 1 8 0
34 6101 0 1 1 0 3 0
38 7431 6 1 21 29 28 23
39 4999 5 0 16 7 12 14
42 4781 8 0 1 4 3 3
43 4977 2 0 0 1 4 0
46 5217 0 0 0 0 1 0
47 5361 0 0 0 0 3 0
48 5167 17 0 5 6 14 8
54 5246 5 0 9 3 7 4
55 6211 1 0 1 1 23 3
57 6216 4 0 4 6 17 1
58 6817 0 0 1 0 0 0
59 5743 0 0 0 0 0 0
63 7970 0 1 5 1 6 1
65 4464 0 0 0 0 2 0
66 4116 6 0 7 18 10 11
67 4755 11 0 19 16 31 14
68 3525 28 0 20 44 16 17
69 3249 1 0 1 2 4 0
70 5360 10 0 11 1 12 12
71 8575 0 0 1 2 7 1
73 6028 7 0 5 17 17 33
74 4388 6 0 16 29 20 13
81 5758 0 0 0 0 4 1
82 3718 3 0 0 0 3 0
83 5973 3 1 2 3 15 1
84 3567 2 0 1 0 10 5
87 5520 0 0 0 1 0 0
88 5874 16 0 12 17 25 33
89 7427 0 0 1 0 0 0
90 609 7 0 3 3 9 5  
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Figure A1: Map of French departments with the identity code used in Table A2. 
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Figure A2: Schematic representation of how the sampling effort was calculated. Left: 
Observers were plotted according to their address. A circular buffer was affiliated to each 
observer with a surface equal to the prospection area following Tables A1 and A2. Right: 
resulting sampling effort calculated as the sum of observers sampling in each cell.  
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Figure A3: Analysis of sensitivity to the sampling effort definition. Each bar within a barplot 
represents the percentage of change (in %) in parameter estimates when compared to our 
original definition of the sampling effort after modification of the prospection area for one 
category of observers, in the following order: category 6: 1/10 of the affiliated department’s 
surface; category 6: 1/2 of the affiliated department’s surface; category 6: 100% of the 
affiliated department’s surface; category 7: 1/10 of the affiliated department’s surface; 
category 7: 1/2 of the affiliated department’s surface; category 7: 100% of the affiliated 
department’s surface; category 8: 1/10 of the affiliated department’s surface; category 8: 1/4 
of the affiliated department’s surface; category 8: 100% of the affiliated department’s surface. 
The model best supported by the data is used throughout these analyses.  
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Table C1: Top 10 models incorporating habitat covariates for the wolf detection/non-detection data. In the model structure, a 1/0 indicates the 
presence/absence of the corresponding covariate in the colonization, extinction of detection probability. Note that the intercept is always included 
in the model and therefore not represented in this notation.		
	

Model structure 
Posterior 

model probability 

colonization  extinction  detection  

forest agr rock halt alt Dbarr SDAC LDAC  Trend-year  SEff Rdens survey 
 

1 1 0 1 1 0 1 1  0  1 1 1 0.656 

1 1 0 1 1 0 1 1  1  1 1 1 0.182 

1 1 1 1 1 0 1 1  0  1 1 1 0.066 

1 1 0 1 1 1 1 1  0  1 1 1 0.061 

1 1 1 1 1 0 1 1  1  1 1 1 0.016 

1 1 0 1 1 1 1 1  1  1 1 1 0.014 

1 1 1 1 1 1 1 1  0  1 1 1 0.005 

0 0 0 0 0 0 0 0  0  0 0 0 0.000 

1 0 0 0 0 0 0 0  0  0 0 0 0.000 

0 1 0 0 0 0 0 0  0  0 0 0 0.000 
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Table C2: Parameters estimates from the best dynamic site-occupancy model for wolf in 
France between 1993 and 2014.  The median a posteriori is given with the associated standard 
deviation (SD). Occasions 2, 3 and 4 correspond to January, February and March. Estimates 
are given on a logit scale except for alpha.psi which is given on its natural scale, i.e. [0, 1]. 

 

Parameters Median SD Interpretation 
alpha.psi 3.17x10-3 1.91x10-3 Initial occupancy 
alpha.p -2.17 0.12 Detection intercept 
beta.SEffp 0.26 3.03x10-2 Effect of sampling effort on 

detection 
beta.Rdensp -0.93 5.85 x10-2 Effect of accessibility (road density) 

on detection 
beta.occp2 0.47 7.97x10-2 Effect of occasion 2 on detection 
beta.occp3 0.37 8.29x10-2 Effect of occasion 3 on detection 
beta.occp4 0.33 8.04x10-2 Effect on occasion 4 on detection 
alpha.gamma -5.87 0.12 Colonization intercept 
beta.agamma 0.65 0.11 Effect of farmland cover on 

colonization 
beta.SDACgamma 0.68 4.13x10-2 Effect of short distance occupied 

neighboring cells on colonization 
beta.LDACgamma 0.54 6.02x10-2 Effect of long-distance occupied 

neighboring cells on colonization 
beta.fgamma 0.90 7.97x10-2 Effect of forest cover on 

colonization 
beta.altgamma 0.94 7.57x10-2 Effect of mean altitude on 

colonization 
beta.haltgamma -0.24 4.30x10-2 Effect of high altitude proportion on 

colonization 
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Figure B1: Results from posterior predictive checks for the dynamic occupancy model best 
supported by the wolf data. We show a scatterplot of the predicted chi-square discrepancy 
between simulated and expected data (on the Y axis) versus the observed chi-square 
discrepancy between expected and observed data (on the X axis) across MCMC samples. The 
Bayesian predictive p-value is 0.46 and represents the proportion of samples above the 
diagonal. Overall, the fit of the model seems satisfactory.  
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Figure D1: Number of sites having more than 0 observed occupied neighboring cells at short 
(contiguous cells) and long distance (between 10 km and 150 km) for 1994, 2004, and 2014.  
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Figure D2: Maps of covariates tested in the study. First row from left to right: proportion of farmland cover 
(from 0 to 1); proportion of forest cover (from0 to 1); road density (from 0 to 1); high altitude density (from 
0 to 1). Second row: proportion of rock cover (from 0 to 1). Third row: left: distance from the cell center to 
the closest barrier (highway or river); right: mean altitude (in meters).  
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Figure D3: Maps of sampling effort for 1994, 2004, and 2014. Sampling effort was defined as 
the number of prospecting observers per site per year. In 1994, 1036 sites were prospected by 
at least one observer and 3083 were prospected in 2014.  In 1994 only sites in North-Eastern 
part of France were prospected and in 2014 all Eastern France was prospected with some parts 
in South-West. Size of the prospection area depended on the socio- professional category of 
observers: observers from an administrative field (policemen for instance) were assigned a 
theoretical prospection area the size of the French department in which they were affiliated, 
observers from national parks, regional natural parks and natural reserves were assigned a 
prospection area the size of those areas. Observers from the farming profession and hunters 
were assigned a prospection area the size of the county they work in. Scientists, members of 
naturalist associations and private observers were assigned an area a quarter the surface of the 
French department where they found signs. Observers working in the French Game and 
Wildlife Agency (ONCFS) were assigned an area half the surface of the French department 
they work in. Observers from the French National Office for Forest (ONF) were assigned an 
area 1/10 the surface of the department they work in.  
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