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RENORMALIZATION OF DETERMINANTS LINES IN QUANTUM

FIELD THEORY.

NGUYEN VIET DANG

Abstract. On a compact manifold M , we consider the affine space A of non self–adjoint

perturbations of some invertible elliptic operator acting on sections of some Hermitian bun-

dle, by some differential operator of lower order.

We construct and classify all complex analytic functions on the Fréchet space A van-

ishing exactly over non invertible elements, having minimal order and which are obtained

by local renormalizations, a concept coming from quantum field theory, called renormalized

determinants. The additive group of local polynomial functionals of finite degrees acts freely

and transitively on the space of renormalized determinants. We provide different represen-

tations of the renormalized determinants in terms of spectral zeta determinants, Gaussian

Free Fields, infinite product and renormalized Feynman amplitudes in perturbation theory

in position space à la Epstein–Glaser.

Specializing to the case of Dirac operators coupled to vector potentials and reformulating

our results in terms of determinant line bundles, we prove our renormalized determinants

define some complex analytic trivializations of some holomorphic line bundle over A relating

our results to a conjectural picture from some unpublished notes by Quillen [52] from April

1989.

1. Introduction.

Let (M, g) be a smooth, closed, compact Riemannian manifold. The aim of the present

paper is to study the analytical properties and the renormalization of a class of functional

determinants defined on some affine space A of non self adjoint perturbations ∆ +V of some

given invertible self adjoint generalized Laplacian ∆ acting on some fixed Hermitian bundle

E 7→M where V ∈ C∞(End(E)) is a smooth potential, or perturbations of the form D+A

of some invertible twisted Dirac operator D : C∞(E+) 7→ C∞(E−) acting between Hermitian

bundles E± by some term A ∈ C∞(Hom(E+, E−)). We consider lower order perturbations

since A and V are local operators of order 0.

1.0.1. Quantum field theory interacting with some external potential. Let us briefly give the

physical motivations underlying our results which are stated in purely mathematical terms.

The reader uninterested by the physics can safely skip this part. Inspired by recent works in

mathematical physics [15, 16, 17, 18, 27, 26] and classical works of Schwinger [57] [39, Chapter

4 p. 163], our original purpose is to understand the problem of renormalization of some

Euclidean quantum field φ defined on M interacting with a classical external field which is not

quantized 1. For instance, consider the Laplace–Beltrami operator ∆ : C∞(M) 7→ C∞(M)

1sometimes called background field in the physical litterature

1
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defined from the metric g on M , corresponding to the Dirichlet action functional :

S(φ) =

∫
M
φ∆φdv(x) (1.1)

and their perturbations by some external potential V ∈ C∞(M,R>0) which corresponds to

the perturbed Dirichlet action functional

S(φ) =

∫
M
φ∆φ+ V φ2dv(x). (1.2)

A classical problem in quantum field theory is to define the partition function of a theory,

usually represented by some ill–defined functional integral,

Z (V ) =

∫
[dφ] exp

(
−1

2

∫
M
φ∆φ+ V φ2

)
(1.3)

in the bosonic case where V ∈ C∞(M,R>0) plays the role of a position dependent mass

which is viewed as an external field coupled to the Gaussian Free Field φ to be quantized.

The external field can also be the metric g [1] in the study of gravitational anomalies in the

physics litterature or gauge fields, which is the physical terminology for connection 1–forms,

in the study of chiral anomalies.

In fact, according to Stora [65, 48], the physics of chiral anomalies [23, 48, 1] can be

understood in the case where we have a fermion field which is quantized interacting with

some gauge field which is treated as an external field. Consider the quadratic Lagrangian

Ψ−DAΨ+ where Ψ± are chiral fermions, DA is a twisted half–Dirac operator acting from

sections of positive spinors S+, to negative spinors S−, see example 1 below for a precise

definition of DA. In this case, the corresponding ill–defined functional integral reads

Z[A] =

∫
[DΨ−DΨ+] exp

(
−
∫
M

Ψ−DAΨ+

)
where we are interested on the dependence in the gauge field A.

1.0.2. Functional determinants in geometric analysis. The above two problems can be formu-

lated as the mathematical problem of constructing functional determinants V 7→ det (∆ + V )

and A 7→ det (D∗ (D +A)) with nice functional properties where we are interested in the de-

pendence in the external potentials V and A. In global analysis, functional determinants also

appear in the study of the analytic torsion by Ray–Singer [54] and more generally as metrics of

determinant line bundles as initiated by Quillen [53, 3] where he considered some affine space

A of Cauchy-Riemann operators D+ω acting on some fixed vector bundle E 7→ X over a com-

pact Riemann surface X where D is fixed and the perturbation ω lives in the linear space of

(0, 1)-forms onX with values in the bundle End(E). The metrics onX and in E induce a met-

ric in the determinant (holomorphic line) bundle det (Ind(D)) = Λtop ker(D)∗⊗Λtopcoker(D)

over A. As Quillen showed in [53], if this metric in the bundle det(Ind(D)) is divided by

the function detζ (D∗D) (here detζ is the zeta regularized determinant the Laplacian D∗D),

then the canonical curvature form of this metric, the first Chern form, coincides with the

symplectic form of the natural Kähler metric on A. An important consequence of the above

observation, stated as a [53, Corollary p. 33], is that if one multiplies the Hermitian metric
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on det (Ind(D)) by eq where q is the natural Kähler metric on A, then the corresponding

Chern connection is flat. From the contractibility of A, one deduces the existence of a global

holomorphic trivialization of det (Ind(D)) 7→ A and the image of the canonical section of

det (Ind(D)) by this trivialization is an analytic function on A vanishing over non–invertible

elements.

Building on some ideas from the work of Perrot [48, 50, 49] and some unpublished notes

from Quillen’s notebook [52] 2, we attempt to relate the problem of constructing renormalized

determinants with the construction of holomorphic trivializations of determinant line bundles

over some affine space A of perturbations of some fixed operator by some differential operator

of lower order which plays the role of the external potential.

1.0.3. Quillen’s conjectural picture. In some notes on the 30th of April 1989 [52, p. 282], with

the motivation to make sense of the technique of adding local counterterms to the Lagrangian

used in renormalized perturbation theory, Quillen proposed to give an interpretation of QFT

partition functions in terms of determinant line bundles over the space of Dirac operator

coupled to a gauge potential drawing a direct connection between the two subjects. The ap-

proach he outlined insists on constructing complex analytic trivializations of the determinant

line bundle without mentioning any construction of Hermitian metrics on the line bundle

which seems different from the original approach he pioneered [53] and the Bismut–Freed [3]

definition of determinant line bundle for families of Dirac operators.

To explain this connection, we recall that for a pairH0,H1 of complex Hilbert spaces, there

is a canonical holomorphic line bundle Det 7−→ Fred0 (H0,H1) where Fred0 (H0,H1) is

the space of Fredholm operators of index 0 with fiber DetB ' Λtop ker (B)∗⊗Λtopcoker (B)

and canonical section σ [53, p. 32] [60, p. 137–138]. Consider the complex affine space A =

D+C∞(Hom(E+, E−)) of perturbations of some fixed invertible Dirac operator D by some

differential operator A ∈ C∞(Hom(E+, E−)) of order 0. We denote by L2(E+) the space

of L2 sections of E+. Then the map ι : D+A ∈ A 7→ Id+D−1A ∈ Fred0

(
L2(E+), L2(E+)

)
allows to pull–back the holomorphic line bundle Det as a holomorphic line bundle L =

ι∗Det 7→ A over the affine space A with canonical section det = ι∗σ. We insist that we view

C∞(Hom(E+, E−)) as a C–vector space, elements in C∞(Hom(E+, E−)) need not preserve

Hermitian structures. According to Quillen [52, p. 282], the relation with QFT goes as

follows, one gives a meaning to the functional integrals

A 7→
∫
DΨ+DΨ−e

−
∫
M 〈Ψ−,DAΨ+〉, (1.4)

3 by trivializing the determinant line . In other words, denoting by O(L) (resp O (A)) the

holomorphic sections (resp functions) of L (resp on A), we aim at constructing a holomor-

phic trivialization of the line bundle τ : O (L) 7−→ O (A) so that the image τ(det) of

the canonical section det by this trivialization is an entire function f(P +V) on A vanishing

exactly over the set Z of non invertible elements of A. In some sense, this should generalize

the original construction of Quillen of the holomorphic trivialization of the determinant line

2made available by the Clay foundation at http://www.claymath.org/publications/quillen-notebooks
3DA is the Dirac operator coupled to the gauge potential A as described in [63, section 3 p. 325]
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bundle over the space of Cauchy–Riemann operators [53]. Furthermore, Quillen [52, p. 284]

writes :

These considerations lead to the following conjectural picture. Over the

space A of gauge fields there should be a principal bundle for the additive

group of polynomial functions of degree 6 d where d bounds the trace which

have to be regularized. The idea is that near each A ∈ A we should have a

well–defined trivialization of L up to exp of such a polynomial. Moreover,

we should have a flat connection on this bundle.

To address this conjectural picture, we follow a backward path compared to [53]. Instead of

constructing some Hermitian metric then a flat connection on L 7→ A to trivialize the bundle,

we prove in Theorem 2 an infinite dimensional analog of the classical Hadamard factorization

Theorem 4 in complex analysis. We classify all determinant like functions such that :

• They are entire functions on A with minimal growth at infinity, a concept with

is defined below as the order of the entire function, vanishing over non invertible

elements in A.

• Their derivatives should satisfy some simple identities reminiscent of the situation

for the usual determinant in finite dimension.

• They are obtained from a renormalization by subtraction of local counterterms, a

concept coming from quantum field theory which will be explained below in para-

graph 2.0.8.

Trivializations of L are simply obtained by dividing the canonical section of L by the con-

structed determinant like functions as showed in Theorem 3. A nice consequence of our in-

vestigation is a new factorization for zeta regularized determinant 2.6 in terms of Gohberg–

Krein’s regularized determinants. We show that our renormalized determinants are not

canonical and there are some ambiguities involved in their construction of the form exp (P )

where P is a local polynomial functional of A. Then we show that the additive group of local

polynomial functionals of A, sometimes called the renormalization group of Stüeckelberg–

Petermann in the physics litterature, acts freely and transitively on the space of renormalized

determinants we construct.

2. Main results.

2.0.4. Geometric setting. In the present paragraph, we fix once and for all the assumptions

and the general geometric framework of the main Theorems (1),(2),(3) and that we shall

use in the sequel. For E 7→ M some smooth Hermitian vector bundle over the compact

manifold M , we denote by C∞(E) smooth sections of E. An operator ∆ : C∞(E) 7→ C∞(E)

is called generalized Laplacian if the principal part of ∆ is positive definite, symmetric (i.e.

formally self–adjoint) and diagonal with symbol gµν(x)ξµξν ⊗ IdEx in local coordinates at

(x; ξ) ∈ T ∗M where g is the Riemannian metric on M . We are interested in the following

two geometric situations :
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Definition 2.1 (Bosonic case). Let (M, g) be a smooth, closed, compact Riemannian man-

ifold and E some Hermitian bundle on M . We consider the complex affine space A of

perturbations of the form ∆+V where V is a smooth endomorphism V ∈ C∞ (End(E)), and

∆ : C∞(E) 7→ C∞(E) is an invertible generalized Laplacian. The element V ∈ C∞(End(E))

is treated as external potential.

Definition 2.2 (Fermionic case). Let (M, g) be a smooth, closed, compact Riemannian

manifold. Slightly generalizing the framework described in [63, section 3 p. 325–327] in

the spirit of [2, def 3.36 p. 116], we are given some pair of isomorphic Hermitian vec-

tor bundles (E+, E−) of finite rank over M and an invertible, elliptic first order differen-

tial operator D : C∞(E+) 7→ C∞(E−) such that both DD∗ : C∞(E−) 7→ C∞(E−) and

D∗D : C∞(E+) 7→ C∞(E+) are generalized Laplacians where D∗ is the adjoint of D in-

duced by the metric g on M and the Hermitian metrics on the bundles (E+, E−). We

consider the complex affine space A of perturbations D + A : C∞(E+) 7→ C∞(E−) where

A ∈ C∞(Hom(E+, E−)).

Recall that in both cases, we perturb some fixed operator by a local operator of order

0. In the sequel, for a pair (E,F ) of bundles over M , we always identify an element V ∈
C∞(Hom(E,F )), which is a C∞ section of the bundle Hom(E,F ) with the corresponding

linear operator V : C∞(E) 7→ C∞(F ), in the scalar case this boils down to identifying a

function V ∈ C∞(M) with the multiplication operator ϕ ∈ C∞(M) 7→ V ϕ ∈ C∞(M). To

avoid repetitions and to stress the similarities between bosons and fermions, we will often

denote in the sequel A = P +C∞(Hom(E,F )) for the affine space of perturbations of P = ∆

of degree 2, E = F in the bosonic case and of P = D of degree 1, E = E+, F = E− in the

fermionic case.

We next give an important example from the physics litterature which fits exactly in the

fermionic situation :

Example 1 (Quantized Spinor fields interacting with gauge fields). Assume (M, g) is spin

of even dimension whose scalar curvature is nonnegative and positive at some point on M .

For example M = S2n with metric g close to the round metric. Then it is well–known that the

complex spinor bundle S 7→ M splits as a direct sum S = S+ ⊕ S− of isomorphic hermitian

vector bundles, the classical Dirac operator D : C∞(S) 7→ C∞(S) is a formally self–adjoint,

elliptic operator which is invertible by the positivity of the scalar curvature thanks to the

Lichnerowicz formula [42, Cor 8.9 p. 160].

Consider an external hermitian bundle F 7→ M which is coupled to S by tensoring

(S+ ⊕ S−)⊗ F = E+ ⊕ E−. For any Hermitian connection ∇F on F , we define the twisted

Dirac operator DF : C∞(S⊗F) 7→ C∞(S⊗F), which is a first order differential operator of

degree 1 w.r.t. the Z2 grading, DF = c(ei)
(
∇Sei ⊗ Id+ Id⊗∇Fei

)
near x ∈ M where (ei)i is

a local orthonormal frame of TM near x, c(ei) is the Clifford action of the local orthonormal

frame (ei)i of TM on S. In the study of chiral anomalies, one is interested by the half–Dirac

operator D : C∞(S+ ⊗ F) 7→ C∞(S− ⊗ F). If (M, g) has positive scalar curvature and

the curvature of ∇F is small enough then dim ker (D) = 0 and Ind (D) = 0 [42, prop 6.4

p. 315]. Two connections on F differ by an element A ∈ Ω1(M,End(F)). So we may define
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perturbations D +A of our half–Dirac operator D induced by perturbations of ∇F as

D +A = c(ei)
(
∇Sei ⊗ Id+ Id⊗

(
∇Fei + A(ei)

))
. (2.1)

2.0.5. An analytic reformulation of Quillen’s conjectural picture. In our setting, we attempt

to reformulate Quillen’s question as a problem of constructing an entire function with pre-

scribed zeros in infinite dimension generalizing the Fredholm determinant. A naive approach

discussed in [52] would be to consider the Fredholm determinant detF
(
I +D−1A

)
where

for small A, we expect that log detF
(
I +D−1A

)
=
∑∞

k=1
(−1)k+1

k Tr
(
(D−1A)k

)
. However

the operator D−1A is a pseudodifferential operator of order −1, hence for k > d the power

(D−1A)k is trace class hence the traces Tr
(
(D−1A)k

)
are well–defined whereas for k 6 d

these traces are ill–defined and often divergent as usual in QFT. We will later see how to

deal with these divergent traces in Theorem 2.

The usual method to construct functional determinants is the zeta regularization pio-

neered by Ray–Singer [54] in their seminal work on analytic torsion and rely on spectral or

pseudodifferential methods [30, 59], see also [47, 58] for some nice recent reviews of various

methods to regularize traces and determinants. Let us recall the definition of such analytic

regularization (see [5, section 3 p. 203] for a very nice summary on the main results on zeta

determinants) :

Definition 2.3 (Spectral zeta regularization). Let M be a smooth, closed compact manifold

and E 7→M some Hermitian bundle. For every perturbation of the form ∆ + V : C∞(E) 7→
C∞(E) of an invertible symmetric generalized Laplacian ∆ by some differential operator V of

order 1, we denote by σ (∆ + V ) ⊂ C its spectrum which is known to be discrete by ellipticity.

If σ(∆ + V ) ∩ R60 = ∅ then using the classical determination of the logarithm on C \ R60,

the spectral zeta function is defined as ζ∆+V (s) =
∑

λ∈σ(∆+V ) λ
−s = Tr

(
(∆ + V )−s

)
4 which

has meromorphic continuation to the whole complex plane by the work of Seeley [30, 59]

and is holomorphic near s = 0. The zeta determinant detζ is defined as : detζ(∆ + V ) =

exp
(
−ζ ′∆+V (0)

)
.

Let us comment the above definition. For the moment, the definition of detζ restricts to

operators whose spectrum does not meet the negative reals R60 which forms an open subset

in A5. Then our factorization formula 2.6 will imply that the zeta determinant defined above

extends to all operators in A, even to some non smooth perturbations of order 0 of a given

∆.

We next give the particular definitions of the zeta functions in the bosonic and fermionic

cases :

Definition 2.4 (Zeta determinants for bosons and fermions.). We use the geometric setting

for bosons and fermions defined in paragraph 2.0.4. For bosons, we define the corresponding

4The equality with the trace follows from Lidskii’s Theorem
5 In fact, the leading symbol of ∆ is nonnegative, self–adjoint hence its spectrum except finite number of

eigenvalues is contained in angular sectors of the form {ρeiθ, 0 6 ρ 6 +∞, θ ∈ [−ε, ε]} [5, p. 206][59] but we

impose a stronger condition for the moment
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zeta determinant as a map

V ∈ C∞(End(E)) 7→ detζ(∆ + V ). (2.2)

For fermions, following [63, p. 329], we define the corresponding zeta determinant as a map

A ∈ C∞(Hom(E+, E−)) 7−→ detζ (D∗(D +A)) . (2.3)

Finally before we state our first result, we define formal products of Schwartz kernels of

the operators involved in our problem which will play an important role in our Theorem :

Definition 2.5 (Polygon Feynman amplitudes). Under the geometric setting from para-

graph 2.0.4, we set G ∈ D′ (M ×M,E � F ∗) to be the Schwartz kernel of P−1 and A =

P + C∞(Hom(E,F )), where P = ∆, k = 2, E = F in the bosonic case and P = D, k =

1, E = E+, F = E− in the fermionic case. For every n > 2, we formally set

tn = G(x1, x2) . . .G(xn−1, xn)G(xn, x1) (2.4)

which is well–defined in C∞
(
Mn \Diagonals, Hom(F,E)�n

)
.

There is a natural fiberwise pairing 〈t, ϕ〉 between distributions t in D′(Mn, Hom(F,E)�n)

with elements ϕ in C∞
(
Mn, Hom(E,F )�n

)
to get an element 〈t, ϕ〉 ∈ D′(Mn) and to

get a number, we need to integrate this distribution against a density dv ∈ |Λtop|Mn as∫
Mn 〈t, ϕ〉 dv.

