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Abstract: Design of optimal input excitations is one of the most challenging problems in
the field of system identification. The main difficulty lies in the fact that the optimization
problem cannot always be formulated to be convex, therefore a globally optimal excitation for the
dynamic system of interest cannot be guaranteed. In this paper, optimal input design (OID) for
linear systems in the presence of prior knowledge is studied. Information related to exponential
decay and smoothness is incorporated in the optimal input design problem by making use of the
Bayes rule of information. Three different cases of modeling the linear dynamics are considered,
namely Finite Impulse Response (FIR) model with and without prior knowledge, as well as the
rational transfer function case. It is shown that the prior information affects the spectrum of
the minimum power optimal input. The input with the least power is always obtained for the

transfer function model case.

Keywords: System identification, Optimal experiment design, Regularization

1. INTRODUCTION

The purpose of optimal input design, as a subfield of
optimal experiment design, is to determine the optimal
excitation signal for a dynamic system. Two basic frame-
works of optimal design problems can be found in the
literature, with respect to the cost function, as well as the
constraints, that determine the optimality of the signal.

The first framework considers the optimal input signal
as the one that maximizes a measure of information in
the data given constraints on the signal characteristics.
In case of an asymptotically efficient estimator, i.e. one
that achieves the Cramér—Rao bound, the covariance ma-
trix of the parameter vector converges to the inverse of
the Fisher information matrix for increasing number of
samples. Different measures of the covariance matrix have
been extensively used to define the optimizing measure of
information in the data (Wong, W. K. (1994)).

The second framework, known as the Least Costly iden-
tification framework, considers the optimal input signal
as the one that minimizes the cost of the experiment
given constraints on the estimated model performance,
Bombois, X., Scorletti, G., Gevers, M., Hildebrand, R.,
& Van den Hof, P. (2004), Bombois, X., Scorletti, G., Van
den Hof, P., & Gevers, M. (2004), Bombois, X., Scorletti,
G., Gevers, M., Van den Hof, P. M. J., & Hildebrand, R.
(2006), Bombois, X., & Scorletti, G. (2012), Forgione, M.,
Bombois, X., & Van den Hof, P. M. J. (2013). This is
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also the one used in this work, to determine the optimal
excitation in the presence of prior knowledge.

In particular, we consider the optimal input design prob-
lem when the impulse response coefficients of a system
have to be identified. In this particular situation, in order
to reduce the variance of the estimate, prior information
on the decay rate and the smoothness of these impulse
response coefficients is generally added. It is to be noted
that, in recent years, this type of identification has known
a regained interest for various reasons Pillonetto, G., &
De Nicolao, G. (2010),Chen, T., Ohlsson, H., & Ljung, L.
(2012),Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao,
G., & Ljung, L. (2014),Lataire, J., & Chen, T. (2016). The
main objective of the present paper is to analyze the role
of such prior information on the optimal input signal.

To investigate the role of such a prior information, we will
compare the optimal input signal for three different cases,
namely: i) FIR modeling of a linear system without any
prior knowledge about the underlying dynamics, ii) FIR
modeling with prior knowledge about exponential decay
and smoothness of the impulse response and, iii) identifica~
tion of the rational transfer function of the linear system,
which corresponds to an infinite impulse response (IIR)
representation, without any prior knowledge considered.

A least costly identification framework is adopted to in-
vestigate and compare the aforementioned cases. As such,
the minimum power input excitation is computed for all
the aforementioned cases given a minimum requirement
on the information contained in the measured data of the
identification experiment. This minimum requirement is
related to bounds on the modulus of the error between
the estimated and the true underlying transfer function.
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Fig. 1. Block scheme of the system structure considered in
this work.

The dependence of the optimal input spectrum on the
prior information about the underlying impulse response
becomes clear through a numerical example. In this exam-
ple, it will be observed that, without too much surprise,
the least powerful input signal is obtained in the case
where a rational model structure is used. It will also
be observed that the presence of prior information on
decay rate and smoothness when identifying the impulse
response coefficients allows to reduce the required power
spectrum especially in high frequencies (meaning that this
type of prior information mainly pertains to these higher
frequencies).

It is to be noted that a similar input design problem
has been considered in Fujimoto, Y., & Sugie, T. (2016),
Mu, B., & Chen, T. (2017). The main contribution of the
present paper with respect to these earlier contributions is
in the analysis of the influence of the prior information on
the optimal spectrum.

