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Abstract  Bubbly flows occurring in nuclear power plants remain a major limiting 

phenomenon for the analysis of operation and safety. Therefore, the choice was made to 

investigate these complex flows with a multifield approach, considering the gas phase as two 

separated fields. In so doing, the small and spherical bubbles are considered as parts of the 

dispersed field whereas the distorted bubbles are simulated with an interface locating method. 

The flow motion is followed using the two-fluid model of Ishii [1975, Thermo-fluid dynamic, 

theory of two-phase flow, Eyrolles] extended to n-phases. Nevertheless, this model is known to 

spread numerically large interfaces, which results in a poor accuracy in the calculation of the 

local flow parameters such as curvature. Therefore, this paper is focused on the accurate 

simulation of the large scale interfaces. The implementation of an artificial interface 

sharpening equation is detailed to limit the interface smearing. The activation criteria are also 

described. Special attention is given to mass conservation. All these steps are illustrated with 

test cases of isothermal, incompressible and laminar separated two-phase flows. A final 

validation is proposed with the simulation of the Bhaga’s rising bubble problem [Bhaga, D. 
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and Weber, M.E., 1981, Bubbles in viscous liquids: shape, wakes and velocities, J. of Fluid 

Mech., Vol. 105, pp. 61-85] and the Kelvin-Helmhotz instability in the Thorpe’s experiment 

configuration [Thorpe, S., 1969, Experiments on the instability of stratified shear flows: 

immiscible fluids, J. Fluid Mech., Vol. 39, pp 25-48]. 

 

Keywords: Multiphase flows, Computational multi-fluid dynamics, Multifield approach, 

Large interfacial structures, Interface sharpening equation 

 

Highlights: 

- A special treatment including capillary forces is proposed to resolve large interfaces 

within a multifield approach using a computational multi-fluid dynamics code based 

on a finite volume discretization. 

- An interface sharpening equation is implemented and adapted to the two-fluid 

formulation. 

- The large interface locating approach is validated with a large range of isothermal, 

incompressible and laminar test cases from bubbly flows to interfacial liquid/liquid test 

cases, including convergence studies.   
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Nomenclature 

Roman letters: 

a - Major axis of an ellipse 

D m Bubble diameter 

𝐷𝑑𝑖𝑓𝑓 m
-2

.s
-1

 Diffusion coefficient 

g m.s
-2

 Gravitational constant 

I kg.m
-2

.s
-2

 Interfacial momentum transfer 

k m
−1

 Wavenumber 

n - Unit interface normal vector 

P Pa Pressure 

R m Bubble radius 

S s
-1

 Viscous stress tensor 

u m.s
-1

 Velocity 

U m.s
-1

 Average interface velocity 

   

 

 

 

 

 

 

 

 

Subscripts and superscripts: 

* Intermediate values 

𝑖𝑛𝑡 Interface 

i Space direction 

I, J Cell index 

k Field index 

n, n+1 Time step number 

𝑛𝑐𝑒𝑙 Total number of cells 
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1. Introduction 

In nuclear power plants with pressurized water reactor or boiling water reactor, the steam 

generator integrity is crucial to prevent radiological exposures. Therefore, investigations have 

been carried out to predict the properties of the flow in terms of flow types and bubble sizes 

[Hao et al. 2014, Ma et al. 2014, Wang et al. 2012 and Watanabe et al. 2014]. Nevertheless, 

the variety of flow regimes (annular flow, dispersed bubbles and droplets, large and 

deformable bubbles) existing in vertical superheated tubes makes the simulations really 

challenging. 

These complex flows have interested many research groups, which have developed and 

validated methods to track accurately interfaces. Thus, significant results have been obtained 

on turbulent deformable interfaces including mass and heat transfers with the Volume Of 

Greek letters: 

θ, γ - Angular coordinates 

𝜉 - Convergence order 

∆𝑥 m Cube root of the cell volume 

𝜌𝑘 kg.m
-3

 Density of field k 

𝜇𝑘 Pa.s Dynamic viscosity of field k 

𝜅 m
−1

 Interface curvature 

Γ kg.m
-3

.s
-1

 Interfacial mass transfer 

𝜔 s
−1

 Pulsation 

σ N.m
-1

 Surface tension coefficient 

β - Threshold coefficient 

∆𝑡 s Time step 

𝛺 m
3
 Volume element 

𝛼𝑘 - Volume fraction of field k 

𝜏 s Characteristic time scale 
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Fluid (VOF) approach [Borniaa et al. 2011], the level set method [Di Bari et al. 2013] and the 

front tracking method [Dabiri and Tryggvason 2015]. Nevertheless, to be accurate, these 

methods require tracking all interfacial scales. For industrial applications, where the 

computational domain can have lengths in the order of a few meters, more than billion cells 

should be necessary to precisely simulate bubbles of less than a millimeter. However, such 

mesh refinements reach the current computational limit.  

To deal with such flows, different approaches have been developed. A first one consists in 

simulating accurately the larger scales using interface tracking methods described above and 

considering the badly resolved structures as dispersed particles followed in a Lagrangian 

manner. This approach has been implemented by several research groups with the level set 

method [Capecelatro et al. 2010 and Herrmann 2010] and with the VOF method [Tomar et al. 

2010 and Ling et al. 2015]. A second approach, called the multifield approach, has been first 

introduced a long time ago by Anderson and Jackson [1967] and Drew and Lahey [1979]. It is 

explored in this article. Contrary to the first method, the multifield approach is based on a 

two-fluid model initially used to simulate complex flows containing a continuous phase and 

small spherical inclusions modeled through a dispersed approach. Nevertheless, the dispersed 

model allows following only inclusions with a spherical shape with sizes smaller than the grid 

cell under a scale separation asumption. Thus, the idea of the multifield approach proposed in 

this paper is to extend the two-fluid model for the simulation of large and deformable 

inclusions. For this purpose, a notion of “field” is introduced. In a water/steam flow for 

example, three fields for two phases are considered: a dispersed field representing the small 

spherical bubbles, a continuous water field and a continuous steam field [Denèfle et al. 2015]. 

Thus, in each grid cell, one velocity and one volume fraction per field are defined. The two-

fluid model equations are solved for each field in the whole domain. The large bubbles are 

then defined by interfaces between the continuous water field and the continuous steam field 
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containing the large bubble. This method can be applied to various types of inclusions: 

droplets or bubbles. Thus, it is important to note that the way of locating interfaces is totally 

different from the methods presented above, which consider one set of parameters (viscosity, 

density and velocity) in the whole domain and which follows interfaces by solving advection 

equations of Eulerian characteristic functions. To follow the dispersed field, some research 

groups have worked on Lagrangian methods [Zuzio et al. 2013] and on Eulerian methods 

[Vallet and Borghi 1999 and Lebas et al. 2009]. Here, the choice has been made to use an 

Eulerian approach. The models for the interfacial transfers related to this dispersed field have 

been well studied and validated [Mimouni et al. 2011]. The modeling effort is then currently 

focused on the large interfaces formed by two continuous fields. This article is devoted to the 

simulation of these interfaces in isothermal incompressible and laminar flows. Within the 

multifield approach, an accurate interface location method is required to evaluate precisely the 

local quantities such as surface tension forces, interfacial normal vectors or curvatures and to 

predict the evolution of these large scale interfacial structures. Nevertheless, the two-fluid 

model is known to numerically spread large interfaces [Štrubelj 2009 and Zuzio et al. 2013].  

Thus, different methods have been developed to prevent the interface smearing. A first idea 

has been proposed by Saurel and Abgrall [1999] and is based on the resolution of an extra 

equation for the volume fractions. This method allows simulating accurately highly 

compressible flows and strong shock waves. Then, Xiao et al. [2005] presented a hyperbolic 

tangent interpolation of the volume fraction at each time step. The tangent of hyperbola 

interface capturing (THINC) method has been applied to simulations within a VOF method 

and showed significant improvements of the interface location [Xiao et al. 2005, Xiao et al. 

2011 and Ii et al. 2011]. This method has been adapted to the two-fluid model [Nonomura et 

al. 2014] for the simulation of compressible flows. More recently, another interface 

sharpening technique has been developed, based on the resolution of an anti-diffusion 
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equation. Good results have also been obtained with a two-fluid modeling [So et al. 2011]. 

Finally, Hänsch et al. [2012] proposed to add a clustering force in the momentum balance 

equation. This method avoids solving an extra equation and has been validated for the 

simulation of three field two-fluid test cases. 

In the present paper, a third interface sharpening method has been implemented, suitable for 

the simulation of incompressible flows with structured or unstructured grids, which are in the 

scope of this work. The technique, initially proposed by Olsson and Kreiss [2005] for the 

level set method, involves the resolution of a compression equation. The method has also 

been successfully applied to a two-fluid model [Štrubelj 2009, Denèfle et al. 2015].   

Our study will be focused on the large scale interfaces within the multifield approach in 

isothermal and incompressible conditions. The implementation of a modified interface 

sharpening equation initially developed by Olsson and Kreiss [2005] will be detailed to limit 

the interface smearing. The different choices to adapt the method to a two-fluid model will be 

illustrated with the simulation of different separated two-phase flows. Thus, we will take 

special care of the mass fluxes defined in the compression equation to ensure mass 

conservation. Moreover, two criteria will be defined to activate the sharpening equation only 

when the large interfaces are spread.  

The first part of this article is devoted to the computational framework developed for the 

multifield approach. Then, the numerical schemes of the Computational Fluid Dynamics 

(CFD) tool are briefly described to highlight the effect of the implementation of the interface 

sharpening equation. Different crucial parameters of this implementation are then discussed 

with examples of their effects on simulations of two-phase flows.  Finally, Bhaga’s rising 

bubbles [Bhaga and Weber 1981] and Kelvin-Helmholtz instabilities in the Thorpe’s experiment 
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configuration [Thorpe 1969] are simulated to validate the model developed for the simulation 

of large interfaces within the multifield approach. 

 

2. Computational model 

In this section, the models used for the simulation of the large scale interfaces within the 

multifield approach are described.  

 

2.1. Two-fluid model  

The CFD calculations are based on an Eulerian approach with a finite volume discretization. 

The flow motion is followed using the two-fluid model of Ishii [1975] extended to n-phases. 

In this model, density, viscosity, volume fraction and local velocity are defined for each field 

in each cell. Here, we only consider laminar, isothermal and incompressible flows. Thus, 

density and viscosity are constant for a given field. To deal with flows with large interfaces, 

two conservation equations are solved for each continuous field k: 

 The mass balance equation: 

 𝜕𝑡(αk 𝜌𝑘) + ∇. (αk 𝜌𝑘𝑢𝑖,𝑘) = 𝛤𝑘 (1) 

 

With αk the volume fraction of field k, 𝜌𝑘 its density, 𝑢𝑖,𝑘 the i
th
 component of the velocity of 

field k and 𝛤𝑘 the interfacial mass transfer of field k. 

 

 



9 
 

 The momentum equation: 

 

𝜕𝑡(αk 𝜌𝑘𝑢𝑖,𝑘) + ∇. (αk 𝜌𝑘𝑢𝑖,𝑘𝑢𝑗,𝑘) = ∇. (αk 𝜇𝑘𝑆𝑘) − αk ∇P 

                                                                           + αk 𝜌𝑘𝑔𝑖 + 𝐼𝑖,𝑘 + 𝐹𝑖,𝑘 

(2) 

 

With 𝜇𝑘 the viscosity of field k, 𝑆𝑘 the viscous stress tensor, 𝑃 the pressure, 𝑔 the gravitational 

constant 𝐼 the interfacial momentum transfer and 𝐹 extra source terms due to the presence of 

large scale interfaces (surface tension) or coupling terms between the continuous fields (drag 

forces).  The Continuum Surface Force (CSF) model proposed by Brackbill et al. [1992] and 

adapted to the two-fluid formulation [Bartosiewicz et al. 2008] has been used to model 

surface tension. A specific drag force law has been developed for the simulation of large 

interfaces within the two-fluid model. These two elements have been previously detailed and 

validated in Mimouni et al. [2014] and Fleau et al. [2015]. 

It is important to note that 𝜌𝑘 and 𝜇𝑘 have the same value in the whole domain since they refer 

to the density and viscosity of each field. Thus, they are not affected by the existence of 

interfaces like in one-fluid formulations [Kataoka 1986]. 

Since we are dealing with incompressible flows, a common pressure is taken for all fields 

[Ishii 1975]. The following jump conditions are added to the two previous equations: 

 ∑ αk = 1

𝑘

 (3) 

 

 ∑𝛤𝑘 = 0

𝑘

 (4) 

 

 ∑𝐼𝑘 = 

𝑘

1

𝛺
 ∫ 𝜎 𝜅𝑖𝑛𝑡

𝑖𝑛𝑡

𝑛𝑖𝑛𝑡𝑑𝑆 (5) 
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2.2. Interface sharpening equation 

To limit the interface smearing, the interface sharpening equation proposed by Olsson and 

Kreiss [2005] is solved for each continuous field. For example, in a liquid/gas flow, the 

equation is solved for the continuous liquid field and the continuous gas field: 

 𝜕𝜏αk + ∇. (αk (1 − αk )𝒏) =  𝜖∆αk  (6) 

 

With n the interface normal vector: 

 𝒏 =
∇αk 

||∇αk ||
 (7) 

 

The interface sharpening equation is iteratively solved to ensure convergence of the prescribed 

interface thickness. 

The values of the parameters ∆τ and ϵ are calculated to obtain a final interface thickness 

always equal to 5 cells whatever the initial interface diffusion [Štrubelj 2009, Denèfle et al. 

2015], as illustrated in Figure 1. In this article, the following values are taken: 

 ∆𝜏 =
∆𝑥𝑚𝑖𝑛
32

  and 𝜖 =
∆𝑥𝑚𝑖𝑛
2

 (8) 

 

With ∆𝑥𝑚𝑖𝑛 = min(𝛺
1 3⁄ ), for uniform meshes: ∆𝑥 = ∆𝑥𝑚𝑖𝑛. 

 

To illustrate the convergence of the equation and its ability to always obtain interfaces with 5 

cells thickness, a bubble, with a diameter of 2 cm, is simulated in a still liquid with a square 

uniform Cartesian mesh of 5 cm side length. The interface is spread using the following diffusion 
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equation, which is iterated either 10, 20 or 50 times before being sharpened with the interface 

sharpening equation (6): 

 𝜕𝜏1αk = 𝐷𝑑𝑖𝑓𝑓∇. (∇αk ) (9) 

 

with ∆𝜏1 = 10
−5𝑠 and 𝐷𝑑𝑖𝑓𝑓 = 0.1 𝑚2. 𝑠−1 . Thus, we observe in Figure 2 that whatever the 

mesh refinement and the initial interface diffusion, the final interface has always a thickness of 5 

cells. 

Only the iteration number of the interface sharpening equation varies according to the initial 

diffusion state. The mesh refinement does not increase the iteration number required to reach the 

final interface thickness. 

Since the interface sharpening method is not restricted to uniform Cartesian grids, the same 

simulation has been performed with an unstructured grid obtained by Delaunay triangulation. 

The mesh contains 39734 cells. The air bubble is initially diffused with a linear variation of the 

volume fraction between two circles of radii 1.1 cm and 0.9 cm. The interface sharpening is 

solved to sharpen the interface until the recompression threshold is reached. At the end of the 

recompression step, we compare the positions of the isolines of the air volume fractions at 0.1, 

0.5 and 0.9 obtained with the unstructured grid and two structured ones containing respectively 

181 x 181 cells and 256 x 256 cells. The coarser structured mesh have a bit less cells than the 

unstructured grid and the refined structured grid approximately twice the cell number of the 

unstructured grid. Figure 3 shows that the bubbles obtained with the three grids are 

superimposed. This result confirms that the sharpening step is not restricted to Cartesian uniform 

grids and does not lose its efficiency on unstructured meshes.   

 



12 
 

3. Numerical method 

The simulations are performed on fixed grids with collocated variables. The data structure is 

totally face-based, which allows the use of arbitrary-shaped cells including nonconforming 

meshes. Finite volume schemes are used to approximate space derivatives. 

The well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) solver is 

implemented in the CFD tool [Patankar and Spalding 1972]. A schematic view of this algorithm 

is proposed in Figure 4 for adiabatic test cases dedicated to incompressible flows, which are in 

the scope of this article.  

When the simulation starts, the boundary conditions are set. Then, an intermediate value of the 

velocity field is evaluated by solving the momentum equation (2) using the volume fractions and 

the pressure field at time step n. This intermediate velocity allows updating the volume fractions 

and the pressure field. To be consistent, these quantities are iteratively calculated within the so-

called α-P loop (Figure 4) [Méchitoua et al. 2003 and Guelfi et al. 2007]. The final velocity field 

is then obtained by neglecting the convective and diffusive terms in the momentum equation (2) 

and considering the pressure increment.  

More details about the numerical scheme can be found in Méchitoua et al. [2003] and Guelfi et 

al. [2007]. 

 

4. Implementation of the interface sharpening equation 

4.1. Conservative implementation 

A conservative implementation of the interface sharpening step is crucial to ensure mass 

conservation in the simulations. Thus, the numerical scheme has to be adapted (red box in 
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Figure 5 left). To understand how and where these changes occur, we will describe step by step 

the effect of the mass balance and the interface sharpening equations. At the end of the α-P loop, 

volume fractions have been updated by solving the following discretized mass balance equation 

(without mass transfers):  

 𝜌𝑘
𝛼𝑘
∗ −𝛼𝑘

𝑛

∆𝑡
𝛺𝐼+∇. (𝛼𝑘

𝑛𝜌𝑘𝑢𝑖,𝑘
∗)𝛺𝐼 = 0 (10) 

 

with 𝛼𝑘
∗  the volume fraction of field k at the end of the α-P loop, 𝛼𝑘

𝑛 the volume fraction at time 

step n before the α-P loop, ∆𝑡 the time step and 𝛺𝐼 the cell volume. Let us introduce the 

following notation for the mass flux term ∇. (𝛼𝑘
𝑛𝜌𝑘𝑢𝑖,𝑘

∗)𝛺𝐼 = ∑ 𝛼𝐼𝐽𝛷𝐼𝐽𝐼𝐽  , such that the 

discretized mass balance equation can be written simply as a sum between an unsteady term and 

a mass flux term: 

  𝜌𝑘
𝛼𝑘
∗ −𝛼𝑘

𝑛

∆𝑡
𝛺𝐼+∑𝛼𝐼𝐽𝛷𝐼𝐽

𝐼𝐽

=  0 (11) 

 

Where  .𝐼𝐽 refers to the value at the cell faces between cell I and cell J. 

After the α-P loop, the interface sharpening equation is solved using the intermediate volume 

fraction 𝛼𝑘
∗ . The discretized interface sharpening equation can also be expressed as a sum of an 

unsteady term and a mass flux term:  

 
𝛼𝑘
𝑛+1 − 𝛼𝑘

∗

∆𝜏
𝛺𝐼 +∑𝜓𝐼𝐽

𝐼𝐽

=  0 (12) 

 

With 𝛼𝑘
𝑛+1 the volume fraction of field k after the resolution of the interface sharpening 

equation, ∆𝜏 the characteristic time scale for the resolution of the interface sharpening equation 
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defined in Equation (7) and ∑ 𝜓𝐼𝐽𝐼𝐽 = (∇. (𝛼𝑘
∗(1 − 𝛼𝑘

∗)𝒏) −  𝜖∆𝛼𝑘
∗)𝛺𝐼 the compressive and 

diffusive fluxes defined in the interface sharpening equation (6). 

To ensure mass conservation, the total mass fluxes evaluated during a time step must correspond 

to the volume fraction distribution at the end of the time step, thus after the resolution of the 

interface sharpening equation. The mass fluxes calculated in this equation have to be added in 

the total mass fluxes such that:  

 𝜌𝑘
𝛼𝑘
𝑛+1−𝛼𝑘

𝑛

∆𝑡
𝛺𝐼+∑𝛼𝐼𝐽

′ 𝜑
𝐼𝐽

𝐼𝐽

=  0 (13) 

 

With ∑ 𝛼𝐼𝐽
′ 𝜑𝐼𝐽𝐼𝐽  the total mass fluxes evaluated during a time step. By combining Equations (11) 

and (12), we obtain the expression of these mass fluxes:  

 ∑𝛼𝐼𝐽
′ 𝜑𝐼𝐽

𝐼𝐽

= ∑𝛼𝐼𝐽𝛷𝐼𝐽
𝐼𝐽

+ 𝜌𝐼𝐽
∆𝜏

∆𝑡
∑𝜓𝐼𝐽
𝐼𝐽

 (14) 

 

Thus, these mass fluxes are determined at the end of the time step n. They are used in time step 

n+1 to predict the value of the velocity field (see Figure 5), as described in section 3 on the 

numerical method.  

In a non conservative implementation, the total mass fluxes are not calculated at the end of 

time step n. Only the mass fluxes evaluated in the mass balance equation are used to predict 

the velocity field at time step n+1 (see Figure 5 right). The volume fractions 𝛼𝑘
𝑛+1 at the 

beginning of time step n+1 are not consistent with the value of the mass fluxes, which induces 

large discrepancies on mass conservation. As a consequence, this is a major drawback of most of 

CFD tools using an interface sharpening equation. 
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4.2. Recompression threshold 

Two main phenomena are in competition when the interface sharpening equation is solved. The 

first one is mass conservation, which is ensured by the correction of the mass fluxes, described in 

the previous section. When the interface sharpening equation is implemented in a conservative 

way, the second important phenomenon is the addition of spurious velocities (besides the ones 

brought by the surface tension model) due to these mass fluxes, injected in the momentum 

balance equation, as illustrated in section 5.1.1. The objective of this part is then to find 

equilibrium between these opposite contributions and to reach a favourable effect on the 

simulations in terms of mass conservation and limitation of the spurious velocities. Thus, we 

propose to introduce a recompression threshold, which stops the resolution as soon as the final 

interface thickness is reached. As illustrated in Figure 2, up to a certain iteration number 

depending on the initial diffusion of the interface, the final thickness is reached. The extra 

iterations do not affect this thickness. This threshold allows limiting the quantity of mass fluxes 

added in the momentum balance equation for the prediction of the velocity field.  

The recompression threshold is based on the ratio between the variation of the volume occupied 

by the interface and its initial volume: 
𝛿𝑉𝑖𝑛𝑡

𝑉𝑖𝑛𝑡
< 𝛽

∆𝑥

∆𝑥𝑚𝑖𝑛
 . Thus, the criterion is evaluated at the 

interface, where 𝛼𝑙𝛼𝑔 > 0.02 and has the following expression: 

 ∑𝛿𝛼𝑘
𝐼 (1 − 2

𝑛𝑐𝑒𝑙

𝐼

𝛼𝑘
𝐼 )𝛺𝐼 < 𝛽

∆𝑥

∆𝑥𝑚𝑖𝑛
 ∑ 𝛼𝑙

𝐼

𝑛𝑐𝑒𝑙

𝐼

𝛼𝑔
𝐼𝛺𝐼 (15) 

 

With 𝛼𝑘 the volume fraction to which the interface sharpening is being applied and 𝛿𝛼𝑘
𝐼  the 

volume fraction variation after each iteration of the interface sharpening equation. Since the 

equation is solved for each continuous field k, the criterion is applied for each continuous field. 



16 
 

In this expression, the term on the right-hand side ∑ αl
Incel

I α𝑔
I Ω

I
 denotes the volume occupied by 

the interface before the resolution of the interface sharpening equation. The term on the left-hand 

side ∑ 𝛿𝛼𝑘
𝐼 (1 −𝑛𝑐𝑒𝑙

𝐼 𝛼𝑘
𝐼 )𝛺𝐼evaluates its variation after each iteration of the equation. The 

convergence is then obtained when the variation of the interface volume tends to zero, which 

corresponds to a coefficient 𝛽 equal to zero computer error. Nevertheless, the conservative 

implementation of the interface sharpening equation induces a modification of the velocity field 

(see section 3 on the numerical method). Thus, if the equation is iterated many times, non zero 

mass fluxes are constantly added and result in the definition of spurious velocities. Therefore, the 

threshold β has to be optimized to allow an efficient interface sharpening with limited spurious 

velocities. This work will be undertaken in section 5 with different test cases.  

Finally, we can notice that the term 
∆𝑥

∆𝑥𝑚𝑖𝑛
 in the criterion of Equation (15) is equal to 1 for 

structured grids. For unstructured meshes, this additional term allows the increase of the 

recompression threshold in larger cells so that the recompression is stopped earlier. Indeed, in 

these cells, the interfaces will be considered badly resolved and will require a limited 

recompression effort.  

 

4.3. Interface smearing criterion 

The identification of the state of interface diffusion plays also an important role with the 

conservative formulation of the interface sharpening equation. Indeed, as previously 

developed with the recompression threshold, the resolution of the equation has to be limited to 

avoid adding mass fluxes, which will induce spurious velocities. Therefore, another criterion 

has been implemented to apply the interface sharpening equation only when a large interface 

is spread.  
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An interface is considered diffused if its thickness is higher than the thickness obtained after 

solving the interface sharpening equation, which is fixed at 5 cells. Therefore, the criterion is 

based on the value of the volume fraction gradient over the interface. Two conditions are then 

required to activate the compression equation resolution. The first one is to locate a large 

interface spread over few cells, which means to have cells in which 𝛼𝑙𝛼𝑔 > 0.02. In the 

picture (a) of Figure 6, this condition is not satisfied since 𝛼𝑙𝛼𝑔 = 0 everywhere in the domain. 

Therefore, the interface sharpening equation will not be solved for this type of interfaces. 

If the first criterion is satisfied, then, in the cells containing the interface, the volume fraction 

gradient ∇𝛼𝑘
𝐼 . 𝒏, which is equal to ||∇α

k
I ||, is evaluated and compared to  

1

5∆𝑥
. Indeed, as we 

can see in Figure 6 (b), 
1

5∆𝑥
 corresponds to the volume fraction gradient over an interface with a 

thickness of 5 cells. Therefore, if an interface is diffused, then its thickness will be higher than 

5 cells (Figure 6 (c)). The volume fraction gradient will be smaller than 
1

5∆𝑥
.  

 

5. Simulation results 

In this section, we will illustrate the different steps presented in the previous section to 

implement the interface sharpening equation in the CFD tool. The first study will be devoted to 

the effect of a conservative implementation versus a non conservative one. For this purpose, a 

stationary bubble [Popinet 2009] and an oscillating air bubble [Caltagirone et al. 2011] will be 

simulated. Then, the recompression threshold will be examined with two other test cases: 

Bhaga’s rising bubbles [Bhaga and Weber 1981] and the Kelvin-Helmholtz instabilities [Thorpe 

1969]. Different values of the threshold 𝛽 will be tested with different mesh refinements and 

time steps. The stationary bubble will allow evaluating the spurious velocities induced by the 

method. With the oscillating bubble, the oscillation frequency and the iteration number of the 
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interface sharpening equation will be compared. Then, the Bhaga’s bubbles will be simulated to 

optimize the threshold value. Finally, a simulation of the Kelvin-Helmholtz instabilities, in the 

Thorpe’s experiment configuration [Thorpe 1969], will be performed to study the effect of the 

criterion on the interface smearing. A validation of the threshold value is also detailed with this 

test case. 

 

5.1. Simulation of a stationary bubble 

The simulation of a stationary air bubble in liquid water has been performed to quantify the 

spurious velocities induced by the resolution of the interface sharpening equation. In this test 

case, the two continuous fields forming the interface are a liquid and a gas. The interface is 

initialized at equilibrium. All the fluids are at rest. Thus, the fluid velocities are supposed to be 

equal to zero. The bubble motion and the interface deformation are only due to spurious 

velocities. This test case is then particularly rough since, in most industrial configurations, the 

spurious velocities do not have a predominant effect on the observed phenomena. Indeed, the 

velocity intensities are usually higher thanks to the fluid motion.  

The properties of the two fluids are given in Table 1. Surface tension coefficient is equal to 0.08 

N.m
-1

. The mesh is a square with 5 cm side length. The bubble is initialized with a round shape 

with a diameter of 2 cm.  

 

5.1.1. Effect of a non conservative implementation  

With the optimized threshold β, we can compare the benefit in terms of mass conservation of the 

conservative implementation compared to the addition of spurious velocities. For this 

comparison, the stationary bubble test case is simulated with a coarse mesh 64 x 64 cells. The 
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time step is equal to 0.1 ms. The mass balance error obtained by time step in the whole domain 

and the maximum value of the air velocity (see Equation (17)) after 1 s, representing the spurious 

velocity, are presented in Table 2 for the conservative and non conservative implementation of 

the interface sharpening equation. The spurious velocity intensity is increased by 13% when the 

interface sharpening equation is implemented in a conservative way. Therefore, the gain in mass 

error is larger than the increase of spurious velocity intensity induced by a conservative 

implementation. 

 

5.1.2. Optimization of the threshold value 𝜷  

Then, the spurious velocities are evaluated for four different threshold values β: 1. 10−4, 

5. 10−4, 1. 10−3 and 1. 10−2 and three different mesh refinements: 64 x 64 cells, 128 x 128 cells 

and 256 x 256 cells. The time step is equal to 0.1 ms, corresponding to a maximum CFL number 

of 0.9 for the more refined mesh. All the parameters studied in this test case (velocities and 

pressure) are evaluated at 1 s. Indeed, as shown in Figure 9, at 0.3 s, the bubble has already 

reached its equilibrium. 

The capillary number is defined for the evaluation of the spurious velocities: 

 𝐶𝑎 =
𝜇𝑙𝑈

𝜎
 (16) 

 

For the analysis of the spurious velocities, two definitions of 𝑈 are considered. The first ones 

refers to a single-fluid approach definition of the spurious velocities. The velocity is considered 

in the air phase. It is evaluated where the phase is present, that is to say for αg > 1. 10
−3. The 

average velocity and the maximum value are defined as followed:  
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 |𝑈| =
∑ αgρg𝑢gαg>1.10

−3

∑ αgρgαg>1.10
−3

  and 𝑈𝑚𝑎𝑥 = max
αg>1.10−3

(𝑢g) (17) 

 

The second definition of 𝑈 is based on the velocity of the air phase evaluated only within the 

interface thickness. This analysis is more suitable to the two-fluid model since the spurious 

velocities are only considered where the interfacial source terms, such as the drag force model, 

are applied. The following expressions are used to calculate the average and maximum value of 

𝑈: 

 |𝑈| =
∑ αgρg𝑢gαlαg>0.1

∑ αgρgαlαg>0.1
  and 𝑈𝑚𝑎𝑥 = max

αlαg>0.1
(𝑢g) (18) 

 

In Figure 7 (solid lines), the results are given by considering u = ug (Equation (17)) for the 

definition of the spurious velocities, as done with single-fluid models in [Popinet 2009]. The X 

axis of the two graphs corresponds to the dimensionless quantity obtained by dividing the bubble 

diameter by the cell length. First, we see that, for coarse grid, the decrease of the threshold value 

does not ensure an accurate prediction of the velocity field. Thus, only an optimization of this 

parameter can improve the quality of the results by limiting the spurious velocities. Indeed, on 

the one hand, if the iteration number is low, the interface will require more compression at each 

time step and so induced more spurious velocities related to the sharpening step. This first 

situation concerns the threshold values 𝛽 = 1. 10−2 for all the meshes (see Table 6) and explains 

the absence of convergence. On the other hand, if the number of iterations is high, non-zero mass 

fluxes continue to be added whereas the interface is enough sharpened. Once again, spurious 

velocities are created.  This last situation explains the higher capillary number observed for the 

coarser mesh with 𝛽 = 1. 10−4 (see Table 6).  
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In Figure 7 (dashed lines), the second point of view to evaluate the spurious velocities is 

proposed. We see that the same behaviour is observed when the mesh is refined or the threshold 

value is changed. The average and maximum values have the same order of magnitude at the 

interface and in the whole domain.  

Finally, in Figure 8, a comparison of our results (solid lines in Figure  7 left) with other interface 

tracking methods is proposed. Thus, except with the VOF-PLIC method [Li 1995], the spurious 

velocities decrease with the mesh refinement. Moreover, for a given mesh refinement, the 

intensity of these velocities remains higher with the second gradient theory proposed by Jamet et 

al. [2000] than with the front-tracking method of Popinet and Zaleski [1999] and our method.  

In Figure 9, we study the evolution of the spurious velocities over time [Jamet et al. 2002]. The 

simulations are performed with the intermediate mesh (128 x 128 cells). With 𝛽 = 1. 10−3, 

𝛽 = 5. 10−4 and 𝛽 = 1. 10−4, the capillary number oscillates slightly until 0.25 s before 

stabilizing. 

The same observation can be done with 𝛽 = 1. 10−2 but the variation range is higher. Indeed, 

since the interface sharpening equation is solved only once at each time step (see Table 6), the 

compression mass fluxes are larger and so induced more spurious velocities. Therefore, for 

𝛽 ≤ 1. 10−3, the same behavior is observed since the compression is enough efficient at each 

time step. 

Finally, for all the simulations, we study the error made in the prediction of the Laplace equation, 

given by: 

 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 = 
𝜎

𝑅𝑛
 (19) 
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Where 𝑃𝑖𝑛 is the pressure in the bubble and 𝑃𝑜𝑢𝑡 out of the bubble, σ corresponds to the surface 

tension coefficient and Rn to the predicted final bubble radius.  

To calculate 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡, the following expressions are used: 

 𝑃𝑖𝑛 =
∑ 𝛼𝑔

𝐼𝑃𝛺𝐼𝑛𝑐𝑒𝑙
𝐼

∑ 𝛼𝑔𝐼
𝑛𝑐𝑒𝑙
𝐼 𝛺𝐼

  and 𝑃𝑜𝑢𝑡 =
∑ 𝛼𝑙

𝐼𝑃𝛺𝐼𝑛𝑐𝑒𝑙
𝐼

∑ 𝛼𝑙
𝐼𝑛𝑐𝑒𝑙

𝐼 𝛺𝐼
 (20) 

 

Rn, the final bubble radius, has the following expression: 

 

With Sn the estimated bubble area: 

 𝑆𝑛  =  ∑ 𝛼𝑔
𝐼∆𝑥2

𝑛𝑐𝑒𝑙

𝐼

 (22) 

 

The results are displayed in Figure 10. Convergence is obtained whatever the threshold value. 

Contrary to the velocity field, the results are very close for the four threshold values and do not 

allow finding the best choice. To evaluate the order of convergence 𝜉 of the pressure, we apply 

the following expression [Roache 1998], based on Richardson’s extrapolation: 

 ξ =  

ln (
∆P𝑚3

− ∆P𝑚2

∆P𝑚2
− ∆P𝑚1

)

ln (
1
2)

 (23) 

with m1, m2 and m3three mesh refinements, such as: 

 𝑅𝑛  =  √
𝑆𝑛
𝜋

 (21) 
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 ∆xm3
 =  

∆xm2

2
=
∆xm1

4
 (24) 

Therefore, with 𝛽 = 1. 10−2, the order of convergence is equal to 1.6, with 𝛽 = 1. 10−3 to 1.4, 

with 𝛽 = 5. 10−4and 𝛽 = 1. 10−4 to 0.9. 

 To conclude, these two illustrations show that the threshold value must be carefully chosen to 

allow an efficient interface sharpening without adding too many spurious velocities. The mesh 

refinement study highlights that an appropriate value can be chosen between 1. 10−3 and 

5. 10−4. 

 

5.2. Simulation of an oscillating bubble 

5.2.1. Effect of a non conservative implementation  

To highlight the effect of the conservative implementation on mass conservation and physical 

results, an oscillating air bubble in a still liquid has been simulated without gravity (see Table 3 

for the fluid properties) [Caltagirone et al. 2011]. Once again, we simulate an interface between a 

continuous liquid field and a continuous gas field. Surface tension coefficient is equal to 1.5 N.m
-

1
. The mesh is a square with 5 cm side length. The bubble is initialized with an ellipsoidal shape 

with a semi-minor axis equal to 0.95 cm and a semi-major axis of 1.05 cm. 

The interfacial position of the bubble is given in polar coordinates by Lamb [1932]: 

 𝑟(𝜃, 𝑡) = 𝑅0 (1 + 𝜖̃ cos(2𝜃) cos(𝜔𝑑𝑡) exp (−
𝑡

𝜏𝑑
)) (25) 
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With 𝑅0 the final bubble radius equal to 1 cm, 𝜖̃ the initial perturbation of the bubble equal here 

to 0.05, 𝜃 the angular coordinate, 𝜔𝑑 the oscillation frequency and 𝜏𝑑 the characteristic time of 

decay due to viscous damping: 

 𝜔𝑑
2 =

6𝜎

𝑅0
3(𝜌𝑙 + 𝜌𝑔)

 and 𝜏𝑑 =
𝑅0

2(𝜌𝑙 + 𝜌𝑔)

4(𝜇𝑙 + 3𝜇𝑔)
 (26) 

 

With the fluid properties given in Table 3, the expected bubble frequency is equal to 5.71 s
-1

 and 

the characteristic time of decay to 4.37 s. 

The oscillating bubble is simulated with two different meshes: 128 x 128 cells and 256 x 256 

cells with a conservative implementation of the interface sharpening equation and a non 

conservative one. For the two simulations, the optimized value of the recompression threshold 𝛽 

determined in section 5.2.2 is taken. The time steps are constant and given in Table 4. Smaller 

values are used for the non conservative approach to ensure that the Courant–Friedrichs–Lewy 

(CFL) number is kept under 0.9. The evolution of the major axis of the bubble is displayed in 

Figure 11. We observe irregularities on the curves corresponding to the non conservative 

implementation. They are due to spurious oscillations of the bubble in diagonal directions. 

Moreover, the decay of the oscillation amplitude is quicker with the non conservative 

implementation. More quantitatively, in Table 5, we compare the oscillation frequency and the 

characteristic time of decay for the two grids, the two implementation of the interface sharpening 

equation and with the results of Caltagirone et al. [2011]. These two parameters are 

underestimated by the non conservative approach.  

This comparison is made on a relatively simple test case without turbulence effects and phase 

change. Nevertheless, a non conservative implementation can have heavier consequences on 

more complicated cases. As an example, when dealing with interfaces with phase change, the 
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non conservative approach induces numerical instabilities while interface velocities are larger 

than the spurious velocities. Therefore, the conservative implementation is also of great 

importance for two-phase flows problems in complex industrial configurations since we are 

often dealing with boiling interfaces.  

 

Finally, concerning mass conservation, the mass balance error by time step in the whole domain 

is equal to 10
-11

 % with the non conservative approach and is reduced at 10
-17

 % with the 

conservative approach. 

To conclude, this study confirms that the non conservative implementation of the interface 

sharpening equation does not ensure mass conservation to almost computer error. Moreover, 

not considering the mass fluxes appearing in the recompression equation affects badly the 

simulations by decreasing the accuracy of the results. 

 

5.2.2. Optimization of the threshold value 𝜷  

In a second study, we propose to compare four different values of the recompression threshold β: 

1. 10−4, 5. 10−4, 1. 10−3 and 1. 10−2. Three different mesh refinements are used:  64 x 64 cells, 

128 x 128 cells and 256 x 256 cells. The time step is kept constant and is respectively equal to 

0.05 ms, 0.025 ms and 0.0125 ms.  

In Table 6, the iteration number is displayed for each mesh and threshold value. We observe first 

that the larger β is, the less the interface sharpening equation is iterated. This confirms that the 

criterion does its work to limit the equation resolution. Moreover, the iteration number decreases 

with the mesh refinement for a given threshold value. Indeed, the mesh refinement reduces the 

numerical diffusion and so the sharpening effort. Then, in Table 7, we compare the oscillation 
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frequency of the bubble. For β = 1. 10−4, the oscillation frequency is only given for the more 

refined mesh. Indeed, with the two other meshes, the bubble moves in the domain instead of 

oscillating regularly as expected. This phenomenon is caused by the high number of iterations of 

the interface sharpening equation, which induces the accumulation of spurious recompression 

mass fluxes since the interface required less iterations to be enough sharpened. These mass 

fluxes are injected in the momentum balance equation used to predict the velocity and induce 

spurious velocities. The mesh refinement reduces this iteration number and so the spurious 

velocities, allowing the bubble oscillation. For β = 1. 10−2, we observe that the prediction of the 

oscillation frequency becomes more accurate with the mesh refinement. With β = 1. 10−3 and 

β = 5. 10−4, we also see this convergence. Nevertheless, for the intermediate and the refined 

mesh, the same frequency is obtained due to the accuracy of the method. For the coarser mesh, 

the oscillation frequency given here must be nuanced since we observe some spurious 

oscillations and displacements of the bubbles. The results obtained with these three values of  β 

are in good agreement with the theory. However, with β = 1. 10−2, the lack of interface 

recompression results in a numerical fragmentation of the bubble interface, as shown in 

Figure 12. To conclude, values β = 1. 10−3 and β = 5. 10−4 are two potential candidates to 

define an optimized recompression threshold. 

In a second study, we observe the effect of the time step choice for one mesh refinement (128 x 

128 cells) and one threshold value β = 1. 10−3. Three time steps are simulated: 0.025 ms, 

0.0125 ms and 0.01 ms. The results are given in Table 8. We see a good convergence of the 

oscillation frequency when the time step decreases. Moreover, with a time step equal to 0.0125 

ms, the interface sharpening equation is iterated only once like in the previous study with the 

same mesh but  β = 1. 10−2 and a time step of 0.025 ms. Nevertheless, in this particular case, 

the prediction of the oscillation frequency is more accurate. Indeed, since the time step is 

reduced, the numerical diffusion at each time step is smaller. Thus, the interface needs less 
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recompression iterations to be sharpened. Therefore, the interface is more efficiently 

sharpened at each time step, which conducts to a more accurate prediction of the bubble 

motion. On the contrary, with the larger time step, the interface will be slightly thicker after 

one iteration of the interface sharpening equation. After a given duration of the simulation, 

this effect will be amplified, resulting in a less accurate interface location compared to a 

smaller time step. This effect can be seen in Figure 2. For a given iteration number (at the 

beginning of the recompression process), the final interface thickness is proportional to its 

initial width. Thus, the interfaces, which are initially more diffused, that is to say in our 

context which have been obtained with a larger time step, are less sharpened after a given 

iteration number (equal to one here) of the recompression equation. We can note that in 

Figure 2, this phenomenon is amplified since we are studying much thicker interfaces than in 

this test case. No differences are observed with 0.0125 ms and 0.01 ms due to the precision of 

the method used to determine the oscillation frequency. 

 

To conclude, this study highlights that an optimal value for β has to be chosen. Indeed, if β is 

too low, non negligible spurious velocities are introduced which affect the bubble oscillations. 

On the contrary, if β is too large the interface is not well sharpened. β = 1. 10−3 and β =

5. 10−4 are two potential candidates to obtain an optimized recompression threshold. Finally, 

we showed that for more refined grid or smaller time steps, interfaces required less sharpening 

since they are less diffused at each time step. 

 

5.3. Simulation of the Bhaga’s rising bubbles test case 
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To optimize the threshold value, an extra simulation is proposed with Bhaga’s rising bubbles 

test case [Bhaga and Weber 1981]. This test case contains also an interface between a liquid 

phase and a gas phase, which are the two continuous fields. 

In this test case, an air bubble is rising up in viscous water. For this simulation, the properties 

of the two fluids are:  𝜌𝑙 =  1350 kg.m
−3,  𝜌𝑔 =  1.35 kg.m

−3 and  𝜇𝑔 = 1.8. 10
−5 Pa. s. 

Surface tension is equal to 0.0785 N.m
-1

. Two cases have been tested with two different 

Reynolds numbers and liquid viscosities (see Table 9).  

An hydrostatic pressure is imposed in the column: 

 P =  𝑃𝑜 + 𝜌𝑙𝑔(𝑧𝑚𝑎𝑥 − 𝑧) (27) 

With 𝑃𝑜 the atmospheric pressure. 

In the Bhaga's experiment, the bubble had an initial volume of 9.3 cm
3
. Therefore, in the 

assumption of spherical bubbles, the bubble radius is initialized at 1.3 cm in our simulations. 

Moreover, the bubble is initially located at 3.9 cm from the top of the mesh, which 

corresponds to three radii.  

The dimensions of the computational domain are chosen large enough (four times the bubble 

diameter) to avoid wall effects on the bubble and high enough (12 times the bubble diameter) 

to reach the limit velocity [Hua and Lou 2007]. Therefore, to limit CPU consumption, a 2D 

axisymmetric mesh, whose definition sketch is given in Figure 13, is used. The mesh contains 

179 x 540 cells. Thus, the initial bubble radius is around equal to 23 cells. The mesh length 

depends on the case: L = 10.38 cm for case b and L = 10.33 cm for case d. Indeed, the 

symmetric axis is difficult to compute since the mesh dimension in the y direction is very 

small in this zone. Thus, the deformation of the bubble is not well predicted in this region 

especially in case d since the liquid viscosity is smaller, which induces more bubble 
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deformations. A mesh truncation is adopted, equal to 0.2 mm for case b and 0.7 mm for case 

d. The time step is kept constant, equal to 1.10
-5

 s for case b and 1.10
-4

 s for case d to have a 

maximum CFL number equal to 0.9. Because the mesh is less truncated for case b, the mesh 

dimensions are smaller close to the symmetry axis and the time step has to be smaller.   

For the first study, case d is simulated with three different threshold values: 5. 10−3, 1. 10−3 

and 5. 10−4. Indeed, Denèfle et al. [2015] showed that this case was more challenging in terms 

of bubble shape prediction. 

To analyze the results, the final shape of the bubble (at 0.6 s) and its average velocity are 

compared to Bhaga's experimental data. To evaluate the average bubble velocity u, the 

following expression is used:  

 u =  
∑ 𝛼𝑔

𝐼𝑛𝑐𝑒𝑙
𝐼 𝑢𝑔

𝐼𝛺𝐼

∑ 𝛼𝑔𝐼
𝑛𝑐𝑒𝑙
𝐼 𝛺𝐼

 (28) 

 

The simulated bubbles are superimposed to the experimental results [Bhaga and Weber 1981] 

in Figure 14. The first threshold value 5. 10−3 (Figure 14 (a)) induces a non physical elongation 

of each bubble side due to the lack of compression at each time step. The second threshold value 

1. 10−3 corrects this effect. Nevertheless, the bubble extremities remain not enough sharpened 

and detached twice (see Figure 14 (b)). Thus, at 0.6 s, the final bubble volume is smaller than 

expected. Moreover, these detachments slow down the bubble, which has a final velocity equal 

to 28.3 cm.s
-1

 compared to the experimental value (deducted from the Reynolds number) of 29 

cm.s
-1

. Therefore, the threshold value is one more time decreased at 5. 10−4 (Figure 14 (c)). We 

see that the prediction is in reasonable agreement with the experimental data. Moreover, the 

simulated final velocity is equal to 28.9 cm.s
-1

, which corresponds to a relative error of 0.3 %.  
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Case b is also simulated with β = 5. 10−4. The bubble shape is shown in Figure 15. The 

simulation results agree well with the Bhaga's experimental data. Furthermore, the final 

velocity is found equal to 24.5 cm.s
-1

, corresponding to a relative error of 19.5% 

(experimental final velocity 20.5 cm.s
-1

). 

In terms of recompression efficiency, we see in Figure 2 that whatever the mesh refinement and 

the initial interface diffusion, the final thickness is reached by fixing the recompression threshold 

at 5. 10−4. Thus, for the following simulations, the threshold value is fixed at 5. 10−4. 

Finally, we can note that, with the conservative implementation of the interface sharpening 

equation, the mass balance error by time step in the whole domain is equal to 10
-16

 %. 

 

5.4. Simulation of Thorpe's experiment 

5.4.1. Effect of the interface smearing criterion  

The Kelvin-Helmholtz instabilities in Thorpe's experimental configuration [Thorpe 1969] are 

a good example of an interface with limited diffusion. Indeed, in this test case, two 

immiscible fluids are contained in a rectangular box, which is tilted for a small angle, sin(γ) = 

0.072, as displayed in Figure 16. The velocities of each fluid vary in opposite directions.  

These velocities conduct to the existence of a shear stress at the interface, which prevents it 

against diffusion. Moreover, this simulation illustrates another type of interfaces between two 

continuous liquid fields. 

The theory of the Kelvin-Helmholtz instabilities is based on the inviscid fluid flow theory 

with: 
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 𝜌 = {
𝜌2   for 0 < 𝑧 < ℎ
 𝜌1   𝑓𝑜𝑟 ℎ < 𝑧 < 𝐻

 (29) 

 

With h = h1 = h2 = 
H

2
= 1.5 𝑐𝑚.   

 

The steady velocity distribution along the rectangular tube is:                                        

 𝑢 = {
−
∆𝑢

2
  𝑓𝑜𝑟 0 < 𝑧 < ℎ

 
∆𝑢

2
     𝑓𝑜𝑟 ℎ < 𝑧 < 𝐻

 (30) 

 

This parallel flow is assumed to be a solution of Euler equations upon which is superposed a 

small perturbation proportional to exp(i(kx + ωt)) with k a wavenumber and ω a pulsation. 

The linearization of the Euler equations gives the following dispersion relation: 

 𝜔 = 𝑘
∆𝑢(𝜌2 − 𝜌1)

2(𝜌1 + 𝜌2)
± √

𝜎𝑘3 + 𝑔𝑘(𝜌2 − 𝜌1)

(𝜌1 + 𝜌2)
th(𝑘ℎ) −

𝑘2∆𝑢2𝜌1𝜌2
(𝜌1 + 𝜌2)2

  (31) 

 

The system becomes unstable when the relative velocity between the two fluids exceeds a 

critical velocity, given by the following equation [Thorpe 1969]: 

 ∆𝑢2 >
(𝜌1 + 𝜌2)

𝜌1𝜌2
(𝜎𝑘 +

𝑔(𝜌2 − 𝜌1)

𝑘
) th(𝑘ℎ) (32) 

 

With σ = 0.04 N.m
-1

 the surface tension coefficient and 𝑘𝑐 the critical wavenumber: 
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 𝑘𝑐 = √
𝑔(𝜌2 − 𝜌1)

𝜎
 (33) 

 

 

 

Moreover, the analytical velocity distribution in the whole domain at the beginning of the 

simulation, when the linear regime can be assumed, is: 

    

{
 
 

 
 𝑢2 = −

(𝜌2 − 𝜌1)ℎ1𝑔sin(𝛾)

(𝜌1ℎ2 + 𝜌2ℎ1)
𝑡    𝑓𝑜𝑟 0 < 𝑧 < ℎ

𝑢1 =
(𝜌2 − 𝜌1)ℎ2𝑔sin(𝛾)

(𝜌1ℎ2 + 𝜌2ℎ1)
𝑡    𝑓𝑜𝑟 ℎ < 𝑧 < 𝐻

 (34) 

                         

The properties of the two fluids are:  𝜌1 =  780 kg.m−3,  𝜇1 = 1.5. 10
−3 Pa. s, 𝜌2 =

 1000 kg.m−3 and  𝜇1 = 1. 10−3 Pa. s. The dimensions of the computational domain are H = 

3 cm and L = 1.83 m (see Figure 16). The mesh contains 80 x 4880 cells. The simulation is 

performed with a constant time step equal to 0.5 ms, which ensures that the CFL number stays 

under 0.9.  

Two simulations are considered: one with a criterion on the interface smearing, which limits 

the recompression of diffused interfaces and another without this criterion. The evolution of 

the interface shape for the two cases is displayed in Figure 17. No differences are observed 

between the two pictures. The interface deformation is similar with and without the criterion. 

The interface profile at 3 s is then extracted to determine the critical wavenumber (see Figure 

18). Therefore, the critical wavenumber obtained without the criterion is equal to 202 m
−1

 and 
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to 219 m
−1

 with the criterion. These results are both in good agreement with the experimental, 

theoretical and simulated data (see Table 10).  

The time of the instability onset tonset is also compared. For this purpose, the standard 

deviation of the interface is evaluated every 0.2 s between 1 s and 3.4 s. The results are shown 

in Figure 19. In the two simulations, the time of the instability onset is equal to 2.1 s. 

Then, Figure 20 presents the maximum value of the average interface velocity U over time 

defined as followed: 

 U =  
𝛼1𝜌1𝑢1 + 𝛼2𝜌2𝑢2
𝛼1𝜌1 + 𝛼2𝜌2

 (35) 

This velocity refers to a weighted average of the fluid velocities at the interface. The results 

are compared with Equation (34), which is valid at short times, where the linear 

approximation can be applied. Therefore, we see that the two simulations predict well the 

evolution of this velocity. 

Finally, the wave speed uwaves is compared by calculating the crest-to-crest distance at 

different positions in the tank. Figure 21 gives an example of the waves used for this 

calculation. We find uwaves = 1.6 cm.s
-1

 without the criterion and uwaves = 3.1 cm.s
-1

 with the 

criterion. In comparison with the experimental, theoretical and simulated data displayed in 

Table 10, the simulation without the criterion does not well predict this parameter. 

 

Thus, we see that the criterion controlling the activation of the interface sharpening equation 

does not change dramatically the simulations. However, it can affect some specific parameters 

such as the surface wave speed. Therefore, to simulate accurately such flows, the activation of 

the recompression equation is restricted to diffused interfaces. 
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5.4.2. Validation of the threshold value 𝛃  

With the Bhaga’s rising bubble test case, we showed that 𝛽 = 5. 10−4 gave the best results in 

terms of final bubble velocity and bubble shape. However, the results obtained with 𝛽 = 1. 10−3 

were also quite close to the experimental data. Therefore, to validate the choice of 𝛽 = 5. 10−4, 

we compare the two values with the Thorpe’s experiment test case. This new comparison allows 

a validation on a different flow type since the Thorpe’s experiment is an interfacial liquid/liquid 

test case. The critical wavenumber, the time of the instability onset and the wave velocity are 

extracted from the interface motion, as detailed previously. The results are displayed in Table 10. 

The time of the instability onset and the critical wavenumber are close for the two threshold 

values. Nevertheless, the simulation with 𝛽 = 1. 10−3 predicts a smaller wave speed. The 

threshold value 𝛽 = 5. 10−4 seems appropriate for the simulation of different flow types.  

Finally, we can note the effect of the conservative implementation of the sharpening equation. 

Indeed, the mass balance error by time step in the whole domain decreases by 10
-10

 % with a 

non conservative implementation to 10
-17

 %. 

 

6. Conclusion 

The development of a multifield approach requires the ability to locate accurately large 

interfaces for multiscale multiphase flows. Nevertheless, the two-fluid model, implemented in 

the CFD tool NEPTUNE_CFD, induced in its initial version a smearing of these interfaces. 

Therefore, the implementation of an interface sharpening equation combined with an 

appropriate drag force model were necessary to ensure an accurate simulation. Thus, in this 

paper, different combinations and parameters of the interface sharpening equation have been 
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compared with four adiabatic laminar test cases. A summary of the simulations is displayed in 

Table 11. This study highlighted first the importance of a conservative implementation to 

ensure mass conservation. As an example, the simulations of the Thorpe’s experiment with a 

non conservative formulation produced a mass balance error by time step in the whole domain 

equal to 10
-10

 %. This error was reduced to 10
-17

 % with a conservative implementation. 

Nevertheless, it has been shown that the conservative implementation had an impact on the 

evaluation of the velocity fields through the addition of compression mass fluxes. Therefore, 

the resolution of the interface sharpening equation had to be limited to avoid creating spurious 

velocities by adding extra mass fluxes while, at the same time, ensuring a sufficient interface 

sharpening. For this purpose, two criteria have been developed. The first one concerns the 

equation convergence and is based on the volume variation of the interface induced by the 

compression. An analysis of the spurious velocities with a stationary bubble test case 

followed by a validation with Bhaga’s rising bubble (a large bubble simulation) and Thorpe’s 

experiment (an interfacial liquid/liquid test case) allowed optimizing the value of the threshold 

𝛽 used to stop the resolution of the interface sharpening equation. This value was fixed at 

5. 10−4. The second criterion evaluates the state of the interface smearing thanks to the 

volume fraction gradient and has been validated with the simulation of the Thorpe’s 

experiment.  

Thus, these recent developments are a first step in the simulations of multiphase flows. 

Further studies should be performed on the one hand to apply this numerical modeling to 

large interfaces with heat and mass transfer like sucking or Stefan problems [Welch and 

Wilson 2000 and Fleau 2017]. For these applications, an energy equation is solved in addition 

to the mass balance, momentum and interface sharpening equations. On the other hand, 

specific developments are under investigation concerning interface and turbulence 

interactions. This work aims at simulating complex flows with a full system perspective, for 
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example a steam generator, by dealing precisely with all the coupling terms between the 

different representations of the two-phase flow in a Large Eddy Simulation (LES) framework 

[Sagaut and Germano 2005, Denèfle et al. 2015 and Fleau 2017].  
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Figure 1.  Sensitivity of the interface sharpening method, left: two interfaces with two 

different initial thicknesses, right: final thickness of the two interfaces after resolution of 

the interface sharpening equation. 
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Figure 2.  Effect of the interface sharpening equation on interfaces with different initial 

diffusions and with different mesh refinements, the right axis refers to the quantity β, 

which represents the ratio between the volume variation of the interface after each 

iteration of the interface sharpening equation and the initial interface volume, the 

interface thickness in the left axis is given in cell numbers, iter refers to the iterations of 

the diffusion equation, the higher iter, the more diffused the interface. 

 

 

 

Figure 3.  Isolines of the air volume fractions at 0.1, 0.5 and 0.9 obtained on an 

unstructured grid with 39734 cells (red) and two structured grid with respectively 181 x 

181 cells (blue) and 256 x 256 cells (green). 
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Figure 4.  Schematic view of the numerical scheme of the CFD tool without the interface 

sharpening equation, * denotes the intermediate values.  

 

 

Figure 5.  Schematic view of the numerical scheme of the CFD tool, left: conservative 

implementation of the interface sharpening equation, right: non conservative 

implementation, * denotes the intermediate values. 
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Table 1 

Properties of liquid water and air for the stationary bubble test case 

 

 

 

Table 2 

Effect of the conservative and non conservative implementation of the interface sharpening 

equation on the mass balance error obtained by time step in the whole domain and the intensity 

of the spurious velocities after 1s for the stationary bubble test case 

 

 

 

 

Field 𝜌 (kg.m
-3

) 𝜇 (Pa.s) 

Water 1000 1.10−3 
Air 1.29 1.10−5 

Implementation Mass balance error max(ug) (m.s
-1

) 

Conservative 10
-17

 % 0.17 
Non conservative 10

-10
 % 0.14 

     

                       (a)                                             (b)                                            (c)             

Figure 6.  Schematic view of different state of interface smearing, the color scale represents 

the volume fraction of field 1, red corresponds to α1 = 0 and dark blue to α1 = 1, (a) sharp 

interface, not spread over few cells, (b) interface with a 5 cells thickness, (c) diffused 

interface with a 10 cells thickness, the purple arrow displays the volume fraction gradient 

over the interface. 
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Figure 7.  Capillary number according to the mesh refinement and the threshold value β, 

left: average velocity, right: maximum velocity, the solid lines correspond to the velocities 

evaluated according to Equation (17) and the dashed lines to Equation (18). 

 

 

Figure 8.  Capillary number according to the mesh refinement obtained with three different 

methods: the second gradient theory proposed by Jamet et al. [2000], the front tracking 

method of Popinet and Zaleski [1999], which includes a correction of the pressure gradient 

and the VOF-PLIC method [Li 1995]. 
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Figure 9.  Capillary number over time according to the threshold value β, mesh with 128 x 

128 cells, left: average velocity, right: maximum velocity, the velocities are evaluated in 

the whole domain u = ug. 

 

 

 

Figure 10.  Relative error for the pressure according to the mesh refinement and the 

threshold value β obtained with the simulation of a stationary bubble. 
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Table 3 

Properties of liquid and air for the test case of the oscillating bubble 

 

 

 

Table 4 

Time steps according to the mesh refinement and the implementation of the interface 

sharpening equation for the oscillating bubble test case 

  

Field 𝜌 (kg.m
-3

) 𝜇 (Pa.s) 

Liquid 7000 4.10−2 
Air 1.17683 1.85.10−5 

Implementation of the interface 

sharpening equation 
128 x 128 cells 256 x 256 cells 

Conservative  5. 10−4 s 2.5. 10−4 s 

Non conservative 5. 10−5 s 2.5. 10−5 s 

     

 

Figure 11.  Evolution of the major axis a of the oscillating bubble normalized by the final 

bubble diameter 𝐷0 over time for two mesh refinements and the conservative and non 

conservative implementation of the interface sharpening equation. 
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Table 5 

Frequency 𝜔0 and characteristic time of decay 𝜏0 of the bubble oscillations according to the 

mesh refinement and the conservative implementation for an initial deformation rate of 0.05, 

the corresponding relative errors are given in brackets and the results of Caltagirone et al. 

[2011] in square brackets 

 

 

 

Table 6 

Iteration number of the interface sharpening equation according to the mesh refinement and 

the choice of the threshold value β  

 

 

 

 

 

Mesh 

refinement 
128 x 128 cells 256 x 256 cells 

Implementation Conservative 
Non 

conservative 
Conservative 

Non 

conservative 

𝜔0 (s
-1

) 
5.56 (2.6%)  

[4.95] 
5.56 (2.6%)  

5.68 (0.5%) 

[4.99] 
5.56 (2.6%)   

𝜏0 (s) 0.56 (87%) 0.17 (96%) 1.82 (58%) 0.31 (93%) 

Mesh refinement β = 1. 10−4 β = 5. 10−4 β = 1. 10−3 β = 1. 10−2 

64 x 64 cells 25 4 2 1 

128 x 128 cells 10 3 2 1 

256 x 256 cells 7 2 1 1 
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Table 7 

Bubble oscillation frequency according to the mesh refinement and the choice of the threshold 

value β, the relative errors are given in brackets 

 

 

 

 

 

Table 8 

Iteration number and bubble oscillation frequency according to the time step, β = 1. 10−3, the 

relative errors are given in brackets, mesh with the 128 x 128 cells 

Mesh refinement β = 1. 10−4 β = 5. 10−4 β = 1. 10−3 β = 1. 10−2 

64 x 64 cells - 5.1 s
-1

 (11%) 5.1 s
-1

 (11%) 5.2 s
-1

 (8.8%) 

128 x 128 cells - 5.6 s
-1

 (1.8%) 5.6 s
-1

 (1.8%) 5.5 s
-1

 (3.5%) 

256 x 256 cells 5.6 s
-1

 (1.8%) 5.6 s
-1

 (1.8%) 5.6 s
-1

 (1.8%) 5.6 s
-1

 (1.8%) 

Time step Iteration number Oscillation frequency 

0.025 ms 2 5.6 s
-1

 (1.8%) 

0.0125 ms 1 5.7 s
-1

 (0.2%) 

0.01 ms 1 5.7 s-1
 (0.2%) 

            

 

Figure 12.  Oscillating air bubble in liquid at t = 0.01 s, mesh with 256 x 256 cells, left: 

β = 1. 10−3, right: β = 1. 10−2. 
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Table 9 

Properties of the two cases simulated in the Bhaga’s rising bubbles test case 

 

 

  

Simulation case 𝑅𝑒 𝜇𝑙 (Pa.s) 

Case b 3.57 2.02 

Case d 13.3 0.77 

 

 

Figure 13.  Schematic view of the mesh used for the simulation of the Bhaga’s bubbles 

[Bhaga and Weber 1981], L = 10.38 cm for case b and L = 10.33 cm for case d. 

 

                             (a)                          (b)                          (c) 

Figure 14.  Comparison of the simulated bubble shape in case d with the Bhaga’s 

experimental observations [Bhaga and Weber 1981], (a) β = 5. 10−3, (b) β = 1. 10−3 and 

(c) β = 5. 10−4, the middle part of the domain is shown to highlight the creation of four 

small bubbles caused by the fragmentation of the large bubble for β = 1. 10−3. 
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Figure 15.  Comparison of the simulated bubble shape with the Bhaga’s experimental 

observations [Bhaga and Weber 1981], case b, β = 5. 10−4. 

 

 

 

Figure 16.  Schematic view of the Thorpe’s experiment at initial conditions [Thorpe 1969]. 

 

 

Figure 17.  Influence of the interface smearing criterion in terms of interface shape, left: no 

interface smearing criterion, right: with the interface smearing criterion, mesh with 80 x 

4880 cells, constant time step equal to 0.5 ms, only the middle 0.6 meters long section of the 

channel is shown. 
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Figure 18.  Physical location of the interface at 3 s, left: no interface smearing criterion, 

right: with the interface smearing criterion, only the middle 0.6 meters long section of the 

channel is shown, this representation is used to evaluate the wavenumber. 

 

  

 

Figure 19.  Amplitude growth obtained by evaluating the standard deviation of the 

interface over time, only the middle 0.6 meters long section of the channel is used for this 

analysis, the dashed line corresponds to the asymptotic amplitude growth used to 

determine the time of the instability onset. 
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Figure 20.  Average interface velocity U normalized by the critical velocity over 

time with and without the interface smearing criterion, U is defined in Equation (35), 

the theory is given by Equation (34), the three curves are superimposed. 

 

 

Figure 21.  Physical location of the interface at different times for the evaluation of the 

wave speed, left: no interface smearing criterion, right: with the interface smearing 

criterion. 
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Table 10 

Comparison of the critical wavenumber kc, the time of the instability onset tonset and the wave 

speed uwaves for the Kelvin-Helmholtz instabilities in the Thorpe’s experiment configuration 

obtained in our simulations and in the simulations of Bartosiewicz et al. [2008] and Štrubelj 

[2009] according to the experimental and theoretical data 

 

 

 

 

  

Results 

kc (m
-1

) tonset  (s) uwaves  (cm.s
-1

 ) Threshold 

value 

With/without the interface 

smearing criterion 

β = 5. 10−4 No criterion 202 2.1 1.6 

β = 5. 10−4 With a criterion 219 2.1 3.1 

β = 1. 10−3 With a criterion 200 2.1 1.9 

Theory 232 1.5 – 1.7 2.38 

Experiments [Thorpe 1969] 197 ± 58 
1.88 ± 

0.07 
2.6 

Bartosiewicz et al. [2008] 143 1.9 2.5 

Štrubelj [2009] 157 2.0 3.0 
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Table 11 

Summary of the test cases and parameters simulated in this article, the crosses symbolize that 

no reasonable results were obtained whereas the ticks correspond to an accurate simulation of 

the cases, the blue crosses and blue ticks refer to simulations, which have not be shown in this 

article 

 

 

 

Implementation 
Threshold 

value 

Activation of 

the interface 

smearing 

criterion 

Test cases 

Oscillating 

bubble 

Stationary 

bubble 

Bhaga’s 

bubble 

Thorpe’s 

experiment 

Non 

conservative 
β = 5. 10−4 Yes X    

Conservative 

𝛽 = 1. 10−2 

Yes 

X X   

𝛽 = 5. 10−3   X  

β = 1. 10−3 Yes     X X 

𝛽 = 5. 10−4 

Yes         

No    X 

𝛽 = 1. 10−4 Yes X     