2.0.6. Structure of zeta determinants. Our first main result concerns the mathematical struc-

ture of zeta determinants. In the sequel, we denote by dn ⊂ Mn, the deepest diagonal

{(x, . . . , x) ∈ Mn s.t. x ∈ M} ⊂ Mn and by N∗ (dn ⊂Mn) the conormal bundle of dn. We

use the notion of wave front set WF (t) of a distribution t to describe singularities of t in

cotangent space and refer to [38, chapter 8] for the precise definitions. For a ∈ R, we denote

by [a] = supk∈Z,k6a k. The bundle of densities on a manifold X will be denoted by |Λtop|X.

Theorem 1. The zeta determinants from definition 2.4 extend uniquely as entire functions
on A satisfying the factorization formula for ‖V ‖Cd−3(End(E)) (resp ‖A‖Cd−1(Hom(E,F ))) small
enough :

detζ (∆ + V ) = eQ(V ) exp

∑
n> d

2

(−1)n+1

n
TrL2

(
(∆−1V )n

) , in bosonic case (2.5)

detζ(D
∗(D +A)) = eQ(A) exp

(∑
n>d

(−1)n+1

n
TrL2

(
(D−1A)n

))
, in fermionic case (2.6)

where

Q(V ) =

∫
M
〈`, V 〉 dv +

∑
26n6[ d

2
]

(−1)n+1

n

∫
Mn

〈
Rtn,V�n

〉
dvn (2.7)

Q(A) =

∫
M
〈`, A〉 dv +

∑
26n6d

(−1)n+1

n

∫
Mn

〈
Rtn, A�n

〉
dvn (2.8)

• for ` ∈ C∞(End(E)) in bosonic case and ` ∈ C∞(Hom(E+, E−)) in fermionic case,

dv ∈ |Λtop|M , dvn ∈ |Λtop|Mn are the canonical Riemannian densities
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• Rtn is a distribution of order m on Mn extending the distributional product tn
which is well–defined on Mn \ dn, m = d − 3 in the bosonic case and m = d − 1 in

the fermionic case,

• the wave front set of Rtn satisfies the bound

WF (Rtn) ∩ T •dnM
n ⊂ N∗ (dn ⊂Mn) .

There are several consequences of the above result. The definition of Gohberg–Krein’s

regularized determinants detp, p ∈ N, which are natural generalizations of Fredholm deter-

minants for operators in the Schatten class, is recalled in subsection 3.3. In the following

corollary, we use the notion of order of an entire function and discuss its zeroes. An an-

alytic function F : A = P + C∞(Hom(E,F )) 7→ C is said to vanish on the subset of

noninvertible elements in the sense that for every V ∈ C∞ (Hom(E,F )), the entire function

z 7→ F (P + zV) has divisor {(z,mz)| ker (P + zV) 6= {0},mz = dim ker (P + zV)} and the

order of V ∈ C∞ (Hom(E,F )) 7→ F (P + V) equals ρ(F ) in the sense the following bound is

satisfied : |F (P + V) | 6 CeK‖V‖
ρ(F )
Cm for some continuous norm ‖.‖Cm on C∞ (Hom(E,F ))

and C,K > 0 independent of V.

Corollary 2.6 (Zeta determinant for non smooth, non selfadjoint perturbations). In the

notations of the above Theorem, zeta determinants are entire functions of finite order

p = [d2 ] + 1 in the bosonic case and p = d + 1 in the fermionic case on A vanishing exactly

over non invertible elements.

They extend as entire functions on non smooth, non self–adjoint perturbations

• of ∆ of regularity Cd−3(End(E)) ∩ L∞(End(E)) in the bosonic case,

• of D of regularity Cd−1(Hom(E+, E−)) in the fermionic case.

They are related to Gohberg–Krein’s regularized determinants by the following factorization

formulas :

detζ (∆ + V ) = eQ(V )detp
(
I + ∆−1V

)
, p = [

d

2
] + 1 in bosonic case (2.9)

detζ(D
∗(D +A)) = eQ(A)detp

(
I +D−1A

)
, p = d+ 1 in fermionic case (2.10)

where Q are the polynomials defined in Theorem 1.

2.0.7. Finding good determinants. We next formulate the general problem of finding renor-

malized determinants with functional properties closed to zeta determinants :

Problem 2.7 (Renormalized determinants). Under the geometric setting from paragraph 2.0.4,

set A = P+C∞(Hom(E,F )), p = deg(P ) where P = ∆, p = 2, E = F in the bosonic case and

P = D, p = 1, E = E+, F = E− in the fermionic case. An analytic function R det : A 7→ C
will be called renormalized determinant if

(1) Rdet vanishes exactly on the subset of noninvertible elements and the order of V ∈
C∞ (Hom(E,F )) 7→ Rdet (P + V) equals [dp ]+1, in particular it satisfies the bound :

|Rdet (P + V) | 6 CeK‖V‖
[ dp ]+1

Cm (2.11)
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for the continuous norm ‖.‖Cm on C∞(Hom(E,F )) where m = d− 3 in the bosonic

case, m = d− 1 in the fermionic case and C,K > 0 independent of V.

(2) For n > [dp ],

(−1)n−1

n− 1!

(
d

dz

)n
logR det(P + zV)|z=0 = TrL2

((
P−1V

)n)
. (2.12)

(3) We further impose a condition of microlocal nature on the second derivative of R det :

δV1δV2 logRdet (P + V) = TrL2

(
(P + V)−1 V1 (P + V)−1 V2

)
(2.13)

if supp(V1) ∩ supp(V2) = ∅ where the L2 trace is well–defined.

Under the identification of the second derivative δ2 logRdet with distributions in

D′(M2, Hom(E,F )�Hom(E,F )) for ‖V‖Cm small enough :

WF
(
δ2 logR det (P + V)

)
∩ T •d2

M2 ⊂ N∗
(
d2 ⊂M2

)
. (2.14)

Let us motivate the axioms from definition 2.7. Theorem 2 will show that these conditions

are optimal to describe all renormalized determinants which can be obtained by local renor-

malization. It is natural to require our determinants to vanish on noninvertible elements

since they generalize the usual Fredholm determinant. We want to minimize the complexity

of the entire function z 7→ Rdet(P + zV) hence its order. We will see in corollary 3.1 that

our condition on the order of R det is optimal and this is in some sense responsible for the

polynomial ambiguity conjectured by Quillen.

Gohberg–Krein’s determinants detp vanish exactly on non invertible elements and have

smallest possible order, but they fail to satisfy the conditions on the second derivative of

definition 2.7, hence by our main Theorem 2 they cannot be obtained from renormalization

by subtraction of local counterterms. Equations (2.12) and (2.13) are very natural since they

are reminiscent of the finite dimensional case. In the seminal work of Kontsevich–Vishik [41,

equation (1.4) p. 4], they attribute to Witten the observation that for the zeta determinant,

the following identity δ1δ2 log detζ (A) = TrL2

(
δ1AA

−1δ2AA
−1
)

holds true where δ1A, δ2A

are pseudodifferential deformations with disjoint support. This is not surprising provided

we want our determinants to give rigorous meaning to QFT functional integrals. 6 We want

to subtract only smooth local counterterms in V, this smoothness is imposed by the

conditions on the wave front set. The bound on m is also optimal, locality forces renormalized

determinants to depend on m-jets of the external potential V.

2.0.8. Determinants renormalized by subtraction of local counterterms. In order to give a

precise definition of locality, we recall the definition of smooth local functionals.

Definition 2.8 (Local polynomial functionals). A map P : V ∈ C∞(Hom(E,F )) 7→ P (V ) ∈
C is called local polynomial functional if P is smooth in the Fréchet sense and there exists

k ∈ N, Λ : V ∈ C∞(Hom(E,F )) 7−→ Λ
(
jkV

)
∈ C∞(M) ⊗C∞(M) |Λtop|M s.t. for all

6In the present paper, we take this as axiom of our renormalized determinants and the identity 2.13 follows

from a formal applications of Feynman rules.
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x ∈ M , Λ(jkV )(x) depends polynomially on k-jets of V at x and P (V ) =
∫
M Λ(jkV ). The

vector space of local polynomial functionals of degree d depending on the k-jets is denoted by

Oloc,d
(
JkHom(E,F )

)
.

We denote by C[ε−
1
2 , log(ε)] the ring of polynomials in log(ε) and inverse powers ε−

1
2 .

With the above notion of local functionals one could try to renormalize determinants as

follows. If we perturbed the elliptic operator P by a smoothing operator V ∈ Ψ−∞ then

the Fredholm determinant V 7→ detF (I + P−1V) is a natural entire function on A vanishing

over non invertible elements. However, V ∈ C∞(M,Hom(E,F )) has only order 0 hence

we would like to consider some family (Vε)ε of smoothing operators approximating V and

find some family of local polynomial functionals Pε =
∫
M Λε (.) ∈ Oloc,d

(
JkHom(E,F )

)
⊗C

C[ε−
1
2 , log(ε)] such that the limit limε→0+ exp

(
−
∫
M Λε(j

kV(x))
)

detF
(
I + P−1Vε

)
makes

sense where detF
(
I + P−1Vε

)
is well defined for ε > 0 since P−1Vε ∈ Ψ−∞. This operation

is called renormalization by subtraction of local counterterms.

2.0.9. Solution of problem 2.7. We now state the main Theorem of the present paper an-

swering Problem 2.7, the assumptions are from paragraph 2.0.4 and the distributions tn are

from definition 2.5 :

Theorem 2 (Solution of the analytical problem). A map Rdet : A 7→ C is a solution of

problem 2.7 if and only if the following equivalent conditions are satisfied :

(1) there exists Q ∈ Oloc,[ d
p

] (JmHom(E,F )) such that

V 7→ Rdet(∆ + V ) = exp (Q(V )) detζ (∆ + V ) , p = 2,m = d− 3 for bosons (2.15)

A 7→ Rdet(D +A) = exp (Q(A)) detζ (D∗(D +A)) , p = 1,m = d− 1 for fermions. (2.16)

(2) for V small enough, R det (P + V) admits the following representation :

R det (P + V) = C exp(

∫
M
〈`,V〉 dv +

∑
26n6 d

p

(−1)n+1

n

∫
Mn

〈
Rtn,V�n

〉
dvn

+
∑
d
p
<n

(−1)n+1

n
TrL2

(
(P−1V)n

)
, (2.17)

such that ` ∈ C∞(Hom(E,F )), dv ∈ |Λtop|M,dvn ∈ |Λtop|Mn the canonical Rie-

mannian densities, the distributional product tn is well–defined on Mn \ dn and Rtn
is a distribution of order m on Mn extending tn whose wave front set satisfies

the bound

WF (Rtn) ∩ T •dnM
n ⊂ N∗ (dn ⊂Mn) .

(3) Rdet is renormalized by subtraction of local counterterms. There exists a generalized

Laplacian ∆ with heat operator e−t∆ and a family Qε ∈ Oloc,[ d
p

] (JmHom(E,F ))⊗C
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C[ε−
1
2 , log(ε)] such that 7:

V 7→ Rdet (P + V) = lim
ε→0+

exp (Qε(V)) detF
(
I + e−2ε∆P−1V

)
. (2.18)

As immediate corollary of the above, we get that the groupOloc,[ d
p

] (JmHom(E,F )) of local

polynomial functionals acts freely and transitively on the set of renormalized determinants

solutions to 2.7 :

Q ∈ Oloc,[ d
p

] (JmHom(E,F )) 7→ exp (Q(V))R det (P + V) . (2.19)

Equation 2.17 shows that zeta regularized determinants, defined by purely spectral condi-

tion, admit a position space representation in terms of Feynman amplitudes and that zeta

determinants are just a particular case of some infinite dimensional family of renormalized

determinants obtained by subtraction of local counterterms.

Corollary 2.9. In particular under the assumptions of Theorem 2 and using the same no-

tations, p = deg(P ) any function R det (∆ + V ) can be represented as :

R det (∆ + V ) = exp

∫
M
〈`, V 〉 dv +

∑
26n6 d

2

(−1)n+1

n

∫
Mn

〈
Rtn, V �n

〉
dvn

 det[ d
p

]+1

(
I + P−1V

)

= exp

∫
M
〈`, V 〉 dv +

∑
26n6 d

2

(−1)n+1

n

∫
Mn

〈
Rtn, V �n

〉
dvn

 ∞∏
n=1

E[ d
p

]

(
1

λn

)

where det[ d
p

]+1 is Gohberg–Krein’s determinant, Ek(z) = (1 − z)ez+
z2

2
+···+ zk

k , k > 0 is a

Weierstrass factor and the infinite product is over the sequence {λ|dim ker (∆ + λV ) 6= 0}.

2.0.10. Renormalized determinants and holomorphic trivializations of Quillen’s line bundle.

Under the notations from paragraph 1.0.3, we denote by O(L) the holomorphic sections from

L and by O(A) holomorphic functions on A.

Theorem 3 (Holomorphic trivializations and flat connection). There is a bijection be-

tween the set of renormalized R det from Theorem 2 and global holomorphic trivialization

τ : O(L) 7→ O (A) of the line bundle L 7→ A such that

T ∈ A 7→ τ (ι∗det(T )) = R det(T ). (2.20)

The image of the canonical section ι∗det(T ) under this trivialization being exactly the entire

function R det vanishing over non invertible elements in A.

For every pair (τ1, τ2), there exists an element Λ of the additive group
(
Oloc,[ d

p
],+
)

s.t.

τ1(P + V) = exp

(∫
M

Λ(jmV(x))

)
τ2(P + V), (2.21)

7the choice of mollifier e−2ε∆ is consistent with the GFF interpretation since the covariance of the heat

regularized GFF e−ε∆φ is e−2ε∆∆−1
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for m = d − 3 (resp m = d − 1) in the bosonic (resp fermionic) case. For every choice

of renormalized Rdet, the section σ = R det−1 ι∗det defines a nowhere vanishing global

holomorphic section with canonical holomorphic flat connection ∇ s.t. ∇σ = 0.

The ambiguity group that relates all solutions of problem 2.7 is the renormalization group

of Stüeckelberg–Petermann as described by Bogoliubov–Shirkov [4] and is interpreted here

as a gauge group of the line bundle L 7→ A. Our result is a particular case of the so called

main Theorem of renormalization by Popineau–Stora [51] and studied under several aspects

by Brunetti–Fredenhagen [7] and Hollands–Wald [36, 37].

Relation with other works. The way we treat the problem of subtraction of local coun-

terterms is strongly inspired by Costello’s work [11].

Perrot’s notes [48] and Singer’s paper [63] on quantum anomalies, which played an impor-

tant role in our understanding of the topic, are in the real setting. The gauge potential A

which is used to perturb the half–Dirac operator preserves the Hermitian structure whereas

we do not impose this requirement and view our perturbations as a complex space instead.

Actually, our motivation to consider holomorphic determinants in some complexified setting

bears strong inspiration from the work of Burghelea–Haller [8, 9] and Braverman–Kappeler [5]

on finding some complex valued holomorphic version of the Ray–Singer analytic torsion.

Finally, in a nice recent paper [22], Friedlander generalized the classical multiplicative

formula detζ (∆(I + T )) = detζ (∆) detF (I + T ) when T is smoothing, in [22, Theorem

p. 4] connecting zeta determinants, Gohberg–Krein’s determinants and Wodzicki residues.

This bears a strong similarity with our Corollary 2.6 although our point of view stresses

the relation with distributional extensions of products of Green functions8 in configuration

space. Another difference with his work is that we bound the wave front of the functional

derivatives of zeta determinants which is important from the QFT viewpoint and is related

to the µlocal spectrum condition used in QFT.

Acknowledgements. We warmly thank C. Brouder, Y. Chaubet, Y. Colin de Verdière, J. Derezin-

ski, K. Gawedzski, C. Guillarmou, A. Karlsson, J. Kellendonk, M. Puchol, G. Rivière, S. Paycha,

K. Rejzner, M. Wrochna, B. Zhang for many interesting discussions, questions, advices, remarks that

helped me improve my work. We particularly thank D. Perrot for many discussions on anomalies,

determinants and Epstein–Glaser renormalization and the Clay foundation for making available the

scanned notes of Quillen’s notebook where we could find an incredible source of inspiration. I also

would like to thank my wife Tho for excellent working conditions at home and a lot of positive

motivation for me.

2.1. Notations. dv is used for a smooth density |Λtop|M on M . In the sequel, for every

pair (B1, B2) of Banach spaces, B(B1, B2) denotes the Banach space of bounded operators

from B1 7→ B2 endowed with the norm ‖.‖B(B1,B2). For any vector bundle E on M , we

denote by Ψ•(M,E) the algebra of pseudodifferential operators on the manifold M acting

on sections of the bundle E and when there is no ambiguity we will sometimes use the short

8called Feynman amplitudes in physics litterature
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notation Ψ(M), Ck(E), k ∈ N denotes continuous sections of E of regularity Ck, Hs(E), s ∈ R
denotes Sobolev sections of E endowed with the norm ‖.‖Hs(E) that we shall sometimes write

Hs, ‖.‖Hs for simplicity9 and finally Lp(E), 1 6 p 6 +∞ denotes Lp sections of E endowed

with the norm ‖.‖Lp(E). C
∞
c (U,E) are smooth sections of E compactly supported on U .

For any pair (E,F ) of bundles over M , for Cm Schwartz kernels K of operators from

Cm(E) 7→ Cm(F ) which are elements of Cm(M ×M,F � E∗), we denote by ‖K‖Cm(M×M)

their Cm norm which is not to be confused with the operator norm ‖K‖B(Cm(E),Cm(F )).

For any Hilbert space H, we denote by Ip ⊂ B(H,H) the Schatten ideal of compact

operators whose p-th power is trace class endowed with the norm ‖.‖p defined as ‖A‖p =∑
λ∈σ(A) |λ|p where the sum runs over the singular values of A.

3. Functional determinants as entire functions with given zeros.

3.1. Measures of complexity of entire functions. In this paragraph, we recall some

classical invariants of the complexity of entire functions. The order ρ(f) > 0 of an entire

function f is the infimum of all the real numbers ρ such that for some A,K > 0, for all z ∈ C
|f(z)| 6 AeK|z|

ρ
. The critical exponents of a sequence |an| → +∞, is the infimum of all

α > 0 such that
∑

n
1
|an|α < +∞. Finally the genus of f is the order of vanishing of f at

z = 0. The divisor of an entire function f is the set of zeros of f counted with multiplicity.

We recall a classical Theorem due to Hadamard on the structure of entire functions with

given zeros [55, p. 78–81], [64, Thm 5.1 p. 147] (see also [46, p. 60]):

Theorem 4 (Hadamard’s factorization Theorem). Let (an)n∈N be some sequence such that∑
n |an|−(p+1) < +∞ but

∑
n |an|−p =∞. Then any entire function f whose divisor Z(f) =

{an|n ∈ N} has order ρ(f) > p, and any entire function s.t. Z(f) = {an|n ∈ N} and ρ(f) = p

has a unique representation as :

f(z) = zmeP (z)
∞∏
n=1

Ep

(
z

an

)
(3.1)

where P is a polynomial of degree p, Ep(z) = (1 − z)ez+
z2

2
+···+ zp

p is a Weierstrass factor of

order p and m is the genus of f .

The lower bound on the order of f follows from Jensen’s formula. We give a direct

application of the above Theorem :

Corollary 3.1. Under the setting of paragraph 2.0.4, recall P ∈ Ψk(M ;E,F ) is an invertible

elliptic differential operator of order k > 0. There exists V ∈ C∞(Hom(E,F )) such that

for any entire function f whose divisor Z(f) corresponds with {z| ker(I + zP−1V ) 6= {0}},
ρ(f) > [ dk ] + 1 which proves the bound from problem 2.7 is optimal.