The paper is structured as follows. In Section 2 neces-
sary definitions, assumptions and problem formulation are
given. In Section 3 the amount of information available at
the end of the identification experiment is defined for all
the modeling cases considered. In Section 4 it is shown how
requirements on the accuracy of the estimated model are
translated to minimum requirements on the information
extracted from the identification experiment. The least
costly OID problem is also formulated in the same section.
In Section 5, the least costly OID method is demostrated
on a numerical example. Finally, some conclusions are
given in Section 6.

2. PROBLEM DEFINITION AND ASSUMPTIONS

Definition 1. (System Class) The unknown data-generating
system &y is stable and Linear Time-Invariant (LTT), and
an Output Error (OE) framework is considered (Fig. 1):

So s y(k) = yo(k) + e(k) = Go(2)u(k) +e(k) (1)
where Gp(z) is in general a rational transfer function
(Infinite ITmpulse Response (ITR) system), yo is the true
noiseless system output as a reaction to the input exci-
tation u, e represents the identically and independently
normally distibuted measurement noise of finite variance
(e ~ N(0,02)) and y is the measured noisy system output.

To identify the underlying dynamics based on N input u
- output y measured samples, a model structure must be
defined.

Definition 2. (Model classes) The true system dynamics
Sy are modeled with the following OE structure as:

y(k) = ym (k) + (k) = G(z,0)u(k) +e(k)  (2)

where G(z,60) is the model structure parameterized with
the vector & € R™, to be estimated from measured
input-output data. In this work, two different cases are
considered for the model structure candidate to describe
the true system dynamics. The first one corresponds to a
finite impulse response (FIR) representation:

’I’Lgnp
G(2,0np) = Z g(np)z="
np=1
with 0, = [g(1) 9(2)... g(ne,,)] € R"» the parameter
vector to estimate in this nonparametric FIR model case
and g(np),n, = 1,...,np,, denote the impulse response
coefficients of the LTI system G(z). The second model
structure considered is a rational transfer function:

(3)

ng k
G(z.0y) = —i=o 0 ()
Zha 4 YT anzk
with Gp = [ﬂo 51 57% Qg 1 ... O[nafl] € R™r the

parameter vector to estimate in this parametric model case
and n, > ng (causality condition).

Assumption 3. The FIR model structure (eq. 3) is con-
sidered to be long enough such that model errors due to
truncation of the impulse response are negligible.

Definition 4. (Input class) The signal used for excitation
is a multisine defined as follows:

F
u(k) = Z Ay cos(wnk + ¢p) (5)
n=1
where w,, n = 1,...,F are the frequencies contained in
the multisine, A,,n = 1,..., F denote the amplitude for
each frequency contained in the multisine and ¢,,n =
1,..., F is the phase of each cosine term.

The power spectrum ®,, of the input signal u is the design
variable of the optimal design problem. The discrete power
spectrum of this signal (power/frequency) is given by:

A2
Dy (wp) = Py (—wy) = T", n=1...,F

The power of the input signal u is defined as:

(6)
n=1

3. INFORMATION IN THE DATA AND PRIOR
KNOWLEDGE

3N

(7)

3.1 Case of no prior knowledge available

Consider the case when the system is modeled with the
OE model structure in eq. 2.

Assumption 5. In the case when no prior knowledge about
the system dynamics is available, an asymptotically effi-
cient estimator is used to estimate the parameter vector
0 for the model G(z,0) in eq. 2. As such, the covariance
matrix of the parameter vector converges to the inverse
of the Fisher information matrix for increasing number of
samples.



An example of an asymptotically efficient estimator is
the Maximum Likelihood (ML) estimator, to obtain an
estimate of the parameter vector 6, which for the OE case
would boil down to:

N-1
0%" = argmin Y " [y(k) — G(z,0)u(k)[? (8)
=
Definition 6. The (i, j)-element of the Fisher information
matrix, denoted by M (0) € R™*" ig given by:

0(i) 0(4)
where Y € RY is a vector which contains the measured
output samples and f, corresponds to the probability
density function of Yy. The mathematical expectation
operator is taken with respect to Yy

M(0):; = E[(

In case of no prior information available about the under-
lying dynamics, the total information available at the end
of the experiment is represented by:

Miotal = M(Q)
where M(0) is the Fisher matrix defined in eq. 9. In
Ljung, L. (1999) it is shown that the Fisher information
matrix can be expressed as a function of the input power
spectrum, which for the case of discrete power spectrum
and an OE framework considered here, is given by:

N E . _
M = — Z Ag(ej“’",ﬁo)Ag(eJ”",90)*‘I>u(wn)
€ n=—Fn#0
(10)
with Ag(z,0) = %, 0o denoting the true parameter
vector to estimate and ®,(w) the spectrum of the input
signal. Eq. 10 shows clearly the linear dependence of the

information matrix on the input power spectrum &,,.

