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Abstract: Deep Neural Networks are achieving great success in various �elds. However, their
use remains limited to non critical applications because their behavior is unpredictable and
unsafe. In this paper we propose some fault tolerant approaches based on diversifying learning
in order to improve DNNs dependability and particularly safety. Our main goal is to increase
trust in the outcome of deep learning mechanisms by recognizing the unlearned inputs and
preventing misclassi�cation.

Keywords: Safety, Fault Tolerance, Arti�cial Intelligence, Neural Networks, Autonomous
Vehicles.

1. INTRODUCTION

Deep Learning (DL) is a Machine Learning (ML) technique
that has known these past years a growing interest from
technology developers and researchers. This technique in-
volves the use of Deep Neural Networks (DNNs) to train
algorithms dedicated to speech recognition, computer vi-
sion, machine translation, data processing, etc.

Vision, situation recognition and decision making are the
most important functionalities that give an autonomous
system the ability to interact e�ciently with its environ-
ment. The complexity of vision increases exponentially
when moving from a closed environment to an open en-
vironment where the number of situations that could be
faced becomes almost in�nite. In such cases, it is almost
impossible to make a robot perceive its environment by
using classical techniques of programming. However, deep
learning algorithms provide robust solutions to this com-
plexity by generalizing the outcome of a learned limited
set of examples. But these algorithms provide outcomes
without any guarantee, since all possible situations can
not be tested and these algorithms can be easily fooled
(Nguyen et al. (2015)). Thus, the use of DNNs is currently
not allowed in critical applications.

In this paper our goal is to increase the con�dence in
the output of DL mechanisms by detecting the erroneous
outcomes in order to avoid misinterpretations, that could
lead to severe consequences. At terms, and with combining
it with other methods, we hope to allow the use of DNN
for autonomous cars vision and situation recognition.

The second section of this paper presents basic concepts
on DNN and a state of the art on dependability in this
domain. The third section explains our method: using

diversi�ed networks to detect ambiguous inputs. Section
4 presents models and architectures used to obtain diver-
si�ed DNNs. Section 5 presents experimental results on
a tra�c signs recognition application. Finally, this paper
ends with a conclusion and some perspectives.

2. BACKGROUNDS

In this section, we �rst present Arti�cial Neural Networks
(ANN) and introduce the extended Deep Neural Network
(DNN) version. Second we give an overview of related work
in the �eld of DNNs dependability.

2.1 Deep Neural Networks

A standard Arti�cial Neural Network (ANN) is built by
connecting layers composed of several nodes called neu-
rons. An arti�cial neuron can be mathematically modeled
by a transfer function that computes the image of the
weighted sum of its inputs:

ϕ(x1, x2, ..., xn) = ϕ(

n∑
i=1

wixi + b) (1)

where xi represent the neuron inputs, wi the weights, b the
bias, and ϕ the transfer function. This function is called
the activation function and it can take multiple forms
(sigmoid, TanH, ReLu, softmax, . . . ). The value computed
by the neuron can be real or binary.

ANNs are made of several layers : the input layer, the
hidden layers and the output layer. The hidden layers
are called fully connected since each of their neurons is
connected to all neurons of the previous and the next



layers. Due to this complexity, ANNs usually have very
few hidden layers.

The goal of an ANN is to learn a function f̂ approximating
a function f , that maps the input X to the output Y =
f(X), from a set of labeled images (X, f(X)).

Designing a neural network involves setting a number of
parameters, namely the structure, the cost function, the
activation functions, the optimization algorithm, and the
initial conditions (weights, biases, learning rate, . . . ). Most
of these parameters are determined empirically which
complicates the task of developing a dependable network.
On the other hand, training a neural network means
adjusting its weights and biases that are often initialized
randomly by learning from a �nite dataset. Hence, all the
network parameters plus the training dataset (nature of
samples, the order of training, the batch size, . . . ) a�ect
signi�cantly the learned function.

DNNs are an extended version of standard ANNs with
sophisticated structures (convolutional neural networks,
recurrent neural networks, . . . ), and with more hidden
layers. The depth of a DNN (number of hidden layers)
helps come up with complex problems, since more layers
will allow a more complex function.