Proof. Since (E,F ) are isomorphic bundles, we may choose V ∈ C∞(Hom(E,F )) to be a

bundle isomorphism hence the corresponding operator is elliptic of order 0. Note that

9 when s < 0 these are distributional sections
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f(z) = 0 =⇒ −z−1 ∈ σ
(
P−1V

)
where P−1V ∈ Ψ−k(M,E) by composition hence

P−1V is a compact operator. Set B = V −1∗P ∗PV −1. By the results of Seeley [59],

the powers |P−1V |p = B−
p
2 are elliptic pseudodifferential operators in Ψkp(M,E). By

Hörmander’s version of Weyl’s law for spectral functions of positive, elliptic pseudodiffer-

ential operators [29, Thm 2.1 p. 825], the number of eigenvalues nL(B) of B less than L

grows like a symplectic volume
∫
{σ(B)(x;ξ)6L}⊂T ∗M ddxddξ ∼L→+∞ CL

d
2k . The spectral map-

ping theorem implies eigenvalues of B are of the form |z|−2 for z ∈ Z(f) i.e. eigenvalues

of P−1V , this implies for p = [ dk ] + 1 that TrL2

(
|P−1V |p

)
=
∑

z∈Z(f) |z|−p < +∞ and

TrL2

(
|P−1V |p−1

)
= TrL2

(
B

1−p
2

)
=
∑

z∈Z(f) |z|−p+1 = +∞ hence ρ(f) > [ dk ] + 1 by Theo-

rem 4. �

Both results show that the solution to the problem of finding entire functions with pre-

scribed zeros is not unique, the non unicity is due to the critical exponents of zeros which

forces the entire function to have non zero order. So there is an ambiguity relating all possible

solutions of the problem which is of the form of exp(Polynomial) by Hadamard’s factorization

Theorem.

3.2. An infinite dimensional generalization : Fredholm determinants. Now we

would like to consider the problem of finding entire functions with given zeros in the in-

finite dimensional setting. But before that, we need to introduce preliminary definitions to

deal with entire and analytic functions in infinite dimensional spaces.

3.2.1. Recollection on holomorphic functions on Fréchet spaces. In the present paper, we

always work with Fréchet spaces of smooth sections of finite rank vector bundles over some

compact manifold M . First, let us define what we mean by an entire function on a Fréchet

space. For this we start by recalling the definition of finitely analytic (also called Gâteau–

holomorphic) functions which is the weakest notion of holomorphicity in ∞–dimension [19,

p. 54 def 2.2] :

Definition 3.2 (Finitely analytic functions). Let Ω open in some Fréchet space E over C.

A function f : E 7→ C is said to be finitely analytic on Ω if for all A ∈ Ω, every B ∈ E,

z ∈ C 7→ f(A+ zB) is a holomorphic germ at z = 0.

Beware that finitely analytic maps are not necessarily continuous since any C-linear map

F : E 7→ C which is not even continuous is always finitely analytic. In the present paper,

smooth functions on Fréchet spaces will be understood in the sense of Bastiani [6, Def II.12]

as popularized by Hamilton [35] in the context of Fréchet spaces and Milnor [66] which means

smooth functions are infinitely differentiable in the sense of Fréchet and all the derivatives

DnF : U × En 7→ C are jointly continuous on U × En. We recall the notions of functional

derivatives since these will play a central role in our approach :

Definition 3.3 (Functional derivatives). Let B 7→ M be some Hermitian vector bundle of

finite rank on some smooth closed compact manifold M . For a smooth function f : V ∈
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C∞(M,B) 7→ f(V ) ∈ C where C∞(M,B) is the Fréchet space of smooth sections, the n-th

functional derivatives

δh1 . . . δhnf(V ) =
n∏
i=1

d

dti
f(V + t1h1 + · · ·+ tnhn)|t1=···=tn=0 (3.2)

is multilinear continuous in (h1, . . . , hn), hence it can be identified by the multilinear Schwartz

kernel Theorem [6, lemm III.6] with some distribution δnf(V ) in D′(Mn, B�n) s.t.

〈δnf(V ), h1 � · · ·� hn〉 = δh1 . . . δhnf(V ) (3.3)

is jointly continuous in (V ;h1, . . . , hn) ∈ C∞(M,B)n+1 [6, Thm III.10].

So we may give a definition of analytic functions as follows

Definition 3.4 (Analytic functions on Fréchet spaces). Let Ω ⊂ E be some open subset in

a Fréchet space E. A function F : Ω ⊂ E 7→ C is analytic if it is smooth in the Fréchet

sense and for every V0 ∈ Ω, the Taylor series of F converges in some neighborhood of V0
10

and F coincides with its Taylor series : F (V0 + h) =
∑∞

n=0 F
(n)
V (h, . . . , h).

This notion of analyticity is the strongest possible and Fréchet analytic functions are

automatically smooth hence C0 unlike finitely analytic functions. Our goal in this part is to

recall the proof that finitely analytic maps near A which are locally bounded are analytic

near A.

Definition 3.5 (Local boundedness). A map f is locally bounded near A if there is an open

neighborhood U ⊂ E of A and 0 6M < +∞ such that |f |U | 6M .

The proof is inspired from the thesis of Douady [20, Prop 2 p. 9] and also [19, p. 57–58].

Proposition 3.6. Let E be a Fréchet space and F : E 7→ C finitely analytic on Ω ⊂ E. If

F is locally bounded at A, in particular if on a ball B(A, r) = {B s.t. ‖B − A‖ < r} for a

continuous norm ‖.‖ on E, supB(A,r) |F | 6 M < +∞, then F is Fréchet differentiable at A

at any order and can be identified with its Taylor series near a :

F (A+H) =

∞∑
n=0

Pn(H)

where each Pn is a continuous polynomial map homogeneous of degree n, the Pn are uniquely

determined by Pn(h) = n!
2iπ

∫
γ F (A+ λh) dλ

λn=1 and
∑
‖Pn‖r̃n < +∞ for every 0 < r̃ < r.

In particular F smooth in some neighborhood of A.

Proof. This proposition is well–known when B has finite dimension and the expansion F (a+

h) =
∑

n Pn(h) is given by the formula Pn(h) = 1
2π

∫ 2π
0 F (a+ eiθh)e−inθdθ where |h| 6 r and

then we keep this formula in the infinite dimensional case. The integral is that of a continuous

function (by finite analyticity) hence is well–defined. If F is bounded by M on a ball of radius

r > 0 for the continuous norm ‖.‖ then so is Pn. To show that Pn is a homogeneous monomial,

we follow Douady’s approach by setting P̃n(h1, . . . , hn) = 1
n!∆h1 . . .∆hnPn where ∆h is the

10for the Fréchet topology
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finite difference operator ∆hP (x) = 1
2 (P (x+ h)− P (x− h)). In the finite dimensional case

P̃n is multilinear and it is the same in the infinite dimensional case since it only depends on

the restriction of Pn to some finite dimensional subspace of E. Hence Pn(h) = P̃n(h, . . . , h)

for some symmetric multilinear map P̃n. From Cauchy’s integral formula, we know that every

Pn is bounded by M when ‖h‖ 6 r which implies that |P̃n(h1, . . . , hn)| 6 nnM
n! ‖h1‖ . . . ‖hn‖

hence P̃n is continuous. From this it results that the series
∑

n Pn has normal convergence

and the proposition is proved. �

3.2.2. Spectral identities related to Fredholm determinants. We quickly recall some identities

relating the Fredholm determinant detF (I +B) for a trace class operator B : H 7→ H acting

on some separable Hilbert space H and functional traces of powers of B. These identities will

imply that detF is an example of entire function on infinite dimensional space I+ trace class

whose zeroes are exactly the non invertible operators. The Fredholm determinant detF (I+B)

is defined in [61, equation (3.2) p. 32] as detF (I + zB) =
∑∞

k=0 z
kTr(ΛkB) where ΛkB :

ΛkH 7→ ΛkH acting on the fermionic Fock space ΛkH is trace class. Using the bound

‖ΛkB‖1 6 ‖B‖1k! [61, Lemma 3.3 p. 33], it is immediate that det(I+zB) is an entire function

in z ∈ C (see also [32, Thm 2.1 p. 26]).

For any compact operator B, we will denote by (λk(B))k its eigenvalues counted with mul-

tiplicity. By [61, Theorem 3.7], the Fredholm determinant can be identified with a Hadamard

product and is related to the functional traces by the following sequence of identities :

detF (1 + zB) =
∏
k

(1 + zλk(B)) = exp

( ∞∑
m=1

(−1)m+1zmTr(Bm)

)
︸ ︷︷ ︸ (3.4)

where the term underbraced involving traces is well–defined only when |z|‖B‖1 < 1. Note

the important fact that exp
(∑∞

m=1(−1)m+1zmTrL2(Bm)
)

which is defined on the disc D =

{|z|‖B‖1 < 1} has analytic continuation as an entire function of z ∈ C and B 7→
detF (I +B) is an entire function vanishing when I +B is non invertible.

3.3. Gohberg–Krein’s determinants. Set p ∈ N and let A belong to the Schatten ideal

Ip ⊂ B(H,H). Following [61, chapter 9], we consider the operator

Rp(A) = [(I +A) exp(

p−1∑
n=1

(−1)n

n
An)− I] ∈ I1

which is trace class by [61, Lemma 9.1 p. 75] since A ∈ Ip. Then following [61, p. 75], we

define the regularized determinant as detp(I + zA) = detF (1 +Rp(zA)) where detF is the

Fredholm determinant. The quantity detp is well defined since B = Rp(A) is trace class. We

have the following :

Lemma 3.7 (Gohberg–Krein’s determinants and functional traces). For all A ∈ Ip, Gohberg–

Krein’s determinant detp(1 + zA) is an entire function in z ∈ C and is related to traces
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Tr(An) for n > p by the following formulas :

detp(1 + zA) = exp

( ∞∑
n=p

(−1)n+1zn

n
Tr(An)

)
=
∏
k

[
(1 + zλk(A)) exp

(
p−1∑
n=1

(−1)n

n
λk(A)n

)]

where the infinite product vanishes exactly when zλk(A) = −1 with multiplicity.

The product
∏
k

[
(1 + zλk(A)) exp

(∑p−1
n=1

(−1)n

n λk(A)n
)]

reads
∏
k Ep−1(−zλk(A)) where

Ep−1 is the Weierstrass factor. From the above, we deduce :

Proposition 3.8. Let (M, g) be a closed compact Riemannian manifold of dimension d,

(E,F ) a pair of isomorphic Hermitian bundles over M and P : C∞ (E) 7→ C∞ (F ) an invert-

ible elliptic operator of degree k. For any V ∈ C∞(Hom(E,F )), the series
∑

n> d
k

(−1)n+1

n Tr
((
P−1V

)n)
converges absolutely for ‖V‖L∞(Hom(E,F )) small enough and

V 7→ exp

∑
n> d

k

(−1)n+1

n
Tr
((
P−1V

)n) = det[ d
k

]+1

(
I + P−1V

)
extends uniquely as an entire function on C∞(Hom(E,F )).

Proof. Introduce some auxiliary bundle isomorphism E 7→ F which induces an elliptic in-

vertible operator U ∈ Ψ0(M,E,F ) : L2(E) 7→ L2(F ) and UP−1 ∈ Ψ−k(M,E) belongs to the

Schatten ideal I[ d
k

]+1 hence ‖UP−1‖[ d
k

]+1 < +∞. The claim then follows from Lemma 3.7

applied to A = P−1V ∈ Ψ−k(M,E) which belongs to the Schatten ideal I[ d
k

]+1 and the series

converges since the Schatten norm satisfies the estimate :

‖P−1V‖[ d
k

]+1 6 ‖U
−1‖B(L2(E),L2(F ))‖V‖B(L2(E),L2(F ))‖UP−1‖[ d

k
]+1

which can be made < 1 if ‖V‖L∞(Hom(E,F )) < ‖UP−1‖[ d
k

]+1‖U
−1‖−1
B(L2(E),L2(F ))

. �

4. Proof of Theorem 1.

We work under the setting of paragraph 2.0.4 and the zeta determinants are defined

in definitions 2.3 and 2.4. We discuss in great detail the bosonic case for detζ(∆ + V )

where V ∈ C∞(M,End(E)) and we indicate precisely the differences when we deal with the

fermionic case for detζ(∆ + D∗A) where ∆ = D∗D is a generalized Laplacian, the operator

D : C∞(E+) 7→ C∞(E−) is a generalized Dirac operator and A ∈ C∞(Hom(E+, E−)).

Both cases consider zeta determinants of a non selfadjoint perturbation of some

generalized Laplacian by some differential operator V of order 0 in the bosonic

case and V = D∗A of order 1 in the fermionic case.
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4.1. Perturbations with a gap in the spectrum. We need to consider small perturba-

tions ∆+V of some generalized Laplacian ∆ s.t. the corresponding heat semigroup e−t(∆+V )

has exponential decay. In the bosonic case, we assume that ∆ is a positive, invertible, sym-

metric generalized Laplacian hence there is δ > 0 such that σ (∆) > δ. Therefore there exists

some open neighborhood U ⊂ C∞(End(E)) of 0 such that for all small perturbations V ∈ U ,

∆ + V is invertible and σ (∆ + V ) ⊂ {Re(z) > δ
2}. Indeed if ‖V ‖L∞(End(E)) 6

δ
2 and for

Re(z) < δ
2 − ε,

〈u, (∆ + V − z)u〉 > 〈u,∆u〉 −
(
‖V ‖L∞(End(E)) +Re(z)

)
‖u‖2L2

>
(
δ − ‖V ‖L∞(End(E)) −Re(z)

)
‖u‖L2 > ε‖u‖L2

and the same estimate holds true for the adjoint ∆ + V ∗.

In the fermionic case the discussion is similar. D invertible implies that ∆ = D∗D satisfies

σ (∆) > δ > 0. If ‖A‖L∞(Hom(E+,E−))‖ 6
√
δ

2‖∆−
1
4 ‖
B(L2,H

1
2 )
‖∆−

1
4 ‖
B(H
− 1

2 ,L2)
‖D∗‖

B(H
1
2 ,H
− 1

2 )

and

Re(z) 6 δ
2 − ε then :

Re 〈u, (∆ +D∗A− z)u〉 = Re
〈

∆
1
4u,
(

∆
1
2 + ∆−

1
4D∗A∆−

1
4 − z∆−

1
2

)
∆

1
4u
〉

>
√
δ‖u‖2

H
1
2
− ‖∆−

1
4D∗A∆−

1
4 ‖
B(H

1
2 ,H

1
2 )
‖u‖2

H
1
2
−Re(z)δ−

1
2 ‖u‖2

H
1
2

>

(√
δ − ‖A‖L∞(Hom(E+,E−))‖∆−

1
4 ‖
B(L2,H

1
2 )
‖∆−

1
4 ‖
B(H−

1
2 ,L2)
‖D∗‖

B(H
1
2 ,H−

1
2 )
− Re(z)√

δ

)
‖u‖2

H
1
2

>
ε√
δ
‖u‖2

H
1
2

where ∆−
1
4D∗A∆−

1
4 ∈ Ψ0(M,E+) is bounded on H1(E+) and ‖D∗‖

B(H
1
2 ,H−

1
2 )
< +∞ by

the Calderon–Vaillancourt Theorem. It follows that σ (D∗ (D +A)) ⊂ {Re(z) > δ
2}.

4.2. Analyticity. The results of the present subsection are general enough to apply in both

bosonic and fermionic cases. First, for an analytic family (Vz)z∈C of differential operators

of order 1, let us show the analyticity of the map z 7−→ detζ (∆ + Vz). The differential

operator Az = ∆ + Vz is elliptic of order 2 whose principal symbol |ξ|2g(x) is positive definite

for ξ 6= 0 but Az is not necessarily self–adjoint when z ∈ C and depends analytically on z.

Recall we assumed ker (∆) = {0}. Set Az = ∆ + Vz, then the fundamental solution of the

heat operator e−tAz is defined by [30, Lemma 1.5.7 p. 64]. A well–known consequence of

this result is that z 7→ TrL2 (A−sz ) , Re(s) > d
2 [30, Thm 1.12.2] has analytic continuation as

meromorphic function in s without poles at s = 0, it is analytic in z near every z0 s.t.

∆+z0V invertible and when s is away from a discrete set of poles, in particular TrL2 (A−sz )

is analytic in z near s = 0.

In particular, the zeta determinant which is defined for invertible Az as z 7→ detζ (Az) =

exp
(
d
ds |s=0Tr (A−sz )

)
[30, Lemma 1.12.1] is analytic near z = 0. This shows that z 7→

detζ(∆ + Vz) is holomorphic for every holomorphic family z 7→ Vz ∈ C∞(M,End(E)).

Then combining the Hadamard parametrix construction for the heat kernel and Volterra

calculus, we next prove that both V ∈ C∞(End(E)) 7→ detζ(∆ + V ) for bosons and A ∈
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C∞(Hom(E+, E−)) 7→ detζ(∆ + D∗A) for fermions are locally bounded near V = 0 and

A = 0 respectively which implies the Fréchet analyticity near the origin of both maps by

Proposition 3.6.

4.2.1. Local boundedness and Fréchet analyticity for small V . The semigroup e−t(∆+V ) is

well–defined by the resolvent construction [30] or by the construction of [2]. The treatment

of the bosonic and fermionic cases are similar except the perturbation V has order 0 in

the bosonic case, it is a potential term in C∞(End(E)) and V = D∗A is a differential

operator of order 1 in the fermionic case and we are interested in the dependence in A ∈
C∞(Hom(E+, E−)) in the fermionic case.

Proposition 4.1. For every integer N > d
2 + 1, there exists ε,M > 0 such that

‖V ‖C2N 6 ε =⇒ |detζ(∆ + V )| 6M in the bosonic case,

‖A‖C2N+1 6 ε =⇒ |detζ(∆ +D∗A)| 6M in the fermionic case.

Therefore the maps V 7→ detζ(∆ + V ) and A 7→ detζ(∆ +D∗A) are analytic in the Fréchet

sense respectively for V and A close enough to 0.

Proof. For simplicity we give the proof in the bosonic case, the fermionic situation is al-

most verbatim the same using Lemma 4.2 . By the Hadamard–Schwinger–Fock formula, for

Re(s) > d
2 , we may relate the trace of complex powers Tr (A−s) to heat traces via the Mellin

transform as follows :

Tr
(
A−s

)
=

1

Γ(s)

∫ +∞

0
Tr
(
e−t(∆+V )

)
ts−1dt.

