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Abstract: A new vectorial model (VSPIN) based on the Jones formalism is proposed to 
describe the polarization dynamics of spin injected V(e)CSELs. This general modelling 
framework accounts for spin injection effects as a gain circular dichroism in the active 
medium and provides guidelines for developing functional spin-controlled lasers. We 
investigate the detrimental role of phase anisotropy on polarization switching and show that it 
can be overcome by preparing the laser cavity to achieve efficient polarization switching 
under low effective spin injection. The VSPIN model predictions have been confirmed 
experimentally and explain the polarization behavior of spin-VCSELs reported in the 
literature. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Spin-injection into semiconductor (SC) based Light Emitting Diodes (LED) is currently the 
subject of significant research effort [1,2]. In these devices, quantum selection rules 
associated with the angular momentum make it possible to convert electronic spin 
information into photon polarization information [3]. State of the art spin-LEDs are shown to 
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provide good conversion efficiency leading to a degree of circular polarization (DoCP) as 
high as 90% at 1.5 K and with a 3 T external magnetic field [1]. Spin-lasers are also expected 
to exhibit better performances in terms of DoCP due to the presence of an optical cavity 
imposing a resonant condition to the electro-magnetic field, including its polarization [4–7]. 
In comparison to SC edge-emitting lasers, where the polarization state is mainly defined by 
the optical waveguide, Vertical-Cavity Surface Emitting Lasers (VCSELs) appear to be good 
candidates for a spin-laser [8–11]. As compared to spin-unpolarized lasers, spin-lasers offer 
interesting properties such as improvement of modulation bandwidth, threshold reduction, 
new modulation format by coding the light polarization state, and better eye diagram 
[8,12,13]. Therefore, spin injected lasers, operating at RT without external magnetic field, 
could be one of the future technological breaking devices in the telecommunication domain. 
Nevertheless, it is shown that excessive residual linear anisotropies can fix the polarization 
eigenstates to linear polarizations [14–17], preventing any visible effect of spin injection 
especially when the spin coherence is barely maintained. Several models based on rate 
equations and including spin dependent carrier dynamics have already been developed for 
VCSELs in order to describe the evolution of the polarization eigenstates with different 
degrees of accuracy [18–21]. However, these models mainly consider carriers’ dynamics in 
the active medium taking into account microscopic parameters or assume that the laser 
polarization state is similar to that provided by the gain structure. The use of an external laser 
cavity such as for Vertical external-Cavity Surface emitting Lasers (VeCSELs) enables the 
insertion of additional optical components inside the laser cavity to possibly reveal the effect 
of spin injection on the laser polarization. For instance, we have shown that preparing the 
laser cavity so that its two possible polarization eigenstates correspond to left and right 
circular polarizations is the optimal architecture for stimulating a full polarization switch even 
with very poor spin injection efficiency [22]. Nevertheless, the need for an intra-cavity 
Faraday rotator to compensate the residual anisotropy of the semiconductor structure makes 
this approach cumbersome and difficult to implement for a realistic marketable device. More 
recently, we have shown that compensating the linear phase anisotropy in the cavity is 
another way to stimulate polarization switching through spin injection, but is less efficient 
[23]. These experimental developments have been guided by a simple and pragmatic 
modelling approach taking into account the presence of additional optical components inside 
the laser cavity and considering that spin injection phenomenologically leads to a tiny gain 
circular dichroism in the active medium. 

In this paper, we describe this model step by step and show how it can successfully predict 
the polarization behavior of the laser and how it sets general guidelines for implementing a 
laser sensitive to low efficiency spin injection. The Vectorial-SPIN (VSPIN) model presented 
in this work relies on the derivation of the field resonant condition in the framework of the 
Jones formalism. 

2. Modelling spin lasers including residual phase anisotropy 

The Jones formalism [24] offers an ideal framework for determining the polarization state of 
a laser. Indeed, in the steady state, the resonance condition imposed by the laser cavity makes 
the field coherent by definition leading to a well-defined state of polarization [25]. The 
determination of the laser characteristics, i.e. longitudinal and transverse distributions of the 
field as well as the associated gain and frequency, can thus be performed by solving the 
resonant condition for a 2 × 2 Jones matrix which takes into account all the elements inside 
the cavity including the active medium [26]. As in any laser, the cold cavity exhibits always a 
residual linear anisotropy of phase [15], which defines the two polarization eigenstates of the 
cavity. Note that linear phase anisotropy might be termed in the literature as “birefringence” 
or “linear birefringence”. One assumes that this phase anisotropy comes from the active 
medium and can be represented by a thin birefringent layer, as sketched in Fig. 1. The 
associated Jones matrix is [27,28] 
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where γ denotes this phase anisotropy, λ0 is the mean laser wavelength, and l is the optical 
length of the cavity. ( ) 2e on n n= +  is the mean refractive index of the birefringent element, 

where no and ne are the ordinary and extraordinary indices of the birefringence, respectively. 
Accordingly, the phase anisotropy reads 

 ( )0
0

2
.en n l

πγ
λ

= −  (2) 

Under these conditions, the cold cavity exhibits two eigenstates, which are linearly 
polarized along the ordinary and extraordinary axes of the residual birefringence. The next 
step is to determine to what extent a circular dichroism of gain, also termed in the literature as 
“gain anisotropy” or “gain asymmetry”, induced by preferential spin injection can modify 
these eigenstates and lead to circularly polarized eigenstates, as already observed in the 
literature for spin lasers [29]. This dichroism can be either measured experimentally or 
predicted theoretically for a given active medium taking into account light/matter interaction 
within the actual multilayer structure [30]. We define the circular dichroism of gain for a total 
back and forth interaction of the field as R LG G GΔ = − . The associated Jones matrix reads: 

 [ ] 2 .