Assumption 7. The output of the excited LTI system is
transient-free. As a result, no transient response is esti-
mated and the information matrix related to the iden-
tification experiment can be constructed based on the
assumption of a periodic excitation.

3.2 Case of prior knowledge available

Consider the case when the system in eq. 1 is modeled with
the FIR model structure in eq. 3. If there is prior knowl-
edge about exponential decay (stability) and smoothness
of the underlying impulse response, a regularized FIR
model can be estimated using a Bayesian framework as
described in Chen, T., Ohlsson, H., & Ljung, L. (2012),Pil-
lonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., &
Ljung, L. (2014). Assuming that the parameter vector 6
is a Gaussian random variable itself with zero mean and
prior covariance matrix P € R™*™ ie. § ~ N(0, P), and
taking into account that:

Yy =KnO+E, e(k)~N(0,d%

with

Yy = [y(0) y(1) ... y(N = 1)
o1(k) = [u(k —1) u(k —2) ... uw(k —n+1)]"
Ky = [#1(0) ¢1(1) ... ¢2(N — 1))
E =1[e(0) e(1) ... e(N 1)
then 6 and Yx are jointly Gaussian variables:

01 a(]0 P PKY
YN 0" |KnyP KnPKj + oI

where I denotes the identity matrix. The posterior distri-
bution of # conditioned on the observed data Yy is given
by:

0 Yy ~ N (O, Perest)
O = (KN Ky + 0P~ ) 'K Yy (11)
Pa;vost — ((0_2 (KJT\;KN)—l)—l + P—l)—l (12)
The last equation 12 represents the Bayes rule of infor-
mation. In this work, for the case of FIR estimation in

the presence of prior knowledge, the total information
available at the end of the experiment is defined as:

1

Mtotal = (Papost)—l = ;(K}\;‘KN> + P_l =M+ P_l
(13)
where M denotes the Fisher matrix representing the infor-
mation linked to the new experiment and p1! represents
the prior information about the identified parameter vec-

tor 6.

Remark 8. In the case when the prior information about
the estimated FIR model is related to exponential decay
and smoothness of the underlying response, the Diago-
nal/Correlated (DC) structure for the prior covariance
matrix P can be used Chen, T., Ohlsson, H., & Ljung, L.
(2012),Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao,
G., & Ljung, L. (2014):

Poc(i,j) = ¢ emoliil B0 (14)

where 0 < o, 8 < 00, ¢ > 0.

Assumption 9. In this work the values of the hyperpa-
rameters c,«, 8 are assumed to be known from a prior
experiment. As such, the prior information matrix P! is
considered to be known.

8.8 Least Costly OID framework

Given the aforementioned definitions and assumptions, a
least costly OID framework is considered as defined below.

Definition 10. The optimal input design problem is de-
fined as:

Uopt = aAr'g muin Pu

(15)
s.t. Mtotal > Radm

where p, is the power of the input signal as defined in
eq. 7, Miota1 represents the total information matrix which
corresponds to the information obtained at the end of the
identification experiment and R.qm is a lower bound on
Mtotal-



The information matrix Mieta can be given either by
eq. 10 or eq. 13, depending on the absence or presence of
prior knowledge. It is shown in Bombois, X., & Scorletti,
G. (2012) that accuracy constraints on the identified model
can be transformed into a constraint in the form Mo >
R.qm where R.qm is in our case a frequency-dependent
constraint on the model error achieved at transfer function
level of the identified model. This constraint is analyzed
in Section 4.

4. BOUND ON MODEL ACCURACY AND THE OID
PROBLEM

As mentioned in Section 2, three different cases of model
structures are investigated, a FIR model (eq. 3) with
and without prior knowledge and the rational transfer
function (eq. 4). Note that the number of parameters of
the parametric model in eq. 4, namely ng,_, is different than
the one for the nonparametric model in eq. 3, ng, (it is
considered that ng, << ng, ). Therefore the information
matrices for the two different model structures will have
different dimensions and comparison of the two cases
with respect to information cannot be done fairly on a
parameter level.