Apart of the MLP model that was described previously,
there exist many other variants and combinations of
DNNs models. The most known architectures are: Convo-
lutional Neural Networks (CNNs), Deep Belief Networks
(DBNs), Autoencoders (AE), and Recurrent Neural Net-
works (RNNs). AE and DBNs are commonly used in
unsupervised learning mode. CNNs are widely used in
several applications including image recognition, speech
recognition, data processing, etc. RNNs are particularly
designed to deal with sequenced data analysis. For more
details about DNNs, we refer the interested readers to
(Schmidhuber (2015) and Goodfellow et al. (2016)). In
this work, we will especially focus on CNNs since they
have recently attained a state-of-the-art performance on
the task of image recognition.

Constructing a DNN is a complex task, since the ar-
chitectures are mainly designed empirically. A network
designer should make various design choices, including
the number of hidden layers, the size of each layer, the
learning rate, the cost function, the activation function,
the initial weights and biases, the nature of layers (pooling,
dropout, sub-sampling,...), etc. At the present, there is no
strong de�ned mathematical model that helps choosing
the right topology and determining the appropriate hyper-
parameters to develop an optimal and e�cient network.
Thus, designing a network is often criticized as being a
black art.

The major CNNs models, that have achieved outstanding
results at ILSVRC challenges, are now viewed as state-
of-the-art CNNs architectures. The most common are:
AlexNet, VGGNet, GoogleNet and ResNet. In our ex-
periments, we use particularly these four architectures to
evaluate our approaches.

2.2 Dependability in Deep Neural Networks

Despite their great success in various �elds, DNNs lack
interpretability and are mostly considered as a black boxes.
For these reasons, safety standards have forbidden their
use in safety critical systems, and only allow them in
applications requiring the lowest Safety Integrity Level
(SIL 1) (Kurd et al. (2003)).

There are few works in the literature that have studied
the safety aspect of neural networks, whereas the security
and robustness aspects recently received more attention.
DNNs weakness to adversarial examples have particularly
been highlighted: the alteration of inputs in order to force
a learned DNN to misclassify them. These alterations can
be due to human malicious attacks or external faults due
to the environment.

Several methods to generate adversarial examples have
been proposed. Kurakin et al. (2016) explore the possibil-
ity of creating adversarial modi�cations for machine learn-
ing systems which operate in the physical world. Papernot
et al. (2017) show that it is possible to attack classi�ers
without knowledge of their training data or model, and
introduce an attacker able to produce adversarial examples
for black-box classi�ers. Evtimov et al. (2017) introduce an
attack algorithm called Robust Physical Perturbation that
produces perturbations physically realizable, and robust
to changing physical conditions. Moosavi-Dezfooli et al.
(2016) showed the existence of universal image-agnostic
perturbations which, when added to all data points, fool
state-of-the-art DNNs. Moreover, the paper proposed an
algorithm for �nding such perturbations for a set of train-
ing examples. Goodfellow et al. (2014) introduce a family
of fast methods for generating adversarial examples, and
show that RBF (Radial Basis Function) networks are
resistant to distortions. Instead of generating adversarial
samples which are inputs with small modi�cations that
are often imperceptible to the human eye, some authors
(Goodfellow et al. (2014) and Nguyen et al. (2015)) have
been interested in generating inputs that a human would
classify as not belonging to any of the categories class,
whereas the network assigns them to some class with
high con�dence. Those samples are called rubbish class.
Nguyen et al. (2015) addressed the issue under the name
of fooling images. It introduces a new algorithm based on
evolutionary algorithms used for generating fooling images
that are completely unrecognizable to humans, but that
DNNs believe to be recognizable objects with high con�-
dence. The authors showed that re-training the network by
adding a new class labeled fooling images didn't prevent
producing new fooling images.