As we recall in Lemma 4.2, the heat kernel has an asymptotic expansion on the diagonal:

e−t(∆+V )(x, x) =
1

(4πt)
d
2

(
N−1∑
k=0

tkak(x, x;V )

)
+RN (t, x, x;V )

where each ak(x, x;V ) ∈ C∞(End(Ex)) is a polynomial homogeneous of degree k on the

(2k − 2)-jets of V and RN (t, x, x;V ) = O(t) for N > d
2 + 1 and depends analytically on

V ∈ C∞(M). The hard part is to control the analyticity of the remainder RN as a functional

of V which is done in Lemma 4.2. Now recall that we choose V is in some neighborhood U
of V = 0 s.t. σ(∆ + V ) ⊂ {Re(z) > δ > 0},∀V ∈ U . Using the spectral gap property, we

may split the integral
∫ +∞

0 Tr
(
e−t(∆+V )

)
ts−1dt in two parts :

∫ +∞
0 Tr

(
V e−t(∆+V )

)
ts−1dt =∫ 1

0 Tr
(
e−t(∆+V )

)
ts−1dt+

∫ +∞
1 Tr

(
e−t(∆+V )

)
ts−1dt. We have the upper bound for t > 1,

|e−t(∆+V )(x, y)| 6 sup
x∈M
‖e−

1
4

(∆+V )δx‖2L2‖e−(t− 1
2

)(∆+V )‖B(L2,L2) 6 e
−(t− 1

2
) δ

2 sup
x∈M
‖e−

1
4

(∆+V )δx‖2L2

where supx∈M ‖e−
1
4

(∆+V )δx‖2L2 is locally bounded in V as proved in Lemma 4.2. This shows

immediately that the integral
∫ +∞

1 Tr
(
e−t(∆+V )

)
ts−1dt depends holomorphically on s ∈ C

uniformly in V ∈ U . Therefore the heat kernel expansion implies that

Tr
(
A−s

)
=

∑
06k6 d

2

1

Γ(s)

(∫
x∈M ak(x, x;V )dv(x)

)
(4π)

d
2 (s+ k − d

2)
+ holomorphic at s = 0
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where the holomorphic part is uniformly bounded in V ∈ C∞(M) by the bounds from

Lemma 4.2 on the remainder RN . This implies that log detζ(∆ + V ) decomposes as∑
16k6N−1,k 6= d

2

(∫
x∈M ak(x, x;V )dv(x)

)
(4π)

d
2 (k − d

2)
+

∫ 1

0

(∫
M
RN (t, x, x;V )dv(x)

)
t−1dt+

∫ ∞
1

Tr
(
e−t(∆+V )

)
t−1dt

where RN (t, x, y;V ) = O(tN−
d
2
−m

2 ) is bounded when ‖V ‖C2N 6M < +∞ for any N > d
2 +1,

thus V 7→
∫ 1

0

(∫
M RN (t, x, x;V )dv(x)

)
t−1dt is locally bounded and V 7→ log detζ(∆ + V ) is

Fréchet analytic in V near V = 0 and its boundedness is controlled by ‖V ‖C2N for all

N > d
2 + 1. �

Lemma 4.2. We use the notations from paragraph 2.0.4. Let (M, g) be a Riemannian

manifold of dimension d and ρ the injectivity radius of (M, g). In the fermionic case V =

D∗A and we are interested by the dependence in A. For every N > d
2 + 1 for m some even

positive integer, the heat kernel satisfies the following identity :

e−t(∆+V )(x, y) =
1

(4πt)
d
2

(
N∑
k=0

exp

(
−d2(x, y)

4t

)
ψ(d2(x, y))tkak(x, y;V )

)
+RN (t, x, y, V )

where each ak(., .;V ) ∈ C∞(E � E∗) is a polynomial of degree k on the (2k − 2)-jets of V

(resp (2k − 1)-jets of A) in the bosonic (resp fermionic) case, d2 is the square Riemannian

distance function, ψ ∈ C∞c (R>0) is a cut–off function satisfying ψ(u) = 1 when u 6 ρ2

9

and ψ(u) = 0 when u > ρ2

4 . The norm ‖RN (t, ., .;V )‖Cm(M×M) of the remainder (resp

‖RN (t, ., .;D∗A)‖Cm(M×M) ) remains bounded when ‖V ‖C2N (resp ‖A‖C2N+1) is bounded.

In particular, the Cm norm of the heat kernel ‖e−
1
2

(∆+V )‖Cm(M×M) is locally bounded in

V where the boundedness is controlled by the C2N norm for every N > d+m
2 for m some even

positive integer.

Proof. We use the existence of an approximate heat kernel kN (t, x, y) which is supported

near the diagonal as follows :

kN (t, x, y) =
N∑
k=0

exp
(
−d2(x,y)

4t

)
(4πt)

d
2

ψ(d2(x, y))ak(x, y;V )tk

where ψ is a cut–off function ψ = 1 if t 6 ρ2

9 and ψ vanishes when t > ρ2

4 where ρ is the

injectivity radius of our Riemannian manifold M . We recall the proof that every ak(x, y;V ) is

a polynomial functional in finite jets of the perturbation V as in the proof of [2, Lemma 2.49

p. 98]. In fact the ak ∈ C∞(E�E∗) solve the following hierarchy of transport equations [56,

p. 102] 11 :

∇r d
dr
ak + (k +

r

4

d log(θ)

dr
)ak = −(∆ + V )ak−1, k > 1, θ = det(gij)

with a0(x, x) = IdEx , r ddr is the radial vector field and every ak smooth when x = y.

Immediately this implies that a0 does not depend on V , a1 is linear in j0V in the bosonic

11see also [2, Thm 2.26 p. 83] where the equations differ since they work with half–densities
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case. In the fermionic case V = D∗A, a0 does not depend on A, a1 is linear in j1A, a2 is

polynomial of degree 2 in j3A. By induction, ak, k > 2 is a polynomial of degree k on the

(2k−2)-jets (resp (2k−1)-jets) of V (resp A) in the bosonic (resp fermionic) case. It follows

that the approximate heat kernel kN (t, x, y;V ) depends polynomially on the (2N −2)-jets of

V (resp (2N − 1)-jets of A) of degree N in the bosonic (resp fermionic) case.

By [2, Theorem 2.29 ], kN (t, ., .;V ) is an approximation of the identity in the sense that

for every even m ∈ N, set KN (t)s(x) =
∫
y∈M kN (t, x, y;V )s(y)dv(y). Then ‖KN (t)s −

s‖Cm → 0 when t → 0+. There exists C̃m, T > 0 such that ∀t ∈ [0, T ], ‖KN (t)s‖Cm 6
C̃m (1 + ‖V ‖C2N−2)N ‖s‖Cm in the bosonic case and ‖KN (t)s‖Cm 6 C̃m (1 + ‖A‖C2N−1)N ‖s‖Cm
in the fermionic case.

Following [2, p. 77], set Rt = ( ddt +∆+V )KN (t) then we know by the proof of [2, Theorem

2.29 ] and by construction of kN that ‖∂kt Rt‖Cm(M×M) 6 Cm (1 + ‖V ‖C2N )N+1 tN−
d
2
−k−m

2 in

the bosonic case and ‖∂kt Rt‖Cm(M×M) 6 Cm (1 + ‖A‖C2N+1)N+1 tN−
d
2
−k−m

2 in the fermionic

case for some positive even integer m > 2 and some constant Cm which does not depend on

V . Note by construction that Rt is a polynomial on the 2N -jets of V (resp (2N + 1)-jets of

A) of degree N + 1 in the bosonic (resp fermionic) case.

Choose N > d+m
2 for even m > 2. The definition of the composition ? in the Volterra

calculus [33, Def 2.5] reads :

A ? B(t, x, y) =

∫ t

0

(∫
z∈M

A(t− s, x, z)B(s, z, y)dv(z)

)
ds.

Using the Volterra calculus, we have the following exact relation between the heat ker-

nel k(t, x, y;V ) and the approximate solution kN (t, x, y;V ) : k =
∑∞

k=0(−1)kkN ? R?k.

For every k ∈ N, each term kN ? R?k is a polynomial in the 2N -jets of V (resp 2N + 1

of A) of degree k(N + 1) + N . Then by [2, Lemma 2.21] we have the following bound

‖R∗k+1(t, ., .)‖Cm(M×M) 6 Ck+1
m (1 + ‖V ‖C2N )(N+1)(k+1) t(k+1)(N− d

2
)−m

2 Vol(M)k t
k

k! . Combin-

ing with the fact that (KN (t))t∈[0,T ] is bounded in B (Cm(M), Cm(M)) uniformly in t ∈ [0, T ]

for every m ∈ N, we obtain in the bosonic case :

‖KN ? R?k‖Cm(M×M) 6 C̃mC
k
m (1 + ‖V ‖C2N )(N+1)(k+1) tk(N− d

2
)−m

2 Vol(M)k−1 tk−1

k − 1!
,

in the fermionic case :

‖KN ? R?k‖Cm(M×M) 6 C̃mC
k
m (1 + ‖A‖C2N+1)(N+1)(k+1) tk(N− d

2
)−m

2 Vol(M)k−1 tk−1

k − 1!
,

and therefore the series defining RN (t, ., .;V ) =
∑∞

k=1KN ? R?k satisfies :

‖RN (t, ., .;V )‖Cm(M×M) 6
∞∑
k=1

C̃mC
k
m (1 + ‖V ‖C2N )(N+1)(k+1) tk(N− d

2
)−m

2 Vol(M)k−1 tk−1

k − 1!

in the bosonic case and

‖RN (t, ., .;D∗A)‖Cm(M×M) 6
∞∑
k=1

C̃mC
k
m (1 + ‖A‖C2N+1)(N+1)(k+1) tk(N− d

2
)−m

2 Vol(M)k−1 tk−1

k − 1!

in the fermionic case where both series converge absolutely in their respective norms. �
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4.3. Functional derivatives. Inspired by the nice exposition in Chaumard’s thesis [10,

p. 31-32], we calculate the derivatives in z of log detζ (∆ + zV ) near z = 0 and we find

in the bosonic case that for n > d
2 , the derivatives of order n of log detζ(∆ + V ) equals

(−1)n−1(n− 1)!TrL2

(
(∆−1V )n

)
where the L2–trace is well–defined, in the fermionic case a

similar result holds true for n > d.

We introduce a method which allows to simultaneously calculate the functional derivatives

of log detζ and bound the wave front set of their Schwartz kernels. For any analytic family

(Vt)t∈Rn of perturbations, setting At = ∆ + Vt we know that Tr(∆ + Vt)
−s is holomorphic

near s = 0 and depends smoothly on t = (t1, . . . , tn) ∈ Rn, and satisfies the variation

formula [30, d) Thm 1.12.2 p. 108] :

d

dti
Tr
(
A−st

)
= −sTr

(
dV

dti
A−s−1
t

)
, i ∈ {1, . . . , n} (4.1)

which is valid away from the poles of the analytic continuation in s of TrL2

(
A−st

)
hence

the above equation holds true near s = 0. The holomorphicity of Tr(∆ + Vt)
−s implies

the Laurent series expansion Tr(∆ + Vt)
−s =

∑∞
k=0 ak(Vt)s

k near s = 0. By definition

log detζ(∆ + Vt) = − d
ds |s=0Tr(∆ + Vt)

−s which implies that

d

dti
log detζ(∆ + Vt) = − d

dti

d

ds
|s=0Tr(∆ + Vt)

−s = −da1(Vt)

dti

= − d

ds
|s=0

∞∑
k=0

dak(Vt)

dti
sk = − d

ds
|s=0

d

dti
Tr(∆ + Vt)

−s =
d

ds
|s=0sTr

(
dV

dti
A−s−1
t

)
.

Thus for higher derivatives, using equation (4.1), we immediately deduce that

d

dt1
. . .

d

dtn+1
log detζ(∆ + Vt) =

d

ds
|s=0s

d

dt1
. . .

d

dtn
Tr

(
dVt
dtn+1

A−s−1
t

)
= FP |s=0

d

dt1
. . .

d

dtn
Tr

(
dVt
dtn+1

A−s−1
t

)
where the finite part FP of a meromorphic germ at s = 0 is defined to be the constant term

in the Laurent series expansion about s = 0.

So specializing the above identity to the family t ∈ Rn 7→ V + t1V1 + · · · + tn+1Vn+1 we

find a preliminary formula for the functional derivatives of log detζ for bosons :

δV1 . . . δVn+1 log detζ(∆ + V ) = FP |s=0Tr
(
δV1 . . . δVn (∆ + V )−s−1 Vn+1

)
, (4.2)

and for fermions

δA1 . . . δAn+1 log detζ(∆ +D∗A0) = FP |s=0Tr
(
δA1 . . . δAn (∆ +D∗A0)−s−1D∗An+1

)
.

At this level of generality the formulas in both bosonic and fermionic cases are very similar

just replacing V by D∗A gives the fermionic formulas. To calculate more explicitely the

functional derivatives on the r.h.s of equation 4.2, we shall study in more details the analytic

map V 7→ (∆ + V )−s−1 in both bosonic and fermionic situations.
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4.3.1. From the heat operator e−t(∆+V ) to (∆ + V )−s−1 as analytic functions of V . Assume

∆ is a generalized Laplacian, not necessarily symmetric, s.t. σ (∆) ⊂ {Re(z) > δ > 0}.
By Duhamel formula, the heat operator e−t(∆+V ) can be expressed in terms of e−t∆ as the

Volterra series :

e−t(∆+V ) =

∞∑
k=0

(−1)k
∫
t∆k

e−(t−tk)∆V . . . V e−t1∆ (4.3)

where the series converges absolutely in B
(
L2, L2

)
since in the bosonic case, we have the

bound

‖
∫
t∆k

e−(t−tk)∆V . . . V e−t1∆‖B(L2,L2) 6 e
−tδ

tk‖V ‖kB(L2,L2)

k!
.

In the fermionic case, the convergence is slightly more subtle. We start from the bound

Lemma 4.3. Assume that ∆ = D∗ (D +A0) ∈ A is a generalized Laplacian s.t. σ (∆) ⊂
{Re(z) > δ > 0}. For any differential operator P of order 1,

‖e−t∆P‖B(L2,L2) 6 Ct
− 1

2 e−
t
2
δ. (4.4)

Proof. Assume that ∆ = D∗ (D +A0) ∈ A is a generalized Laplacian s.t. σ (∆) ⊂ {Re(z) >
δ > 0} hence ∆ is not necessarily self–adjoint. As recalled in Lemma 4.2, the asymptotic ex-

pansion of the heat kernel has the form e−t∆(x, y) =
∑ d

2
−1

k=0
ak(x,y)

(4π)
d
2
tk−

d
2 e−

d2(x,y)
4t ψ(d2(x, y)) +

R(t, x, y) where ‖R(t, x, y)‖C1(M×M) = O(t−
1
2 ). From the observation that ‖e−t∆P‖B(L2,L2) =

‖P ∗e−t∆∗‖B(L2,L2) where ∆∗ is also a generalized Laplacian satisfying the same assumptions

as ∆, it is the same to study e−t∆P and Pe−t∆ for P a first order differential operator.

Note that the kernel of Pe−t∆ is obtained by differentiating the heat kernel. In the calcu-

lation, we encounter terms of the form ∂xie
−d2(x,y)

4t = O
(
|x−y|

2t e−
d2(x,y)

4t

)
= O(t−

1
2 e−

d2(x,y)
4t )

using d2(x, y) = gµν(xµ − yµ)(xν − yν) + O
(
|x− y|3

)
by [14, Lemma 5.2 p. 23]. Hence

Pe−t∆(x, y) = K(t, x, y) has the form

K(t, x, y) = t−
d+1

2 A(t, x, y) + t−
1
2B(t, x, y)

where supt∈[0,1] ‖B(t, ., .)‖C0(M×M) < +∞ and |A(t, x, y)| 6 P (t)e−
d2(x,y)

4t where P is polyno-

mial in t. Then the key idea is to note that we can localize the study of K on the diagonal.

If we let χ ∈ C∞(M ×M), 0 6 χ 6 1 to be any cut–off function which equals 1 near the

diagonal d2 ⊂M×M then by the fast decay off–diagonal ‖K(t, ., .)(1−χ)‖C0(M×M) = O(t∞)

hence

ϕ ∈ L2(E) 7→
∫
y∈M

K(t, ., y)(1− χ)ϕ(y)dv(y) ∈ L2(E)

is bounded uniformly in t ∈ [0, 1]. In local coordinates near (p, p) ∈ U × U ⊂ M ×M , let

ψ ∈ C∞c (U × U,R>0) be a cut–off function where supp (ψ) ⊂ {|x − y| 6 ε, y ∈ U}. By

choosing U small enough near p and by the above discussion, we know that |K(t, x, y)| 6
C1t
− d+1

2 e−
K|x−y|2

t +Mt−
1
2 for all (t, x, y) ∈ [0, 1]×U ×U for some C1 = supt∈[0,1] P (t),M =

sup(t,x,y)∈[0,1]×M2)B(t, x, y) and K = a
4 since the Riemannian distance satisfies the following
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lower bound w.r.t. the Euclidean distance a|x−y|2 6 d2(x, y) for all (x, y) ∈ U ×U for some

a > 0 as in the proof of [14, Lemma 5.3]. Note that both :

sup
y∈Rd

t
1
2

∫
x∈Rd

|K(t, x, y)|ψ(x, y)ddx, and sup
x∈Rd

t
1
2

∫
y∈Rd

|K(t, x, y)|ψ(x, y)ddy (4.5)

are bounded uniformly in t ∈ [0, 1] since

sup
y∈U

t
1
2

∫
x∈Rd

t−
d+1

2 |K(t, x, y)|ψ(x, y)ddx

6 sup
y∈U

(
M

∫
Rd
ψ(x, y)ddx+

∫
x∈Rd

C1e
−K|x−y|2ψ(

√
t(x− y) + y, y)ddx

)
< +∞

where the r.h.s is bounded uniformly in t ∈ [0, 1]. It follows that for every U ⊂ M and ψ ∈
C∞c (U×U,R>0) as above, the inequalities 4.5 imply that the family of operators ϕ ∈ L2(E) 7→
t

1
2

∫
M K(t, ., y)ψ(., y)ϕ(y)dv(y) ∈ L2(E) is bounded uniformly in t ∈ [0, 1] by Schur’s test [68,

Prop 5.1 p. 573]. Since open subsets of the form U × U cover the diagonal d2 ⊂M ×M , we

may extract a finite subcover ∪i∈IUi×Ui of d2 and a partition of unity (ψi)i∈I subordinated

to the subcover. Then the finite sum t
1
2
∑

i∈I K(t, ., .)ψi(., .) defines a bounded family of

operators on L2(E) which implies for the moment that supt∈[0,1] t
1
2 ‖Pe−t∆)‖B(L2,L2) 6 C3.

To conclude use the relation ‖e−t∆‖B(L2,L2) 6 ‖e−
t
2

∆‖2B(L2,L2) 6 e
− t

2
δC3

√
2t−

1
2 for t 6 1 and

‖e−t∆‖B(L2,L2) 6 e
−tδ when t > 1 which implies the claim for some constant C which can be

chosen larger than C3

√
2. �

Therefore setting V = D∗A, we find that the series on the r.h.s of identity (4.3) converges

absolutely in B
(
L2, L2

)
by the bound

‖
∫
t∆k

e−(t−tk)∆D∗A . . .D∗Ae−t1∆‖B(L2,L2) 6 ‖A‖kB(L2(E+),L2(E−))e
− t

2
δCk

∫ t

0
|t− tk|−

1
2 . . .

∫ t2

0
|t1|−

1
2dt1 . . . dtk

= ‖A‖kB(L2(E+),L2(E−))e
− t

2
δ (k + 1)CktkΓ(1

2)k+1

Γ(k+3
2 )

,

where C is the constant of Lemma 4.3 and the r.h.s. is the general term of some convergent

series by the asymptotic behaviour of the Euler Γ function 12.

