N
N

N

HAL

open science

Fault Tolerant Deep Neural Networks for Detection of
Unrecognizable Situations

Kaoutar Rhazali, Benjamin Lussier, Walter Schon, Stéphane Géronimi

» To cite this version:

Kaoutar Rhazali, Benjamin Lussier, Walter Schon, Stéphane Géronimi. Fault Tolerant Deep Neural
Networks for Detection of Unrecognizable Situations.
Supervision and Safety for Technical Processes (SAFEPROCESS 2018), Aug 2018, Warsaw, Poland.

pp.31-37, 10.1016/j.ifacol.2018.09.525 . hal-01996374

HAL Id: hal-01996374
https://hal.science/hal-01996374
Submitted on 28 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10th IFAC Symposium on Fault Detection,

https://hal.science/hal-01996374
https://hal.archives-ouvertes.fr

Fault Tolerant Deep Neural Networks for
Detection of Unrecognizable Situations

Kaoutar Rhazali* ’** Benjamin Lussier * Walter Schoén *
Stéphane Geronimi **

* Sorbonne Universités, Université de Technologie de Compiégne,
CNRS, UMR 7253, Heudiasyc CS 60 319, 60203 Compiégne, France
(e-mail: kaoutar.rhazali@hds.utc.fr, benjamin.lussier@hds.utc.fr,
walter.schon@hds.utc.fr).

** Groupe PSA, Direction de la recherche et de l'innovation
automobile, Route de Gisy 78943 Vélizy Villacoublay Cedex, France
(e-mail: kaoutar.rhazali@mpsa.com, stephane.geronimi@mpsa.com,).

Abstract: Deep Neural Networks are achieving great success in various fields. However, their
use remains limited to non critical applications because their behavior is unpredictable and
unsafe. In this paper we propose some fault tolerant approaches based on diversifying learning
in order to improve DNNs dependability and particularly safety. Our main goal is to increase
trust in the outcome of deep learning mechanisms by recognizing the unlearned inputs and

preventing misclassification.

Keywords: Safety, Fault Tolerance, Artificial Intelligence, Neural Networks, Autonomous

Vehicles.

1. INTRODUCTION

Deep Learning (DL) is a Machine Learning (ML) technique
that has known these past years a growing interest from
technology developers and researchers. This technique in-
volves the use of Deep Neural Networks (DNNs) to train
algorithms dedicated to speech recognition, computer vi-
sion, machine translation, data processing, etc.

Vision, situation recognition and decision making are the
most important functionalities that give an autonomous
system the ability to interact efficiently with its environ-
ment. The complexity of vision increases exponentially
when moving from a closed environment to an open en-
vironment where the number of situations that could be
faced becomes almost infinite. In such cases, it is almost
impossible to make a robot perceive its environment by
using classical techniques of programming. However, deep
learning algorithms provide robust solutions to this com-
plexity by generalizing the outcome of a learned limited
set of examples. But these algorithms provide outcomes
without any guarantee, since all possible situations can
not be tested and these algorithms can be easily fooled
(Nguyen et al. (2015)). Thus, the use of DNNs is currently
not allowed in critical applications.

In this paper our goal is to increase the confidence in
the output of DL mechanisms by detecting the erroneous
outcomes in order to avoid misinterpretations, that could
lead to severe consequences. At terms, and with combining
it with other methods, we hope to allow the use of DNN
for autonomous cars vision and situation recognition.

The second section of this paper presents basic concepts
on DNN and a state of the art on dependability in this
domain. The third section explains our method: using

diversified networks to detect ambiguous inputs. Section
4 presents models and architectures used to obtain diver-
sified DNNs. Section 5 presents experimental results on
a traffic signs recognition application. Finally, this paper
ends with a conclusion and some perspectives.

2. BACKGROUNDS

In this section, we first present Artificial Neural Networks
(ANN) and introduce the extended Deep Neural Network
(DNN) version. Second we give an overview of related work
in the field of DNNs dependability.

2.1 Deep Neural Networks

A standard Artificial Neural Network (ANN) is built by
connecting layers composed of several nodes called neu-
rons. An artificial neuron can be mathematically modeled
by a transfer function that computes the image of the
weighted sum of its inputs:

p(x1, 22, 0, 7n) = (O wiz; +b) (1)
=1

where x; represent the neuron inputs, w; the weights, b the
bias, and ¢ the transfer function. This function is called
the activation function and it can take multiple forms
(sigmoid, TanH, ReLu, softmax, ...). The value computed
by the neuron can be real or binary.

ANNs are made of several layers : the input layer, the
hidden layers and the output layer. The hidden layers
are called fully connected since each of their neurons is
connected to all neurons of the previous and the next

layers. Due to this complexity, ANNs usually have very
few hidden layers.

The goal of an ANN is to learn a function fapproximating
a function f, that maps the input X to the output Y =
f(X), from a set of labeled images (X, f(X)).

Designing a neural network involves setting a number of
parameters, namely the structure, the cost function, the
activation functions, the optimization algorithm, and the
initial conditions (weights, biases, learning rate, . ..). Most
of these parameters are determined empirically which
complicates the task of developing a dependable network.
On the other hand, training a neural network means
adjusting its weights and biases that are often initialized
randomly by learning from a finite dataset. Hence, all the
network parameters plus the training dataset (nature of
samples, the order of training, the batch size, ...) affect
significantly the learned function.

DNNs are an extended version of standard ANNs with
sophisticated structures (convolutional neural networks,
recurrent neural networks, ...), and with more hidden
layers. The depth of a DNN (number of hidden layers)
helps come up with complex problems, since more layers
will allow a more complex function.

Apart of the MLP model that was described previously,
there exist many other variants and combinations of
DNNs models. The most known architectures are: Convo-
lutional Neural Networks (CNNs), Deep Belief Networks
(DBNs), Autoencoders (AE), and Recurrent Neural Net-
works (RNNs). AE and DBNs are commonly used in
unsupervised learning mode. CNNs are widely used in
several applications including image recognition, speech
recognition, data processing, etc. RNNs are particularly
designed to deal with sequenced data analysis. For more
details about DNNs, we refer the interested readers to
(Schmidhuber (2015) and Goodfellow et al. (2016)). In
this work, we will especially focus on CNNs since they
have recently attained a state-of-the-art performance on
the task of image recognition.

Constructing a DNN is a complex task, since the ar-
chitectures are mainly designed empirically. A network
designer should make various design choices, including
the number of hidden layers, the size of each layer, the
learning rate, the cost function, the activation function,
the initial weights and biases, the nature of layers (pooling,
dropout, sub-sampling,...), etc. At the present, there is no
strong defined mathematical model that helps choosing
the right topology and determining the appropriate hyper-
parameters to develop an optimal and efficient network.
Thus, designing a network is often criticized as being a
black art.

The major CNNs models, that have achieved outstanding
results at ILSVRC challenges, are now viewed as state-
of-the-art CNNs architectures. The most common are:
AlexNet, VGGNet, GoogleNet and ResNet. In our ex-
periments, we use particularly these four architectures to
evaluate our approaches.

2.2 Dependability in Deep Neural Networks

Despite their great success in various fields, DNNs lack
interpretability and are mostly considered as a black boxes.
For these reasons, safety standards have forbidden their
use in safety critical systems, and only allow them in
applications requiring the lowest Safety Integrity Level
(SIL 1) (Kurd et al. (2003)).

There are few works in the literature that have studied
the safety aspect of neural networks, whereas the security
and robustness aspects recently received more attention.
DNNs weakness to adversarial examples have particularly
been highlighted: the alteration of inputs in order to force
a learned DNN to misclassify them. These alterations can
be due to human malicious attacks or external faults due
to the environment.

Several methods to generate adversarial examples have
been proposed. Kurakin et al. (2016) explore the possibil-
ity of creating adversarial modifications for machine learn-
ing systems which operate in the physical world. Papernot
et al. (2017) show that it is possible to attack classifiers
without knowledge of their training data or model, and
introduce an attacker able to produce adversarial examples
for black-box classifiers. Evtimov et al. (2017) introduce an
attack algorithm called Robust Physical Perturbation that
produces perturbations physically realizable, and robust
to changing physical conditions. Moosavi-Dezfooli et al.
(2016) showed the existence of universal image-agnostic
perturbations which, when added to all data points, fool
state-of-the-art DNNs. Moreover, the paper proposed an
algorithm for finding such perturbations for a set of train-
ing examples. Goodfellow et al. (2014) introduce a family
of fast methods for generating adversarial examples, and
show that RBF (Radial Basis Function) networks are
resistant to distortions. Instead of generating adversarial
samples which are inputs with small modifications that
are often imperceptible to the human eye, some authors
(Goodfellow et al. (2014) and Nguyen et al. (2015)) have
been interested in generating inputs that a human would
classify as not belonging to any of the categories class,
whereas the network assigns them to some class with
high confidence. Those samples are called rubbish class.
Nguyen et al. (2015) addressed the issue under the name
of fooling images. It introduces a new algorithm based on
evolutionary algorithms used for generating fooling images
that are completely unrecognizable to humans, but that
DNNSs believe to be recognizable objects with high confi-
dence. The authors showed that re-training the network by
adding a new class labeled fooling images didn’t prevent
producing new fooling images.

On the other hand, various approaches exist to increase
model’s robustness against adversarial attacks. Zheng
et al. (2016) presents a general stability training method
that makes DNNs more robust for near-duplicate detec-
tion, similar image ranking and classification on noisy
datasets. Metzen et al. (2017) uses a detector subnetwork
trained on the binary classification task of distinguishing
genuine data from data containing adversarial perturba-
tions. The proposed approach does not necessarily allow
classifying adversarial examples correctly, but it allows
mitigating adversarial attacks. Uli¢ny et al. (2016) pro-
poses a robustness method called Adversarial Committee

and shows its capacity to resist to adversarial noise for the
MNIST dataset (LeCun et al. (1998)), by comparing it
with other methods. The method consists of combining
a set of networks in such a way that each network is
trained on its own adversarial noise. Tang and Eliasmith
(2010) present two strategies for improving the robustness
of DBNs: by using sparse connections in the first layer of
the network (sparse DBN), and by implementing a proba-
bilistic denoising algorithm that makes networks robust to
common variations such as occlusion and random noise.

In comparison, works published in the field of DNNs
safety are relatively rare. Huang et al. (2017) have in-
troduced a verification algorithm for checking safety of
DNNs by exploring a region around a data point. The
goal is to determine the extent to which the input can be
altered without changing the classification result by prop-
agating constraints through the layers of the networks.
This method is however difficult to use in practice, as a
tremendous amount of calculations are needed for each
data point. Hosseini et al. (2017) propose training the
classifier to reject the adversarial examples by assigning
them a NULL label, while classifying the clean data as
their original labels. In the same context, Shalev-Shwartz
et al. (2016) tackled the safety problem in reinforcement
learning, including the application of forming long term
driving strategies. The authors outlined the challenge of
ensuring functional safety of the driving policy that faces
the autonomous driving. They decompose the driving pol-
icy into a policy for desires using machine learning, and
a trajectory planning with hard constraints using classical
imperative methods. The safety task was only addressed
by using hard constraints in the trajectory planning phase
that requires simply resolving an optimization problem
and doesn’t involve any learning algorithm. Kurd and
Kelly (2003a) define the safety criteria that would con-
tribute to justify the safety of neural networks. The criteria
are specified as a set of safety requirements for the behavior
of ANNs that should be respected during the development
phase. However, the paper doesn’t explain how to im-
plement these requirements and remains theoretical. The
same authors present in (Kurd et al. (2003) and Kurd
and Kelly (2003b)), a development cycle for safe ANNs,
which focuses on studying the safety of learned features by
translating them into a symbolic level. In practice, such a
method is very difficult to achieve, as it is complex and
costly to understand the learned parameters of a ANN.
Software development process models for ANNs used in
critical applications have also been introduced in (Rodvold
(1999) and Nabney et al. (1997)). The first paper split the
development process into 5 steps and implement feedback
loops between some steps to prevent becoming mired in
an unproductive path, by moving back when a step is
deficient. The second paper, presents a development life-
cycle model composed of 6 steps, and studies two practical
methods of assessing neural networks. The steps specified
in these two references are generic and can be considered
as sets of good practices that can be used complementarily
to fault tolerance techniques.

2.8 Diversification in Neural Networks

The generation of diversified networks has been featured in
a number of previous studies. Partridge and Yates (1996)

proposes a methodology for constructing reliable neural-
nets divided into three steps. First, producing diverse neu-
ral nets by changing: the net type (two architecture types
have been used: MLP and Restricted Boltzman Machines
(RBM)), the net structure, the training set, the number
of hidden layers, and the initial weights. Second, picking
up the optimal versions by using three types of optimiza-
tion approaches like genetic algorithm. Third, gathering
the optimal networks to constitute a multiversion system
with a decision strategy such as majority vote. Another
work (Lincoln and Skrzypek (1989)) suggests combining
the outputs of a cluster of multiple nets into a single
output. To do so, a judge determines the cluster output
by computing the simple average or the weighted sum of
the multiple outputs. Then, after evaluating the common
error, this latter is back-propagated through all networks.
The authors argue that this approach adds fault tolerance
by giving the judge the ability to bias the outputs based
on the past reliability of the nets. The concept of gener-
ating N-version programming with the aim of increasing
the fault tolerance and improving the reliability of neural
networks has been addressed in (Sharkey et al. (1995)).
The authors studied the correlation between the generated
networks, considering three methods of creating diversity:
varying the initial conditions, varying the training sets,
and using contrasting measures (alternative inputs). This
last method was evaluated as the best mean of produc-
ing diverse networks, whereas the versions generated only
by changing the initial conditions had highly correlated
failures. However, all of these works intend to improve
a network availability. To our knowledge, none of them
aimed to identify unspecified inputs, that are inputs far
away from each learned class.

3. FORCED DIVERSIFIED LEARNING

In this work, we seek to make up the large lack of theo-
retical explanations and the inability of humans to under-
stand DNNs, by implementing fault tolerant techniques to
increase their dependability, and more particularly their
safety.

Most DNNs researchers are mainly interested in develop-
ing networks able to achieve high accuracy by labeling
correctly and robustly their inputs. In this article our main
concern is to give the network the capacity to identify and
discard erroneous or unspecified inputs, without trying to
classify those unspecified inputs correctly: since the system
has not been specified and developed to consider them,
any of its response to them can not be intended. Thus,
we consider that detecting such unspecified inputs and
alerting a diagnosis mechanism or ultimately the operator
is the safest response for an unpredictable component such
as a DNN. Indeed, in applications such as autonomous
driving, recognizing traffic signs is generally assigned to
DL mechanisms, and mislabeling an unlearned traffic sign
or simply a signboard that has some similarities with a
traffic sign (see fig. 1), could eventually cause an accident.
In addition, our proposed technique can contribute to a
classifier’s security towards malicious adversarial attacks,
since it could detect the perturbed inputs and prevent
misclassification.

Our technique is based on the concept of diversified redun-
dancy. We consider that when classifiers are developed and

Fig. 1. Examples of a perturbed input (left image) ((Evti-
mov et al., 2017)) and an unknown input (right image)

trained independently, they will learn a different network
classification function, and consequently they may act
differently in front of an unlearned input. In fact, during
the training process, the network progressively learns from
its training samples to set the boundaries of its classes in
a multidimensional space by optimizing a cost function.
What allows the robustness of neural networks is that a
classifier doesn’t learn to only fit the learned examples into
each class, but it generally defines the boundaries that
separate the set of classes. Therefore, a big part of the
empty multidimensional space is distributed to the learned
classes, which allows DNNs to be easily fooled in front
of an unlearned input. By using forced diversified DNNs;
we hope that the different DNNs will not have the same
boundaries between classes, and thus that unspecified in-
puts will be classified differently by some networks. Since
we can not precisely know the boundaries of each network
without extremely complex and costly analyses, we can not
guarantee that this technique alone is sufficient to detect
all or even most of unspecified inputs. We are nonetheless
confident that it is an efficient first step, to be used with
other complementary methods, in improving significantly
the safety of DNNs.

Forced diversification can be done mainly following three
approaches: diversification of the training parameters
(training sets, optimization function, etc.), diversification
of the network architecture and structure (number of and
connections between layers, value of the initial parameters,
etc.), diversification of the precise function of the network
(classifying between each output classes, introducing a
new class "unknown" as an additional output class, tree
classification, etc.). The next session will present examples
for each of these approaches.

4. SAFER DEEP NEURAL NETWORKS

We have developed different approaches for neural net-
works diversification. We have classified these approaches
in three ways: diversification of the training dataset, di-
versification of the network parameters and structure and
finally classification diversification. Note that, although
we present these different approaches separately, our tech-
nique aims at combining more than one approach in order
to build fault tolerant architectures.

4.1 Approach 1: Training set diversification

As a first approach, we propose generating diversified
DNNs by acting directly on the training dataset. Accord-
ing to some experiments we carried out, it appeared that
just changing the order of training (the order in which the
training samples are used to train the network), or training

with different datasets can produce significantly diversified
networks.

Data augmentation is a potential technique that seems to
be useful and which is often used by DNNs developers
in order to improve the robustness. It consists in slightly
altering the images of each batch before injecting them into
the network. Once chosen for training, the images undergo
modifications according to some degrees selected randomly
from predefined intervals. The alterations can be made by
varying several parameters like brightness, contrast, rota-
tion, cropping, sharpness, etc. Similarly, we can promote
diversification by using the techniques of boosting and
bagging (Bauer and Kohavi (1999) and Schapire (1999)),
which both assign weights to the training examples. The
main difference between these two techniques resides in
how the samples are weighted. The boosting algorithm
relies on the performance of its classifiers to generate the
probability distribution over the dataset while the bagging
algorithm does not take into account this performance.

We also propose training networks with RGB and Grayscale
images separately in order to foster diversification. This
technique seems to be promising, since it enables networks
to learn distinct features. Note that this method is not
recommended in all applications. In fact, training with
RGB images is inevitable in some classification problems,
where the color is a crucial element to make decision.

4.2 Approach 2: network parameters diversification

Obviously, the function learned by a network is highly af-
fected by the network parameters. In those parameters, we
count the initial conditions of the network (initial values of
weights and biases), its structure (the number of hidden
layers, the topology between layers, their sizes, etc.), its
activation functions, the cost function, the optimization al-
gorithm, etc. Note that some of the aforementioned struc-
ture, activation functions and optimization algorithm are
generally defined in the literature’s architectures (Alexnet,
VGGNet, GoogleNet, etc.). Varying some or all of these
parameters will undoubtedly contribute to diversifications
in the networks. These techniques can be efficient, however
nothing prevents two networks with different architectures
and settings from developing the same or very similar
functions.

4.8 Approach 3: Classification diversification

In this section, we propose to directly diversify the function
of the networks: that is what to classify and how.

Classification 1 - Basic classification: The common
model of networks is based on an end-to-end classifica-
tion, by performing a direct input-output mapping. These
networks are created to take an image as input and gives
a class label as output according to a predefined set of
classes.

Classification 2 - Classification with additional class "un-
known": We propose adding a new class label as Nold
(Not Identified) to the network, in order to recognize un-
learned situations. To do so, a new data set must be added
to the original training data, in such a way that the new
samples must be diverse and different from the categories

to be learned. Also, it shall be ensured that the training
data is balanced, that is to say the amount of images for
each class should be somehow equal, in order to represent
the classes equally during the training process. The idea is
to narrow the boundaries of the main classes by allocating
a portion of the empty multidimensional space to the new
Nold class. Note that this technique does not guarantee
that the trained network will place all the aberrant images
in the Nold class, although it should improve the system
fault tolerance.

The Nold class is similar to the rubbish class used in Good-
fellow et al. (2014) and Nguyen et al. (2015). The latter
paper showed that retraining the network with the nega-
tive images did not prevent their algorithm from producing
new fooling images in the case of the MNIST dataset.
However, the same algorithm was less able to generate new
successful malicious images with the ImageNet dataset.

Classification 8 - Class reference classification: For the
third model, we want to develop a network able to compare
the input image with a class reference and decide if they
are similar or not. A reference image must thus be selected
from each class dataset, in order to be used as a class
reference. At the learning phase, each training sample is
concatenated with a class reference, selected randomly, to
form one global input image, which is subsequently in-
jected in the network. The considered network is designed
with two outputs, labeled Similar and Different. In the case
where the input image is representing the same category
as the reference class, the correct output is to classify them
as Similar and otherwise as Different.

This model can be exploited in two ways. First, by com-
paring each input image with all the class references suc-
cessively: then if the model returns exactly one positive
output, the input will be classified as the class reference
which provided the positive result, otherwise the input
will be classified as unknown. Second, the model can be
alternatively used to confirm the decision of another net-
work. The mechanism is as follows: once the network to
be checked assigns the input to a given class, the model
will compare that input with the reference of the detected
class and validate the classification if it returns a positive
result.

Classification 4 - Tree classification: In this classifica-
tion, instead of using an end-to-end network to perform
classification, we propose to split the recognition task into
several steps. To do so, the classes must be arranged hier-
archically by gathering the categories that have common
visual elements (color, shape, pattern, ...) into coarse
classes. The objective is to build a hierarchical label tree,
in such a way that the macro-classes and their sub-classes
will constitute the tree nodes, and the refined classes will
represent the tree leafs. At each node, a network must
be trained to classify the categories linked to that node.
Therefore, the number of networks to be trained will be
equal to the number of the tree nodes. Then, the classifiers
might be organized in a hierarchical manner, in order to
perform a top-down classification.

This approach is an alternative method of classification
which must be combined with other diversified classifica-
tions in order to detect the invalid inputs. In addition,

RNENAEDBRESL

Cycles
Onl

Prohibition

Crossing NoEntry "(OTPEOT

Danger Dosso Roundsbout Linge (70 Stop Warning
5

0-40-25)
Fig. 2. The 10 traffic signs used for learning and their labels

it could reduce the complexity of classification, especially
when dealing with problems with large number of classes.

Other diversifications: In the same context as the clas-
sification 3, we propose developing a network able to
compare an input image with a class reference, in such
a way that the class reference will represent only the
object to be recognized with a white background. This
method will force the classifier to give more attention to
the object features, which could increase the classification
performance.

Another approach is to develop a set of binary classifiers,
with only two outputs, in the sense that each classifier will
be specialized at recognizing a particular class. The objec-
tive is to build a number of networks equal to the number
of classes considered, and to make each network learn a
specific class, in order to be able to decide if the input
image belongs to that class or not. Such training method
could help optimizing the space assigned to each class. As
the third model, this approach can be exploited in two
ways: alone by injecting the image into as many reference
classifiers as classes, or to validate another classifier.

Another alternative consists in dividing the number of
classes into three-thirds, and to train three classifiers
independently, each one with two different thirds of classes.
The goal is to decide that a given input belongs to a specific
class only if exactly two networks place it in that class.
This strategy is intended to diversify the function of each
classifier, by changing the set of classes that they will each
learn.

Other classification diversifications are of course possible.
In the rest of this paper we will focus on classifications 1
and 3.

5. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed diversifica-
tion approaches, we present in this section the results of
a real-world application related to the problem of traffic
signs recognition. We trained our classifiers on the 10 traf-
fic signs illustrated in figure 2, extracted from the GTSRB
(German Traffic Sign Recognition Benchmark) dataset
(Stallkamp et al. (2011)). The images in this dataset vary
in size and are RGB-encoded. In our application, we only
used images larger than 30*30 pixels, thus we have only
considered 10 classes, since the other traffic signs have
only few images larger than 30*30 pixels. We resized all
the images to 60*60 pixels. We used a test set of 1185
samples. For evaluation, we used various sets of images
collected from several websites. For architectures, we used
state-of-the-art convolutional networks, namely extents of
AlexNet, GoogleNet, VGGNet, and ResNet. As previously
explained each one of these architectures is defined by
a depth, a succession of specific layers, predefined filters
sizes, and a special interconnection between layers.

@O

SetB

Fig. 3. Images extracted from the evaluation sets

5.1 Evaluation sets

To analyze the diversification efficiency of some of our
proposed approaches, we used four different sets of images:

e Set A: consists of 100 traffic signs photos different
from the learned classes.

e Set B: consists of 70 traffic signs drawings different
from the learned classes.

e Set C': consists of 13 photos of signboards that we can
find at roadsides but that are not traffic signs (such
as brand signs).

e Set D: consists of 9 physical traffic signs with ad-
versarial perturbations. Those images were used in
(Evtimov et al. (2017)) as attack images to fool a
classifier.

Our purpose is to label the maximum of the images in sets
A, B, and C as unknown, and to avoid misclassifying the
images in D and the test set by labeling them correctly or
by classifying them at least as unknown. Indeed, for safety
reasons, we prefer to classify a given class as unknown
instead of labeling it incorrectly. Examples from each
dataset are illustrated in figure 3.

5.2 Diversification analysis

In these experiments, we study the diversification effi-
ciency of some of the proposed approaches. In the first
two experiments we study a diversified block using two
networks in parallel, while in the third experiment we
study a diversified block using two sequential networks.
Note that by deciding on everything that is random in a
network, we always generate similar networks that provide
the same outcome for any input, since network learning is a
deterministic process. In order not to be captured in a local
minimum, we generate several blocks in our experiments
and present their average results.

Sampling order. In this experiment, we studied the
impact of changing the sampling order on diversity. The
sampling order is the order in which the training samples
are used to train the network. To achieve this goal, we
trained six times an extent version of AlexNet architec-
ture by varying the training order and by fixing all the
other network settings including the initial conditions. We
performed a pairwise comparison over the six generated
networks (resulting into 15 diversified blocks) and we
identified inputs labeled differently as unknown. Table 1
reports the average results of the 15 blocks considering the
test set and the 4 evaluation sets.

We can notice that just varying the sampling order allowed
us to detect some unknown inputs in the sets A, B
and C. In addition, an average of 7.07/9 of adversarial
examples have been correctly classified and 1.13/9 have
been classified as unknown while only 0.8/9 of samples
have been misclassified in the set D. Moreover, the average

misclassification rate in the test set reduced to 0.08% by
classifying 0.36% samples as unknown.

Network structure. ~ We trained extent versions of the
four CNNs architectures: AlexNet, VGG-16, GoogleNet,
and ResNet. Due to the lack of space, we only report the
results of comparing just two architectures (GoogleNet and
ResNet) in table 2. The results are provided by calculating
the average of six blocks. Each block is composed of two
networks (GoogleNet and ResNet) connected in parallel
and trained with the same sampling order.

Changing the network structure has significantly improved
diversification, to such an extent that we detected more
than 50% unknown examples in the sets A, B and C.
Furthermore, the number of samples misclassified in the
set D was reduced to 0.17/9. However, accuracy was
slightly degraded to 97.22% in the test set while the
misclassification rate was successfully to 0.01%.

RGB-Grayscale training. We used two extent versions
of VGG-16 architecture: one version trained with RGB
images and another with Grayscale images. Both versions
have similar structure except for the input layer. Table 3
reports the average of 6 blocks, each one providing the
results of two networks connected in parallel: one network
trained with RGB images and another with Grayscale
images. The networks in each block are trained with the
same sampling order.

We notice that the number of samples misclassified in
the sets B and C has decreased to 18.17/70 and 2.67/13
respectively. However, this technique was less efficient in
labeling the perturbed images of the set D.

Classification diversification. In this experiment, we
tested the class reference classification method (approach
3) to detect the unknown inputs. We consider here a block
of two networks in series: a first network used to perform

Table 1. The average classification results of 15

diversified blocks resulting from a pairing of 6

networks generated by varying the sampling
order.

Sets test set D
Correctly -
classified 99.56 %

Classified as
unknown
Misclassified

Sets A B ¢}
Correctly
classified

as unknown
Misclassified

7.07/9

14.06/100 | 13.53/70 | 3.13/13

0.36 %
0.08 % 0.8/9

1.13/9

85.93/100 | 56.46/70 | 9.86/13

Table 2. The average classification results over
six blocks. Each block is composed of two
networks with different structures.

Sets test set D

Correctly
classified 97.22 %

Sets A B C
Correctly
classified

as unknown
Misclassified

6.83/9

54/100 | 41.83/70 | 7.83/13

Classified as
unknown
Misclassified

2.77 % 2/9
0.01 % 0.17/9

46/100 | 28.17/70 | 5.17/13

Table 3. The average classification results over

six blocks. Each block is composed of two

networks: one trained with RGB images and
another with Grayscale images.

Sets test set D Sots A B o]

Correctly 99 % | 4.33/9

classified Correctly

classified
as unknown

lassi s 51.83/100 | 51.33/70 | 10.33/13
Classified as 0.86 %

3.67/9

unknown

Misclassified | 48.17/100 | 18.17/70 | 2.67/13

Misclassified 0.14 % 1/9

basic classification and a second one used for validation.
We trained six basic classification networks and six class
reference networks. In table 4 we present the average
classification results of 36 blocks obtained by testing all
possible combinations.

Table 4. The average classification results over

36 blocks. Each block is a combination of

two networks in series: A basic classification
network and a class reference network.

Cosrf:cstl tost set D Sets A B C
classiﬁeg 98.90 % | 7.06/9 Correctly
Classified as classified 34.14/100 | 34.42/70 | 7.36/13
lur‘.kno)wn) 1.02 % 1.94/9 as unknown
i i 5.86/ =7 S
Misclassified 0.08 % 0 Misclassified | 65.86/100 | 35.58/70 | 5.64/13

Using class reference classification was less effective in
detecting unknown inputs in sets A, B and C, however
it was more robust in classifying correctly the perturbed
inputs.

Results analysis. All diversification techniques investi-
gated previously have proved their capacity for detecting
unknown inputs even if some of them were less effective
than others. It is difficult to determine the better one be-
cause the results differ according to the evaluation sets. For
instance, diversifying the network structure achieved high
performance in the set A, while training with RGB and
Grayscale images allowed detecting the highest number of
unknown images in sets B and C. Moreover, the results
are probably very different depending on the application.

5.8 Fault tolerant architecture

In this section, we combine some of our proposed ap-
proaches to validate whether they are complementary. We
propose a potential fault tolerant architecture in figure 4
that takes an input image and provides a safe output. This
architecture involves four diversified networks (N1, N2, N3
and N4):

e The classifiers N1 and N2 are respectively extents of
GoogleNet and ResNet designed to perform a basic
classification and are trained with RGB images.

e The classifier N3 is an extent of VGG-16 designed
to perform basic classification and trained with
Grayscale images.

e The classifier N4 is also an extent of VGG-16 designed
to perform class reference classification and trained
with RGB images.

As illustrated in figure 4, we carry out two tests before
labeling the input image. Firstly, we feed the input into
the three networks (N1, N2 and N3) and we compare their
outcomes. If at least one outcome is different, the image is
classified as unknown, otherwise we perform a second test
to validate the label "i" assigned to the input. To this end,
we concatenate the input image with the class reference
"i" and we feed it into N4. If this latter returns a negative
outcome, that is the input image is different from the class
reference, the image will be as well classified as unknown,
otherwise it will take the label "i". Table 5 reports the
classification results of this architecture.

Th results presented in figure 5 demonstrate that com-
bining various approaches was more effective in detecting

Grayscale

RGB
Image — Image

. y g R h Grayscale -
RGB - basic RGB - basic q
classification - classification - N2 b_aslc_
structure A. structure B. !
structure C.

'

The 3 classifiers
yes assign the class
ut?
Is the input similar T 1o the input?

to the class No
reference “I"? ‘

L 2

yes

RGB - Class
reference

The input
belongs to
the class “i"

Unknown
input

Fig. 4. A Detection mechanism for unknown images by
combining the 3 approaches

the unknown inputs, at a minimal cost to accuracy. In
addition, we can notice that our technique has identified
the adversarial images that we failed to label correctly by
classifying them as unknown.

6. CONCLUSION

Despite the great success of DL in many areas, its use
remains limited to non critical applications. This is due
to the lack of methodologies and tools that can justify
and validate their dependability. In this context, we have
developed a technique based on the concept of diversified
redundancy in order to reinforce the DNNs safety. The
idea is to develop diverse networks trained independently
and combine them in one fault tolerant architecture in
order to detect the unlearned inputs and classify them as
unknown. This way, misinterpretations that could lead to
severe consequences could be avoided. To achieve our goal,
we proposed three approaches based on diversifying: (1)the
training dataset, (2)the network parameters, and (3)classi-
fication. The first two approaches enable learning different
approximations of the same function, while the third ap-
proach aims at diversifying the learned function itself by
using alternative strategies of performing classification. In
fact, classifiers created by modifying the training dataset
or the network parameters don’t learn the same way, and
hence they are more likely to behave differently in front
of unlearned inputs. In addition, diversifying classification
allows focusing on different features which significantly
influence the decision making.

The experiments conducted on an application dedicated
to traffic signs recognition showed the efficiency of our
approaches, particularly when combined.

Our study thus demonstrated that invalid inputs can
be effectively identified by an approach of diversifying
learning. In the future, we plan to test our technique on
other critical applications and to develop more effective

Table 5. The classification results obtained by
using the proposed fault tolerant architecture.

COSeetcs‘Ll test set D o = - -
clarsl;iﬁeg 97.55 % | 6/9 Correctly

Classified classified 81/100 | 69/70 | 13/13
uzf]s(lmimas 245 % | 3/9 as unknown

Misclassified 0% 0 Misclassified | 19/100 | 1/70 0

and practicable approaches that could be also used in
detecting adversarial inputs.

ACKNOWLEDGEMENTS

This work took place in the framework of a CIFRE
thesis with PSA Group and the Heudiasyc Laboratory
(Sorbonnes Universités UTC, UMR CNRS 7253).

REFERENCES

Bauer, E. and Kohavi, R. (1999). An empirical comparison
of voting classification algorithms: Bagging, boosting,
and variants. Machine learning, 36(1), 105-139.

Evtimov, 1., Eykholt, K., Fernandes, E., Kohno, T., Li,
B., Prakash, A., Rahmati, A., and Song, D. (2017). Ro-
bust physical-world attacks on machine learning models.
arXw preprint arXiw:1707.08945.

Goodfellow, I, Bengio, Y.,

A, (2016). Deep Learning.
http://www.deeplearningbook.org.

Goodfellow, I.J., Shlens, J., and Szegedy, C. (2014). Ex-
plaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving
deep into rectifiers: Surpassing human-level performance
on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, 1026—-1034.

Hosseini, H., Chen, Y., Kannan, S., Zhang, B., and
Poovendran, R. (2017). Blocking transferability of ad-
versarial examples in black-box learning systems. arXiv
preprint arXiv:1703.04318.

Huang, X., Kwiatkowska, M., Wang, S., and Wu, M.
(2017). Safety verification of deep neural networks. In
International Conference on Computer Aided Verifica-
tion, 3-29. Springer.

Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012).
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, 1097-1105.

Kurakin, A., Goodfellow, I., and Bengio, S. (2016). Ad-
versarial examples in the physical world. arXiv preprint
arXiw:1607.02533.

Kurd, Z. and Kelly, T. (2003a). Establishing safety criteria
for artificial neural networks. In International Confer-
ence on Knowledge-Based and Intelligent Information
and Engineering Systems, 163—169. Springer.

Kurd, Z. and Kelly, T. (2003b). Safety lifecycle for de-
veloping safety critical artificial neural networks. In In-
ternational Conference on Computer Safety, Reliability,
and Security, 77-91. Springer.

Kurd, Z., Kelly, T., and Austin, J. (2003). Safety criteria
and safety lifecycle for artificial neural networks. In
Proc. of Eunite, volume 2003.

LeCun, Y., Cortes, C., and Burges, C.J. (1998). The mnist
database of handwritten digits.

Lincoln, W.P. and Skrzypek, J. (1989). Synergy of clus-
tering multiple back propagation networks. In NIPS,
650-657.

Metzen, J.H., Genewein, T., Fischer, V., and Bischoff, B.
(2017). On detecting adversarial perturbations. arXiv
preprint arXiv:1702.04267.

Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., and
Frossard, P. (2016). Universal adversarial perturbations.
arXw preprint arXiw:1610.08401.

and Courville,

MIT Press.

Nabney, I.T., Paven, M.J., Eldridge, R.C., and Lee, C.
(1997). Practical assessment of neural network applica-
tions. In Safe Comp 97, 357—-368. Springer.

Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep neural
networks are easily fooled: High confidence predictions
for unrecognizable images. In Proceedings of the IEFE
Conference on Computer Vision and Pattern Recogni-
tion, 427-436.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik,
Z.B., and Swami, A. (2017). Practical black-box attacks
against machine learning. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communi-
cations Security, 506-519. ACM.

Partridge, D. and Yates, W.B. (1996). Engineering multi-
version neural-net systems. Neural Computation, 8(4),
869-893.

Rodvold, D.M. (1999). A software development process
model for artificial neural networks in critical applica-
tions. In Neural Networks, 1999. IJCNN’99. Interna-
tional Joint Conference on, volume 5, 3317-3322. IEEE.

Schapire, R.E. (1999). A brief introduction to boosting.
In Ijcai, volume 99, 1401-1406.

Schmidhuber, J. (2015). Deep learning in neural networks:
An overview. Neural networks, 61, 85-117.

Shalev-Shwartz, S., Shammah, S., and Shashua, A.
(2016). Safe, multi-agent, reinforcement learning for
autonomous driving. arXiv preprint arXiv:1610.03295.

Sharkey, A., Sharkey, N., and Gopinath, O. (1995). Diver-
sity, neural nets and safety critical applications. Current
trends in connectionism, 165-178.

Simonyan, K. and Zisserman, A. (2014). Very deep
convolutional networks for large-scale image recognition.
arXww preprint arXiv:1409.1556.

Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C.
(2011). The German Traffic Sign Recognition Bench-
mark: A multi-class classification competition. In IEEFE
International Joint Conference on Neural Networks,
1453-1460.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D.; Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, 1-9.

Tang, Y. and Eliasmith, C. (2010). Deep networks for
robust visual recognition. In Proceedings of the 27th
International Conference on Machine Learning (ICML-
10), 1055-1062.

Uliény, M., Lundstrém, J., and Byttner, S. (2016). Ro-
bustness of deep convolutional neural networks for im-
age recognition. In International Symposium on Intelli-
gent Computing Systems, 16-30. Springer.

Zheng, S., Song, Y., Leung, T., and Goodfellow, I. (2016).
Improving the robustness of deep neural networks via
stability training. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
4480-4488.