On the other hand, various approaches exist to increase
model's robustness against adversarial attacks. Zheng
et al. (2016) presents a general stability training method
that makes DNNs more robust for near-duplicate detec-
tion, similar image ranking and classi�cation on noisy
datasets. Metzen et al. (2017) uses a detector subnetwork
trained on the binary classi�cation task of distinguishing
genuine data from data containing adversarial perturba-
tions. The proposed approach does not necessarily allow
classifying adversarial examples correctly, but it allows
mitigating adversarial attacks. Uli£n�y et al. (2016) pro-
poses a robustness method called Adversarial Committee



and shows its capacity to resist to adversarial noise for the
MNIST dataset (LeCun et al. (1998)), by comparing it
with other methods. The method consists of combining
a set of networks in such a way that each network is
trained on its own adversarial noise. Tang and Eliasmith
(2010) present two strategies for improving the robustness
of DBNs: by using sparse connections in the �rst layer of
the network (sparse DBN), and by implementing a proba-
bilistic denoising algorithm that makes networks robust to
common variations such as occlusion and random noise.

In comparison, works published in the �eld of DNNs
safety are relatively rare. Huang et al. (2017) have in-
troduced a veri�cation algorithm for checking safety of
DNNs by exploring a region around a data point. The
goal is to determine the extent to which the input can be
altered without changing the classi�cation result by prop-
agating constraints through the layers of the networks.
This method is however di�cult to use in practice, as a
tremendous amount of calculations are needed for each
data point. Hosseini et al. (2017) propose training the
classi�er to reject the adversarial examples by assigning
them a NULL label, while classifying the clean data as
their original labels. In the same context, Shalev-Shwartz
et al. (2016) tackled the safety problem in reinforcement
learning, including the application of forming long term
driving strategies. The authors outlined the challenge of
ensuring functional safety of the driving policy that faces
the autonomous driving. They decompose the driving pol-
icy into a policy for desires using machine learning, and
a trajectory planning with hard constraints using classical
imperative methods. The safety task was only addressed
by using hard constraints in the trajectory planning phase
that requires simply resolving an optimization problem
and doesn't involve any learning algorithm. Kurd and
Kelly (2003a) de�ne the safety criteria that would con-
tribute to justify the safety of neural networks. The criteria
are speci�ed as a set of safety requirements for the behavior
of ANNs that should be respected during the development
phase. However, the paper doesn't explain how to im-
plement these requirements and remains theoretical. The
same authors present in (Kurd et al. (2003) and Kurd
and Kelly (2003b)), a development cycle for safe ANNs,
which focuses on studying the safety of learned features by
translating them into a symbolic level. In practice, such a
method is very di�cult to achieve, as it is complex and
costly to understand the learned parameters of a ANN.
Software development process models for ANNs used in
critical applications have also been introduced in (Rodvold
(1999) and Nabney et al. (1997)). The �rst paper split the
development process into 5 steps and implement feedback
loops between some steps to prevent becoming mired in
an unproductive path, by moving back when a step is
de�cient. The second paper, presents a development life-
cycle model composed of 6 steps, and studies two practical
methods of assessing neural networks. The steps speci�ed
in these two references are generic and can be considered
as sets of good practices that can be used complementarily
to fault tolerance techniques.

2.3 Diversi�cation in Neural Networks

The generation of diversi�ed networks has been featured in
a number of previous studies. Partridge and Yates (1996)

proposes a methodology for constructing reliable neural-
nets divided into three steps. First, producing diverse neu-
ral nets by changing: the net type (two architecture types
have been used: MLP and Restricted Boltzman Machines
(RBM)), the net structure, the training set, the number
of hidden layers, and the initial weights. Second, picking
up the optimal versions by using three types of optimiza-
tion approaches like genetic algorithm. Third, gathering
the optimal networks to constitute a multiversion system
with a decision strategy such as majority vote. Another
work (Lincoln and Skrzypek (1989)) suggests combining
the outputs of a cluster of multiple nets into a single
output. To do so, a judge determines the cluster output
by computing the simple average or the weighted sum of
the multiple outputs. Then, after evaluating the common
error, this latter is back-propagated through all networks.
The authors argue that this approach adds fault tolerance
by giving the judge the ability to bias the outputs based
on the past reliability of the nets. The concept of gener-
ating N-version programming with the aim of increasing
the fault tolerance and improving the reliability of neural
networks has been addressed in (Sharkey et al. (1995)).
The authors studied the correlation between the generated
networks, considering three methods of creating diversity:
varying the initial conditions, varying the training sets,
and using contrasting measures (alternative inputs). This
last method was evaluated as the best mean of produc-
ing diverse networks, whereas the versions generated only
by changing the initial conditions had highly correlated
failures. However, all of these works intend to improve
a network availability. To our knowledge, none of them
aimed to identify unspeci�ed inputs, that are inputs far
away from each learned class.

3. FORCED DIVERSIFIED LEARNING

In this work, we seek to make up the large lack of theo-
retical explanations and the inability of humans to under-
stand DNNs, by implementing fault tolerant techniques to
increase their dependability, and more particularly their
safety.

Most DNNs researchers are mainly interested in develop-
ing networks able to achieve high accuracy by labeling
correctly and robustly their inputs. In this article our main
concern is to give the network the capacity to identify and
discard erroneous or unspeci�ed inputs, without trying to
classify those unspeci�ed inputs correctly: since the system
has not been speci�ed and developed to consider them,
any of its response to them can not be intended. Thus,
we consider that detecting such unspeci�ed inputs and
alerting a diagnosis mechanism or ultimately the operator
is the safest response for an unpredictable component such
as a DNN. Indeed, in applications such as autonomous
driving, recognizing tra�c signs is generally assigned to
DL mechanisms, and mislabeling an unlearned tra�c sign
or simply a signboard that has some similarities with a
tra�c sign (see �g. 1), could eventually cause an accident.
In addition, our proposed technique can contribute to a
classi�er's security towards malicious adversarial attacks,
since it could detect the perturbed inputs and prevent
misclassi�cation.

Our technique is based on the concept of diversi�ed redun-
dancy. We consider that when classi�ers are developed and



Fig. 1. Examples of a perturbed input (left image) ((Evti-
mov et al., 2017)) and an unknown input (right image)

trained independently, they will learn a di�erent network
classi�cation function, and consequently they may act
di�erently in front of an unlearned input. In fact, during
the training process, the network progressively learns from
its training samples to set the boundaries of its classes in
a multidimensional space by optimizing a cost function.
What allows the robustness of neural networks is that a
classi�er doesn't learn to only �t the learned examples into
each class, but it generally de�nes the boundaries that
separate the set of classes. Therefore, a big part of the
empty multidimensional space is distributed to the learned
classes, which allows DNNs to be easily fooled in front
of an unlearned input. By using forced diversi�ed DNNs,
we hope that the di�erent DNNs will not have the same
boundaries between classes, and thus that unspeci�ed in-
puts will be classi�ed di�erently by some networks. Since
we can not precisely know the boundaries of each network
without extremely complex and costly analyses, we can not
guarantee that this technique alone is su�cient to detect
all or even most of unspeci�ed inputs. We are nonetheless
con�dent that it is an e�cient �rst step, to be used with
other complementary methods, in improving signi�cantly
the safety of DNNs.

Forced diversi�cation can be done mainly following three
approaches: diversi�cation of the training parameters
(training sets, optimization function, etc.), diversi�cation
of the network architecture and structure (number of and
connections between layers, value of the initial parameters,
etc.), diversi�cation of the precise function of the network
(classifying between each output classes, introducing a
new class "unknown" as an additional output class, tree
classi�cation, etc.). The next session will present examples
for each of these approaches.

4. SAFER DEEP NEURAL NETWORKS

We have developed di�erent approaches for neural net-
works diversi�cation. We have classi�ed these approaches
in three ways: diversi�cation of the training dataset, di-
versi�cation of the network parameters and structure and
�nally classi�cation diversi�cation. Note that, although
we present these di�erent approaches separately, our tech-
nique aims at combining more than one approach in order
to build fault tolerant architectures.

4.1 Approach 1: Training set diversi�cation

As a �rst approach, we propose generating diversi�ed
DNNs by acting directly on the training dataset. Accord-
ing to some experiments we carried out, it appeared that
just changing the order of training (the order in which the
training samples are used to train the network), or training

with di�erent datasets can produce signi�cantly diversi�ed
networks.

Data augmentation is a potential technique that seems to
be useful and which is often used by DNNs developers
in order to improve the robustness. It consists in slightly
altering the images of each batch before injecting them into
the network. Once chosen for training, the images undergo
modi�cations according to some degrees selected randomly
from prede�ned intervals. The alterations can be made by
varying several parameters like brightness, contrast, rota-
tion, cropping, sharpness, etc. Similarly, we can promote
diversi�cation by using the techniques of boosting and
bagging (Bauer and Kohavi (1999) and Schapire (1999)),
which both assign weights to the training examples. The
main di�erence between these two techniques resides in
how the samples are weighted. The boosting algorithm
relies on the performance of its classi�ers to generate the
probability distribution over the dataset while the bagging
algorithm does not take into account this performance.