Furthermore using the Hadamard–Fock–Schwinger formula, for Re(s) > 0, we find that

(∆ + V )−s−1V =
∞∑
k=0

(−1)k

Γ(s+ 1)

∫ ∞
0

ts
∫
t∆k

e−(t−tk)∆V . . . V e−t1∆V dt for bosons,

(∆ +D∗A)−s−1D∗A =
∞∑
k=0

(−1)k

Γ(s+ 1)

∫ ∞
0

ts
∫
t∆k

e−(t−tk)∆D∗A . . .D∗Ae−t1∆D∗Adt for fermions,

12Rewrite
∫ t

0
|t − tk|−

1
2 . . .

∫ t2
0
|t1|−

1
2 dt1 . . . dtk =

∫
{u1+···+uk+1=t}

∏k+1
i=1 u

− 1
2

i dσ, dσ measure on the sim-

plex {u1 + · · · + uk+1 = t}. Note that
∫
u1+···+uk+1=t

∏k+1
i=1 u

− 1
2

i dσ = d
dt

∫
{u1+···+uk+16t}

∏k+1
i=1 u

− 1
2

i dui =

d
dt

tk+1Γ( 1
2

)k+1

Γ( k+3
2

)
following a beautiful identity due to Dirichlet
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where both series converge absolutely in V ∈ B
(
L2(E), L2(E)

)
(respA ∈ B(L2(E+), L2(E−)))

by the above bounds since we have exponential decay in t.

From the above we know that

Lemma 4.4 (Functional derivatives of log detζ). Following the notations from definitions
(2.4) and (2.3). Let M be a smooth, closed, compact Riemannian manifold of dimension
d, and ∆ (resp ∆ = D∗D) some generalized Laplacian acting on E (resp E+) s.t. σ (∆) ⊂
{Re(z) > δ > 0} for bosons (resp fermions). The functional derivatives of log detζ satisfy

the following identities. For bosons, for every (V1, . . . , Vk+1) ∈ L∞(M,End(E))k+1,

1

k!
δV1 . . . δVk+1

log detζ(∆ + V )|V=0 = FP |s=0
(−1)k

Γ(s+ 1)

∫
[0,∞)k+1

(

k+1∑
e=1

ue)
sTr

(
e−uk+1∆V1 . . . e

−u1∆Vk+1

) k+1∏
e=1

due.

For fermions, for every (A1, . . . , Ak+1) ∈ L∞(M,Hom(E+, E−))

1

k!
δA1

. . . δAk+1
log detζ(∆ +D∗A)|A=0 = FP |s=0

(−1)k

Γ(s+ 1)

∫
[0,∞)k+1

(

k+1∑
e=1

ue)
sTr

(
e−uk+1∆D∗A1 . . . e

−u1∆D∗Ak+1

) k+1∏
e=1

due.

We want to determine more explicitely the above functional derivatives. Our next task is

to make sense and bound integrals of the form

Tr(

∫
[0,∞)k+1

(

k+1∑
e=1

ue)
se−uk+1∆V1 . . . e

−u1∆Vk+1

k+1∏
e=1

due) = I(s, V1, . . . , Vk+1)

for s near 0.

As in [14], the strategy relies on methods from quantum field theory : using the symmetries

of the integrand by permutation of variables, we integrate on a simplex {uk+1 > · · · > u1 > 0}
called Hepp’s sector :∫

[0,∞)k+1

(
k+1∑
e=1

ue)
se−uk+1∆V . . . e−u1∆V

k+1∏
e=1

due

= (k + 1)!

∫
{uk+1>···>u1>0}

(u1 + · · ·+ uk+1)se−uk+1∆V . . . e−u1∆V du1 . . . duk+1

We will show that the only divergence is in the variable uk+1. In the next definition, we cut

the integral in two parts, uk+1 > 1 and uk+1 6 1.

Definition 4.5 (Decomposition). Under the assumptions of Lemma 4.4. We set

I(s, V1, . . . , Vk+1) =

∫
[0,∞)k+1

(
k+1∑
e=1

ue)
sTr

(
e−uk+1∆V1 . . . e

−u1∆Vk+1

) k+1∏
e=1

due (4.6)

that we shall decompose in two pieces

I(s;V1, . . . , Vk+1) = S(s;V1, . . . , Vk+1) +R(s;V1, . . . , Vk+1) (4.7)
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where

R(s;V1, . . . , Vk+1) = (k + 1)!

∫
{uk+1>···>u1>0,uk+1>1}

(

k+1∑
e=1

ue)
sTr

(
e−uk+1∆V1 . . . e

−u1∆Vk+1

) k+1∏
e=1

due,

(4.8)

and

S(s;V1, . . . , Vk+1) = (k+1)!

∫
{1>uk+1>···>u1>0}

(

k+1∑
e=1

ue)
sTr

(
e−uk+1∆V1 . . . e

−u1∆Vk+1

) k+1∏
e=1

due. (4.9)

We use the above decomposition for both bosons and fermions where (Vi = D∗Ai, Ai ∈
C∞(Hom(E+, E−)))k+1

i=1 for fermions. The function S (resp R) is the singular (resp regular)

part of I. We will later deal with the singular part S using the heat calculus of Melrose [45,

Chapter 7] [33, 12]. We shall first show that the regular part R has analytic continuation as

holomorphic function in s on the whole complex plane.

Lemma 4.6. Following the notations from definitions (2.4) and (2.3). Let M be a smooth,

closed, compact Riemannian manifold of dimension d, and ∆ (resp ∆ = D∗D) some gen-

eralized Laplacian acting on E (resp E+) s.t. σ (∆) ⊂ {Re(z) > δ > 0} for bosons (resp

fermions). For every (V1, . . . , Vk+1) ∈ C∞(End(E))k+1 in the bosonic case and for ev-

ery (A1, . . . , Ak+1) ∈ C∞(Hom(E+, E−)) where V1 = D∗A1, . . . , Vk+1 = D∗Ak+1 in the

fermionic case, the regular part R(s;V1, . . . , Vk+1) has analytic continuation as a holomor-

phic function of s ∈ C.

Proof. For p > d and B ∈ B(L2, Hp), B is trace class and satisfies the simple bound

|TrL2(B)| 6 C‖B‖B(L2,Hp) [21, Prop B 20]. Hence in the bosonic case,

|TrL2

(
e−uk+1∆V1 . . . e

−u1∆Vk+1

)
| 6 ‖e−

1
2

∆‖B(L2,Hp)‖e−(uk+1− 1
2

)∆‖B(L2,L2)

k+1∏
i=1

‖Vi‖B(L2,L2)

6 e−(uk+1− 1
2

)δ‖e−
1
2

∆‖B(L2,Hp)

k+1∏
i=1

‖Vi‖B(L2,L2)

the integrand has exponential decay which ensures the holomorphicity.

In the fermionic case where (Vi = D∗Ai, Ai ∈ C∞(Hom(E+, E−)))k+1
i=1 , the bound reads :

|TrL2

(
e−uk+1∆V1 . . . e

−u1∆Vk+1

)
|

6 ‖e−
1
2

∆‖B(L2,Hp)‖e−(uk+1− 1
2

)∆D∗‖B(L2,L2)

k∏
i=1

‖e−ui∆D∗‖B(L2,L2)

k+1∏
i=1

‖Ai‖B(L2,L2)

6
√

2Ck+1‖e−
1
2

∆‖B(L2,Hp)e
−(

uk+1
2
− 1

4
)δ

k∏
i=1

u
− 1

2
i

k+1∏
i=1

‖Ai‖B(L2,L2)

where C is the constant from Lemma 4.3, ‖e−
1
2

∆‖B(L2,Hp) < +∞ since the heat kernel is

smoothing and the r.h.s has exponential decay in uk+1 which ensures holomorphicity. �

It remains to deal with the term S(s;V1, . . . , Vk+1) involving the integral for uk+1 ∈ [0, 1].
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4.3.2. The tadpole case when k+ 1 = 1. In this simple case, for the bosonic case, we directly

use the diagonal asymptotic expansion of the heat kernel [30, Lemma 1.8.2] e−t∆(x, x) ∼∑∞
k=0

ak(x,x)tk−
d
2

(4π)
d
2

which yields FP |s=0
1

Γ(s+1)

∫ +∞
0 usTr

(
e−u∆V

)
du = Tr

(
e−∆∆−1V

)
+
∫ 1

0 dt
∫
M rN+1(t, x, x)V (x)dv+

∑N
k=0,k 6= d

2
−1

(
∫
M ak(x,x)V (x)dv)

(4π)
d
2 (s+1+k− d

2 )
− Γ′(1)

(4π)
d
2

(∫
M a d

2
−1(x, x)V (x)dv

)
.

This means that FP |s=0
1

Γ(s+1)

∫ +∞
0 usTr

(
e−u∆V

)
du =

∫
M 〈`, V 〉 dv where ` ∈ C∞ (End(E))

and dv ∈ |Λtop|M . A similar result holds true in the fermionic case where we find that

FP |s=0
1

Γ(s+1)

∫ +∞
0 usTr

(
e−u∆D∗A

)
du =

∫
M 〈`, A〉 dv where ` ∈ C∞(Hom(E−, E+)) and

dv ∈ |Λtop|M .

4.3.3. When k + 1 > d
2 in the bosonic case and k + 1 > d in the fermionic case. We use the

formalism of the heat calculus of Melrose as exposed in the work of Grieser [33] (see also [67,

p. 62] for related construction) whose notations are adopted. We start from the fact that in

local coordinates, e−t∆(x, y) = t−
d
2 Ã(t, x−y√

t
, y) where Ã ∈ C∞

(
[0,∞) 1

2
× Rd × U,E � E∗

)
since the heat kernel is an element in Ψ−1

H (M,E) [33, definition 2.1 p. 6]. Then we note

that for k + 1 > d
2 , the k + 1-fold composition K ? · · · ? K belongs to Ψ−k−1

H (M,E) by the

composition Theorem in the heat calculus [33, Proposition 2.6 p. 8 ] and hence this means

for every p ∈M , there are local coordinates U 3 p s.t. :

K?(k+1)(t, x, y) = t−
d+2

2
+(k+1)Ã(t,

x− y√
t
, y)

where Ã ∈ C∞
(

[0,∞) 1
2
× Rd × U,E � E∗

)
by definition of the elements in the heat calculus

Ψ•H (M,E). Therefore by definition of ?, we find :

S(s;V1, . . . , Vk+1) =

∫ 1

0
ts
∫
t∆k

Tr
(
e−(t−tk)∆V . . . V e−t1∆V

)
dt =

∫ 1

0
ts
(∫

M

(
K?k+1

)
(t, x, x)dv

)
dt

where
∫ 1

0 t
s
(
K?k+1

)
(t, x, x)dt =

∫ 1
0 t

s− d+2
2

+(k+1)Ã(t, 0, x)dt in local coordinates on M and

the r.h.s is Riemann integrable in t near s = 0. Hence by Fubini, the term S is holomorphic

near s = 0 and given by absolutely convergent integrals.

In the fermionic case, we start from the fact that in local coordinates, e−t∆(x, y) =

t−
d
2 Ã(t, x−y√

t
, y) where Ã ∈ C∞

(
[0,∞) 1

2
× Rd × U,E+ � E∗+

)
. From the observation that

Dyit
− d

2 Ã(t,
x− y√

t
, y) = t−

d+1
2 (yi − xi)

(
DXiÃ

)
(t,

x− y√
t
, y) + t−

d
2

(
DyiÃ

)
(t,

x− y√
t
, y),

we deduce that K = e−t∆D∗A ∈ Ψ
− 1

2
H (M,E+). Then for k + 1 > d, by composition in the

heat calculus, we find that :

S(s;D∗A1, . . . , D
∗Ak+1) =

∫ 1

0
ts
∫
t∆k

Tr
(
e−(t−tk)∆D∗A . . . e−t1∆D∗A

)
dt

=

∫ 1

0
ts
(∫

M

(
K?k+1

)
(t, x, x)dv

)
dt
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where
∫ 1

0 t
s
(
K?k+1

)
(t, x, x)dt =

∫ 1
0 t

s− d+2
2

+ k+1
2 Ã(t, 0, x)dt in local coordinates and the r.h.s

is Riemann integrable in t near s = 0. Hence by Fubini, the term S is holomorphic near

s = 0 and given by absolutely convergent integrals.

In both cases, we find that lims→0 I (s;V1, . . . , Vk+1) =
∫

[0,∞)k+1 Tr
(
e−uk+1∆V1 . . . e

−u1∆Vk+1

)∏k+1
e=1 due

where the right hand side is absolutely convergent.

4.3.4. Functional derivatives with disjoint supports. Assume (V1, . . . , Vk+1) are such that

supp (V1) ∩ · · · ∩ supp (Vk+1) = ∅. Observe that the function pt : ξ ∈ R 7→ e−t|ξ|
2

de-

fines a family (pt)t∈[0,+∞) of symbols in S0
1,0 (R) such that pt →

t→0
1 in S0

1,0 (R) where

p ∈ S0
1,0 (R) iff |∂jξp(ξ)| 6 Cj (1 + |ξ|)−j [69, Lemm 1.2 p. 295]. By a result of Strichartz [69,

Thm 1.3 p. 296], pt(
√

∆) = e−t∆ →
t→0+

Id in Ψ0
1,0(M,E) which implies that the family

(e−t∆Vi)t∈[0,1] defines a bounded family of pseudodifferential operators in Ψ0
1,0(M,E)

whose wave front set is uniformly controlled in T ∗supp(Vi)
M in the sense that for every

pair of cut–off functions (χ1, χ2) ∈ C∞(M)2, the family
(
χ2e
−t∆Viχ1

)
t∈[0,+∞)

is bounded

in Ψ−∞(M,E) 13 if supp(Vi) ∩ supp(χ1) ∩ supp(χ2) = ∅, otherwise (χ2e
−t∆Viχ1)t∈[0,+∞)

is bounded in Ψ0
1,0(M,E). This implies that the family e−(t−tk)∆Vk+1 . . . V2e

−t1∆V1, for

{0 6 t1 6 . . . tk 6 t 6 1} is bounded in Ψ−∞(M,E) by the condition on the support of

(Vi)
k+1
i=1 . Finally,

∫
t∆k

Tr
(
e−(t−tk)∆Vk+1 . . . V2e

−t1∆V1

)
= O(1) and

lim
s→0

I(s, V1, . . . , Vk+1) = TrL2

(
∆−1V1 . . .∆

−1Vk+1

)
where the L2-trace on the r.h.s is well–defined since ∆−1V1 . . .∆

−1Vk+1 ∈ Ψ−∞ (M,E).

Hence, for every (k+1)-uple of open subsets (U1, . . . , Uk+1) s.t. U1∩· · ·∩Uk+1 = ∅, the multi-

linear map (V1, . . . , Vk+1) ∈ C∞c (U1, End(E))×· · ·×C∞c (Uk+1, End(E)) 7→ lims→0
I(s;V1,...,Vk+1)

Γ(s+1) =

Tr
(
∆−1V1 . . .∆

−1Vk+1

)
is multilinear continuous and

(V1, . . . , Vk+1) ∈ C∞(End(E))k+1 7→ FP |s=0
I(s;V1, . . . , Vk+1)

Γ(s+ 1)

coincides with the functional derivative (−1)k

k! δV1 . . . δVk+1
log detζ(∆+V ) of the analytic func-

tion log detζ on C∞(End(E)). Observe that Mk+1 \ dk+1 is covered by open subsets of the

form U1×· · ·×Uk+1 s.t. U1∩· · ·∩Uk+1 = ∅. By the multilinear Schwartz kernel 3.3, the above

multilinear map is represented by a distribution Rtk+1 ∈ D′(Mk+1, End(E)�k+1) which co-

incides with the product tk+1 = G(x1, x2) . . .G (xk+1, x1) ∈ D′(Mk+1 \ dk+1, End(E)�k+1)

since Tr
(
∆−1V1 . . .∆

−1Vk+1

)
= 〈tk+1, V1 � · · ·� Vk+1〉 for supp(V1) ∩ · · · ∩ supp(Vk+1) = ∅

and 〈., .〉 is a distributional pairing. In the fermionic case, the discussion is almost identical.

From the above observation, we deduce the following claim which holds true in both

bosonic and fermionic settings which summarizes all above results :

Proposition 4.7. Following the notations from definitions (2.4) and (2.3). Let M be a

smooth, closed, compact Riemannian manifold of dimension d, and ∆ (resp ∆ = D∗D) some

13It means the corresponding family of Schwartz kernels are bounded in C∞(M ×M,E�E∗) for the usual

Fréchet topology
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generalized Laplacian acting on E (resp E+) s.t. σ (∆) ⊂ {Re(z) > δ > 0} for bosons (resp

fermions).

In the bosonic case, for every invertible ∆ + V ∈ A = ∆ + C∞(End(E)), for every

(V1, . . . , Vn) ∈ C∞(End(E))n, if n > d
2 or supp (V1) ∩ · · · ∩ supp (Vn) = ∅ then :

δV1 . . . δVn log detζ (∆ + V ) = (−1)n−1(n−1)!TrL2

(
(∆ + V )−1 V1 . . . (∆ + V )−1 Vn

)
. (4.10)

For general (V1, . . . , Vn) ∈ C∞(End(E))n :

(−1)n−1

n− 1!
δV1 . . . δVn log detζ (∆ + V ) = 〈Rtn, V1 � · · ·� Vn〉 (4.11)

where Rtn is a distributional extension of tn = G(x1, x2) . . .G (xn, x1) ∈ D′(Mn \
dn, End(E)�n) where G ∈ D′(M ×M,E � E∗) is the Schwartz kernel of (∆ + V )−1.

In the fermionic case, for every invertible D + A : C∞(E+) 7→ C∞(E−), for every

(A1, . . . , An) ∈ C∞(Hom(E+, E−))n, if n > d or supp (A1) ∩ · · · ∩ supp (An) = ∅ then :

δA1 . . . δAn log detζ (∆ +D∗A) = (−1)n−1(n− 1)!TrL2

(
(D +A)−1A1 . . . (D +A)−1An

)
.

(4.12)

For general (A1, . . . , An) ∈ C∞(Hom(E+, E−))n

(−1)n−1

n− 1!
δA1 . . . δAn log detζ (∆ +D∗A) = 〈Rtn, A1 � · · ·�An〉 (4.13)

where Rtn is a distributional extension of tn = G(x1, x2) . . .G (xn, x1) ∈ D′(Mn \
dn, Hom(E−, E+)�n) where G ∈ D′(M ×M,E+�E∗−) is the Schwartz kernel of (D+A)−1.