Under this condition, the constraint on the model accuracy
used in the optimal input design problem (eq. 15) should
be formulated such that the different model structures can
be equally compared. The latter can be done by translating
the bound on the information matrix (Miotal > Radm)
to a bound on the model error of the estimated transfer
function. As such, the optimal input can be derived such
that the same bound on the model accuracy is imposed for
different structures.

To formulate the bound on the model accuracy at a
transfer function level, the method found in Bombois, X.,
& Scorletti, G. (2012) (also related to Jansson, H., &
Hjalmarsson, H. (2005)) is used and presented briefly in
this section. It is shown that, given a constant «, related
to a chosen probability level, one can define a frequency-
by-frequency constraint on the information matrix:

M > Raam(w), Yw (16)

2 . .
%p TT(e7%,00)T (7%, ),

2
Tadm (w)

with Raqm(w) =

) AT Jw

riesm = (RHET D) € e and oo
represents the desired bound on the modeling error at
each frequency. More precisely, if eq. 16 holds, then it
is guaranteed that |Go(e?*) — G(e7,0x)| < Taam (W), Vo,
with a certain probability. It can be observed that the
higher the value of ruqm(w), the higher the allowable
modeling error resulting in a lower minimum requirement
Ragm(w) for the information matrix. The constraint eq. 16
has to be verified for all frequencies. However, in practice,
this constraint will only be posed for a finite amount of
frequencies covering the interval [0 7].

The OID problem is defined as:

Frequency Response Function Impulse response

25—
20 15
o
E 15 .
4
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155 =l 0 05
10 10 10 0 10 20 30 40 50
normalized frequency T

Fig. 2. The linear system used for illustration of the least
costly input design framework. Left: The FRF of
the linear system G(z) (frequency normalized to 7).
Right: The impulse response g(7) of the linear system
G(2).

D, opt(wy) = arg min  p,

F
= arg min A?
Dy (wn) ( gAl,...,Ap nz::l n)

s.t. Miotal > Radm(w), Yw
D, (wn) >0V,

(17)
which is affine in the input power spectrum @, (wy,).
The second constraint (non-negativity of the spectrum)
is necessary for the signal to be realizable. The optimal
design problem (17) is convex in the design variables,
therefore there is no risk of resulting in a local minimum.
In case of prior information available, the total information
matrix is given by Miotal = M + P71, as defined already
in Section 3.2.

Remark 11. Prior information about smoothness of the
impulse response is directly related to a certain behavior
of the modulus of corresponding Frequency Respone Func-
tion (FRF) (amplitude of transfer function). A smooth
impulse response corresponds to a FRF which has low
power in the high frequency region. It is shown in Section
5 that this fact is important when bounds related to the
amplitude of the transfer function are considered in the
OID problem.

Remark 12. In eq. 16, the lower bound on the information
matrix depends on the true parameter vector 6y. Even
though the true vector is used for the numerical illustration
in Section 5, in practice a prior estimate of the parameter
vector can be used to solve the OID problem and bypass
the well-known “chicken-and-egg” problem.

5. NUMERICAL EXAMPLE

The optimal input design problem (eq.17) is applied to the
linear system Go(z) given by:

0.8347z

22 —1.657z + 0.7017

whose FRF Gg(e/¥) (amplitude) and impulse response
g(7) are given in Fig. 2. The input signal is a multisine
(eq. 5) and a grid of 40 frequencies, covering the full
frequency band [0 7], are considered to be excited by
the input signal. The noise in the measured output is
Gaussian i.i.d with variance o2 = 0.25. For the bound on
the modulus of the estimated transfer function in eq. 16,

Go(z) =



the same discrete set of 40 frequencies is chosen on which
the constraint will be imposed. The value of o, in eq. 16
is chosen, for the three considered situations (see below),
in such a way that the modeling error is guaranteed to
be smaller than 7y, (w), Yw, with a probability of 0.95
(Bombois, X., & Scorletti, G. (2012), page 4).

The parameter 7,4m(w) is kept constant across the chosen
set of frequencies and it can take three values, 0.1, 0.5
and 0.9, resulting in an increasing admissible error in
the transfer function modulus, therefore in a smaller and
smaller bound on the information matrix. For the case of
the FIR model structure and prior knowledge available,
the DC covariance structure in eq. 14 is considered for the
prior covariance matrix P, with ¢ = 5.6, @« = 0.033 and
£ =0.232.

The optimal input design problem eq. 17 is considered for
three different model structures:

(1) The system is modeled with a finite impulse response
of ng,, = 45 lags, long enough such that the response
decays properly to zero.

(2) The system is modeled with the same FIR model
but prior information about smoothness and decay
is available.

(3) The system is modeled with a rational transfer func-
tion complex enough to capture the underlying dy-
namics of the linear system (three parameters to be
estimated as it is the case for the true underlying
system) without any more prior information about
the underlying dynamics.

The results of the optimal input design problem eq. 17 for
all the aforementioned cases are depicted in Fig. 3. It can
be observed that:

(1) The spectrum of the optimal input for the case of FIR
modeling approaches the one of a white noise signal,
as expected.

(2) The spectrum of the optimal signal for the case of
modeling the linear system with the rational transfer
function (IIR) converges to two dominant frequencies
which should be optimally excited, as expected for
the case of a second order linear system.

(3) For both aforementioned cases, the constraint on the
transfer function of the estimated model affects only
the power of the input signal and not the spectrum.

(4) This is not the case when FIR modeling in the pres-
ence of prior knowledge is considered. The spectrum
of the input signal is directly related to the constraint
imposed on the information matrix. Since the prior
information is related to smoothness of the impulse
response, it will suppress the power of the estimated
transfer function in the high frequency region. Under
this condition, the more relaxed the constraint on
the modulus of the transfer function, the more is the
prior information able to deliver a model inside the
allowable model error bounds. Therefore, the power
of the optimal input signal decreases in the high
frequency region as the constraint on the transfer
function modulus relaxes.

(5) In the right column of Fig. 3, we observe the value of
the objective function, namely the total power of the
optimal signal for each case of the OID problem. It is
clear that modeling the system with a nonparametric

Optimal input spectrum Total optimal input power
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Fig. 3. The optimal input for a linear system in three
different cases of model structures and bound on the
model accuracy. The admissible modeling error r,qm
increases from the upper to the lower row. Left col-
umn: Optimized input spectra for the different model
structures. Right: Total power of the optimal input
signals (the lowest frequency of the 40-frequency grid
chosen has been omitted for visualization reasons).

FIR structure under no prior knowledge leads to the
largest total power for the optimal signal. Moreover,
when prior knowledge is used, the minimum power
needed to satisfy the estimated transfer function con-
straints is reduced. Finally, for the case of parametric
modeling and the rational transfer function model,
the power of the optimal signal is in every case the
minimum one. This result can be intuitively explained
by the fact that the transfer function model, com-
plex enough to capture the dynamics of the linear
system, contains information about the structure of
the system. As such, it constitutes a more compact
and informative representation of the linear system



——Prior Error

radm =01

p— =05
m

=09
m

normalized freq
Fig. 4. The maximal modeling error on the modulus of
the transfer function, that would be obtained if only
the prior information was used, is depicted (solid
magenta line). The different levels of admissible error
considered in this numerical example are also plotted
and compared with the maximal error 7,qn,.

and can be considered as extra prior information
introduced in the optimal input design problem.

The optimal spectrum obtained for the case when prior
information about smoothness is available, and shown
in Fig. 3, left column, in blue, can be explained by
Fig. 4. In the latter plot, the maximal modeling error
on the modulus of the transfer function, that would be
obtained if only the prior information was used, is de-
picted (solid magenta line). This error corresponds to
p v/ Amax(T(e3%,00) P TT(e3%,0p)), where Apmax(A) cor-
responds to the largest eigenvalue of a matrix A and P
is the prior covariance matrix. It can be observed that in
the high frequency region, the gap that has to be filled by
the optimal input is smaller than for the lower frequencies.
Consequently, the identification experiment will essentially
have to bring information for low frequencies (resulting
in a spectrum which is essentially located in these lower
frequencies). This phenomenon will be increasingly impor-
tant for increasing values of 7,qm. This is precisely what
is observed for the blue curves in the left part of Fig. 3.

6. CONCLUSION

The effect of prior knoweldge, about the system dynamics,
on the minimum power excitation has been investigated in
this work. The optimal input design has been formulated
in a way that prior knowledge can be easily incorporated
in the design problem. The input excitation belongs to the
class of multisine signals and the spectrum of the signal
is the optimizing design variable. The constraints of the
OID problem are related to the bounds on the error of the
transfer function modulus between the true system and the
estimated model. It has been shown that prior knowledge
related to smoothness of the impulse response affects the
spectrum of the optimal input excitation by decreasing the
power of the signal in the high frequency region.
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