2

G

i
G G

J
i

G G
Δ

 − Δ 
=  
 Δ  

 (3) 

In this matrix, ( ) 2R LG G G= −  represents the active medium mean gain, where GR et GL are 

the gains seen by right hand and left hand circular polarized fields, respectively. The matrix 

[ ]GJΔ does not bring any phase anisotropy, γ, as long as circular polarizations are considered, 

right or left handed. However, it induces a phase term when the incident polarization is linear 
leading to an elliptical output polarization, whose ellipticity increases with the gain circular 
dichroism. In other words, the gain circular dichroism ∆G induces the projection of a linear 
polarization field onto the orthogonal state. 

 

Fig. 1. Schematic representation of the cavity. 
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We now assume that the cavity input mirror is perfectly reflecting and isotropic such that 
its presence can be omitted in this vectorial formalism. Note that this hypothesis is not 
restrictive, since any residual birefringence in the mirror could be taken into account in the 
previously introduced Jones matrix modeling a birefringent element. Finally, assuming that 
the output coupler is isotropic and that its electric field reflectivity is R, the associated Jones 
matrix reads: 

 [ ] 1 0
.

0 1MJ R
 

=  
 

 (4) 

Let us now consider that the axes of the residual birefringence are oriented along x and y, z 
being the propagation axis (see Fig. 1). The total Jones matrix of the field at the output mirror 
after one round trip of the cavity is 

 [ ] [ ] [ ].i
L G MJ e J J J Jφ

φ φΔ Δ   =      (5) 

In this expression, the Jones matrix [ ]GJ  associated to the gain takes into account the back 

and forth interaction of the field with the laser components while ejφ is the cumulative phase 
after one roundtrip propagation through the cavity. Developing Eq. (5) yields 

 [ ] 2 ( ) 2 ,
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ma ma

i
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ik n e nl L
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J R G e
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G e
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−
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where 2k cπν=  is the electromagnetic field wave number, nma and ema are the refractive 

index and the thickness of the active medium, and L is the cavity length excluding the active 
medium and the birefringent plate. In the case of a monolithic VCSEL, L = 0. Finally, 

NG G GΔ = Δ  holds for the normalized circular dichroism of gain. For the sake of 

conciseness, we define the effective length, eff ma maL n e nl L= + + , representing the mean 

optical length of the cavity. 

The resonance condition of the field E


 for one round trip in the cavity imposes that 

 [ ] .LJ E Eλ=
 

 (7) 

In this expression, λ are the eigenvalues. The system considered here having two degrees of 
freedom, two eigenvalues are possible. The diagonalization of the [ ]LJ  matrix enables to 

solve for the two complex eigenvalues. These contain both the frequency and gain of each 
mode, as well as the associated eigenvectors describing the two possible polarization states. 
The characteristic polynomial obtained by solving Eq. (7) is: 

 ( )( ) ( )2 2 21
cos sin .

4 NGλ γ γ− = Δ −  (8) 

The laser behavior is ruled by this equation, so different oscillation regimes will appear 
depending on the relative ratio between the linear anisotropy of phase γ and the circular 
dichroism of the gain ΔGN. Furthermore, the saturated gains and the laser oscillation 
frequencies in the eigenbasis are connected to the eigenvalues through 

 21
e .effik L

R G
λ −=  (9) 

                                                                                                Vol. 26, No. 6 | 19 Mar 2018 | OPTICS EXPRESS 6743 



2.1 Study of specific cases 

2.1.1 The circular dichroism of the gain is zero, 0NGΔ =  (no effective spin-

polarization in the active medium) 

When the circular dichroism of the gain is zero, the only contribution to the laser behavior 
comes from the residual linear birefringence γ. The Jones Matrix of the laser [ ]LJ  is already 

diagonal, so that the two eigenvectors correspond to two crossed linear polarizations oriented 
along the neutral axes of the birefringence, that is: 

 0 .y y

x x

E E
or

E E
= → ∞  (10) 

Moreover, Eq. (8) simplifies to ( )( ) ( )2 2cos cos 1λ γ γ− = −  leading to ie γλ ±
± = . 

Consequently, the frequency difference between the two eigenstates is equal to 

 .
eff

c

L

γν ν ν
π+ −Δ = − =  (11) 

This result corresponds to the classical case of a dual frequency laser where the two 
polarization eigenstates are linear, orthogonal to each other and aligned with the neutral axes 
of the intracavity birefringent crystal. Moreover, the two eigenfrequencies are not degenerate 
anymore and their frequency difference is proportional to both the birefringence of the crystal 
and the Free Spectral Range (FSR) of the laser. 