Proof. In the bosonic case, we proved the claim for all ∆ + V s.t. σ (∆ + V ) ⊂ {Re(z) >
δ > 0} since we need the exponential decay of the heat semi–group e−t(∆+V ) to make the

regular part R from definition 4.5 convergent. However, by analyticity of both sides of the

identity δV1 . . . δVn log detζ (∆ + V ) = (−1)n−1(n− 1)!TrL2

(
(∆ + V )−1 V1 . . . (∆ + V )−1 Vn

)
in V ∈ C∞(M,End(E)), the claim holds true everywhere on C∞(M,End(E)) by analytic

continuation using the fact that the subset of invertible elements in A is connected 14. The

discussion is identical for the fermionic case. �

4.3.5. Traces and integrals on configuration space. In the bosonic case, for (u1, . . . , uk+1) ∈
(0, 1]k+1, we reformulate the trace term Tr

(
e−u1∆V1 . . . e

−uk+1∆Vk+1

)
as an integral over

configuration space∫
Mk+1

〈
e−u1∆(x1, x2) . . . e−uk+1∆(xk+1, x1), χ(x1, . . . , xk+1)

〉
dvk+1

where dvk+1 ∈ |Λtop|Mk+1, the product e−u1∆(x1, x2) . . . e−uk+1∆(xk+1, x1) on the l.h.s is an

element in C∞(Mk+1, End(E∗)�k+1), χ = V � · · ·�V ∈ C∞(Mk+1, End(E)�k+1) is the test

object and the 〈., .〉 denotes the natural fiberwise pairing between elements of End(E)�k+1

14 ∆ + V invertible iff I + ∆−1V invertible which is true for V in a small neighborhood of V = 0. Then

consider complex rays z ∈ C 7→ I + z∆−1V which are non invertible at isolated values of z since ∆−1V

compact
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and End(E∗)�k+1. Starting from now on in the bosonic case, the test function part χ will

be chosen arbitrarily in C∞(Mk+1, End(E)�k+1).

In the fermionic case, we will consider the operator e−t∆D∗ : C∞(E−) 7→ C∞(E+)

which has smoothing kernel when t > 0 (since Ψ−∞ is an ideal) hence the trace term

Tr
(
e−u1∆D∗A1 . . . e

−uk+1∆D∗Ak+1

)
is reformulated as the integral over configuration space :∫

Mk+1

〈
e−u1∆D∗(x1, x2) . . . e−uk+1∆D∗(xk+1, x1), χ(x1, . . . , xk+1)

〉
dvk+1 (4.14)

where dvk+1 ∈ |Λtop|Mk+1, the product e−u1∆D∗(x1, x2) . . . e−uk+1∆D∗(xk+1, x1) on the l.h.s

is an element in C∞(Mk+1, Hom(E−, E+)�k+1), χ = A�· · ·�A ∈ C∞(Mk+1, Hom(E+, E−)�k+1)

and 〈., .〉 denotes the natural fiberwise pairing between elements of Hom(E+, E−)�k+1 and

Hom(E−, E+)�k+1.

In what follows, we will localize the study in some open subset of the form Uk+1 near

an element of the form (x, . . . , x) ∈ dk+1 ⊂ Mk+1 where U ⊂ M,x ∈ U is an open

chart that we choose to identify with some bounded open subset U of Rd making some

abuse of notations. Recall that a consequence of the heat calculus is that in local coor-

dinates e−t∆(x, y) = t−
d
2 Ã(t, x−y√

t
, y), Ã ∈ C∞([0,+∞) 1

2
× Rd × U,E � E∗) for bosons and

e−t∆D∗(x, y) = t−
d+1

2 Ã(t, x−y√
t
, y), Ã ∈ C∞([0,+∞) 1

2
×Rd×U,E+�E∗−) for fermions. From

this observation on the asymptotics of the kernel e−t∆D∗ the proofs in both bosonic and

fermionic cases are uniform. The only changes occur in the numerology since there is a loss

of t−
1
2 in powers of t in the expansion of e−t∆D∗.

Definition 4.8. We define for (u, x) = ((ue)
k+1
e=1 , (xi)

k+1
i=1 ) ∈ (0, 1]k+1 × Uk+1 :

J(u, x;χ) =

〈 ∏
16e6k+1

Ã(ue,
xi(e) − xj(e)√

ue
, xj(e)), χ

〉

where i(e) = e, j(e) = e+1 when e ∈ {1, . . . , k} and i(k+1) = k+1, j(k+1) = 1, the bracket

〈., .〉 denotes the appropriate fiberwise pairing defined above, J(., ., χ) ∈ C∞
(
(0, 1]k+1 × Uk+1

)
and J depends linearly on χ.

Then we can express S from definition 4.5 in terms of J :

S(s;χ) =

∫
∆k+1

(
k+1∑
e=1

ue)
s

(∫
Mk+1

J(u, x;χ)

)
dk+1u, χ = V1 � · · ·� Vk+1.

We will next prove that S is a distribution valued in meromorphic functions of the variable

s [14, def 3.5 p. 11] based on the methods of [14] using blow–ups.

4.3.6. Resolving products of heat kernels. The problem in the definition of S is that the

product
∏

16e6k+1 Ã(ue,
xi(e)−xj(e)√

ue
, xj(e)) is not smooth on ∆k+1×Uk+1. We choose the test

object χ supported in Uk+1 ⊂Mk+1. We integrate w.r.t the Riemannian volume dv = ρddx

with smooth density ρ w.r.t. the Lebesgue measure ddx hence without loss of generality, we

choose to absorb ρ in the test object χ.
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Definition 4.9 (Blow–up). Consider the following change of variables :

β : (x, h1, . . . , hk, t1, . . . , tk+1) 7−→ ((x1 = x, xi = x+
i−1∑
j=1

(tj . . . tk+1)hj)
k+1
i=2 , (ul =

k+1∏
j=l

t2j )
k+1
l=1 )

U × Rkd × [0, 1]k+1 7−→ Uk+1 ×∆k+1

[14, def 5.3] which resolves the singular product in J . We use the short notation (x, h, t) =

(x, (h1, . . . , hk), (t1, . . . , tk+1)) ∈ U × Rkd × [0, 1]k+1.

Replacing in the integral expression of S yields,

S(s;χ) =

∫
[0,1]k+1×U×Rdk

((t1 . . . tk)
2 + · · ·+ 1)sβ∗J(t, x, h;χ)t1 . . . t

2k+2s+1
k+1 dk+1tddxdkdh,

where the factor t2k+1
k+1 comes from β∗

(
dk+1u

)
= 2k+1t1 . . . t

2k+1
k+1 d

k+1t. One of the key results

from [14, Thm 5.2] is that for every e ∈ {1, . . . , k}, the pull–back β∗
(
xi(e)−xj(e)√

ue

)
by the blow–

down map β hence β∗J is a smooth function on the resolved space U×Rdk. In the bosonic

(resp fermionic) case, the change of variables in β∗
(∏k+1

e=1 u
− d

2
e

)
(resp β∗

(∏k+1
e=1 u

− d+1
2

e

)
)

brings a factor of the form
∏

16l6k+1(tl . . . tk+1)−d (resp
∏

16l6k+1(tl . . . tk+1)−d−1) and the

Jacobian of the variable change yields a factor (t1 . . . tk+1)d . . . (tktk+1)d from which we can

extract the power of tk+1 to be equal to t−dk+1 (resp t−d−k−1
k+1 ). Replacing in the integral formula

yields the following identity [14, Proposition 5.2],

S(s;χ) =

∫
[0,1]k+1

((t1 . . . tk)
2 + · · ·+ 1)sP (t1, . . . , tk) (4.15)

×
(∫

Rd(k+1)

A(t, x, h;χ)ddxdkdh

)
t2s+2k+1−d
k+1 dt1 . . . dtk+1

where P is a polynomial function whose explicit expression is irrelevant and A(.;χ) =

β∗J(.;χ) ∈ C∞([0, 1]k+1 × U × Rdk), for fermions we get t2s+k−dk+1 in factor under the inte-

gral. As in [14, Lemma 5.4], A depends linearly on χ by the explicit formula π∗χ(t, x, h) =

χ(x, x+
∑i−1

j=1(tj . . . tk+1)hj)
k+1
i=2 . We find

Lemma 4.10. Under the previous notations, in both bosonic and fermionic case, the quantity

∂ptk+1
A(t, x, h)|tk+1=0 depends linearly on p-jets of the coefficients of χ along the diagonal

dk+1 ⊂Mk+1.

In the following paragraph, we shall prove that both χ 7→ S(s;χ) and χ 7→ I(s;χ) are

distributions valued in meromorphic germs at s = 0.

4.3.7. The bad case when 1 6 k 6 d
2 (resp 1 6 k 6 d) for bosons (resp fermions) case and

integration by parts. In the bosonic case, if k 6 d
2 , the factor t

2(s+k)+1−d
k+1 appearing in factor of

A is potentially divergent since near s = 0 the exponent 2(s+k)+1−d > 2k+1−d is no longer

necessary > −1. Then as usual in Riesz regularization, we need to Taylor expand A w.r.t the
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variable tk+1 up to order p in such a way that (p+1)+2k+1−d > −1 =⇒ p+1 > d−2(k+1).

This yields∫
[0,1]k+1

((t1 . . . tk)
2 + · · ·+ 1)sP (t1, . . . , tk)

×
(∫

Rd(k+1)

A(t, x, h;χ)ddxdkdh

)
t
2(s+k)+1−d
k+1 dt1 . . . dtk+1

=

sup(d−2(k+1),0)∑
p=0

∫
[0,1]k

((t1 . . . tk)
2 + · · ·+ 1)sP (t1, . . . , tk)

∫
Rd(k+1) ∂

p
tk+1

A(t, x, h;χ)|tk+1=0d
dxdkdh

s+ k + p+ 1− d
2

dt1 . . . dtk

+ holomorphic at s = 0

where the holomorphic part depends linearly on the (d− 3)-jet of χ.

This implies that in the general case FP |s=0
1

Γ(s+1)I(s, χ) depends linearly on the (d− 3)-

jets of χ and when supp(χ) does not meet the deepest diagonal dk+1 ⊂ Mk+1 we already

know that FP |s=0
1

Γ(s+1)I(s, χ) =
∫
Mk+1

〈∏k+1
e=1 G(xi(e), xj(e)), χ

〉∏k+1
i=1 dv(xi). Altogether,

this proves that (−1)k

k! δk+1 log detζ(∆) is a distributional extension of G(x1, x2) . . .G(xk+1, x1)

of order at most (d−3). The fermionic case is similar only the numerology differs, we need

to expand coefficients of χ at order p in tk+1 so that p+1 > d−2 therefore FP |s=0
1

Γ(s+1)I(s, χ)

depends linearly on (d− 1)-jets of the coefficients of χ.

4.3.8. Bounds on the Fourier transform of the singular term S. In this part the bosonic and

fermionic cases are similar and therefore we restrict to the former case for simplicity. Using

the above notations, we should study S(s;χ) where the test function part χ is of the form

χ = ψ(x1)eix1ξ1 . . . ψ(xk+1)eixk+1ξk+1 where ψ has small support in the coordinate chart U of

M and for large (ξ1, . . . , ξk+1) in some closed conic set V . After the change of variables of

definition 4.9, the exponential factor becomes

exp

ix(ξ1 + · · ·+ ξk+1) + i
k+1∑
e=2

e−1∑
j=1

(tj . . . tk+1)hjξe


= exp

ix(ξ1 + · · ·+ ξk+1) + i
k∑
j=1

(tj . . . tk+1)hj(
∑

j+16e6k+1

ξe)


and the term A(t, x, h;χ) = A(t, x, h;ψ�k+1)e(ix

∑k+1
j=1 ξj+i

∑k+1
e=2

∑e−1
j=1(tj ...tk+1)hjξe) so the inter-

esting term in factor of S that we should integrate by parts w.r.t. tk+1 reads

|∂ptk+1

∫
Rd(k+1)

e(ix
∑k+1
j=1 ξj+i

∑k+1
e=2

∑e−1
j=1(tj ...tk+1)hjξe)A(t, x, h;ψ�k+1)ddxdkdh|

6 C(1 +K
k+1∑
e=1

|ξe|)p sup
16j6p

sup
t∈[0,1]k+1

|∂̂jtA(t,
k+1∑
e=1

ξe, (tj . . . tk+1)
k+1∑
e=j+1

ξe;ψ
�k+1)| 6 CN (1 + |

k+1∑
e=1

ξe|)−N

uniformly in t ∈ [0, 1]k+1 for all N by smoothness of A and its derivatives ∂jtA in the

x variable. Assume that (ξ1, . . . , ξk+1) belongs to some cone V which does not meet the
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hyperplane {
∑k+1

i=1 ξi = 0}, then there exists a constant C such that for every (ξ1, . . . , ξk+1) ∈
V satisfying

∑k+1
i=1 |ξi|2 > R : |

∑k+1
i=1 ξi| > ε

(
1 +

∑k+1
i=1 |ξi|

)
. Therefore we obtain the

estimate :

|∂ptk+1

∫
Rd(k+1)

e(ix
∑k+1
j=1 ξj+i

∑k+1
e=2

∑e−1
j=1(tj ...tk+1)hjξe)A(t, x, h;ψ�k+1)ddxdkdh| 6 CNε−N (1 +

k+1∑
e=1

|ξe|)−N

uniformly in t ∈ [0, 1]k+1. Finally, this means that for any (x, . . . , x; ξ1, . . . , ξk+1) ∈WF (FP |s=0S(s, .)),

we must have ξ1 + · · ·+ ξk+1 = 0 which implies the wave front set bound(
WF (FP |s=0S(s, .)) ∩ T •dk+1

Mk+1
)
⊂ N∗

(
dk+1 ⊂Mk+1

)
over the diagonal dk+1. In the next paragraph, we will use these bounds on the Fourier trans-

form of S to estimate the wave front set of the Schwartz kernel of the functional derivatives

over the diagonal.

4.3.9. Wave front bounds. The next step is to use the above methods to bound the wave

front set of the Schwartz kernels of the functional derivatives. An important application of

the blow–up techniques is to estimate the wave front set of the extensions Rtn ∈ D′(Mn)

over the deep diagonal dn ⊂ Mn which is proved to be contained in the conormal bundle

N∗ (dn ⊂Mn).

Proposition 4.11. Following the notations from definitions (2.4) and (2.3). Let M be a

smooth, closed, compact Riemannian manifold of dimension d, E 7→ M some Hermitian

bundle over M .

For every invertible generalized Laplacian ∆ + V ∈ A = ∆ + C∞(End(E)) acting on E

s.t. σ (∆) ⊂ {Re(z) > δ > 0}, set G ∈ D′(M ×M,E � E∗) to be the Schwartz kernel of

(∆ + V )−1. The Schwartz kernel of the functional derivative of log detζ defined as Rtn =
(−1)n−1

(n−1)! δ
n log detζ(∆+V ) is a distributional extension of the product tn =

∏
e∈E(G) G(xi(e), xj(e)) ∈

D′(Mn \ dn, End(E∗)�n) and satisfies the wave front bound(
WF (Rtn) ∩ T •dnM

n
)
⊂ N∗ (dn ⊂Mn) . (4.16)

Proof. We need to show that the distributionRtn defined as (−1)n

(n−1)!
d
ds |s=0δV1 . . . δVnTr

(
(∆ + V )−s

)
=

〈Rtn, V1 � · · ·� Vn〉 satisfies the wave front bound WF (Rtn)∩T •dnM
n ⊂ N∗ (dn ⊂Mn). We

start from the expression

1

Γ(s+ 1)

∫
[0,∞)n

(u1 + · · ·+ un)s
∫
Mn

〈
e−u1∆ . . . e−un∆,Ψ

〉 n∏
e=1

due.

We work on a local chart Uk+1 where we choose the test section χ to be equal to χ =

ψ(x1)eix1ξ1 . . . ψ(xn)eixnξn where ψ ∈ C∞c (U) is supported on some chart U . There is a

competition between :

(1) integration of heat kernels on [1,+∞) which yields smoothing operators in the sense

the family
(
e−u∆(x, y)

)
u∈[1,+∞)

is bounded in C∞(M ×M,E � E∗) since e−u∆ =
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e−
1
4

∆e−(u− 1
2

)∆︸ ︷︷ ︸
bounded

e−
1
4

∆ where the term in the middle is uniformly bounded in B(L2, L2)

by spectral assumption and both factors e−
1
4

∆ on the left and right are smoothing

operators in (x, y) variable,

(2) integration on [0, 1] which yields singular distributions whose wave front set is conor-

mal in the sense that the family
(
e−u∆(x, y)

)
u∈(0,1]

is a bounded family of distribu-

tions in D′N∗(d2⊂M2)(M ×M,E � E∗) 15 which is the space of distributions whose

wave front set is contained in the conormal bundle N∗
(
d2 ⊂M2

)
.

Introduce a first decomposition where we sum over permutations Sn of {1, . . . , n} in the

second sum :∫
[0,∞)n

(u1 + · · ·+ un)s
∫
Mn

〈
e−u1∆ . . . e−un∆, χ

〉 n∏
e=1

due

=

n∑
k=0

1

n!

∑
σ∈Sn

∫
[0,1]k×[1,+∞)n−k

(u1 + · · ·+ un)s
∫
Mn

〈
e−uσ(1)∆ . . . e−uσ(n)∆, χ

〉 n∏
e=1

due

Without loss of generality, we only treat the terms corresponding to the identity permutation

of Sn. When k < n, using the hypocontinuity of the product of distributions whose wave

front set is fixed [13, Thm 6.1 p. 219] and the fact that the family e−ui∆(xi, xi+1), viewed

as distribution on Mn, is bounded in D′
N∗(d{i,i+1}⊂Mn)

(Mn) where N∗
(
d{i,i+1} ⊂Mn

)
is

the conormal of the diagonal d{i,i+1} = {xi = xi+1} ⊂ Mn, we note that the distributional

product
(
e−u1∆ . . . e−uk∆

)
(u1,...,uk)∈[0,1]k

is bounded in D′Γ(Mn) for Γ =
⋃
I N
∗ (dI ⊂Mn) ⊂

T •Mn, where the union runs over the sets I = {i, . . . , j}, where {i, . . . , j} contains the

arithmetic progression from i to j, for 1 6 i < j 6 k. Then it follows immediately that for

k < n,

WF

(∫
[0,1]k×[1,+∞)n−k

(u1 + · · ·+ un)s
∫
Mn

〈
e−u1∆ . . . e−un∆, χ

〉 n∏
e=1

due

)
∩T ∗dnM

n ⊂ N∗ (dn ⊂Mn) .

For the term where k = n, the result follows simply from the bounds on the Fourier

transform of the singular term
(
WF (FP |s=0S(s, .)) ∩ T ∗dnM

n
)
⊂ N∗ (dn ⊂Mn) from para-

graph 4.3.8. �

4.4. Factorization formula relating detζ and Gohberg–Krein’s determinants detp.

We give the proof for bosons and write the factorization formula for fermions for simplic-

ity since the discussion is almost similar in both cases. Lemma 3.7 implies that for z small

enough, the series
∑

n> d
2

+1
(−1)n+1zn

n TrL2

((
∆−1V

)n)
converges and equals log detp

(
Id+ z∆−1V

)
for p = [d2 ] + 1 where detp is Gohberg–Krein’s determinant whose properties are recalled in

Lemma 3.7 of subsection 3.3. In particular, detp
(
Id+ ∆−1V

)
is analytic in V ∈ C∞(End(E))

and vanishes iff ∆ + V is non invertible and z 7→ detp
(
Id+ z∆−1V

)
is an entire function.

15in the sense of the seminorms in [13, p. 204]
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It follows from Proposition 4.7 that functional derivatives of log detp(I + ∆−1V ) and

log detζ(∆ + V ) coincide when k > d
2 (resp k > d) in the bosonic (resp fermionic) case.

Hence for bosons and for z small enough, we have the identity

log detζ(∆ + zV ) = P (zV ) + log detp(Id+ z∆−1V )

where both sides are holomorphic germs and P (zV ) is a polynomial in z of degree [d2 ].

