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Inverse problems for quasi-variational inequalities

Akhtar A. Khan1
· Dumitru Motreanu2

Abstract In this short note, our aim is to investigate the inverse problem of parameter iden-

tification in quasi-variational inequalities. We develop an abstract nonsmooth regularization

approach that subsumes the total variation regularization and permits the identification of

discontinuous parameters. We study the inverse problem in an optimization setting using

the output-least squares formulation. We prove the existence of a global minimizer and give

convergence results for the considered optimization problem. We also discretize the identi-

fication problem for quasi-variational inequalities and provide the convergence analysis for

the discrete problem. We give an application to the gradient obstacle problem.

Keywords Inverse problems · Regularization · Output least-squares · Quasi-variational

inequalities
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1 Introduction

Applied models frequently lead to variational problems involving parameters characterizing

physical features of the model. The direct problem in this setting is to solve the variational

problem. By contrast, an inverse problem seeks the identification of the parameters from a

measurement of a solution of the variational problem. In recent years, the field of inverse

problems emerged as one of the most vibrant and expanding branches of applied mathematics.
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Probably the main reason behind this is the increasing number of real-world situations that

are being modeled and studied in a unified framework of inverse problems. However, the

theoretical aspects of inverse problems are also quite challenging and require a delicate

blending of various branches of mathematics.

In this paper, our aim is to study, for the first time, the inverse problem of parameter

identification in quasi-variational inequalities. In our approach, the parameter identification

in the considered quasi-variational inequality, which provides the solvability of the stated

inverse problem, is achieved through the global minimization problem (see (9)) constructed

with the regularization map. The global minimizers are found in Theorem 3.1.

The theory of quasi-variational inequalities has now established itself as one of the most

promising areas of applied mathematics, offering a powerful mathematical apparatus for

investigating a broad range of problems arising in diverse disciplines. Applications of quasi-

variational inequalities can be found in material science [12], equilibrium models [2,22],

financial models [6], frictional elastostatic contact [19], image processing [16], sand-piles

formation [3], and numerous others.

We denote the parameter space by B which is a Banach space. We denote the set of

admissible parameters by A which is a nonempty, closed, and convex subset of B. We will

pose quasi-variational inequality in a Hilbert space V which we identify with its dual V ∗.

We take the measured data in a Hilbert space Z such that V continuously embeds in Z . We

specify the strong convergence by → and the weak convergence by ⇀. Assume that C is a

nonempty, closed, and convex subset of V , K : C ⇒ C is a set-valued map such that for

every u ∈ C, the set K (u) is a nonempty, closed, and convex subset of C, and m ∈ V ∗ is

fixed. Assume that there is a bounded set C0 ⊂ V such that K (v)∩C0 �= ∅, for every v ∈ C.

We define a trilinear form T : B × V × V → R, with T (a, u, v) symmetric in u and v, and

assume that there are constants α > 0 and β > 0 such that

T (a, u, v) ≤ β‖a‖B‖u‖V ‖v‖V , for all u, v ∈ V, a ∈ B, (1)

T (a, u, u) ≥ α‖u‖2
V , for all u ∈ V, a ∈ A. (2)

We formulate the quasi-variational inequality: Given a ∈ A, find u ∈ K (u) such that

T (a, u, v − u) ≥ 〈m, v − u〉, for every v ∈ K (u). (3)

Given a ∈ A, the quasi-variational inequality of finding u = u(a) constitutes the direct

problem. In contrast, the inverse problem seeks to identify the coefficient a from a measure-

ment z of a solution u of the quasi-variational inequality. Quasi-variational inequality (3),

introduced in connection with an impulse control problem (see Bensoussan and Lions [4],

Mosco [18]), is convenient for many applications such as implicit obstacle problem, dam

problems, and others. See [8,13,14] for more details.

If K (u) = C for all u ∈ C, then (3) becomes the variational inequality: find u ∈ C such

that

T (a, u, v − u) ≥ 〈m, v − u〉, for every v ∈ C. (4)

Variational inequality (4) has been extensively studied in the literature and has found

numerous applications. Identification problems in variational inequalities have also been

studied (see [10]).
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2 Solvability of quasi-variational inequalities

The existence theory for quasi-variational inequalities is challenging. Although some exis-

tence results exploit the ordering structure of the underlying spaces, one of the most commonly

adopted techniques for solving quasi-variational inequalities is by finding fixed points of the

associated variational selection.

To define the variational selection, we fix an arbitrary element w ∈ C and consider the

following variational inequality: Given a ∈ A, find u ∈ K (w) such that

T (a, u, v − u) ≥ 〈m, v − u〉, for every v ∈ K (w). (5)

The variational selection is a (set-valued, in general) map S : C ⇒ C such that for any

w ∈ C, the image S(w) is the set of all solutions of (5). Evidently, if u is a fixed point of the

map S, that is, u ∈ S(u), then u solves quasi-variational inequality (3).

We shall use the fixed point theorem of Kluge [15] to find a fixed point of the variational

selection:

Theorem 2.1 [15] Let Z be a reflexive Banach space and let C ⊂ Z be nonempty, convex,

and closed. Assume that � : C ⇒ C is a set-valued map such that for every u ∈ C, the set

�(u) is nonempty, closed, and convex, and the graph of � is sequentially weakly closed.

Assume that either the set C is bounded or the set �(C) is bounded. Then the map � has at

least one fixed point in C.

We have the following existence result for quasi-variational inequality (3).

Theorem 2.2 Besides the general setting described above, assume that the map K : C ⇒ C

is M-continuous, that is, it satisfies the following conditions:

(M1) For any sequence {xn} ⊂ C with xn ⇀ x, and for each y ∈ K (x), there exists a

sequence {yn} such that yn ∈ K (xn) and yn → y.

(M2) For yn ∈ K (xn) with xn ⇀ x and yn ⇀ y, we have y ∈ K (x).

Then, for every a ∈ A, the quasi-variational inequality (3) has a nonempty solution set.

Proof We will divide the proof into several parts. Our aim is to show that the variational

selection S : C ⇒ C satisfies the assumptions imposed on the map � in Theorem 2.1.

For a given a ∈ A and a fixed w ∈ C, the parametric variational inequality (5) is uniquely

solvable. Therefore, for the given a ∈ A, and each w ∈ C, the solution set S(w) is nonempty,

and (trivially) closed and convex.

We shall now prove that the graph of S is sequentially weakly closed. Let {(vn, yn)} ⊂

C × C be such that yn = S(vn) with yn ⇀ y and vn ⇀ v. We will show that y = S(v). The

set C being convex and closed is also weakly closed, and hence v ∈ C. Since yn = S(vn),

we infer that yn ∈ K (vn) and

T (a, yn, z − yn) ≥ 〈m, z − yn〉, for every z ∈ K (vn). (6)

The containment yn ∈ K (vn), by using the M-continuity of the map K and taking into

account the convergence yn ⇀ y and vn ⇀ v, implies that y ∈ K (v) (see (M2)). Let

z ∈ K (v) be arbitrary. Using the M-continuity once again (precisely, condition (M1)) ensure

that there is a sequence {zn} converging strongly to z and satisfying zn ∈ K (vn). We insert

z = zn ∈ K (vn) in (6) and rearrange the resulting inequality as follows

T (a, zn, zn − yn) ≥ T (a, yn − zn, yn − zn) + 〈m, zn − yn〉 ≥ 〈m, zn − yn〉,
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which when passed to the limit n → ∞ implies that for every z ∈ K (v), we have

T (a, z, z − y) ≥ 〈m, z − y〉.

We now insert y + t (z − y) with t ∈ (0, 1) in place of z in the above inequality to get

T (a, y, z − y) + tT (a, z − y, z − y) ≥ 〈m, z − y〉.

We pass in the above inequality to limit t → 0 obtaining

T (a, y, z − y) ≥ 〈m, z − y〉, for every z ∈ K (v),

which ensues that y ∈ S(v). Finally, the boundedness of S(C) follows from the ellipticity of

T . Theorem 2.1 then confirms that there is a fixed point for S, which solves (3). The proof is

complete. ⊓⊔

Remark 2.1 The linearity of T (a, u, v) with respect to a does not play any role in the above

result.

3 Solvability of the inverse problem

We will now introduce an optimization framework to study the inverse problem of param-

eter identification in quasi-variational inequalities. To counter the adverse effects of the

ill-posedness of the inverse problem, we develop an abstract regularization framework by

assuming:

(A1) The Banach space B is continuously embedded in a Banach space L . There is another

Banach space B̂ that is compactly embedded in L . The set A consists of real-valued

functions and is a subset of B ∩ B̂, closed and bounded in B and also closed in L .

(A2) For any sequence {bk} ⊂ B with bk → 0 in L , any bounded sequence {uk} ⊂ V, and

fixed v ∈ V, we have

T (bk, uk, v) → 0. (7)

(A3) R : B̂ → R is convex, and lower-semicontinuous with respect to ‖ · ‖L such that

R(a) ≥ τ1‖a‖B̂ − τ2, for every a ∈ A, for some τ1 > 0, τ2 > 0. (8)

Using the above framework, which will be exemplified shortly, we consider the following

regularized output-least-squares (OLS) optimization problem: Find a ∈ A by solving

min
a∈A

Jκ (a) :=
1

2
‖u(a) − z‖2

Z + κ R(a), (9)

where κ > 0 is a regularization parameter, R is the regularization map introduced in (A3),

u(a) is the solution of (3), and z ∈ Z is the measured data.

For recent developments in inverse problems, see [5,7,9,11,17,21] and the cited references

therein.

We have the following existence result:

Theorem 3.1 For κ > 0, regularized output-least-squares problem (9) has a nonempty

solution set.

Proof The functional Jκ is bounded from below and hence there exists a minimiz-

ing sequence. Let {an} ⊂ A be a minimizing sequence such that limn→∞ Jκ (an) =
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inf{Jκ (b)| b ∈ A}. Let un = u(an) be the solution of quasi-variational inequality (3) for the

parameter an . Due to the definition of {an} and the inequality κ R(an) ≤ Jκ (an), the sequence

{an} is bounded in B̂. Due to the compact embedding of B̂ into L , {an} has a subsequence

which converges strongly in ‖ · ‖L . Keeping the same notation for subsequences as well, let

{an} be the subsequence converging in ‖ · ‖L to some ā ∈ A.

On the other hand, by the definition of un (see (3)), we have un ∈ K (un) and

T (an, un, v − un) ≥ 〈m, v − un〉, for every v ∈ K (un). (10)

Let {un} be a sequence of solutions of (10) that correspond to the subsequence of parameters

{an} converging to ā ∈ A. We claim that {un} is bounded. By assumption made before (1)

there exists a bounded sequences {sn} with sn ∈ K (un) ∩ C0 for each n. By taking v = sn in

(10), we obtain

T (an, un, sn − un〉 ≥ 〈m, sn − un〉,

which by using the ellipticity of T in (2) as well as (1) ensures that the sequence {un} is

bounded.

Since {un} is bounded, there exists a weakly convergent subsequence in V . Keeping the

same notation for the subsequence, let {un} be the subsequence which converges weakly to

some ū ∈ V . We shall show that ū = u(ā). Since un ∈ K (un) and since un converges weakly

to ū, by using condition (M2) of the M-continuity of the map K , we obtain ū ∈ K (ū). Let

z ∈ K (ū) be arbitrary. Using condition (M1) of the M-continuity, we ensure that there is

a sequence {zn} converging strongly to z in V and satisfies zn ∈ K (un). Setting v = zn ∈

K (un) in (10) and using the identity

T (an, un, zn − un) = T (an, un − zn, zn − un) + T (an, zn − z, zn − un)

+ T (an − ā, z, zn − un) + T (ā, z, zn − un)

and the ellipticity of T in (2), we obtain

T (an, zn − z, zn − un) + T (an − ā, z, zn − un) + T (ā, z, zn − un) ≥ 〈m, zn − un〉,

which, by (7) and the symmetry of T (a, u, v) in u and v, when passed to the limit n → ∞,

yields

T (ā, z, z − ū) ≥ 〈m, z − ū〉, for every z ∈ K (ū).

We set ū + t (z − ū), t ∈ (0, 1), in place of z in the above inequality to get

T (ā, ū + t (z − ū), z − ū) ≥ 〈m, z − ū〉.

We pass in the above inequality to limit t → 0 to get

T (ā, ū, z − ū) ≥ 〈m, z − ū〉,

which, due to the fact that z ∈ K (ū) was chosen arbitrarily, ensures that ū solves (3) for ā.
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The weak lower-semicontinuity of the norm and lower-semicontinuity of R in ‖ · ‖L yield

Jκ (ā) =
1

2
‖u(ā) − z‖2

Z + κ R(ā)

≤ lim inf
n→∞

1

2
‖un − z‖2

Z + lim inf
n→∞

κ R(an)

≤ lim inf
n→∞

{
1

2
‖un − z‖2

Z + κ R(an)

}

= lim
n→∞

Jκ (an) = inf {Jκ (b)| b ∈ A} ,

which confirms that ā is a solution of (9). The proof is complete. ⊓⊔

The above framework simplifies nicely (and does not need B̂ and L), if the regularization

space B and the parameter space are linked. The following result sheds some light on this

aspect:

Theorem 3.2 Assume that a Hilbert space Ĥ is compactly embedded into the Banach space

B, A ⊂ Ĥ is nonempty, closed, and convex, the map R : Ĥ → R is convex, lower-

semicontinuous, and there exist α1 > 0 and α2 > 0 such that R(a) ≥ α1‖a‖2
Ĥ

− α2, for

every a ∈ A. Then (9) is solvable.

Proof The proof follows by the arguments used above but relying on (1) (instead of (7)). ⊓⊔

4 Finite-dimensional approximation

We shall discretize the identification problem for quasi-variational inequalities. Recall that we

have been dealing with the quasi-variational inequality: Given a ∈ A, find u = u(a) ∈ K (u)

such that

T (a, u, v − u) ≥ 〈m, v − u〉, for every v ∈ K (u). (11)

We considered the following regularized optimization problem: Find a ∈ A by solving

min
a∈A

Jκ (a) =
1

2
‖u(a) − z‖2

Z + κ R(a), (12)

where κ > 0 is a regularization parameter, R is the regularization map, u(a) is the unique

solution of (11), and z ∈ Z is the measured data.

We now proceed to describe the discretization framework. Assume that we have a family

{Vn} of finite-dimensional subspaces of V, and for each n, Pn : V → Vn is a projection

operator such that ‖v − Pnv‖V → 0 for each v ∈ V . We assume that {Bn} is a family of

finite-dimensional subspaces of B. We set An = Bn ∩ A and assume that ∩n An �= ∅. For

each n ∈ N, let Cn ⊂ Vn be a nonempty, closed, and convex set. Let Kn : Cn ⇒ Cn be a

set-valued map such that for every v ∈ Cn, the set Kn(v) is nonempty, closed, and convex.

We assume that the maps Kn approximate K in the following sense:

(M3) For any sequence {xn} with xn ∈ Cn and xn ⇀ x in V , and for each y ∈ K (x), there

exists a sequence {yn} such that yn ∈ Kn(xn) and yn → y.

(M4) For yn ∈ Kn(xn) with xn ⇀ x and yn ⇀ y in V , we have y ∈ K (x).

We denote by Rn : An → R the discrete analogue of R and assume the following

conditions:
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1. For any a ∈ A, there exists a sequence {an} with an ∈ An such that an → a in L and

lim sup
n→∞

Rn(an) ≤ R(a). (13)

2. For every sequence {an} with an ∈ An and an → a in L , we have

R(a) ≤ lim inf
n→∞

Rn(an). (14)

The discrete analogue of (11) then reads: Given an ∈ An , find un ∈ Kn(un) such that

T (an, un, v − un) ≥ 〈m, vn − un〉, for every v ∈ Kn(un). (15)

Consider the following finite-dimensional minimization problem: Find ān ∈ An by solving

min
an∈An

J n
κ (an) =

1

2
‖un(an) − z‖2

Z + κ Rn(an), (16)

where un(an) is the solution of (15). Evidently, the data z could be replaced by discrete data

zn such that zn → z as n → 0.

The following is a convergence result for the finite-dimensional optimization problem

(16):

Theorem 4.1 For each n, discrete problem (16) has a minimizer ān ∈ An . Moreover, there

is a subsequence of {ān} that converges in ‖ · ‖L to a solution of (12).

Proof The solvability follows from the arguments used before. Due to the assumption

∩n An �= ∅, there is a constant c such that J n
κ (ān) ≤ c, for every n. Therefore, {ān} is

bounded in ‖ · ‖B̂ . Due to the compact embedding of B̂ into L , there is a subsequence that

converges strongly, in ‖ · ‖L , to an element of A. Keeping the same notation for the subse-

quences, we assume that {ān} converges, in ‖ · ‖L , to some ā ∈ A. Let ū be the solution

of quasi-variational inequality (11) for the parameter ā and let ūn be the solution of quasi-

variational inequality (15) for the parameter ān . It can be shown as in Theorem 3.1 that the

sequence {ūn} is bounded in V . Therefore, there exists a subsequence, still denoted by {ūn} ,

such that ūn converges weakly to some ū ∈ V as n → ∞. By the definition of the solution

of (15), we have ūn ∈ Kn(ūn) which implies that ū ∈ K (ū) (see assumption (M4)). We will

show that ū = u(ā).

By the definition of ūn, we have ūn ∈ Kn(ūn) and

T (ān, ūn, v − ūn) ≥ 〈m, v − ūn〉, for every v ∈ Kn(ūn).

Let z ∈ K (ū) be arbitrary and let {zn} be a sequence with zn ∈ Kn(ūn) such that zn → z in

V (see assumption (M3)). We set v = zn in the above inequality, and after a rearrangement,

obtain,

T (ān, ūn − z, zn − ūn) + T (ān − ā, z, zn − ūn) + T (ā, z, zn − ūn) ≥ 〈m, v − ūn〉

which, in view of (2) and (7), when passed to the limit n → ∞, implies that

T (ā, z, z − ū) ≥ 〈m, z − ū〉, for every z ∈ K (ū)

ensuring that ū = u(ā).
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This observation, in view of (14), yields

Jκ (ā) =
1

2
‖ū − z‖2

Z + κ R(ā)

≤ lim
n→∞

1

2
‖ūn − z‖2

Z + lim inf
h→0

κ Rn(ān)

≤ lim inf
n→∞

{
1

2
‖ūn − z‖2

Z + κ Rn(ān)

}
.

Let a ∈ A be arbitrary. Then there exists a sequence {an} such that an ∈ An , an → a

in L and Rn(an) → R(a) as n → ∞ (see (13) and (14)). We have shown above that the

corresponding solutions {un} with un = un(an) converges weakly to u(a). We need that in

fact the convergence is strong. We note that un ∈ Kn(un) and

T (an, un, z − un) ≥ 〈m, z − un〉, for every z ∈ Kn(un).

Due to the containment un ∈ Kn(un) and the fact that un converges weakly to some u, we have

u ∈ K (u) (see assumption (M4)). Moreover, there exists wn ∈ Vn such that wn ∈ Kn(un)

and wn → u strongly (see assumption (M3)). By setting z = wn in the above inequality, we

obtain

T (an, un, wn − un) ≥ 〈m, wn − un〉,

which can be rearranged as follows

T (an, un − u, wn − u) + T (an, un − u, u − un) + T (an, u, wn − un) + 〈m, un − wn ≥ 0.

By (2), this implies that

T (an, un − u, wn − u) + T (an, u, wn − un) + 〈m, un − wn ≥ α‖un − u‖2,

or equivalently

T (an, un − u, wn − u) + T (an − a, u, wn − un) + T (a, u, wn − un)

+〈m, un − wn〉 ≥ α‖un − u‖2

which by (7) when passed to the limit n → ∞ implies that {un} converges strongly to u.

In view of the above observations, we have

Jκ (ā) ≤ lim inf
n→∞

{
1

2
‖u(ān) − z‖2

Z + κ Rn(ān)

}

≤ lim inf
h→0

{
1

2
‖un(an) − z‖2

Z + κ Rn(an)

}

=
1

2
‖u(a) − z‖2

Z + κ R(a) = Jκ (a),

and hence ā is a solution of (12). This completes the proof. ⊓⊔

5 An application

We now justify our framework by identifying a parameter in a gradient obstacle problem. Let

� be a bounded domain in RN , where 1 ≤ N < ∞, with a sufficiently smooth boundary. We

set V = H 1
0 (�) and B = L∞(�). Let κ∗ be a constant, and let κc be a Lipschitz continuous
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real function on R such that 0 < κc(r) ≤ κ∗, for every r ∈ R. Define a convex set C and

K : C ⇒ C by

C = {w ∈ V | |∇w| ≤ κ∗, a.e. on �},

K (v) = {w ∈ V | |∇w| ≤ κc(v), a.e. on �},

which satisfy conditions (M1) and (M2) of Theorem 2.2 (see [12]).

We focus on identifying a in the quasi-variational inequality: Find u ∈ K (u) such that

T (a, u, v − u) ≥ 〈m, v − u〉, for every v ∈ K (u),

where T (a, u, v) =
∫
�

a∇u∇v.

To introduce the regularization space, we recall that the total variation of f ∈ L1(�) is

given by

TV( f ) = sup

{∫

�

f (∇ · g) : g ∈
(
C1(�)

)N
, |g(x)| ≤ 1 for all x ∈ �

}

where | · | represents the Euclidean norm. Clearly, if f ∈ W 1,1(�), then TV( f ) =
∫
�

|∇ f |.

If f ∈ L1(�) satisfies TV( f ) < ∞, then f is said to have bounded variation, and the

Banach space BV(�) is defined by BV(�) =
{

f ∈ L1(�) : TV( f ) < ∞
}

being endowed

with the norm ‖ f ‖BV(�) = ‖ f ‖L1(�) + TV( f ). The functional TV(·) is a seminorm on

BV(�) and is often called the BV-seminorm.

We set L = L1(�), B̂ = BV(�), and R(a) = T V (a), and define two sets

A1 = {a ∈ L∞(�)| c1 ≤ a(x) ≤ c2, a.e. in �, },

A2 = {a ∈ L∞(�)| c1 ≤ a(x) ≤ c2, a.e. in �, TV(a) ≤ c3},

where c1, c2 and c3 are positive constants. Clearly, both sets are compact in L , whereas A2

is bounded in ‖ · ‖B̂ . It is known that L∞(�) is continuously embedded in L1(�), BV(�) is

compactly embedded in L1(�), and T V (·) is convex and lower-semicontinuous in L1(�)-

norm, see [1,20].

Let u, v ∈ H 1
0 (�) be fixed and let {an} be a bounded sequence in L∞(�). If an → 0 in

the L1(�) norm, then, by the Lebesgue dominated convergence theorem,
∫
�

ak∇u ·∇v → 0.

Furthermore, for any sequence {vn}, bounded in V, and for any v ∈ V , we have

∣∣∣∣
∫

�

an∇vn · ∇v

∣∣∣∣ ≤

∫

�

|an∇vn · ∇v| =

∫

�

(
|an |1/2∇v

)
·
(
|an |1/2∇vn

)

≤

[∫

�

|an |∇vn · ∇vn

]1/2 [∫

�

|an |∇v · ∇v

]1/2

,

which confirms (7). Here we use the fact that an → 0 in the L1(�) implies[∫
�

|an |∇v · ∇v
]1/2

→ 0, whereas
[∫

�
|an |∇vn · ∇vn

]1/2
remains bounded due to the

boundedness of vn in V and the boundedness of an in L∞. We note that the boundedness of

an in L∞(�) has been obtained by optimally choosing the feasible set (see the sets A1 and

A2 given above). Conditions (1) and (2) are also verified by standard arguments. Summariz-

ing, the developed framework is applicable and ensures the identification of a discontinuous

parameter in the considered gradient obstacle problem.
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6 Concluding remarks

As a first step towards developing a theory for identifying variable parameters in quasi-

variational inequalities, we provided new existence, convergence, and discretization results. It

remains an open question to establish a penalization approach for quasi-variational inequality

so that an optimization problem with an equality constraint can be considered. Of course,

derivation of implementable necessary optimality conditions remains a priority as well. Note

the parameter-to-solution map does not exhibit any smoothness and hence some smoothing

needs to be done. Numerical results are of utmost importance, and some derivative-free

methods can be used as the initial step.
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