2.1.2 The linear phase anisotropy is zero, 0γ =  

In this case, it is assumed that the linear birefringence is negligible so that the laser cavity has 
only a circular gain dichroism. The diagonalization of [ ]LJ  leads to: 

 2 .
iy

x

E
i e

E

π±
= ± =  (12) 

Thus, the eigenpolarizations are right and left handed circular. However, contrary to a cavity 
that contains a circular anisotropy, the two eigenfrequencies are degenerate. In this particular 

case the characteristic polynomial is given by ( )2 21 4NGλ − = Δ  whose solutions are 

1 2NGλ± = ± Δ . Since the two eigenvalues are real, the frequency difference between the 

two eigenstates (which is proportional to the complex argument) is zero. However, since the 
complex magnitudes are different, the two laser eigenstates will experience different gains so 
that: 

 
1

.
1

1
2 N

G
R G

± =
 ± Δ 
 

 (13) 

Such gain dependence implies a threshold modification of the laser which has been observed 
experimentally and modelled theoretically [20]. This effect appears naturally in the VSPIN 
model throughout the modulus of the two possible eigenvalues. As a result, when the laser 
turns on, the eigenstate experiencing the highest gain (right handed circular if ΔGN > 0) will 
oscillate first. When the pump power is increased, the second eigenstate (left handed circular 
if ΔGN > 0) will start oscillating provided that the nonlinear coupling constant C between the 
two modes is lower than 1 (see last section). Moreover, if the self-saturation and cross-
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saturation coefficients coupling the field to the active medium are identical for both 
eigenmodes, the two eigenmodes are expected to exhibit roughly the same intensities far 
above threshold. The two eigenstates are degenerate in frequency so the laser polarization 
emitted will evolve from circularly-polarized close to threshold to linearly-polarized very far 
above threshold. Consequently, the circular polarization rate is expected to sharply decrease 
as soon as the second eigenpolarization starts oscillating. This mechanism describes quite 
accurately the observations reported by Iba et al. with monolithic (110) VCSELs in [29]. 

2.1.3 General case: 0GΔ ≠ and 0γ ≠  (some effective spin-polarization in the active 

medium and non-ideal cold cavity) 

In order to simplify the problem, we assume in the following that ΔG and γ are both positive 
values. Accounting for this condition and according to the characteristic polynomial of Eq. 
(8), three cases must now be considered. 

2.1.3.1 The phase anisotropy is dominant ( )2 24sinNG γΔ <  (linear birefringence 

overpowers the effective spin injection in the active medium) 

In this case, the eigenvalues λ± have complex values: 

 ( ) ( )2 21
cos sin .

4 Ni Gλ γ γ± = ± − Δ  (14) 

The imaginary part of the eigenvalues lifts the frequency degeneracy so that each eigenstate 
now has its own oscillation frequency. By developing Eq. (8), one finds that the frequency 
difference reads 

 ( ) ( )

2

arc tan tan 1 .
2sin

N

eff

Gc

L
ν ν ν γ

π γ+ −

  Δ Δ = − = −       

 (15) 

The evolution of the frequency difference as a function of r is plotted in Fig. 2, where r refers 
to the ratio ( )2sinNG γΔ . 

 

Fig. 2. Evolution of the frequency splitting between the two polarization eigenstates as a 
function of the ratio r between the circular dichroism of gain ΔGN and the linear birefringence 
of phase γ. 

For a given phase anisotropy, the frequency difference decreases as the gain circular 
dichroism increases. More precisely, vΔ  remains almost constant for low to moderate values 
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of ΔGN, i.e. ( )sin 10NG γΔ < , and drops abruptly when ΔGN approaches ( )2sin γ . This 

behavior leads to frequency locking when ( )2sinNG γΔ = , which translates to 1r = . 

We now investigate how the laser polarization state evolves with respect to the gain 
circular dichroism ΔGN. The two allowed polarization states correspond to the eigenvectors of 
the laser Jones matrix [ ]LJ . Taking into account the eigenvalue expression of Eq. (14), the x 

and y components of the electric field satisfy the relation 

 
( )
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2
2sin

1 1 .
2sin

y N

x N

E G

E G

γ
γ
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 (16) 

Introducing r, the previous expression simplifies to 

 ( )21
1 1 .y

x

E
r

E r
= − ± −  (17) 

The two eigenstates are thus two linear polarizations whose orientations depend on the ratio 
between the gain circular dichroism and the linear birefringence (see Fig. 3). Consequently, if 
both modes are emitting the polarization of the total light field is time-dependent due to the 
time-dependent phase difference. The polarization rotates around the Poincaré sphere at a rate 
corresponding to the frequency difference [31]. This behavior is observed by Gerhardt et al. 
[32] and described as an ultrafast spin-induced polarization oscillation. It is worth 
highlighting that the presence of gain circular dichroism breaks the orthogonality between the 
two polarizations. For a fixed linear birefringence, as ΔGN increases, the two polarizations 
progressively align along a common direction at ± 45° with respect to the crossed initial 
orientations until they become perfectly aligned for r = 1. In this unique situation the two 
eigenstates become degenerate in terms of polarization and frequency. 

 

Fig. 3. Ratio of the transverse components of the filed (left-hand side) and polarization angle 
(right-hand side) for the two possible eigenstates as a function of the ratio r between the 
circular dichroism of gain and the linear birefringence of phase. 
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2.1.3.2 Balanced phase anisotropy and gain circular dichroism ( )2 24sinNG γΔ =  

(Effective spin-polarization in the active medium compensates the linear phase 
anisotropy of the cold cavity) 

This is the unique situation mentioned above. In this case the characteristic polynomial of Eq. 
(8) has a single solution ( )cosλ γ± =  and the electromagnetic field satisfies 1y xE E = − . 

The eigenstates are two indistinguishable linear polarizations that are collinear with 
degenerate frequencies. Consequently, the laser beam consists of one polarization oriented at 
−45° with respect to the neutral birefringence. Hence, the continuity between cases 2.1.3.1 
and 2.1.3.2 is well verified. 

2.1.3.3 The gain circular dichroism is dominant ( )2 24sinNG γΔ >  (Effective spin-

polarization in the active medium overpowers the linear phase anisotropy of the cold 
cavity) 

In this case, the characteristic polynomial has two solutions which are both real 

 ( ) ( )2 21
cos sin .

4 NGλ γ γ± = ± Δ −  (18) 

Consequently, the two eigenpolarizations exhibit degenerate frequencies. In practice, the laser 
output polarization is unique and results from the linear superposition of the two eigenstates. 
The output polarization state evolves as a function of the pump rate and the amount of gain 
dichroism since the possible oscillation of the eigenstates is directly controlled by the gain 
dichroism itself (oscillation condition). The x and y components of the electrical field satisfy 
the relation: 

 2 ,
i

y

x N

eE

E i G

γ λ−
±−

= −
Δ

 (19) 

whose resolution in polar coordinate gives for the module 

 1,y

x

E

E
=  (20) 

and for the phase 

 ( )
1

2 2arg arc tan 1 .y

x

E
r

E

−

±

 
Φ = = − 

 
  (21) 

Thus the two possible eigenstates exhibit elliptical polarization, as shown in Fig. 4. 
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Fig. 4. Evolution of the two eigenpolarizations as a function of the ratio r between the circular 

dichroism of gain NGΔ  and the linear birefringence of phase γ . 

When the gain circular dichroism is very large compared the phase anisotropy (which also 
implies that the phase anisotropy is negligible), the two eigenstates lead to a single perfectly 
circularly-polarized state as 

0
lim 2
γ

π±→
Φ = ± . At the same time, the continuity condition 

between the case 2.1.3.2 and 2.1.3.3 is fulfilled. Besides, the characteristic polynomial 
provides the gain seen by each eigenstate: 

 ( ) ( )( ) 1
21 cos sin 1 .G R rγ γ

−
−

± = ± −  (22) 

In practice, the eigenstate experiencing the highest gain prevails. In our case, the 
eigenstate labeled 1 in Fig. 4 will preferentially oscillate. As previously mentioned, if the 
nonlinear coupling constant C between the two eigenstates is lower than 1, the eigenstate 
labeled 2 will reach the oscillating regime for a pumping rate superior to that of eigenstate 1. 
The appearance of this second eigenstate will lead to a diminution of the circular polarization 
degree. If C >1, then only the first eigenstate oscillates and the simultaneous oscillation of 
both eigenstates in the cavity is impossible for any given pumping power. In this case, the 
circular polarization degree increases indefinitely with the pumping power. In other words, 
since the eigenfrequencies are degenerate, the output beam of the laser exhibits a unique 
polarization state formed by the linear superposition of the two possible eigenpolarizations. 

2.1.4 Summary 

Figure 5 summarizes the previous results regarding the vectorial behavior of a laser with 
circular dichroism of gain in the active medium and residual linear birefringence in the cavity. 
Regardless of its magnitude, the linear birefringence is always present in a laser due to 
residual constraints in the active medium or/and in the optical components inside the laser 
cavity. In this framework, the model shows that when there is no gain circular dichroism in 
the active medium the laser eigenstates correspond to two orthogonal linear polarizations with 
a frequency difference proportional to the linear birefringence. As the gain circular dichroism 
increases, the two eigenstates lose their orthogonality and the two linear polarizations 
progressively rotate and align along a common direction while the eigenfrequencies remain 
almost constant. When the gain circular dichroism is sufficiently high, the two linear 
polarizations become superposed and the associated eigenstates become degenerate due to 
phase locking. In this unique situation the laser emits a single polarization oriented at 45° 
with respect to the neutral axes of the linear birefringence. 
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When the gain circular dichroism increases further, the polarization states evolve from 
linear to elliptical with the long axis oriented at 45°. This ellipticity degree decreases as the 
gain circular dichroism keeps increasing until the polarization states become circular. Note 
that, in the region where the polarization states are elliptical, the eigenstate 2 with an elliptical 
polarization orthogonal to the eigenstate 1 can oscillate if the nonlinear coupling constant C 
(ruled by the cross gain saturation) is lower than 1. If C < 1, the eigenstate experiencing the 
less gain will start oscillating after the dominant eigenstate when the pump power is 
increased. Consequently a decrease of the degree of circular polarization can be observed 
when the laser is operated far above threshold as already shown by Iba et al. in a circularly 
polarized GaAs quantum wells spin injected VCSEL [29]. 

By considering the theoretical predictions above, circular polarization can be obtained 
only if the ratio r between the circular gain dichroism and the linear phase birefringence is 
much higher than one. In VCSEL structures, the effective circular gain dichroism induced by 
spin injection being extremely low, the linear phase birefringence has to be reduced so that 
the effect of spin injection on the laser polarization is revealed. Based on this conclusion, we 
have undertaken to compensate the residual linear phase birefringence in an extended cavity 
VCSEL using an intracavity voltage controlled PLZT (Lead Lanthanum Zirconium Titanate) 
electro optical ceramic [23]. We then succeeded to decrease the cavity birefringence from 21 
mrad to less than 0.5 mrad, corresponding to a 40 fold reduction. By changing the pump 
polarization from left (σ -) to right (σ + ) -handed circular, we observed a rotation of 4° of the 
laser output polarization [23]. Even weak, this effect was not observable before reducing the 
linear birefringence. 

∞

 

Fig. 5. Evolution of the frequency splitting and the two eigenpolarizations as a function of the 

ratio r between the circular dichroism of gain NGΔ  and the linear birefringence of phase γ . 

3. Towards a laser cavity optimized for polarization switching by spin injection 

The previous section highlighted that a residual linear birefringence in the laser forces the 
oscillation of crossed linearly polarized eigenstates. Thus, the laser naturally oscillates with 
respect to one of these eigenstates or possibly both if the coupling constant in the active 
medium is low enough. In practice, spin injection is expected to generate a weak circular gain 
dichroism NGΔ  due to spin decoherence, which will break the orthogonality between the two 

linearly polarized eigenstates. Additionally, the nonlinear coupling constant being high in 
semiconductor active media [33], the laser output polarization is expected to be linearly 
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polarized with an orientation affected by the spin injection. Consequently, triggering a 
polarization switch from a given polarization state to the orthogonal polarization state by 
leveraging moderately effective spin injection (low effective circular gain dichroism) will 
only be possible if the laser cavity has been “prepared” to inherently sustain oscillations of 
circularly polarized eigenstates. This configuration can be achieved by inserting a non-
reciprocal element such as a Faraday rotator inside the laser cavity [34]. This section 
addresses the modeling of such a laser cavity illustrated in Fig. 6. 

 

Fig. 6. Schematic representation of the cavity including a Faraday rotator. 

3.1 Jones formalism 

The Jones matrix associated to the Faraday rotator reads: 

 [ ] cos sin
,

sin cosFJ R
θ θ
θ θ

− 
=  

 
 (23) 

where θ is the rotation angle of a linearly polarized field crossing the Faraday rotator. This 
angle is proportional to the Verdet constant, the thickness of the component and the applied 
magnetic field. The eigenstates of such a matrix are two circular polarizations, right-handed 
and left-handed irrespective to the value of θ . In practice, θ is adjusted to π/4 in optical 
isolators such that a linear polarization crossing the element back and forth experiences a 
rotation of π/2. In the case considered here, θ  is chosen to be π/4 to ensure that the circular 
birefringence induced by the Faraday rotator dominates any residual linear birefringence in 
the laser. In this case, the Jones matrix associated with the Faraday rotator simplifies to: 

 [ ] 1 11
.

1 12
FJ

− 
=  

 
 (24) 

It is important to note that this operator couples the linear polarizations. Accounting for 
the Faraday rotator, the total Jones matrix of the field at the output mirror for one round trip in 
the cavity becomes: 

 [ ] [ ] [ ] [ ] [ ].i
L F G F MJ e J J J J J Jφ

φ φΔ Δ   =      (25) 

[ ]JΔΦ  is the Jones matrix of the residual linear birefringence in the active medium given by 

Eq. (1). [ ]GJ  is the Jones matrix of the circular gain dichroism induced by spin injection in 

the active medium given by Eq. (3). Finally, [ ]MJ  is the Jones matrix of the mirror given by 

Eq. (4). In the following, we keep the same notations as in the previous section. The 
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normalized gain circular dichroism ΔGN accounts for one round trip in the active medium 
while ejφ represents the cumulative phase rotation of the electromagnetic field after one round 
trip propagation through the laser cavity. The cumulative phase now accounts for the optical 
path in the Faraday rotator, so that: 

 2 ( ) 2 ,ma ma F F effk n e nl n e L k Lφ = + + + =  (26) 

where, nF and eF are the mean optical index and the thickness of the Faraday rotator 

respectively. With this new Jones matrix, the resonance condition of the field E


 for one 

round trip in the cavity must satisfy [ ]LJ E Eλ=
 

. The diagonalization of this Jones matrix 

leads to two new polarization eigenstates with their associated eigenvalues. In the special case 
where 4θ π= , the equations greatly simplify leading to the following characteristic 

polynomial 

 ( )2 2 .
i

Ne G
π

λ ± = − Δ  (27) 

As anticipated, the residual phase anisotropy that might exist in the laser or the active 
medium itself does not play any role in the characteristic polynomial. To highlight a physical 
insight, one can rewrite the latest equation as follows: 

 ( ) 22 .
i

NG e
π

λ ± = ± Δ


 (28) 

The modulus of this expression gives the gain seen by each polarization eigenstate, that is 

 
1

1 1
1 ,

2 NG G
R

−

±
 = ± Δ 
 

 (29) 

whereas, its argument provides the two eigenfrequencies of the laser, 

 
1

,
4 eff

c
v q

L±
 =  
 
  (30) 

where q is an integer. Thus, the frequency difference between the two eigenstates is: 

 .
4 eff

c
v v v

L± + −Δ = − =  (31) 

Note that the frequency difference is independent of the linear phase anisotropy in the 
active medium. The frequency shift is only imposed by the Faraday rotator and is precisely 
equal to half the free spectral range of the laser. Furthermore, the two eigenstates of the laser 
can be obtained by diagonalization of the Jones matrix. It can be shown in a straightforward 
way that the transverse components of the field along x and y satisfy the expression 

 ( ) ( )2tan tan 1,x

y

E
i i

E
γ γ

±

= − ± +  (32) 

which proves that the two transverse components of the field are always in quadrature for 
each of the two laser eigenstates. Furthermore, the gain circular dichroism ΔGN is not present 
in this expression, so the circular dichroism induced by the electronic spin will have no 
influence on the laser eigenpolarizations. However, as shown by Eq. (29), the circular 
dichroism will favor the oscillation of one eigenstate. The question of simultaneity and 
efficiency of the polarization switching with respect to the coupling constant C will be 
addressed in the final section. 
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Fig. 7. Ratio of the transverse components of the two eigenstates with respect to the linear 
birefringence in the active medium. 

The evolution of the transverse components of the field with respect to the linear 
birefringence is reported on a logarithmic scale in Fig. 7. Note the existence of a singularity 
for γ = 45°. Although the case is anecdotal since the linear birefringence under consideration 
is supposed to be residual, it is further detailed along with other specific cases for 
completeness. 

3.2 Study of specific cases 

3.2.1 Case where the linear phase anisotropy is zero, 0γ =  

When the linear anisotropy of phase is null, 

 .x

y

E
i

E
±

= ±  (33) 

The two eigenpolarizations of the laser are respectively right- and left-circularly polarized. 

3.2.2 Case where the phase anisotropy is equal to 90° 

A Taylor expansion of Eq. (32) around γ = 90° leads to the two eigenstates 

 
2

lim x

y

E

Eπγ →
+

= − ∞  (34) 

and 

 
2

lim 0.x

y

E

Eπγ →
−

=  (35) 

In this unique case, the two possible polarizations are linear and oriented along the x and y 
axes respectively, i.e., along the neutral axes of the phase anisotropy. 

3.2.3 General case 

When the residual birefringence is neither null nor 90°, the two laser eigenstates are almost 
perfectly left and right circularly-polarized (see Fig. 8-left). They evolve to elliptical 
polarization in the vicinity of γ = 90°, and further to linear polarization at γ = 90°. In practice, 
because the linear birefringence is a residual birefringence, it is reasonable to assume that the 
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insertion of a Faraday rotator into the laser leads to two possible circularly-polarized 
eigenpolarizations. Moreover, as shown in Fig. 8-right, the frequency difference between 
these two eigenstates remains constant and equals half the free spectral range of the laser 
cavity independent of the linear birefringence value. 

 

Fig. 8. (left) Evolution of the ellipticity and (right) Frequency difference between the two laser 
eigenstates as a function of the linear birefringence in the active medium. 

3.2.4 Summary 

The insertion of a Faraday rotator in the VECSEL cavity enables the preparation of the laser 
in the optimal configuration for observing full polarization switching under low effective spin 
injection. Moreover, such a rotator offers a good way to overcome the detrimental 
contributions of any residual linear birefringence in the active medium and/or cold cavity 
providing natural oscillations of the right- or left- handed circular polarizations. Within this 
framework, the circular gain dichroism ΔGN induced by the spin injection unbalances the gain 
experienced by each eigenstate leading to the possibility of a full polarization switch provided 
that the nonlinear coupling constant C between the two eigenstates is high enough (which is 
the case in semiconductor active media [33]). In addition, the vectorial VSPIN model shows 
that the frequency difference between the two eigenstates is equal to half the laser free 
spectral range regardless the value of the linear birefringence in the laser. The impact of the 
nonlinear coupling constant on the polarization switching efficiency is considered in the 
following section. 

4. Role of nonlinear coupling strength with respect to the gain dichroism on 
the polarization switching effectiveness 

We showed in the previous section that the laser cavity can be prepared so that a tiny gain 
circular dichroism induced by spin injection can induce a complete polarization switch. In 
practice, a laser cavity incorporating a non-reciprocal effect such as a Faraday rotator offers a 
simple way to achieve this polarization switching by concealing the effect of residual linear 
birefringence in the laser. Hence, the gain circular dichroism induced by spin injection 
effectively acts as an imbalance of gain between the two circularly polarized eigenstates 
favoring the oscillation of one eigenstate with respect to the other. This gain imbalance, even 
low, can trigger a fast and complete [35] polarization switch provided that the nonlinear 
coupling constant between the eigenstates is high enough to achieve the required leverage 
effect. 

In a Class-A laser, the population inversion densities can be adiabatically eliminated. 
Under this condition, the laser behavior is described by two first order coupled differential 
equations which rule the temporal evolution of the two intensities. We define IR and IL as the 
right- and left-circular polarization intensities respectively, αR and αL the non-saturated gains 
of the right- and left-circular polarizations, βR and βL the self-saturation coefficients of the 
right- and left-circular polarizations, θRL the cross-saturation coefficient of the right-circular 
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polarization by the left-circular polarization, and θLR the cross-saturation coefficient of the 
left-circular polarization by the right-circular polarization. With these notations, the two 
coupled equations read: 

 ,R R R R RL LI I Iα β θ= − −  (36) 

 .L L L L LR RI I Iα β θ= − −  (37) 

We now assume in first approximation that the two self-saturation coefficients, βR and βL, and 
the two crossed saturation coefficients, θRL and θLR, are equal. Furthermore, we assume that 
the non-saturated gains differ due to the circular dichroism induced by spin injection. The 
previous notations simplify to 

 ,R Lβ β β= =  (38) 

 ,RL LRθ θ θ= =  (39) 

 2,Rα α δα= +  (40) 

 2.Lα α δα= −  (41) 

In the steady state, 0RI =  and 0LI = . Therefore Eq. (36) and Eq. (37) give the intensities of 

the two modes. Three cases can be distinguished: 

4.1 The two eigenstates oscillate: 0RI ≠  and 0LI ≠  

 
( ) ( )

2 2
2 ,RI

δαα β θ β θ

β θ

− + +
=

−
 (42) 

 
( ) ( )

2 2
2 .LI

δαα β θ β θ

β θ

− − +
=

−
 (43) 

By introducing the nonlinear coupling constant as defined by Lamb [36], 

 
2

2
.RL LR

R L

C
θ θ θ
β β β

= ≡  (44) 

The intensities of the two eigenstates become: 

 
( ) ( )1 1

2 ,
1R

C C
I

C

δα
α α
β

− + +
=

−
 (45) 

 
( ) ( )1 1

2 .
1L

C C
I

C

δα
α α
β

− − +
=

−
 (46) 

The value of the coupling constant C depends on a large number of parameters: the nature 
of the active medium, the orientation of its crystallographic axis, the pumping scheme, and 
the polarization of the two oscillating modes under consideration [33,37–39]. Nevertheless, 
this coupling constant can be determined experimentally quite precisely [37] and then inserted 
into the model. The simultaneous oscillation of the two modes is possible only if C < 1. In our 
case, we already know that the coupling constant is close but inferior to 1 since simultaneous 
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oscillations of the eigenstates were experimentally observed [40]. Equation (45) and Eq. (46) 
show that the two intensities behave antagonistically as the gain circular dichroism δα  
increases, and that their evolution accelerates when the nonlinear coupling constant converges 
toward 1. 

4.2 The right circular polarization only oscillate: 0RI ≠  and 0LI =  

Once the intensity of left-circular polarization IL reaches zero due to the gain unbalance, IR 
follows a new expression given by: 

 1 ,
2RI

α δα
β α
 = + 
 

 (47) 

where IL = 0. The intensity of the right-circular polarization eigenstate increases linearly with 
respect to δα  and does not depend on the coupling constant anymore. 

4.3 The left circular polarization only oscillates: 0RI =  and 0LI ≠  

In this case, the intensity of left-circular polarization IL becomes 

 1 ,
2LI

α δα
β α
 = − 
 

 (48) 

where IR = 0. Similarly, the intensity of the left-circular polarization eigenstate decreases 
linearly with respect to δα and does not depend on the coupling constant anymore. 

4.4 Discussion 

The simultaneous oscillation of the two eigenstates is possible only if the nonlinear coupling 
constant between these two eigenstates is inferior to 1, which is the case in VECSELs. The 
graphs in Fig. 9 illustrate how the intensities of the two eigenstates evolve with respect to the 
normalized gain circular dichroism for three values of the coupling constant: C = 0, C = 0.5, 
and C = 0.9. When the coupling constant is zero, the intensities of the two eigenstates move 
independently and are proportional to the normalized gain circular dichroism. When the 
coupling constant is non zero, a region where the two eigenstates are allowed to oscillate 
simultaneously appears (see Fig. 9 for C = 0.5). When the coupling constant approaches 1, the 
simultaneity region narrows down favoring switching from one eigenstate to the other, i.e., 
from one polarization state to the other. 

 

Fig. 9. Evolution of the intensities of the two modes as a function of the normalized circular 
dichroism of gain for three values of the nonlinear coupling constant: 0, 0.5 and 0.9. 

For example, in the case of C = 0.9, a gain dichroism as low as 10% is expected to enable 
a full switch of the laser polarization. The average gain of the active medium being of few 
percent in VECSELs and the coupling constant being approximatively 0.9, a gain circular 
dichroism less than 1/1000 should be sufficient to flip the laser polarization. The existence of 
a coupling constant in a laser acts as a lever to enhance the effectiveness of spin induced gain 
dichroism to trigger a polarization switching of the laser. In addition to this leverage effect, it 
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must be reminded that the laser sustains the oscillation of two eigenstates whose polarizations 
are perfectly defined. This make the development of circularly polarized spin controlled 
VECSEL very attractive in terms of polarization purity as compared to Spin-LEDs. The 
VSPIN model thus predicts that, although the effective spin injection is low and a residual 
linear birefringence is present, the laser cavity can be prepared so that a full polarization 
switch from σ + to σ - occurs. We have validated this prediction experimentally using a M-
shaped VECSEL cavity including a Faraday rotator [22]. By changing the pump polarization 
from right to left circular polarization, we observed a corresponding switch from σ + to σ - of 
the laser polarization. We also observed a threshold reduction of few percent when pumping 
circularly compare to the linearly polarized pumping. More importantly, the range of 
simultaneous oscillations of the two eigenstates is shown experimentally to be very narrow 
favoring then an easy switch from one eigenstate to the other even if ΔG is very low. As 
shown in Fig. 9, for C = 0.9, a normalized gain dichroism of about 10% is sufficient to tip 
over the polarization. The average gain of the structure being around 1%, a gain dichroism of 
about 0.1% was shown to be sufficient to fully switch the laser polarization thanks to the 
leverage effect of the non-linear mode coupling. 

5. Conclusion 

In this paper, we present a step-by-step derivation of the vectorial model we used to guide our 
research on the development and optimization of VCSEL based spin lasers [22,23]. This 
model relies on the Jones formalism where the spin injection effect is phenomenologically 
taken into account as a gain circular dichroism. The primary focus of this vectorial model is 
the steady-state operation of the laser. Outside this region which is limited by the longest time 
constant of the system, i.e., the carrier recombination lifetime or the photon lifetime in the 
cavity or the spin relaxation lifetime, the dynamical interaction of the electromagnetic field 
with the active medium has to be taken into account. We show that the resonance condition 
for the field in the laser cavity yields two possible eigenpolarizations whose coexistence is 
ruled by the nonlinear coupling constant as defined by Lamb. The gain circular dichroism is 
intentionally considered low due to the unavoidable spin relaxation in semiconductor 
quantum wells. Under this condition, we show that the residual linear birefringence that is 
inherently present in any laser forbids the polarization to switch from one state to the other. 
The laser polarization is then mainly ruled by this linear birefringence, which forces the laser 
to operate in two possible linear polarizations oriented along the neutral axes of the 
birefringence. Increasing spin injection breaks the orthogonality between the two possible 
polarizations, which progressively align along a common direction oriented at 45° while 
staying linear. Increasing the spin injection further might lead to a peculiar situation, where 
the two possible polarizations are degenerated and correspond to a single linear polarization 
oriented at 45° with respect to the neutral axes of the linear birefringence. Above this point, 
i.e., for very efficient spin injection, the two permitted laser polarizations become elliptical 
and then circular with opposite directions. In this framework, if the coupling constant is high, 
one polarization will be dominant. The laser provides a linear polarization whose orientation 
changes with increasing spin injection until it reaches 45°. At this point the laser polarization 
becomes elliptical and its ellipticity decreases for strong spin injection. By contrast, if the 
coupling constant is low, the two possible polarizations oscillate simultaneously. The laser 
exhibits two distinct crossed linear polarizations which mutually move towards the same 
direction at 45° till becoming degenerate. Above this point, the two oscillating polarizations 
become elliptical. Given the fact that they are elliptical with opposite directions and that their 
frequency is degenerated, the combined output polarization remains linear and oriented at 
45°, meaning that the laser outputs always a linear polarization. 

To overcome this problem, which is due to the inherent presence of linear birefringence, 
we show that the laser has to be prepared so that its two polarization eigenstates are right-
handed and left-handed, respectively. This is obtained by inserting a nonreciprocal effect 
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within the laser cavity. The vectorial modelling shows that in this case a spin injection effect, 
even very low, can flip the laser polarization from one state to the other. The residual linear 
birefringence no longer determines the laser polarization eigenstates, but only introduces a 
slight change of ellipticity. The two possible polarizations being almost circular, spin 
injection directly acts on the differential gain between these polarizations unlike the previous 
case where this differential gain was acting on the two eigenpolarizations at the same time. If 
the coupling constant is high, the oscillating mode is the one experiencing the highest gain. 
As a result, a small differential gain is now able to selectively favor either the left-handed or 
right-handed circular polarization. 

Some of these predictions have already been exploited experimentally in [22] and [23] in 
order to enhance the effect of spin injection on polarization switching. Moreover, this new 
VSPIN model can also explain several observations such as: threshold reduction [20], time 
dependent polarization oscillation [32], possible decrease of the circular polarization degree 
far above threshold [29], and the evolution of the polarization orientation according to the 
residual birefringence in the laser [23]. The insertion of a nonreciprocal effect in the laser 
cavity is predicted and proved to be a very efficient way to hide the residual linear 
birefringence and thus to obtain a full polarization flip by spin injection in VECSELs [22]. 
However, the integration of a nonreciprocal component in a commercial product is projected 
to be challenging. From a practical viewpoint, compensating the residual linear birefringence 
is an alternative solution that should be more affordable for integration. Indeed, the vectorial 
model presented here shows that the gain circular dichroism generated by spin injection must 
be much larger than the linear birefringence. Combined with the leverage effect provided by 
the high coupling constant in VCESELs, an almost full polarization switch might be obtained 
for inefficient spin injection provided that the linear birefringence is cancelled. This is the 
approach that we are currently exploring. 
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