Therefore for every fixed V , z 7→ detζ(∆ + zV ) extends uniquely as an entire function with

same divisor as detp(Id + z∆−1V ). Since V 7→ detζ(∆ + V ) is locally bounded near V = 0

by analyticity of V 7→ detζ(∆ + V ), Proposition 3.6 implies that

log detζ(∆ + V ) = P (V ) + log detp(Id+ ∆−1V ) (4.17)

for V close enough to 0 where P is a continuous polynomial function of V . Equa-

tion (4.17) together with the fact that H 7→ detp(I + H) is an entire function on the

Schatten ideal Ip vanishing exactly over noninvertible I + H, proves that V 7→ detζ(∆ +

V ) = eP (V )detp(Id + ∆−1V ) extends uniquely as a complex analytic function on A vanish-

ing exactly over non invertible elements. Then by Proposition 4.7, the functional deriva-

tives (−1)n−1

n−1! δn log detζ(∆ + V )|V=0 are distributional extensions of the distributions

tn = G(x1, x2) . . .G(xn, x1). It follows that P (V ) =
∑

16n6 d
2

(−1)n+1

n

〈
Rtn, V �n

〉
where

WF (R (tn)) satisfies the bound WF (R (tn))∩T ∗dnM
n ⊂ N∗(dn ⊂Mn) by Proposition 4.11.

This concludes the proof that detζ admits the representation 2.17. The proof for fermions is

similar and yields the factorization formula detζ (∆ +D∗A) = exp (P (A)) detp
(
I + ∆−1D∗A

)
for p = d+ 1 and P a continuous polynomial of degree d on C∞(Hom(E+, E−)).

5. Proof of Theorem 2.

As above, we give the proof for bosons since the fermion case is similar and presents no

extra difficulties.

5.0.1. Any element of the form R det = ePolynomial detζ solves Problem 2.7. The zeta deter-

minants from definition 2.3 are solutions of problem 2.7 by Theorem 1 and Proposition 4.7

where we found the second functional derivatives of detζ to be equal to

δV1δV2 log detζ(∆ + V ) = TrL2((∆ + V )−1V1(∆ + V )−1V2)

when (V1, V2) ∈ C∞(End(E))2 have disjoint supports and σ(∆ + V ) ⊂ {Re(z) > δ > 0}.
Therefore, for any local polynomial functional P ∈ Oloc,[ d

2
] (JmEnd(E)) of degree [d2 ], the

map V 7→ Rdet(∆ + V ) = exp (P (V )) detζ(∆ + V ) satisfies δV1δV2 logR det(∆ + V ) =

δV1δV2 log detζ(∆ + V ) where δV1δV2P (V ) = 0 since (V1, V2) have disjoint support and P is

local [6, Prop V.5 p. 16]. This means

δV1δV2 logR det(∆ + V ) = δV1δV2 log detζ(∆ + V )

= TrL2((∆ + V )−1V1(∆ + V )−1V2) =

∫
M×M

t2(x1, x2)V (x1)V (x2)dv(x1)dv(x2)

and the wave front bound from Proposition 4.11 shows that the kernel of δ2 logR det(∆ +

V ) = δ2 log detζ(∆ + V ) + δ2P (V ) is a distribution Rt2 satisfying WF (Rt2) ∩ T •d2
M2 ⊂



36 NGUYEN VIET DANG

N∗
(
d2 ⊂M2

)
where we used the fact that WF

(
δ2P (V )

)
⊂ N∗

(
d2 ⊂M2

)
by [6, Lemma

VI.9 p.19 ]. For the moment, we found R det solves the equations (2.13) and (2.14) and equa-

tion (2.12) is easily satisfied by the factorization formulaRdet(∆+V ) = detζ (∆ + V ) eP (V ) =

e(P+Q)(V ) det[ d
2

]+1

(
Id+ ∆−1V

)
,deg(P +Q) 6 [d2 ] and the properties of detp. The last step

is to use the factorization formula detζ (∆ + V ) = eQ(V ) det[ d
2

]+1

(
Id+ ∆−1V

)
from the pre-

vious section and the bound

|det[ d
2

]+1

(
Id+ ∆−1V

)
| 6 e

K1‖∆−1V ‖
[ d2 ]+1

[ d2 ]+1 6 e
K1

(
‖∆−1‖

[ d2 ]+1
‖V ‖C0

)[ d2 ]+1

which results from [61, b) Thm 9.2 p. 75] for the norm ‖.‖[ d
2

]+1 in the Schatten ideal I[ d
2

]+1

and the fact that ∆−1 ∈ Ψ−2(M,E) belongs to I[ d
2

]+1 since ∆−[ d
2

]−1 ∈ I1 [21, Prop B.20]

and Hölder’s inequality ‖∆−1V ‖[ d
2

]+1 6 ‖∆
−1‖[ d

2
]+1‖V ‖C0 . From the above facts, we deduce

the bound :

|Rdet (∆ + V ) | 6 |detζ (∆ + V ) ||eP (V )| 6 CeK‖V ‖
[ d2 ]+1

Cm

for some C,K > 0 independent of V which proves the bound (2.11). Finally, R det solves

problem 2.7.

5.0.2. Any renormalized determinant is of the form ePolynomial detζ . Let R det be any other

solution of problem 2.7, then for every V , the entire functions z 7→ R det (∆ + zV ) and

z 7→ detζ (∆ + zV ) have same divisor. It follows that the ratio z 7→ Rdet(∆+zV )
detζ(∆+zV ) is an entire

function without zeros on C which satisfies the bound

|R det (∆ + zV )

detζ (∆ + zV )
| 6 CeK|z|

[ d2 ]+1‖V ‖
[ d2 ]+1

Cm ,m = d− 3.

By the uniqueness part of Hadamard’s Theorem 4, this implies that for every fixed V ,

z 7→ R det(∆+zV )
detζ(∆+zV ) = eP (z;V ) where P is a polynomial of degree [d2 ]+1 in z. We already know the

map V 7→ logR det (∆ + V )− log detζ (∆ + V ) is analytic near V = 0 hence locally bounded

near V = 0 and also the above shows that for every fixed V , z 7→ logRdet (∆ + zV ) −
log detζ (∆ + zV ) is a polynomial of degree [d2 ] + 1 in z. By proposition 3.6, this implies that

the difference logRdet (∆ + V )−log detζ (∆ + V ) = P (V ) where P is actually a continuous

polynomial function in V of degree [d2 ] + 1. But condition 2.12 imposes the derivatives

( ddz )[ d
2

]+1 logR det(∆+zV ) and ( ddz )[ d
2

]+1 log detζ (∆ + zV ) to coincide at z = 0 hence P is in

fact of order [d2 ]. It remains to show that P is local. But the fact that both logRdet (∆ + V )

and log detζ (∆ + V ) are solutions of functional equation 2.13 implies that δV1δV2P (V ) = 0 if

supp(V1) ∩ supp(V2) = ∅. Observe that V 7→ δ2 log
(
Rdet(∆+V )
detζ(∆+V )

)
= δ2P (V ) ∈ D′(M ×M) is

polynomial in V valued in distributions on M ×M with wave front set in N∗
(
d2 ⊂M2

)
. To

extract the homogeneous part , we use the finite difference operator ∆V defined in the proof

of 3.6, the element
∆n−2
V δ2P

(n−2)! = Pn(V, . . . , V, ., .) has also wave front set in N∗
(
d2 ⊂M2

)
thus V 7→ Pn(V ) satisfies the assumptions of lemma 9.1 proved in appendix. Therefore

V 7→
〈
P̃n, V

�n
〉

is a local functional which equals
∫
M Λn(jmV (x))dv(x) where Λn(jkV (x))

depends on the m–jets of V at x for m = d − 3 and is homogeneous of degree n in V . It
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is important to stress that the function Λn is not uniquely defined 16 but the functional is

uniquely defined. Then locality of P together with the representation formula for detζ from

Theorem 1 implies that any solution of problem 2.7 has the form given by equation 2.17.

The infinite product representation is an easy consequence of the representation of Gohberg–

Krein’s’s determinants detp as infinite products.

To complete the proof of our Theorem, it remains to show that any Rdet solution of

Problem 2.7 is obtained by a renormalization with subtraction of local counterterms in the

sense of the third property in 2 which is the goal of the next section.

6. Local renormalization and Theorem 6 on Gaussian Free Field

representation.

We follow the notations from subsubsection 2.0.8 where we explained the notion of sub-

traction of local counterterms. The aim of this section is to show the third claim from

Theorem 2 namely that all Rdet solutions from problem 2.7 are obtained from renor-

malization by subtraction of local counterterms which concludes the proof from The-

orem 2 : there exists a generalized Laplacian ∆ with heat operator e−t∆ and a family

Qε ∈ Oloc,[ d
p

] (JmHom(E+, E−))⊗C C[ε−
1
2 , log(ε)] such that :

V 7→ Rdet (P + V) = lim
ε→0+

exp (Qε(V)) detF
(
I + e−2ε∆P−1V

)
. (6.1)

6.1. Extracting singular parts. In this subsection, we shall use the methods of [14] based

on blow–ups to extract the singular parts of regularized traces TrL2

((
e−2ε∆∆−1V

)n)
to

show :

Lemma 6.1. In the bosonic case, for every V ∈ C∞(M,End(E)), we have an asymptotic

expansion

TrL2

((
e−2ε∆∆−1V

)n)
= Pε(V ) +O(1)

where Pε =
∫
M Λε(j

mV )dv ∈ Oloc,[ d
2

] (JmEnd(E))⊗C C[ε−
1
2 , log(ε)] and m = d− 3 and

(V1, . . . , Vk+1) ∈ C∞(End(E))k+1 7→ FP |ε=0TrL2

(
e−2ε∆∆−1V1 . . . e

−2ε∆∆−1Vk+1

)
= lim

ε→0+
TrL2

((
e−2ε∆∆−1V

)n)− Pε(V )

is well–defined and multilinear continuous.

For fermions, for every A ∈ C∞(Hom(E+, E−)) , we have an asymptotic expansion

TrL2

((
e−2ε∆∆−1D∗A

)n)
= Pε(A) +O(1)

where Pε =
∫
M Λε(j

mA)dv ∈ Oloc,d (JmEnd(E))⊗C C[ε−
1
2 , log(ε)] and m = d− 1 and

(A1, . . . , Ak+1) ∈ C∞(Hom(E+, E−))k+1 7→ FP |ε=0TrL2

(
e−2ε∆∆−1D∗A1 . . . e

−2ε∆∆−1D∗Ak+1

)
= lim

ε→0+
TrL2

((
e−2ε∆∆−1D∗A

)n)− Pε(A)

16Only up to boundary terms
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is well–defined and multilinear continuous.

Proof. We prove the claim only for bosons, the fermionic case is similar. In this lemma, we

shall use the following notation, for two functions a(ε), b(ε), we shall note a ' b if b−a = O(1)

when ε→ 0+. We start from the identity :

TrL2

(
e−2ε∆∆−1V1 . . . e

−2ε∆∆−1Vk+1

)
'

∫
[ε,1]k+1

TrL2

(
e−u1∆V1 . . . e

−uk+1∆Vk+1

)
du1 . . . duk+1

as a direct consequence of e−2ε∆∆−1 =
∫∞

2ε e
−t∆dt and since

∫∞
1 e−t∆dt ∈ Ψ−∞. Now

without loss of generality and using the symmetry of the integral, we may assume that

we work in the Hepp sector {ε 6 u1 < · · · < uk+1 6 1} which is a semialgebraic sub-

set of the unit simplex ∆k+1 = {0 6 u1 6 · · · 6 uk+1 6 1}. So we need to study the

asymptotics of (k + 1)!
∫
{ε6u1<···<uk+161} TrL2

(
e−u1∆V1 . . . e

−uk+1∆Vk+1

)
du1 . . . duk+1. Set-

ting χ = V1 � · · ·� Vk+1 ∈ C∞(Mk+1, End(E)k+1) and using the notations and conventions

from paragraphs 4.3.5 and 4.3.6, the blow–up from definition 4.9 yields a blow–down map

β : (x, h1, . . . , hk, t1, . . . , tk+1) 7−→ ((x1 = x, xi = x+
i−1∑
j=1

(tj . . . tk+1)hj)
k+1
i=2 , (ul =

k+1∏
j=l

t2j )
k+1
l=1 )

U × Rkd × Ωε 7−→ Uk+1 × {ε 6 u1 < · · · < uk+1 6 1}

where Ωε is the semialgebraic set defined by Ωε = {ε 6 (t1 . . . tk+1)2} ∩ [0, 1]k+1. Now,

following the calculations of paragraph 4.3.7 we set :

ω(χ) =

(∫
Rd(k+1)

t2k+1−d
k+1 P (t1, . . . , tk)β

∗J(t, x, h;χ)ddxdkdh

)
dt1 ∧ · · · ∧ dtk+1

where td−2k−1
k+1 ω is a smooth differential form of top degree on the cube [0, 1]k+1. To extract the

singular part of
∫

Ωε
ω, we need to Taylor expand

∫
Rd(k+1) A(t, x, h;χ)ddxdkdh in the variable

tk+1 :∫
Ωε

ω '
∑
j=0

∫
Ωε

t2k+1−d+j
k+1

j!
P (t1, . . . , tk)

(
∂jtk+1

∫
Rd(k+1)

A(t, x, h;χ)ddxdkdh

)
|tk+1=0︸ ︷︷ ︸ dt1 ∧ · · · ∧ dtk+1

where the term underbraced is a conormal distribution of χ ∈ C∞c (Uk+1, End(E)�k+1) sup-

ported by dk+1 by the results of paragraph 4.3.8. So setting χ = V �k+1, we can view the

term underbraced as a functional of V :

V ∈ C∞c (U,End(E)) 7→
(
∂jtk+1

∫
Rd(k+1)

A(t, x, h;V �k+1)ddxdkdh

)
|tk+1=0

is an element of Oloc,k+1

(
J jE

)
.

Then to extract precise asymptotics, set

ωj =
t2k+1−d+j
k+1

j!

(
∂jtk+1

P

∫
Rd(k+1)

A(t, x, h;χ)ddxdkdh

)
|tk+1=0dt1 ∧ · · · ∧ dtk+1.

Then we may slice the semialgebraic set Ωε by the fibers (t1 . . . tk+1)2 = constant of the

map F (t1, . . . , tk+1) = (t1 . . . tk+1)2 which means we will push–forward the integral of ωj
along the fibers of the b-map F : (t1, . . . , tk+1) ∈ [0, 1]k+1 7→ F (t1, . . . , tk+1) ∈ R [34, def 2.11
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p. 16] [43, p. 51–52] where [0, 1]k+1 is viewed as a b-manifold in the sense of Melrose [34, def

2.2 p. 8] [43, p. 51]. Then we will conclude by using the pushforward Theorem of Melrose [43,

Thm 4 p. 58] in the form discussed in the nice survey of Grieser [34, Thm 3.6 p. 25]. We define

the form
ωj
dF which is called Gelfand–Leray form [70, Lemma 5.11 p. 123] and the function

Jj(t) =
∫
F=t

ωj
dF . Then by Fubini’s Theorem

∫
Ωε
ωj =

∫ 1
ε Jj(t)dt and Lemma 6.2 implies

each ε 7→
∫

Ωε
ωj admits an asymptotic expansion of the required form which concludes the

proof. �

6.1.1. Pushforward Lemma. Here we state the Lemma on asymptotic integrals used in the

previous proposition.

Lemma 6.2 (Pushforward by Jeanquartier, Melrose). Let ω ∈ Ωn
c ([0, 1]n) be a smooth dif-

ferential form of top degree on [0, 1]n and F : (t1, . . . , tn) ∈ Rn+ 7→ t21 . . . t
2
n ∈ R. Then the

map

t 7→ J(t) =

∫
F−1(t)

t−mn ω

dF
=
〈
δ(t− F ), t−mn ω

〉
has an asymptotic expansion : J(t) ∼

∑
p,q t

p log(t)qap,q(ω) where p ∈ Z
2 runs over a finite

set of growing arithmetic sequences of rational numbers and ap,q is a distribution supported

by the algebraic set {F = 0}.
This implies that the map ε 7−→

∫ 1
ε J(t)dt also has an asymptotic expansion :

∫ 1
ε J(t)dt ∼∑

p,q ε
p log(ε)qbp,q(ω) where p ∈ Z

2 runs over a finite set of growing arithmetic sequences of

rational numbers and bp,q are distributions supported by F = {0}.

Proof. The result for smooth forms and real analytic F is due to Jeanquartier [24] [70,

Theorem 5.54 p. 155]. Here we need the same result for a polyhomogeneous top form

t−mn ω and F = t21 . . . t
2
n which is a particular case of the pushforward Theorem of Mel-

rose [34, Thm 3.6 p. 25] [43] by the b-map F which yields an index set contained in Z
2

since the b-map F vanishes at order 2 on each boundary face of [0, 1]n. Let us give a

proof based on remarks from Jeanquartier on the Mellin transform [25]. The index set of

the asymptotics of t 7→ 〈δ(t− F ), t−mn ϕ〉 is exactly given by the poles with multiplicity of

the Mellin transform
∫∞

0 tsJ(t)dtt =
∫

[0,1]n F
s−1t−mn ϕdnt by [25, Prop 4.3 p. 304 and Prop

4.4 p. 306]. By successive Taylor expansion with remainder as follows, start from ϕ then

Taylor expand with remainder at order N in t1 keeping other variables (t2, . . . , tn) as pa-

rameters, then Taylor expanding successively in t2, . . . , tn with remainder at order N yields :

ϕ(t1, . . . , tn) =
∑

06α1,...,αn6N

∏
tαii cα where cα depends on ti iff αi = N . Then plugging

under the integral yields that s 7→
∫

[0,1]n F
s−1t−mn ϕdnt has analytic continuation as a mero-

morphic function on C with singular terms of the form
(∏n−1

i=1
1

2s+αi−1

)
1

2s+αn−1−m hence

poles are in {s ∈ 1+m−N
2 } with multiplicity at most n. �

6.2. Every R det solution of problem 2.7 are obtained by local renormalization.

By Lemma 6.1, ∀k ∈ N, (V1, . . . , Vk+1) 7→ FP |ε=0TrL2

(
e−2ε∆∆−1V1 . . . e

−2ε∆∆−1Vk+1

)
is

multilinear continuous hence it can be represented as a distributional pairing

FP |ε=0TrL2

(
e−2ε∆∆−1V1 . . . e

−2ε∆∆−1Vk+1

)
= 〈Rtk+1, V1 � · · ·� Vk+1〉
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by the multilinear Schwartz kernel Theorem. Exactly as in the proof of subsubsection 4.3.4,

we find that for (V1, . . . , Vk+1) ∈ C∞(M,End(E))k+1 such that supp(V1)∩· · ·∩supp(Vk+1) =

∅,
FP |ε=0TrL2

(
e−2ε∆∆−1V1 . . . e

−2ε∆∆−1Vk+1

)
= TrL2

(
∆−1V1 . . .∆

−1Vk+1

)
where the L2 trace on the r.h.s is well–defined since WF (∆−1V1)∩ · · · ∩WF (∆−1Vk+1) = ∅.
Therefore arguing as in subsubsection 4.3.4 we find that for n 6 d

2 , Rtn is a distributional ex-

tension of tn = G(x1, x2) . . .G(xn, x1) and for n > d
2 , the composition e−2ε∆∆−1V1 . . . e

−2ε∆∆−1Vk+1 ∈
Ψ−2k(M,E) hence of trace class [21, Prop B 20] uniformly in ε ∈ (0, 1] hence

FP |ε=0TrL2

(
e−2ε∆∆−1V1 . . . e

−2ε∆∆−1Vk+1

)
= TrL2

(
∆−1V1 . . .∆

−1Vk+1

)
where the r.h.s. is well–defined as in the case with zeta regularization.

Now let Pn,ε ∈ Oloc ⊗ C[ε−
1
2 , log(ε)] from Lemma 6.1 s.t.

lim
ε→0

TrL2

(
(e−2ε∆∆−1V )n

)
− Pn,ε(V ) = FP |ε=0TrL2

(
(e−2ε∆∆−1V )n

)
.

One should think of Pn,ε as being the singular part of TrL2

(
e−2ε∆∆−1V1 . . . e

−2ε∆∆−1Vn
)
.

Then set Pε(V ) =
∑ d

2
n=1 Pn,ε(V ), we have

detF
(
Id+ e−2ε∆∆−1V

)
e−Pε(V ) = exp

 d
2∑

n=1

TrL2

(
(e−2ε∆∆−1V )n

)
− Pn,ε(V )


︸ ︷︷ ︸

det[ d
2

]+1

(
Id+ e−2ε∆∆−1V

)︸ ︷︷ ︸
by the factorization properties of Gohberg–Krein’s determinant [61, d) Thm 9.2 p. 75]. The

individual factors underbraced converge as follows :

• limε→0+ det[ d
2

]+1

(
Id+ e−2ε∆∆−1V

)
= det[ d

2
]+1

(
Id+ ∆−1V

)
because e−2ε∆∆−1V →

∆−1V ∈ Ψ−2(M,E) hence in the Schatten ideal I[ d
2

]+1 and Gohberg–Krein’s deter-

minant H 7→ det[ d
2

]+1(Id+H) depends continuously on H ∈ I[ d
2

]+1.

• limε→0+ exp

(∑ d
2
n=1 TrL2

(
(e−2ε∆∆−1V )n

)
− Pn,ε(V )

)
= exp

(∑ d
2
n=1

〈
Rtn, V �n

〉)
where

Rtn is a distributional extension of tn = G(x1, x2) . . .G(xn, x1) by construction.

Thus it is immediate that

R det(∆+V ) = lim
ε→0+

detF
(
Id+ e−2ε∆∆−1V

)
e−Pε(V ) = exp

 d
2∑

n=1

〈
Rtn, V �n

〉det[ d
2

]+1

(
Id+ ∆−1V

)
hence it satisfies the representation formula 2.17 which makes it a solution of problem 2.7.

If we are given any other solution R2 det of problem 2.7, then by the free transitive action

of Oloc,[ d
2

], we know that there exists Q ∈ Oloc,[ d
2

] s.t. R2 det(∆ + V ) = eQ(V )R det(∆ +

V ) = limε→0+ detF
(
Id+ e−2ε∆∆−1V

)
e(Q−Pε)(V ) which shows that R2 det is obtained by

renormalization by subtraction of local counterterms.

6.3. Relation with Gaussian Free Fields. In the bosonic case, there is a nice inter-

pretation of the renormalized determinants from Theorem 2 in terms of the Gaussian Free

Field.
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6.3.1. Probabilistic representation. We next briefly recall some probabilistic definition of the

Gaussian Free Field (GFF) associated to our positive elliptic operator ∆ which is represented

as a random distribution on M .

Definition 6.3 (Bundle valued Gaussian Free Field). Under the geometric assumption from

definition 2.1, if ∆ : C∞(E) 7→ C∞(E) is positive, self–adjoint then the Gaussian

free field φ associated to ∆ is defined as follows : denote by (eλ)λ the spectral resolution

associated to ∆. Consider a sequence (cλ)λ of independent, identically distributed centered

gaussian random variables. Then we define the quantum field φ as the random series

φ =
∑

λ∈σ(∆)

cλ√
λ
eλ (6.2)

where the sum runs over the positive eigenvalues of ∆ and the series converges almost surely

as distributional section in D′(M,E).

The covariance of the Gaussian free field defined above is the Green function :

G(x, y) =
∑

λ∈σ(∆)

1

λ
eλ(x)� eλ(y)

where the above series converges in D′(M ×M,E � E).

A classical result characterizes the support of the functional measure :

Lemma 6.4 (Regularity of bundle GFF). Using the notations of definition 6.3, the random

section φ converges almost surely in the Sobolev space Hs(E) for every s < 1− d
2 .

In Euclidean quantum field theory, there is an analogy between considering a discrete

GFF on a lattice with spacing
√
ε, whose propagator is a discrete Green function which is

the inverse of the discrete Laplacian and considering the heat regularized GFF φε = e−ε∆φ

whose covariance reads e−2ε∆∆−1. For discrete Laplacians ∆ε on a regular lattice of mesh ε,

there are beautiful results on the asymptotics of det(∆ε) [10] (see [40] for related results) :

Theorem 5. On the flat torus T2, for discrete Laplacian ∆ε with mesh ε and denote by φε
the corresponding discrete GFF, if V ∈ C∞(T2) s.t.

∫
T2 V = 0 then :

detζ (∆ + V )

detζ (∆)
= lim

ε→0

det(∆ε + V )

det(∆ε)
= lim

ε→0+
E
(
e−

1
2

∫
T2 V φ

2
ε

)
. (6.3)

In the bosonic case, replacing lattice regularization by the heat regularized GFF, we prove

an analog of the above Theorem and describe all renormalized determinants from Theorem 2

as coming from the local renormalization of Gaussian free fields partition function as follows :

Theorem 6 (GFF representation). Under the assumptions of definition 6.3. Let φ be the

Gaussian free field with covariance G. Denote by φε = e−ε∆φ the heat regularized GFF.

Then a function V 7→ R det (∆ + V ) is a renormalized determinant in the sense of def-

inition 2.7 if and only if there exists a sequence (Λε : C∞(E) 7→ C∞ (E))ε∈(0,1] of smooth
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local polynomial functionals of minimal degree such that the following limit exists :

R det
(
Id+ ∆−1V

)
= lim

ε→0+
E
(

exp

(
−1

2

∫
M
〈φε, V φε〉 − Λε (V ) (x)dv(x)

))
. (6.4)

Furthermore, if V ∈ C∞(End(E)) defines a positive operator on L2(E), we denote by µ the

Gaussian measure of covariance ∆−1 then the limit of measures

ν = lim
ε→0+

exp

(
−1

2

∫
M
〈φε, V φε〉 − Λε (V ) (x)dv(x)

)
µ (6.5)

exists as a Gaussian measure on D′ (M) with covariance (∆ + V )−1 and ν is absolutely

continuous w.r.t. µ iff 1 6 d 6 3 otherwise the measures (ν, µ) are mutually singular.

The intuitive idea is very simple, in QFT the renormalization problem arises from the

fact that fields are irregular distributions then a natural idea is to study a regularized

version of the field and see if one can perform an explicit renormalization of the parti-

tion function by subtracting explicit local counterterms in the action functional. The-

orem 6 follows immediately from Theorem 2 once we reformulate the partition function

E(e−
∫
M 〈ϕε,V ϕε〉), where φε = e−ε∆φ is the smeared GFF, in terms of Fredholm determinants

detF
(
I + ∆−1e−ε∆V e−ε∆

)
which is the goal of the next paragraph.

6.3.2. Fredholm determinants and partition functions. The following Lemma relates partition

functions and Fredholm determinants :

Lemma 6.5 (Field regularization.). Under the assumptions of definition 6.3, let φε = e−ε∆φ

be the mollified GFF. Set : 〈φε, V φε〉 := 〈φε, V φε〉 − E (〈φε, V φε〉).
Then for every ε > 0, the following relation holds true :〈

exp

(
−1

2

∫
M

: 〈φε, V φε〉 : dv(x)

)〉
= detF

(
I + e−ε∆∆−1e−ε∆V

)
.

Proof. This is an immediate consequence of [31, Proposition 9.3.1 p. 175] since the operator

(∆)−
1
2 e−ε∆V e−ε∆ (∆)−

1
2 is positive, self–adjoint and smoothing hence Hilbert–Schmidt on

L2 (E). �

6.4. The renormalized functional measure. In the previous part, we have constructed

renormalized functional determinants to rigorously define the partition function. The fol-

lowing Proposition answers some natural questions about the corresponding renormalized

functional measure.

Proposition 6.6. Under the assumptions of definition 6.3, assume V ∈ C∞(End(E))

is Hermitian. Let µ denote the GFF measure on D′ (M,E) with covariance G which is

the Schwartz kernel of ∆−1. Then there exists Pε =
∫
M Λε

(
jd−3

)
∈ Oloc,[ d

2
]

(
Jd−3E

)
⊗C

C[ε−
1
2 , log(ε)] s.t. the limit

ν = lim
ε→0+

exp

(
−1

2

∫
M

(
: 〈φε, V φε〉 : −Λε(j

d−3V )
)
dv(x)

)
µ
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converges to a Gaussian measure on D′ (M,E) which is absolutely continuous w.r.t. µ if

d = (2, 3) and the measure (µ, ν) are mutually singular when d > 4.

Proof. Define νε = exp
(
−1

2

∫
M

(
: 〈φε, V φε〉 : −Λε(j

d−3V )
)
dv(x)

)
µ for ε > 0. This is a

Gaussian measure whose covariance is
(
∆ + e−ε∆V e−ε∆

)−1
by [31, Prop 9.3.2 p. 213]. When

ε → 0+, this covariance converges to (∆ + V )−1 as bilinear forms on C∞(M) × C∞(M)

for the weak topology [31, (iv) p. 172] since e−ε∆ → Id in the strong operator topology

when ε → 0+. A necessary and sufficient condition for the renormalized measure to be

absolutely continuous w.r.t. the initial measure is given by a Theorem of Shale [62, Thm

I.23 p. 41] is that ∆−
1
2V∆−

1
2 ∈ Ψ−2(M,E) is Hilbert–Schmidt which holds true only if

dim(M) = d 6 3. �

7. Quillen’s determinant line bundle.

We recall the definition of Quillen’s determinant line bundle which is an adaptation of the

definition of Segal [60, p. 137-138], Furutani [28] and Melrose–Rochon [44] where holomor-

phicity properties are manifest. The reader can also look at [58, section 5.3 p. 642] for a very

nice account of determinant line bundles for families of Ψdos.

Definition 7.1 (Quillen’s universal determinant line bundle). Using the notations of subsub-

section 1.0.3. Recall I1(H) denotes the ideal of trace class operators on some Hilbert space

H. Let (Tb)b∈B be a holomorphic family of Fredholm operators from H0 7→ H1 of index 0,

parametrized by a complex Banach manifold B. Consider the bundle

G =
⋃
b∈B

Tb(Id+ I1(H1)) ' B × (Id+ I1(H1))

which fibers over the complex Banach manifold B.

Then we define the determinant line bundle Det 7→ B to be the quotient G × C/ ∼ where

(A(I + T ), z1) ∼ (A,detF (I + T )z2). The canonical section det(T ) is defined to be the

equivalence class T 7→ [T, 1].

This definition is functorial since it works for any holomorphic family (Tb)b∈B and holo-

morphicity is checked as in the work of Furutani [28]. Quillen’s line bundle is recovered by

letting B to be the space Fred0 (H0,H1) of Fredholm operators of index 0 as proved by

Furutani [28, section 2 and prop 2.1]. Let use recall that

Lemma 7.2. The canonical section T 7→ det(T ) = [T, 1] vanishes if and only if T non

invertible.

Proof. [T, 1] ' [T̃ , 0] means there exists I+A,A ∈ I1 s.t. T̃ (I+A) = T and detF (I+A) = 0

hence I + A is non invertible and so is T . Conversely, if T non invertible there is a finite

rank operator t such that T + t invertible since T is Fredholm of index 0. Therefore T =

(T + t)(I− (T + t)−1t) where (I− (T + t)−1t) is in the determinant class and (I− (T + t)−1t)

non invertible. Finally [T, 1] ∼ [T + t,detF ((I − (T + t)−1t))] = 0. �
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8. Proof of Theorem 3.

We follow the notations from subsubsection 1.0.3. The way Quillen trivializes the line

bundle is by constructing a smooth Hermitian metric on L named Quillen’s metric and

calculate explicitely the curvature of the corresponding Chern connection which is exactly

the Kähler form on A. Then he shows that by modifying the Hermitian metric, one can

produce a modified Chern connection ∇ which is flat. It follows from the contractibility of A
that flat sections for ∇ trivialize L holomorphically. Here the setting is slightly different

and our approach to holomorphic trivialization is more direct and does not use Quillen

metrics. We already know that the canonical section ι∗det has the same divisor on A as any

solution R det of Theorem 2. Hence the ratio ι∗det(D)
Rdet(D) is holomorphic without zeros on A. It

remains to show that this is locally bounded in order to conclude that this is a holomorphic

section without zeros by proposition 3.6, hence it yields a holomorphic trivialization of L.

Following Segal and Furutani, we define open sets Ut indexed by finite rank operators

t such that Ut = {T ∈ Fred0(H) s.t. T + t invertible}. Since elements in Fred0(H) have

Fredholm index 0, the collection (Ut)t forms an open cover of Fred0(H). Then we trivialize L
over Ut by the never vanishing section T ∈ Ut 7→ [T + t, 1] which is holomorphic by the proof

of Furutani. In the local trivialization, the canonical section T 7→ det(T ) = [T, 1] is identified

with the holomorphic function detF (I−(T+t)−1t) since [T, 1] ∼ [T+t,detF (I−(T+t)−1t)] =

detF (I − (T + t)−1t)[T + t, 1].

Now we shall prove a technical

Lemma 8.1. Let T0 be an invertible operator in ι (A) such that for all T ∈ ι (A), T − T0 is

in the Schatten ideal I[ d
k

]+1, k = (1, 2).

It follows that for p = [ dk ] + 1, Gohberg–Krein’s determinant detp
(
I + T−1

0 (T − T0)
)

is

holomorphic on ι (A). Then the section

T ∈ ι (A) 7−→ detp
(
I + T−1

0 (T − T0)
)−1

det(T ) (8.1)

defines a global holomorphic section of Det 7→ ι (A) which never vanishes.

Proof. It suffices to prove the claim on each open subset Ut∩ι (A) where the canonical section

T 7→ det(T ) is identified with T ∈ Ut 7→ detF (I − (T + t)−1t) by the local trivialization.

Use the identity I + T−1
0 (T − T0) = T−1

0 T and I − (T + t)−1t = (T + t)−1T . By the

multiplicativity of Fredholm determinants, for every invertible T ∈ Ut ∩ ι (A), we find that

detF (I − (T + t)−1t)detp
(
I + T−1

0 (T − T0)
)−1

= detF (I − (T + t)−1t)detF
(
I +Rp

(
T−1

0 (T − T0)
))−1

= detF
(
(T + t)−1T0(I + T−1

0 (T − T0))(I +Rp(T
−1
0 (T − T0)))−1

)
.

For every T ∈ Ut ∩ ι (A), the operator (T + t)−1T0 is invertible. By the spectral map-

ping Theorem for entire functions, the singular value λk(I + T−1
0 (T − T0))(I +Rp(T

−1
0 (T −

T0)))−1 = (1 + λk)(1 + λk)
−1 exp

(
−
∑p−1

j=1
(−1)j

j λjk

)
= exp

(
−
∑p−1

j=1
(−1)j

j λjk

)
6= 0 where

λk ∈ σ
(
T−1

0 (T − T0)
)

since T−1
0 (T − T0) ∈ I[ d

k
]+1 is a compact operator. It follows that
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0 /∈ σ(I + T−1
0 (T − T0))(I + Rp(T

−1
0 (T − T0)))−1 and the operator (I + T−1

0 (T − T0))(I +

Rp(T
−1
0 (T − T0)))−1 is invertible.

Finally (T + t)−1T0(I + T−1
0 (T − T0))(I + Rp(T

−1
0 (T − T0)))−1 is invertible for every

T ∈ Ut ∩ ι (A) and in the determinant class, hence its Fredholm determinant never vanishes.

It follows that T ∈ Ut ∩ ι (A) ∩ invertible 7→ detF (I − (T + t)−1t)detp
(
I + T−1

0 (T − T0)
)−1

extends uniquely as a never vanishing entire function on Ut ∩ ι (A). �

Lemma 8.1 says the ratio P +V ∈ A 7→ det[ d
k

]+1(I +P−1V)−1ι∗det(P +V) never vanishes

over A. Furthermore Corollary 2.9 states that Rdet(P +V) = exp(g(V)) det[ d
k

]+1(I+P−1V)

where g is a polynomial function, therefore exp(g(V)) never vanishes and the holomorphic

section σ : P + V ∈ A 7→ Rdet(P + V)−1ι∗det(P + V) never vanishes over A and defines

a holomorphic trivialization of L : τ : O (L) 7→ Hol(A) such that the canonical section

ι∗det(T ) is sent to the entire function T ∈ A 7→ R det(T ). The second claim follows from the

action of the renormalization group as in Theorem 2. Finally, every non vanishing section σ

defines canonically a flat connection ∇ whose flat section is σ.

9. Appendix.

We give the proof of the following

Lemma 9.1. Let P be a continuous polynomial function on C∞(M) such that P is local in

the sense

δ2P (w;u, v) = 0 (9.1)

when (u, v) have disjoint supports and the linear term of P is given by integration against

a smooth function. If WF
(
δ2P (V )

)
⊂ N∗

(
d2 ⊂M2

)
for all V ∈ C∞(M) then P ∈

Oloc(C∞(M)).

Proof. Equation 9.1 implies that all functional derivatives δnP of P have their Schwartz

kernel supported on the deepest diagonal dn ⊂ Mn by [6, Proposition V.5] and that P is

additive in the sense of [6]. Since P is a polynomial function, it equals its Taylor expansion

P (V ) =
∑deg(P )

n=1 Pn(V ) where Pn homogeneous of degree n.

The smoothness condition on the linear term in P together with the microlocal condition

on δ2P imply that δP is represented by integration against smooth function.

Therefore by uniqueness of the Taylor expansion each Pn satisfies equation 9.1. Let P̃n be

the multilinear map corresponding to Pn that we freely identify with its Schwartz kernel P̃n
by the kernel Theorem [6]. Now by a Theorem of Laurent Schwartz, the Schwartz kernel P̃n
which is a distribution carried by the deepest diagonal has an expression in local coordinates

(x1, . . . , xn) in Un as

P̃n =
∑

f[α](x1)∂α2
x2
. . . ∂αnxn ∂

α1
x1
δR

d(n−1)

{0} (x1 − x2, . . . , x1 − xn)

where the sum is finite and f[α] is a distribution in the variable x1. It follows that the

Schwartz kernel of the second derivative has the representation in local coordinates

δ2P (V, x, y) =
∑

f[α](x)∂α2
x V (x) . . . ∂αnx V (x)∂α1

y δx−y
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which implies P satisfies condition 2 of [6, Lemma VI.9]. By [6, Lemma VI.9], this means

V 7→ ∇PV is smooth. To summarize, P is additive, its differential δPV is represented by

integration against a smooth function ