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ABSTRACT. Safety issues in nuclear power plant involve complex turbulent bubbly flows. To predict the behavior of 

these flows, the two-fluid approach is often used. Nevertheless, this model has been developed for the simulation of small 

spherical bubbles, considered as a dispersed field. To deal with bubbles with a large range of sizes, a multifield approach 

based on this two-fluid model has been proposed. A special treatment, called the Large Bubble Model (LBMo), has been 

implemented and coupled to the dispersed model. However, only laminar and isothermal flows were considered in 

previous papers. Thus, here, Large Eddy Simulations (LES) are investigated to model turbulence effects. For this 

purpose, the two-fluid model equations are filtered to highlight the specific subgrid terms. Then, an a priori LES study 

using filtered Direct Numerical Simulation (DNS) results is detailed. This analysis allows classifying these terms according 

to their relative weight and then concentrating the modelling efforts on the predominant ones. Five different turbulence 

models are compared. These results are finally used to perform true LES on a turbulent two-phase flow. Moreover, in 

order to tackle non-isothermal flows occurring in industrial studies, a new heat transfer model is implemented and 

validated to deal with phase change at large interfaces using the Large Bubble Model. 

KEYWORDS. Two-phase flows, Multifield approach, Two-fluid model, Large interfaces, Large Eddy Simulation, Phase 

change. 

Introduction 

Turbulent non-isothermal flow studies with Computational Multi-Fluid Dynamics (CMFD) tools require 

the ability of dealing with not only inclusions of different sizes and shapes but also turbulence effects and 

phase change. To deal with the first issue, two approaches can be considered. Bubbly flows occurring in 

nuclear power plants or in conventional heat exchangers are often modelled with an Eulerian dispersed 

description within the two-fluid model of Ishii [1975]. In this model, the bubbles are small enough to be 

considered spherical. Thus, interfacial forces such as drag force, lift force, wall lubrication, virtual mass and 

turbulent dispersion force are implemented [e.g., Mimouni et al. 2011]. However, this approach is not 

suitable for the simulation of large and deformable bubbles. In the second type of approaches, inclusions are 

located using interface tracking methods such as Front-Tracking [e.g., Unverdi and Tryggvason 1992], 

Level-Set [e.g., Sussman et al. 1994] or Volume Of Fluid (VOF) [e.g., Hirt and Nichols 1981]. Nevertheless, 

to simulate flows containing inclusions of different sizes, the grid has to be refined according to the smallest 

interfacial scale. In industrial configurations, these methods are not sustainable in terms of Central Processing 

Unit (CPU) consumption. 

More recently, new categories of methods have been developed by combining the two previous 

approaches for the simulation of flows containing inclusions with a large range of sizes. In the first type of 
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approaches, the larger scales are simulated using interface tracking methods described above and the badly 

resolved structures are considered as dispersed particles followed by a Lagrangian method. This has been 

implemented by several research groups with the Level-Set method [e.g., Capecelatro et al. 2010 and 

Herrmann 2010] and with the VOF method [e.g., Tomar et al. 2010 and Ling et al. 2015]. A second type of 

approach, called the multifield approach, has been introduced a long time ago by Anderson and Jackson 

[1967] and Drew and Lahey [1979]. Contrary to the first method, the multifield approach is based on a two-

fluid model initially used to simulate complex flows containing a continuous phase and spherical inclusions 

modelled through a dispersed approach. It has been implemented by different research groups with a 

Lagrangian description of the small spherical inclusions [e.g., Zuzio et al. 2013] and with Eulerian methods 

[e.g., Vallet and Borghi 1999 and Lebas et al. 2009]. In this article, this second type of approach based on an 

Eulerian description of the smallest inclusions is used. The two-fluid model is then adapted for the 

simulations of large and deformable inclusions by considering a second continuous field in the balance 

equations. The large inclusions are considered as an interface between two continuous fields whereas the 

small spherical inclusions are treated as a dispersed field. Specific treatments are required to simulate these 

interfaces, which are referred as the Large Bubble Model (LBMo). This model has been extensively 

validated on laminar isothermal flows in previous papers [e.g., Denèfle et al. 2015 and Fleau et al. 2015]. The 

criteria to switch from the large interfaces treated with the LBMo to the dispersed field and the opposite are 

not given in this paper since we will focus on the large interfaces. Readers are invited to refer to Mimouni et 

al. [2017] for details. However, industrial studies require the ability of dealing with both turbulence and 

phase change effects. 

Thus, the second main issue in complex turbulent flows, considered in this paper, is the turbulence 

modelling in presence of interfaces. Within the multifield approach, large interfaces are described in a 

deterministic way through the volume fraction, updated in the mass balance equation. Therefore, to simulate 

turbulent flows, Large Eddy Simulation (LES) seems more suitable since it is also based on a deterministic 

description of the turbulence effects. The simulation of turbulent two-phase flows containing large interfaces 

has never been performed with two-fluid models. However, a lot of work have been done in single-fluid 

models to analyze the subgrid terms, quantify them and compare different turbulence models [e.g., 

Labourasse et al. 2007, Vincent et al. 2008 and Larocque et al. 2010]. Thus, in this article, it is proposed to 

follow the same methodology applied to single-fluid models to the two-fluid model with the LBMo.  

Finally, the third issue consists in the treatment of phase change at large interfaces using the Large Bubble 

Model. Different phase change models are available in the literature. The most widely used is the model 

proposed by Lee [1980], based on an empirical expression to quantify the interfacial heat and mass transfer 

term. Nevertheless, a coefficient has to be fixed to bring the temperature of the cells containing the interface 

close to the saturation temperature. A large range of values has been obtained in the literature from 0.1 s
−1

 

[e.g., Wu et al. 2007, Schepper et al. 2009 and Alizadehdakhel et al. 2010] to 100 s
−1

 [e.g., Yang et al. 2008 

and Fang et al. 2010]. It has also been shown that too large values could induce numerical instabilities with 

oscillations of the temperature around the saturation temperature. To avoid the issue of fixing an empirical 

coefficient, the development of a formulation based on theoretical considerations is necessary. Thus, to 

estimate the heat flux jump at the interface, the Fourier’s law is applied. This model and other similar 

approaches have been used by several research groups [e.g., Mao 2009, Nichita and Thome 2010, 

Kunkelmann et al. 2012, Ganapathy et al. 2013 and Sun et al. 2014] with VOF or Level-Set method. 

Nevertheless, all these models are applied to interfaces contained in one grid cell. In the framework of the 

multifield approach with the two-fluid model, the large interfaces are diffused over a few cells. The 

expression of the heat flux has to be adapted to interfaces with a non-zero thickness. Thus, the development, 

implementation and validation of a new heat transfer model based on the methodology proposed by Brackbill 

et al. [1992] for the surface tension force is detailed.  

After presenting the computational model, an a priori LES study will be performed to evaluate the order 

of magnitude of the subgrid terms appearing in the filtered two-fluid model equations and to compare 

different turbulence models usually applied to single-phase flows. For this purpose, the phase inversion 

benchmark [e.g., Vincent et al. 2016] will be simulated. Then, the more suitable turbulence model will be 
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assessed on a horizontal pipe of water and air. The objective of this test case is to highlight the ability of the 

code to predict flow regimes. This last point is crucial in nuclear power plants to improve the performance 

and the life span of pipes. Finally, non-isothermal flows will be considered. A new phase change model for 

large interfaces will be implemented and validated. 

Nomenclature 

Greek letters:  Subscripts and superscripts: 

   s Characteristic time scale   LES filter 

  - Convergence order  i, j Space directions 

    m Cube root of the cell volume  I Cell index 

  kg.m
-3

 Density  k Field index 

  kg.m
-1

.s
-1

 Dynamic viscosity    Vapor phase 

 ̂ m Filter width    Liquid phase 

   m
−1

 Interface curvature   Int Interface 

Γ kg.m
-3

.s
-1

 Interfacial mass transfer    

  - Relative error    

  W.m
-1

.K
-1

 Thermal conductivity    

  m
2
.s

-1
 Thermal diffusivity    

  N.m
-1

 Surface tension coefficient    

   m
3
 Volume of a cell    

   - Volume fraction    

 

Roman letters:  Acronyms: 

   J.m
-1

.K
-1

 Specific heat capacity  ADM Approximate Deconvolution Model 

    m Characteristic length scale  CSF Continuum Surface Force 

g m.s
-2

 Gravity acceleration 
 CMFD Computational Multi-Fluid 

Dynamics 

G - LES filter  CPU Central Processing Unit 

h - Heaviside function  DNS Direct Numerical Simulation 

H J.kg
-1

 Enthalpy  LBMo Large Bubble Model 

   - Identity matrix  LES Large Eddy Simulation 

L J.kg
-1

 Latent heat  VOF Volume Of Fluid 

n - Unit interface normal vector 
 

WALE 
Wall-Adapting Local Eddy-

Viscosity 

P Pa Pressure    

Q W.m
2
 Conductive thermal flux    

S s
-1

 Viscous stress tensor    

T K Temperature    

u m.s
-1

 Velocity    
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Computational model 

In this section, the two-fluid model is presented in the context of large and deformable interfaces. 

The balance equations are solved for each field. Thus, in the framework of the multifield approach, for 

a two-phase flow with water and steam inclusions of different sizes, three fields are considered: a 

continuous liquid field, a continuous gas field (contained in the large deformable steam inclusions) and 

a dispersed gas field (the small spherical steam inclusions). Then, the Large Bubble Model, 

implemented for the simulation of interfaces between two continuous fields, is detailed. 

Two-fluid model The code NEPTUNE_CFD is based on an Eulerian approach with a finite volume 

discretization. The flow motion is followed using the two-fluid model of Ishii [1975] extended to n-

phase. In this model, the density, the viscosity and the local velocity are defined for each field in each 

cell. The following governing equations are solved for each field k: 

 The mass balance equation: 

 

     
       

(  
       )     (1) 

 

With   
  the volume fraction of field k,    its density,      the i

th
 component of the velocity of field k and 

  the mass transfer term. 

 

 The momentum balance equation in each space direction i: 

 

 
     

            
(  

           )       
(  

      )     
    

  

                                                                               
            

(2) 

 

Where    denotes the viscosity of field k,   the viscous stress tensor,   the pressure,   the gravitational 

constant and      the specific source terms depending on the field (continuous or dispersed). 

 

 The energy balance equation: 

 

 

     
          

(  
         )

     
   

            
(  

            ) 

    
        

             
    

(3) 

 

With    the total enthalpy,          , the conductive thermal flux,    the thermal conductivity 

and    the temperature,   
   some other interfacial energy transfers. The energy balance equation is 

only solved when non-isothermal flows are considered, which will be only done in the last section. 

In the code NEPTUNE_CFD, the assumption of a common pressure for all fields is made. 

The simulations are performed on fixed grids with collocated variables. The data structure is totally 

face-based, which allows the use of arbitrary-shaped cells including non-conforming meshes [e.g., 

Guelfi et al. 2007]. The well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) 

solver is used in the CMFD tool [e.g., Patankar and Spalding 1972]. An iterative coupling of the 

equations is implemented to ensure mass and energy conservation. 

Large Bubble Model The Large Bubble Model [e.g., Denèfle et al. 2015 and Fleau et al. 2015] has 

been developed to simulate large interfaces with a two-fluid model. This model consists in three 

elements necessary for an accurate simulation of large and deformable inclusions. 

Surface tension. The surface tension model used in the code NEPTUNE_CFD for the simulation of 

the large interfaces corresponds to the volumetric formulation [e.g., Bartosiewicz et al. 2008, Denèfle 
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et al. 2015 and Fleau et al. 2015] of the Continuum Surface Force (CSF) model proposed by Brackbill 

et al. [1992]: 

         
      

   (4) 

                               

With   the surface tension coefficient,   the cell volume and κ the local curvature: 

        (
   

 

||   
 ||

) (5) 

This surface tension force appears in the momentum balance equation applied to continuous fields 

through the term     . 

Drag force. In the two-fluid model, the drag force is crucial. Contrary to the single-fluid approach, 

two different velocities are defined, one for each field. The role of the drag force law is to couple these 

two velocities at the interface. Thus, a new drag force expression has been developed to deal with large 

interfaces within the multifield approach [e.g., Fleau et al. 2015]:  
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The characteristic length scale    is equal to √
  

  

  
 

||   
 ||

 close to the large interfaces, for       
   

  

    , and to the diameter of the dispersed bubbles/droplets far from them, for   
   

      . Between 

these two regions, a linear extrapolation of these two values is defined.  

This drag force appears in the momentum balance equation applied to continuous fields through the 

term     . 

Interface sharpening. To control the interface thickness, the interface sharpening equation proposed 

by Olsson and Kreiss [2005] and adapted to the two-fluid formulation is solved for each continuous 

field [Fleau et al. 2016]: 

     
       

      
          

  (7) 

With   
   

 

||   
 ||

 the interface normal vector. The values of the parameters    
  

  
 and   

  

 
 (   

denotes the cell size) are chosen to obtain a final interface thickness always equal to 5 cells whatever 

the initial interface diffusion [e.g., Štrubelj 2009 and Denèfle et al. 2015]. 

The LBMo has been widely validated on various isothermal test cases [e.g., Duponcheel, et al. 

2016, Fleau et al. 2015, Fleau et al. 2016, Mimouni et al. 2017 and Vincent et al. 2016]. Reasonable 
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agreements have been obtained with analytical and experimental data on free surface and bubble test 

cases in laminar and turbulent conditions. 

Filtered two-fluid equations  

As previously done in Labourasse et al. [2007] and Vincent et al. [2008] with the single-fluid model 

and Lakehal [2004] with the two-fluid model including a dispersed field, the LES filter is applied to the 

two-fluid model equations for two continuous fields within the LBMo. In this section, the flows are 

considered isothermal. Thus, the filtered energy balance equation is not detailed. No dispersed fields 

are taken into account. 

The filtered mass balance equation: 

       
      (  

      )            (8) 

 With   
  the filtered volume fraction of field k and         a subgrid term related to the relationship 

between the filtered velocity      and the interface topology (see Table 1). 

The filtered momentum balance equation: 

 

    (  
      )            (  

           )        

     (  
     )          

              

                       
          ̂                ̂                                                            

(9) 

With      ,      ,       the time, convective and diffusive subgrid terms and          ,         and 

      three specific subgrid terms of the two-fluid model applied to two continuous fields (see Error! 

Reference source not found.1 for the expressions).       has the following expression: 

               -      ̂ (10) 

With        defined as:  
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̂   

  
     

       
        
̂   

    ̂ can be written in the same way as      ̂ by applying the LES filter at each quantity. We can 

notice that, compared to the one-fluid model, specific subgrid terms appear in the filtered two-fluid 

model equation, which are          ,      . Thus, seven subgrid terms have to be modeled (see Table 

1). 

A priori les study  

After presenting the filtered equations and the specific subgrid terms appearing, the phase inversion 

benchmark is simulated with the LBMo to perform an a priori LES study. Only continuous fields are 

considered for this simulation. This test case is turbulent and isothermal. A validation of the results can 

be found in Vincent et al. [2016]. In this analysis, the value of the volume fractions, pressure and 

velocities are filtered. This allows classifying the subgrid terms according to their weight. Then, 

turbulence models are applied and compared.  

Presentation of the test case In this test case, an oil drop with a cubic shape (size of L/2) is initially 

placed in a cubic box (size L = 0.1 m) containing liquid water (see Figure 1). The evolution of the 

system is driven by the gravity forces in the z direction (g = 9.81 m.s
−2

). At the end of the simulation, 

the oil phase is supposed to be located in the top part of the box with the liquid water beneath. The 

fluid properties are given in Table 2. Interfacial tension coefficient between oil and water is equal to 

0.045 N.m
−1

.  

The test case has been simulated with three different mesh refinements: 128
3
 cells, 256

3
 cells and 

512
3 

cells. The time steps are kept constant and are respectively equal to 0.8 ms, 0.2 ms and 0.05 ms 

such that the CFL number is constant and always smaller than 0.9. The simulations have been 

performed with 144 cores for the first grid and 1152 for the two others during respectively 7 hours, 47 

hours and 2 months and a half to reach 13 physical seconds. 

Order of magnitude of the subgrid terms The subgrid terms appearing in the filtered two-fluid 

equations are compared in terms of order of magnitude to find the predominant and negligible ones. 

This first step is important since the larger the contribution of this subgrid term is, the more the 

modelling errors will impact the simulation. For this purpose, a uniform box filter is applied to the 

simulation results extracted at the peak of enstrophy (maximum value of the velocity curl) for the three 

grids. Only the first neighborhood of each cell (filter size of 2) is considered. The subgrid term       is 

not represented in this study since the analysis is proposed only for one time. Each subgrid term in the 

momentum balance equation is normalized by the convection resolved term. The interfacial subgrid 

term         appearing in the mass balance equation is normalized by its corresponding resolved part. 

The summation of the subgrid term and the convection (resp. interfacial) resolved term is made in the 

whole domain, only where the phase is present, as illustrated here with the convection subgrid term: 
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 (13) 

The results are presented in Figure 2. Table 3 proposes a classification of the subgrid terms 

according to the phase for the most refined grid. As documented in Labourasse et al. [2007], Vincent et 

al. [2008] and Larocque et al. [2010], the subgrid term         is largely predominant for the two 

phases. Furthermore, a small contribution of the diffusion subgrid term       is observed for the two 

phases. Nevertheless, for the oil phase, contrary to the single-fluid formulation, this contribution is not 

negligible and very close to those of       and         . The results obtained with the single-fluid 

formulation seem to be closer to those obtained here for the water phase.  

As expected also, the magnitude of each subgrid term decreases when the mesh is refined except 

        for the oil phase. This increase has been previously observed with single-fluid formulations 

[e.g., Vincent et al. 2016]. In the two-fluid model formulation, this evolution is the result of two 

opposite effects: 

 The first effect is related to the ratio between the numerical and the laminar viscosities of each 

phase. When the mesh is refined, the velocities increase since the numerical viscosity decreases. 

The water phase is more sensitive to a variation of the numerical viscosity since its laminar 

viscosity is smaller. Thus, the velocities in the water phase increase more than in the oil phase, 

which has a larger laminar viscosity. The resolved convection term increase then more in the water 

phase than in the oil phase. 

 The second effect is the number of small inclusions which increases when the mesh is refined and 

induces an increase of the subgrid term.  

 

The evolution of the subgrid term contribution depends then on which effect is predominant. For the 

oil phase, it seems that the increase of small inclusions drive the evolution of the subgrid term, whereas 

for the water phase, the decrease of the numerical viscosity is predominant. 

Finally, the contribution of the drag subgrid term       is not mentioned in Figure 2 for the sake of 

clarity. Its order of magnitude is largely higher than the contribution of the other subgrid terms. It 

would require more specific attention in future works. 

Comparison of turbulence models After identifying the predominant terms, a comparison of 

different turbulence models is proposed. Five models are compared: the Smagorinsky’s model [e.g., 

Smagorinsky 1963], the Wall-Adapting Local Eddy-Viscosity (WALE) model [e.g., Nicoud and 

Ducros 1999], the Bardina’s model [e.g., Bardina et al. 1980], the Approximate Deconvolution Model 

(ADM) [e.g., Adams and Stolz 2002] and the mixed Smagorinsky-Bardina’s model [e.g., Bardina et al. 

1983]. ADM is taken with an order of 6. This choice will be discussed here after.  

For this comparison, the relative error of each model is evaluated using the L2 norm: 

      
    √

 ∑ (     
   

      
   

)
 

  
 
 
        

∑ (     
   

)
 

  
 
 
        

 (14) 

Figure 3 presents these relative errors for each model and each subgrid term with the most refined 

mesh. Since the Smagorinsky’s and the WALE models are mainly based on consideration about kinetic 

energy and inertial effects in turbulent flows, they can only be applied to       and        . This figure 

highlights that ADM is the most appropriate model for all the subgrid terms whatever the phase [e.g., 

Vincent et al. 2016]. However, for the water phase, the error level of ADM applied to the pressure 
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subgrid term remains high. This has a limited effect since the pressure term is not predominant, as 

shown in the previous section.  

Figure 4 left displays the dispersion and the slope obtained between each model and the filtered 

DNS results for the convective subgrid term. ADM is the only model to present a slope close to 1 with 

a limited dispersion.  

No data have been given in Figure 3 for the drag subgrid term since the error is always higher than 

100 %. As shown in Figure 4 right, this is probably due to the region splitting of the drag force 

expression, which induces a deviation of the modeled subgrid term at the boundaries [e.g., Sagaut and 

Germano 2005 and Carrara and DesJardin 2008]. A solution to model this subgrid term could be to 

adapt the phase-conditioned filtering proposed by Trontin et al. [2012] for the velocity and stress 

tensor jump at interfaces to the regions defined in the drag force expression.  

To assess this assumption, a derivative expression of the drag force without region splitting is tested: 

       
 

 
  

   
 (

    

  
         

  
    

  
          

 )          (15) 

 

With          √
  

  

  
 

||   
 ||

 and            √
  

  

  
 

||   
 ||

 . 

 

This drag force is not suitable for the simulation of three fields but can be a first approximation in 

case of two continuous field simulations such as in the phase inversion benchmark. With this 

derivative expression, the error for ADM decreases from more than 100 % with the splitting version to 

69 % with the non-splitting one and the most refined mesh. 

To finish with the model comparison, the ability of each turbulence model to reproduce the effective 

viscosity predicted by DNS is studied. For this purpose, the equivalent viscosity, whose expression is 

given in Equation (16), is compared with the turbulent viscosity of each model defined in Equation 

(17).  

       
 
      
   

     

       

   
 
      
   

     

       

 (16) 

 

        
 
      

   
     

       

   
 
      

   
     

       

 (17) 

The results for the Smagorinsky’s model and ADM are displayed in Figure 5 for the most refined 

mesh (512
3
 cells). The equivalent viscosity can be negative especially close to interfaces. This 

observation has been previously made by Labourasse et al. [2007]. The Smagorinsky’s model is unable 

to reproduce these negative contributions and the other variations observed along the box height. On 

the contrary, a good agreement is obtained with ADM. 

ADM order In all these comparisons, ADM with an order of 6 has been used since it corresponds to 

the best results obtained with the a priori LES study of the test case using a single-fluid approach [e.g., 

Tavares et al. 2016]. However, in this section, a comparison of the relative error for the convection 

term and the deconvolution error on the velocity field is proposed according to the ADM order. The 

error for the convection term is evaluated using Equation (14) and the deconvolution error with: 
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∑ (  
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 (18) 

  

The results are given in Figure 6 for the three grids. Contrary to the single-fluid formulation, if the 

order is increased, the accuracy is not automatically increased. There is an optimal value. Under this 

value, the increase of the order improves the deconvolution of the velocity field and so the relative 

errors decrease.  

However, when the order is increased after this optimal value, the ADM approximation of the 

velocity includes values of the considered field in cells belonging to a far neighborhood. The flow in 

this far neighborhood can be quite different from the cell of interest. This decorrelation has a negative 

effect and thus increases the deconvolution error. The optimal order is obtained when an equilibrium is 

reached between the positive effect of the order increase on the deconvolution approximation and the 

negative effect of the decorrelation of the cells in the far neighborhood. For the convection term, this 

optimal value is equal to 4. We can note that the conclusions are the same if we are considering another 

subgrid term. Concerning the deconvolution error, the best order is equal to 3 for the three grids. 

Finally, we see that the deconvolution error is very small compared to the ADM error of the subgrid 

terms (see Figure 3). This error decreases with the mesh refinement, which means that the more refined 

the mesh is, the better the velocity field is approximated by ADM whatever its order. 

Effect of the filter In this section, an analysis of the filter choice is proposed. The previous box 

filter (Equation (19)) is compared to a Gaussian filter (Equation (20)).  

      
 

 ̂
 (

 ̂

 
 | |) (19) 

With   the Heaviside function and  ̂ the filtered width equal to     for the two filters. 

      √
 

  ̂ 
   (

    

 ̂ 
) (20) 

Figure 7 displays a comparison of the subgrid term weight according to the filter. Table 4 orders the 

term according to their contribution with the Gaussian filter and has to be compared to Table 3. The 

weight of the subgrid terms        ,       and       decreases with the Gaussian filter whereas it 

increases for         and          . Globally, the subgrid terms contribution is then smaller. This is an 

important result since if a subgrid term has a limited contribution in the balance equations, the errors 

made by modeling it will have a limited impact. Thus, it can be appropriate to prefer a filter which 

limits the contribution of the subgrid terms. 

Then, the turbulence models are compared with the two filters in Figure 8 for the oil phase. The 

same results are obtained with the water phase. The filter has no effect on the Smagorisnky’s and 

WALE models. These results were expected since these models are not strongly linked to the filter 

choice contrary to the Bardina model and ADM. For these two models, the relative error decreases 

when the Gaussian filter is applied except for the pressure subgrid term. Once again, the results are in 

agreement with the expectations. Indeed, in practice, applying a filter corresponds to evaluating a 

quantity regarding to its value over few cells. With a box filter with a filter size of 2, the filtered 

quantity is evaluated by averaging all the values over the cells with at least a common node with the 

cell of interest. The surrounding cells are considered with the same weight. However, with the 
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Gaussian filter, the same cells are considered but they are weighted according to the distance from the 

cell of interest. This approach seems better since the flow in the cells far from the cell of interest can be 

quite decorrelated from the flow in the cell of interest. This difference can large enough to induce 

deconvolution errors and modelling inaccuracies.  

The Gaussian filter seems then better than the box filter since the contribution of the subgrid terms 

is globally smaller and the modelling errors are reduces.  

According to the results presented in this section, in what follows, ADM is implemented with an 

order of 3 using a Gaussian filter.  

Comparison of turbulence models with true LES 

In the previous section, LES studies have been performed using filtered DNS. Thus, here, true LES 

are presented on a two-phase flow using the multifield approach.  

Presentation of the METERO experiment The METERO experiment has been jointly developed 

in the framework of the NEPTUNE project by CEA, EDF, AREVA and IRSN in order to improve 

numerical CMFD tools by contributing to model validations. This experiment allows establishing a 

flow pattern map in Figure 9 according to the injection mass flow rate of water and air. The objective 

of the study is to show that LES modelling coupled with the multifield approach allows predicting 

qualitatively and quantitatively the readjusted flow regimes. A first ADM simulation is also performed 

on this test case as a preliminary study. 

Presentation of the test case. The experiment consists in a horizontal cylindrical pipe (see Figure 10 

for the schematic view), in which water and air can be injected at the same time with different mass 

flow rates (from 0 m.s
−1

 to 5 m.s
−1

 for water and from 0 m.s
−1

 to 0.7 m.s
−1

 for air). The air injection 

tubes have been set to ensure uniform bubble injection in the inlet section. The test section is 5.4 m 

long for an inner diameter of 0.1 m. The flow properties are extracted at three different positions along 

the pipe. Further informations on the experiment can be found in [e.g., Bottin et al. 2014].    

Simulation results. The simulations of the experiment have been performed with a cylindrical mesh 

containing 966168 cells (see Figure 11). The boundary conditions are standard: inlet on the right, outlet 

on the left and walls everywhere else. The properties of the two phases are presented in Table 5. 

Surface tension coefficient is equal to 0.075 N.m
-1

. The simulations are performed until they reach 13 s 

including 5 s of averaging. 

Comparison between RANS and LES In the first study, the air velocity at the injection is fixed at 

0.127 m.s
-1

. Three liquid velocities are simulated 4.42 m.s
-1

, 2.65 m.s
-1 

and 1.59 m.s
-1 

corresponding 

respectively (according to Figure 9) to a stratified bubble flow, plug flow and slug flow. The time steps 

are given in Table 6. For these three simulations, the multifield approach is used. Thus, the small 

spherical bubbles are treated using the dispersed model. LBMo is activated for the large deformable 

bubbles. Three fields are defined: a continuous liquid field, a continuous gas field and a dispersed gas 

field. Isothermal transfer (break up and coalescence) between the two gaseous fields are allowed [e.g., 

Mimouni et al. 2016]. The turbulence models are only applied to the liquid field. Figure 12 presents 

the qualitative comparison of the simulation results performed with the WALE model. When the liquid 

velocity decreases, the bubble are supposed to become larger. Thus, the number of bubbles treated as a 

dispersed field decreases. The simulation results correlate with these experimental observations. Then, 

in Figure 13, the WALE model is quantitatively compared to the RANS approach. The prediction of 

the liquid velocity and the void fraction are improved by the use of a LES model. This result was also 

expected since the RANS approach is based on an ensemble average description of turbulence effects. 

In flows containing only small spherical bubbles treated with a dispersed approach, this view is 

suitable. However, when large interfaces are resolved, the deterministic description intrinsically 

brought by LES modelling is more appropriate.  
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ADM implementation To finish, a last simulation is performed with ADM. For this purpose, the 

slug flow test case (JL = 1.59 m.s
-1

 and JG = 0.127 m.s
-1

) is simulated considering only two continuous 

fields. For this simulation, the ADM order is equal to 3 and reduced close to walls. A Gaussian filter is 

used. To model the relaxation term [e.g., Schlatter et al. 2004], the dynamic Smagorinsky’s model is 

applied [e.g., Germano et al. 1991]. Moreover, a new definition is given for the filtered velocity. 

Indeed, in the two-fluid model, the velocity of a field k is defined in the whole domain even if in one 

cell the field k is not present. In such cells, the value of the velocity of field k has no meaning and can 

be criticized. Thus, the following expression of the velocity is used for the filtering process: 

   
   

 
  

     

      
         

 (21) 

With this expression, the smaller the volume fraction is, the smaller the velocity weight is in the 

filtering process.  

To reconstruct the volume fractions with ADM, a treatment is also made to correct the obtained 

values such that the reconstructed volume fraction is between 0 and 1, which is not intrinsically 

ensured by the ADM process. Indeed, the reconstructed volume fraction as the following expression: 

   
 
   

 ∑        

 

   

  
  (22) 

With   the ADM order,    the identity matrix,   the LES filter and   the convolution operator. With 

this expression, a simple analysis based on the barycentre theory shows that   
        does not imply 

that   
 
   

      . However, if ∑   
 

   , then ∑   
 
   

   .  

For this purpose, the negative value of   
 
   

 are multiplied by −1. If    
 

   
 is negative, its value is 

multiplied by −1 and   
 
   

 is readjusted such that   
 
   

 +   
 
   

  . This point is a major 

uncertainty in our implementation of ADM that would require further considerations. Finally, in a first 

attempt, only      ,         and       are modeled.  

The results, displayed in Figure 13, are encouraging. Indeed, they are not so far from the 

experimental data. Errors are probably made by considering only two continuous fields. It has to be 

noted that no discrepancies have been observed concerning mass conservation since only   
 
   

was 

modified. The mass balance equation is solved considering   
  which does not receive any special 

treatment. Moreover, in this first implementation, the subgrid term         appearing in the mass 

balance equation has not been modeled.  

In future works, all the choices made for the simulation should be assessed. Moreover, extension to 

three field simulations should be done. 

New phase change model for large interfaces 

In the previous sections, the objective has been the investigation of LES to simulate the turbulence 

effects. Turbulence is a main issue for the simulation of complex flows evolving in nuclear power 

plants or in conventional heat exchangers. However, phase change has also a major impact. Within the 

multifield approach implemented in the framework of the two-fluid model, large interfaces are treated 

with the Large Bubble Model. Nevertheless, the approach does not include a model in case of phase 

change at the interface. Thus, in this section, a model for the heat flux is proposed to deal with the 

phase change effects occurring at large interfaces.  
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Implementation of the new heat flux model To obtain the new heat flux model, the same 

methodology proposed by Brackbill et al. [1992] for the surface tension force is used. For this purpose, 

we consider an interface with a zero thickness, represented in red in Figure 14. For such interfaces, the 

heat flux expression for the liquid phase is: 

   
          (23) 

For the demonstration here, only the liquid term is considered. Nevertheless, the same process can 

be followed to obtain the volume reformulation of the vapor term. As done for the surface tension 

model, the volume expression of the heat fluxes   
 corresponding to an interface with a thickness equal 

to   can be obtained by considering: 

    
   

∫   
       

    

  ∫   
         

    

 (24) 

with      the volume of an interface with a thickness equal to   and      the area of a zero thickness 

interface. To obtain the expression of   
    , the definition of   

        is used: 

 ∫   
         

    

  ∫   
                         

    

  

(25) 

   ∫                                   

    

 

With   a Dirac function indicating interface.  

In Brackbill et al. [1992], the interface is located with a color function  , using a VOF approach. 

Thus, by introducing the notations of this article, we can write the following relation between the color 

function gradient of the diffused interface and the normal vector  : 

    
   

                                 (26) 

With     the jump of the color function over the interface. Using this expression, we obtain: 

 ∫   
         

    

     
   

∫         
     

   
   

    

  (27) 

Therefore, the volume expression of the heat flux   
    , with the color function  , is: 

   
              

     

   
 (28) 

In the two-fluid formulation, as previously done for the surface tension model, this expression is 

rewritten: 

    
        

            
     (29) 

With        
          

    
 and      the distance to the interface. 

Validation of the new heat transfer model To validate the new heat transfer model, two test cases 

involving steam and water are simulated. In all these simulations, the interface motion is only driven 

by heat transfer. Mesh sensitivity is also studied for each test case. 
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Sucking problem. In the sucking problem, steam and liquid water are contained in a 1D tube with a 

heated wall (see Figure 15). The liquid is superheated at      and the wall temperature is fixed at 

           so that steam is at the saturation temperature (see Figure 16). Therefore, there is no 

temperature gradient in the vapor. Both fields are at the rest at t = 0 s. For t > 0 s, the liquid begins to 

boil at the interface, which induces a displacement of the steam/water interface.  

The theory of the sucking problem is given in Welch and Wilson [2000]. First, let us make a 

transformation of the spatial coordinates such as the steam/water is located at    : 

      ∫     
     

 

 

 (30) 

With    the interface velocity. With this new coordinate, the temperature profile is given by: 

          √
 

 
            

             (31) 

With   
    

   
,   

  

   
,    being the thermal diffusivity of the liquid phase, L the latent heat 

between steam and liquid water,   
       

√ 
,    

     

√ 
,   

 

√    
 and 

          
 

√ 
∫           

 

  
 the error function. The evolution of the interface position has the 

following expression: 

       
       

  
√     (32) 

      can be obtained by solving the following equation: 

         (
      

 
)  √

 

 

         

 
 (33) 

The study is based on Sato’s and Welch’s publications [e.g., Sato and Niceno 2013, Welch and 

Wilson 2000]. The physical properties of steam and water are updated at each time step using the 

standard set of thermodynamic Equations Of State based on CATHARE functions [e.g., Emonot et al. 

2011]. The pressure of the system is equal to 1.013
.
10

5
 Pa (the atmospheric pressure) and the liquid 

temperature in the bulk is              . 

The tube length is equal to 2 cm. A heated wall boundary condition (          ) is imposed on the 

left face, an outlet boundary condition on the right face and symmetry planes everywhere else (see 

Figure 15). The liquid temperature is initialized by using Equation (31) at t = 0.1 s. Therefore, the 

interface position at the beginning of the simulation is compared to the theoretical position at t = 0.1 s. 

Four different mesh refinements have been used with cell sizes equal to: 1
.
10

−4
 m, 5

.
10

−5
 m, 2.5

.
10

−5
 m 

and 1.25
.
10

−5
 m. The time step is kept constant and fixed according to the grid to ensure a constant 

Fourier number in all the simulations. The time steps are respectively equal to 1.6
.
10

−3
 s, 4

.
10

−4
 s, 

1
.
10

−4
 s and 2.5

.
10

−5
 s.  

For the initialization, steam is defined in the first four cells. The five next cells are composed with a 

mixture of the two phases and the rest of the domain is mom with liquid. The five mixed cells have the 

following composition in steam: 87.5 % for the first one, 75 %, 50 %, 25 % and 12.5 %. This 

initialization is consistent with the 5 cells interface thickness imposed by the interface sharpening 

equation.  
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To compare the analytical solution with the simulation results, special care has to be taken 

concerning the interface and the temperature profile position. Indeed, in the analytical view of the test 

case (see Figure 17), the interface has a zero thickness and the temperature jump corresponds to the 

interface position. In the simulation, the temperature jump begins where the liquid is present, that is to 

say at one extremity of the interface (see Figure 17). In the post-processing procedure, the position of 

the interface is taken where   
    

      corresponding to the centre of the smeared interface. Since 

we consider that the analytical interface position corresponds to the position of the temperature jump, 

we have to shift the simulated results. Thus, an initial time onset is evaluated using the analytical 

expression of the interface position over time and taking the analytical interface position at 0.1 s (the 

temperature profile is initialized at 0.1 s) decreased by       (5 cells thickness). The simulated results 

are shifted using this time onset. Moreover, the interface position at 0.1 s in all the curves is considered 

as the zero position. 

The results are given in Figure 18. The more refined the mesh is, the closer to the analytical solution 

the results are. The results obtained with the most refined mesh are very close to the analytical results. 

This confirms the ability of the developed model to predict an interface motion only driven by the heat 

transfer term. Figure 19 presents the corresponding average relative error for the interface position 

between 0.1 s and 1.5 s. When the mesh is refined, the error decreases. This study allows defining the 

order of convergence   (using the Richardson’s extrapolation (31)) equal to 1.1. 

    

   (
   

    

   
    

)

   (
 
 
)

 (34) 

with   ,    and   three mesh refinements, such as: 

 

 

 

Stefan problem. The Stefan problem is very close to the sucking problem. Steam and liquid water 

are contained in a 1D tube with a heated wall under atmospheric pressure. But, in this case, steam is 

superheated and the liquid water temperature is equal to the saturation temperature              . 

The wall temperature keeps a constant value during the simulation:               . As a 

consequence, there is a temperature gradient in the vapor phase (see Figure 20). 

The evolution of the interface position is given by the equation [e.g., Welch and Wilson 2000]: 

         √    (36) 

The temperature profile is equal to: 

               
          

       
    (

 

 √   
) (37) 

  is the solution of the equation: 

                  
               

√  
 (38) 

 

     
   

    

 
 

    

 
 (35) 
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With     the specific heat capacity of vapour. 

The physical properties of steam and water are updated at each time step using the standard set of 

thermodynamic Equations Of State based on CATHARE functions [e.g., Emonot et al. 2011]. The 

pressure of the system is equal to 1.013
.
10

5
 Pa. The same grids have been used with the same boundary 

conditions. The only difference is the wall temperature which is equal to 398.15 K, that is to say 

         , in the Stefan problem instead of      in the sucking problem. Three different mesh 

refinements have been used with cell sizes equal to: 1
.
10

−4
 m, 5

.
10

−5
 m and 2.5

.
10

−5
 m. The time steps 

are respectively equal to 1.6
.
10

−3
 s, 4

.
10

−4
 s and 1

.
10

−4
 s.  

The volume fractions are initialized as previously done with the sucking problem. The initial vapor 

temperature is approximated using an affine function: 

              
          

  
   (39) 

With       (four cells full of vapor and five mixed cells), which corresponds to the “end” of the 

interface (see Figure 21) and   the position of the cell centre. Concerning the comparison of the 

simulation results and the analytical solution, the same observations can be done with the location of 

the interface and temperature deflection, as shown in Figure 21. The time onset is calculated using the 

initial computed interface centre position increased by      . 

The results are given in Figure 22. Contrary to the sucking problem, the improvement due to the 

mesh refinement is limited. This result can be explained by the fact that the local temperature gradient 

at the interface is smaller even if in the whole domain the temperature difference is higher (equal to 25 

K versus 5 K in the sucking problem). Figure 19 presents the corresponding average relative error for 

the interface position for the first 10 s. When the mesh is refined, the error decreases. Thus, a mesh 

convergence is observed. The order of convergence (using the Richardson’s extrapolation (34)) is 

equal to 0.74. 

The sucking and the Stefan problems are interesting test cases since they can be used to calibrate 

empirical models usually used to deal with phase changes in commercial codes at different pressure 

and temperature conditions for water/steam flows as an example.  

In this paper, two 1D test cases have been used to validate the new heat transfer model considering 

super-saturated liquid water on the one hand and super-saturated steam on the other hand. The 

validation has been successfully extended to 3D simulations, under-saturated water and pressure 

conditions occurring in a reactor vessel or a steam generator of a nuclear power plant [e.g., Fleau 

2017]. 

Conclusion 

A multifield approach based on a two-fluid model has been implemented in the CMFD code 

NEPTUNE_CFD to simulate complex flows containing inclusions with a large range of sizes. This 

approach has been widely validated in previous papers on laminar isothermal flows. However, 

turbulence effects with the two-fluid model applied to large and deformable interfaces have never been 

studied. Thus, the equations have been filtered for the first time. Two specific subgrid terms appeared 

conducting to a total of seven subgrid terms. The analysis of the weight of each term highlighted that 

the surface tension subgrid term was predominant, in agreement with previous LES studies on one-

fluid models, whereas the diffusive subgrid term could not be negligible. The comparison of turbulence 

models finally showed that ADM was the most suitable model for all subgrid terms appearing in the 

filtered equations. Then, LES models were used to predict flow regimes. Better results were observed 

with LES since RANS approaches underestimated void fractions. The simulation performed with 

ADM was encouraging. Work has to be done to assess the different modelling choices to improve the 
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results and also to clarify the sense of filtering the drag terms in the momentum equations. Finally, 

after investigating turbulence, phase change at large interfaces have been explored. For this purpose, a 

new heat flux model has been implemented and validated in this paper.  

The main perspective of this work concerns the implementation of ADM in two-phase flows with 

the treatment of interfaces and the implementation of all the subgrid terms. Extensions to three field 

simulations with phase change effects are expected. 
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Table 1. Expression of the subgrid terms appearing in the filtered two-fluid equations,  ̂      (
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Oil 900 0.1 

Water 1000 1
.
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 Table 2. Physical properties of the two phases in the phase inversion benchmark 

 

 Oil Water 

1                 

      
          

        
      

2           

3       

4       

5         

Table 3. Classification of the subgrid terms according to their relative contribution for the 5123 grid with the box 

filter 

 
 

Figure 1. Initial conditions of the phase inversion benchmark. 

  

Figure 2. Order of magnitude of the normalized subgrid terms, left: for the oil phase, right: for the water 

phase, only the z component is displayed. 
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Figure 3. Relative error obtained by comparison between the modeled subgrid term and the terms obtained 

by DNS, left: for the oil phase, right: for the water phase, only the z component is displayed, mesh with 5123 

cells. 

  

Figure 4. Correlation between the turbulence models and the subgrid terms evaluated by DNS, left: 

convective subgrid term, right: drag subgrid term in the intermediate region 0.3 ≤ 𝜀 
  ≤ 0.7, only the component 

in the z direction is considered, mesh with 1283 cells, oil phase. 

  

Figure 5. Comparison of the equivalent viscosity 𝜇𝑒𝑞 predicted by DNS and the turbulent viscosity obtained 

with the Smagorinsky’s model and ADM, the volume fraction of oil is also represents to locate interfaces, the 

viscosities are extracted from a slice of the domain at x = y = 8 cm, mesh with 5123 cells. 
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Table 4. Classification of the subgrid terms according to their relative contribution for the 5123 grid with the 

Gaussian filter 

  
 

Figure 6. Relative error of the convection subgrid term (left) and the predicted velocity field (right) according 

to the ADM order for the three grids and the oil phase.  

   

Figure 7. Order of magnitude of the normalized subgrid terms obtained with the box and the Gaussian filter, 

left: for the oil phase, right: for the water phase, only the z component is displayed, mesh with 5123 cells. 
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Figure 8. Relative error obtained by comparison between the modeled subgrid term and the terms 

obtained by DNS with the box and the Gaussian filters, for the oil phase with the 5123 grid, only the z 

component is displayed. 

  
 

Figure 9. METERO flow pattern at X = 40 D, JL corresponds to the water velocity and JG to the air velocity at 

the injection, TSS refers to the transition from slug to stratified flow (pink line), TPS to the transition from 

plug to slug flow (orange line), TBBSB to the transition from buoyant bubble flow to stratified bubble flow 

(green line) and TSBP to the transition from stratified bubbles regime to plug (purple line), crosses 

correspond to video acquisitions [e.g., Bottin et al. 2014]. 

  
 

Figure 10. Schematic view of the horizontal pipe of the METERO experiment [e.g., Bottin et al. 2014]. 
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Air 1.29 1.8
.
10

-5
 

Water 1000 1.3
.
10
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Table 5. Physical properties of the two phases in the METERO test case 

 

 

 

 

Flow regime RANS WALE 

Dispersed bubble flow 0.5 ms 0.5 ms 

Plug flow 0.25 ms 0.2 ms 

Slug flow 0.12 ms 0.12 ms 

Table 6. Time steps according to the flow regime and the turbulence model for the METERO test case 

  

  
 

Figure 11. Slice of the mesh used for the simulation of the METERO test case. 
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Figure 12. Qualitative comparison of the simulations performed with the WALE model, (a) stratified bubble 

flow (JL = 4.42 m.s-1), (b) plug flow (JL = 2.65 m.s-1), (c) slug flow (JL = 1.59 m.s-1), JG = 0.127 m.s-1, left 

column: schematic view of the expected flow regime (top view and side view), right column: simulation 

results, top: top view of the isosurface of the continuous gas field, bottom: volume fraction of the dispersed 

gas field. 
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Figure 13. Average liquid velocity and average void fraction at X = 40D, top to bottom: stratified bubble flow 

(JL = 4.42 m.s-1), plug flow (JL = 2.65 m.s-1), slug flow (JL = 1.59 m.s-1), JG = 0.127 m.s-1. 
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Figure 16. Simulation conditions at a given time for the sucking problem, the liquid boils and the interface 

moves to the right side due to volume expansion of the liquid-vapor phase change. 

  
 

Figure 14. Notations for the implementation of the new heat flux model, red circle: interface 

with a zero thickness, blue ring: interface with a non-zero thickness. 

  
 

Figure 15. Definition sketch of the 1D computational domain used for the simulation of the 

sucking and the Stefan problems. 
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Figure 17. Schematic view of the temperature profile and vapor/liquid interface in the analytical test case 

(top) and the simulation (bottom), sucking problem. 

  

Figure 18. Evolution of the interface position obtained with the new heat transfer model and different mesh 

refinements, sucking problem at an atmospheric pressure. 

  

Figure 19. Average relative error for the interface position compared to the theoretical results obtained with 

the new heat flux model for the two test cases presented in this paper. 
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Figure 20. Simulation conditions at a given time for the Stefan problem, the liquid boils and the interface 

moves to the right side due to volume expansion of the liquid-vapor phase change. 

  

Figure 21. Schematic view of the temperature profile and vapor/liquid interface in the analytical test case 

(top) and the simulation (bottom), Stefan problem. 

  

Figure 22. Evolution of the interface position obtained with the new heat transfer model and different mesh 

refinements, Stefan problem at an atmospheric pressure. 