We also propose training networks with RGB and Grayscale
images separately in order to foster diversi�cation. This
technique seems to be promising, since it enables networks
to learn distinct features. Note that this method is not
recommended in all applications. In fact, training with
RGB images is inevitable in some classi�cation problems,
where the color is a crucial element to make decision.

4.2 Approach 2: network parameters diversi�cation

Obviously, the function learned by a network is highly af-
fected by the network parameters. In those parameters, we
count the initial conditions of the network (initial values of
weights and biases), its structure (the number of hidden
layers, the topology between layers, their sizes, etc.), its
activation functions, the cost function, the optimization al-
gorithm, etc. Note that some of the aforementioned struc-
ture, activation functions and optimization algorithm are
generally de�ned in the literature's architectures (Alexnet,
VGGNet, GoogleNet, etc.). Varying some or all of these
parameters will undoubtedly contribute to diversi�cations
in the networks. These techniques can be e�cient, however
nothing prevents two networks with di�erent architectures
and settings from developing the same or very similar
functions.

4.3 Approach 3: Classi�cation diversi�cation

In this section, we propose to directly diversify the function
of the networks: that is what to classify and how.

Classi�cation 1 - Basic classi�cation: The common
model of networks is based on an end-to-end classi�ca-
tion, by performing a direct input-output mapping. These
networks are created to take an image as input and gives
a class label as output according to a prede�ned set of
classes.

Classi�cation 2 - Classi�cation with additional class "un-
known": We propose adding a new class label as NoId
(Not Identi�ed) to the network, in order to recognize un-
learned situations. To do so, a new data set must be added
to the original training data, in such a way that the new
samples must be diverse and di�erent from the categories



to be learned. Also, it shall be ensured that the training
data is balanced, that is to say the amount of images for
each class should be somehow equal, in order to represent
the classes equally during the training process. The idea is
to narrow the boundaries of the main classes by allocating
a portion of the empty multidimensional space to the new
NoId class. Note that this technique does not guarantee
that the trained network will place all the aberrant images
in the NoId class, although it should improve the system
fault tolerance.

The NoId class is similar to the rubbish class used in Good-
fellow et al. (2014) and Nguyen et al. (2015). The latter
paper showed that retraining the network with the nega-
tive images did not prevent their algorithm from producing
new fooling images in the case of the MNIST dataset.
However, the same algorithm was less able to generate new
successful malicious images with the ImageNet dataset.

Classi�cation 3 - Class reference classi�cation: For the
third model, we want to develop a network able to compare
the input image with a class reference and decide if they
are similar or not. A reference image must thus be selected
from each class dataset, in order to be used as a class
reference. At the learning phase, each training sample is
concatenated with a class reference, selected randomly, to
form one global input image, which is subsequently in-
jected in the network. The considered network is designed
with two outputs, labeled Similar and Di�erent. In the case
where the input image is representing the same category
as the reference class, the correct output is to classify them
as Similar and otherwise as Di�erent.

This model can be exploited in two ways. First, by com-
paring each input image with all the class references suc-
cessively: then if the model returns exactly one positive
output, the input will be classi�ed as the class reference
which provided the positive result, otherwise the input
will be classi�ed as unknown. Second, the model can be
alternatively used to con�rm the decision of another net-
work. The mechanism is as follows: once the network to
be checked assigns the input to a given class, the model
will compare that input with the reference of the detected
class and validate the classi�cation if it returns a positive
result.

Classi�cation 4 - Tree classi�cation: In this classi�ca-
tion, instead of using an end-to-end network to perform
classi�cation, we propose to split the recognition task into
several steps. To do so, the classes must be arranged hier-
archically by gathering the categories that have common
visual elements (color, shape, pattern, . . . ) into coarse
classes. The objective is to build a hierarchical label tree,
in such a way that the macro-classes and their sub-classes
will constitute the tree nodes, and the re�ned classes will
represent the tree leafs. At each node, a network must
be trained to classify the categories linked to that node.
Therefore, the number of networks to be trained will be
equal to the number of the tree nodes. Then, the classi�ers
might be organized in a hierarchical manner, in order to
perform a top-down classi�cation.

This approach is an alternative method of classi�cation
which must be combined with other diversi�ed classi�ca-
tions in order to detect the invalid inputs. In addition,

Fig. 2. The 10 tra�c signs used for learning and their labels

it could reduce the complexity of classi�cation, especially
when dealing with problems with large number of classes.

Other diversi�cations: In the same context as the clas-
si�cation 3, we propose developing a network able to
compare an input image with a class reference, in such
a way that the class reference will represent only the
object to be recognized with a white background. This
method will force the classi�er to give more attention to
the object features, which could increase the classi�cation
performance.

Another approach is to develop a set of binary classi�ers,
with only two outputs, in the sense that each classi�er will
be specialized at recognizing a particular class. The objec-
tive is to build a number of networks equal to the number
of classes considered, and to make each network learn a
speci�c class, in order to be able to decide if the input
image belongs to that class or not. Such training method
could help optimizing the space assigned to each class. As
the third model, this approach can be exploited in two
ways: alone by injecting the image into as many reference
classi�ers as classes, or to validate another classi�er.

Another alternative consists in dividing the number of
classes into three-thirds, and to train three classi�ers
independently, each one with two di�erent thirds of classes.
The goal is to decide that a given input belongs to a speci�c
class only if exactly two networks place it in that class.
This strategy is intended to diversify the function of each
classi�er, by changing the set of classes that they will each
learn.

Other classi�cation diversi�cations are of course possible.
In the rest of this paper we will focus on classi�cations 1
and 3.

5. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed diversi�ca-
tion approaches, we present in this section the results of
a real-world application related to the problem of tra�c
signs recognition. We trained our classi�ers on the 10 traf-
�c signs illustrated in �gure 2, extracted from the GTSRB
(German Tra�c Sign Recognition Benchmark) dataset
(Stallkamp et al. (2011)). The images in this dataset vary
in size and are RGB-encoded. In our application, we only
used images larger than 30*30 pixels, thus we have only
considered 10 classes, since the other tra�c signs have
only few images larger than 30*30 pixels. We resized all
the images to 60*60 pixels. We used a test set of 1185
samples. For evaluation, we used various sets of images
collected from several websites. For architectures, we used
state-of-the-art convolutional networks, namely extents of
AlexNet, GoogleNet, VGGNet, and ResNet. As previously
explained each one of these architectures is de�ned by
a depth, a succession of speci�c layers, prede�ned �lters
sizes, and a special interconnection between layers.



Fig. 3. Images extracted from the evaluation sets

5.1 Evaluation sets

To analyze the diversi�cation e�ciency of some of our
proposed approaches, we used four di�erent sets of images:

• Set A: consists of 100 tra�c signs photos di�erent
from the learned classes.

• Set B : consists of 70 tra�c signs drawings di�erent
from the learned classes.

• Set C : consists of 13 photos of signboards that we can
�nd at roadsides but that are not tra�c signs (such
as brand signs).

• Set D : consists of 9 physical tra�c signs with ad-
versarial perturbations. Those images were used in
(Evtimov et al. (2017)) as attack images to fool a
classi�er.

Our purpose is to label the maximum of the images in sets
A, B, and C as unknown, and to avoid misclassifying the
images in D and the test set by labeling them correctly or
by classifying them at least as unknown. Indeed, for safety
reasons, we prefer to classify a given class as unknown
instead of labeling it incorrectly. Examples from each
dataset are illustrated in �gure 3.

5.2 Diversi�cation analysis

In these experiments, we study the diversi�cation e�-
ciency of some of the proposed approaches. In the �rst
two experiments we study a diversi�ed block using two
networks in parallel, while in the third experiment we
study a diversi�ed block using two sequential networks.
Note that by deciding on everything that is random in a
network, we always generate similar networks that provide
the same outcome for any input, since network learning is a
deterministic process. In order not to be captured in a local
minimum, we generate several blocks in our experiments
and present their average results.

Sampling order. In this experiment, we studied the
impact of changing the sampling order on diversity. The
sampling order is the order in which the training samples
are used to train the network. To achieve this goal, we
trained six times an extent version of AlexNet architec-
ture by varying the training order and by �xing all the
other network settings including the initial conditions. We
performed a pairwise comparison over the six generated
networks (resulting into 15 diversi�ed blocks) and we
identi�ed inputs labeled di�erently as unknown. Table 1
reports the average results of the 15 blocks considering the
test set and the 4 evaluation sets.

We can notice that just varying the sampling order allowed
us to detect some unknown inputs in the sets A, B
and C. In addition, an average of 7.07/9 of adversarial
examples have been correctly classi�ed and 1.13/9 have
been classi�ed as unknown while only 0.8/9 of samples
have been misclassi�ed in the set D. Moreover, the average

misclassi�cation rate in the test set reduced to 0.08% by
classifying 0.36% samples as unknown.

Network structure. We trained extent versions of the
four CNNs architectures: AlexNet, VGG-16, GoogleNet,
and ResNet. Due to the lack of space, we only report the
results of comparing just two architectures (GoogleNet and
ResNet) in table 2. The results are provided by calculating
the average of six blocks. Each block is composed of two
networks (GoogleNet and ResNet) connected in parallel
and trained with the same sampling order.

Changing the network structure has signi�cantly improved
diversi�cation, to such an extent that we detected more
than 50% unknown examples in the sets A, B and C.
Furthermore, the number of samples misclassi�ed in the
set D was reduced to 0.17/9. However, accuracy was
slightly degraded to 97.22% in the test set while the
misclassi�cation rate was successfully to 0.01%.

RGB-Grayscale training. We used two extent versions
of VGG-16 architecture: one version trained with RGB
images and another with Grayscale images. Both versions
have similar structure except for the input layer. Table 3
reports the average of 6 blocks, each one providing the
results of two networks connected in parallel: one network
trained with RGB images and another with Grayscale
images. The networks in each block are trained with the
same sampling order.

We notice that the number of samples misclassi�ed in
the sets B and C has decreased to 18.17/70 and 2.67/13
respectively. However, this technique was less e�cient in
labeling the perturbed images of the set D.

Classi�cation diversi�cation. In this experiment, we
tested the class reference classi�cation method (approach
3) to detect the unknown inputs. We consider here a block
of two networks in series: a �rst network used to perform

Table 1. The average classi�cation results of 15
diversi�ed blocks resulting from a pairing of 6
networks generated by varying the sampling

order.

Sets test set D

Correctly
classi�ed

99.56 % 7.07/9

Classi�ed as
unknown

0.36 % 1.13/9

Misclassi�ed 0.08 % 0.8/9

Sets A B C

Correctly
classi�ed

as unknown
14.06/100 13.53/70 3.13/13

Misclassi�ed 85.93/100 56.46/70 9.86/13

Table 2. The average classi�cation results over
six blocks. Each block is composed of two

networks with di�erent structures.

Sets test set D

Correctly
classi�ed

97.22 % 6.83/9

Classi�ed as
unknown

2.77 % 2/9

Misclassi�ed 0.01 % 0.17/9

Sets A B C

Correctly
classi�ed

as unknown
54/100 41.83/70 7.83/13

Misclassi�ed 46/100 28.17/70 5.17/13

Table 3. The average classi�cation results over
six blocks. Each block is composed of two
networks: one trained with RGB images and

another with Grayscale images.

Sets test set D

Correctly
classi�ed

99 % 4.33/9

Classi�ed as
unknown

0.86 % 3.67/9

Misclassi�ed 0.14 % 1/9

Sets A B C

Correctly
classi�ed

as unknown
51.83/100 51.33/70 10.33/13

Misclassi�ed 48.17/100 18.17/70 2.67/13



basic classi�cation and a second one used for validation.
We trained six basic classi�cation networks and six class
reference networks. In table 4 we present the average
classi�cation results of 36 blocks obtained by testing all
possible combinations.

Table 4. The average classi�cation results over
36 blocks. Each block is a combination of
two networks in series: A basic classi�cation

network and a class reference network.

Sets test set D

Correctly
classi�ed

98.90 % 7.06/9

Classi�ed as
unknown

1.02 % 1.94/9

Misclassi�ed 0.08 % 0

Sets A B C

Correctly
classi�ed

as unknown
34.14/100 34.42/70 7.36/13

Misclassi�ed 65.86/100 35.58/70 5.64/13

Using class reference classi�cation was less e�ective in
detecting unknown inputs in sets A, B and C, however
it was more robust in classifying correctly the perturbed
inputs.

Results analysis. All diversi�cation techniques investi-
gated previously have proved their capacity for detecting
unknown inputs even if some of them were less e�ective
than others. It is di�cult to determine the better one be-
cause the results di�er according to the evaluation sets. For
instance, diversifying the network structure achieved high
performance in the set A, while training with RGB and
Grayscale images allowed detecting the highest number of
unknown images in sets B and C. Moreover, the results
are probably very di�erent depending on the application.

5.3 Fault tolerant architecture

In this section, we combine some of our proposed ap-
proaches to validate whether they are complementary. We
propose a potential fault tolerant architecture in �gure 4
that takes an input image and provides a safe output. This
architecture involves four diversi�ed networks (N1, N2, N3
and N4):

• The classi�ers N1 and N2 are respectively extents of
GoogleNet and ResNet designed to perform a basic
classi�cation and are trained with RGB images.

• The classi�er N3 is an extent of VGG-16 designed
to perform basic classi�cation and trained with
Grayscale images.

• The classi�er N4 is also an extent of VGG-16 designed
to perform class reference classi�cation and trained
with RGB images.

As illustrated in �gure 4, we carry out two tests before
labeling the input image. Firstly, we feed the input into
the three networks (N1, N2 and N3) and we compare their
outcomes. If at least one outcome is di�erent, the image is
classi�ed as unknown, otherwise we perform a second test
to validate the label "i" assigned to the input. To this end,
we concatenate the input image with the class reference
"i" and we feed it into N4. If this latter returns a negative
outcome, that is the input image is di�erent from the class
reference, the image will be as well classi�ed as unknown,
otherwise it will take the label "i". Table 5 reports the
classi�cation results of this architecture.

Th results presented in �gure 5 demonstrate that com-
bining various approaches was more e�ective in detecting

Fig. 4. A Detection mechanism for unknown images by
combining the 3 approaches

the unknown inputs, at a minimal cost to accuracy. In
addition, we can notice that our technique has identi�ed
the adversarial images that we failed to label correctly by
classifying them as unknown.

6. CONCLUSION

Despite the great success of DL in many areas, its use
remains limited to non critical applications. This is due
to the lack of methodologies and tools that can justify
and validate their dependability. In this context, we have
developed a technique based on the concept of diversi�ed
redundancy in order to reinforce the DNNs safety. The
idea is to develop diverse networks trained independently
and combine them in one fault tolerant architecture in
order to detect the unlearned inputs and classify them as
unknown. This way, misinterpretations that could lead to
severe consequences could be avoided. To achieve our goal,
we proposed three approaches based on diversifying: (1)the
training dataset, (2)the network parameters, and (3)classi-
�cation. The �rst two approaches enable learning di�erent
approximations of the same function, while the third ap-
proach aims at diversifying the learned function itself by
using alternative strategies of performing classi�cation. In
fact, classi�ers created by modifying the training dataset
or the network parameters don't learn the same way, and
hence they are more likely to behave di�erently in front
of unlearned inputs. In addition, diversifying classi�cation
allows focusing on di�erent features which signi�cantly
in�uence the decision making.

The experiments conducted on an application dedicated
to tra�c signs recognition showed the e�ciency of our
approaches, particularly when combined.

Our study thus demonstrated that invalid inputs can
be e�ectively identi�ed by an approach of diversifying
learning. In the future, we plan to test our technique on
other critical applications and to develop more e�ective

Table 5. The classi�cation results obtained by
using the proposed fault tolerant architecture.

Sets test set D

Correctly
classi�ed

97.55 % 6/9

Classi�ed as
unknown

2.45 % 3/9

Misclassi�ed 0 % 0

Sets A B C

Correctly
classi�ed

as unknown
81/100 69/70 13/13

Misclassi�ed 19/100 1/70 0



and practicable approaches that could be also used in
detecting adversarial inputs.
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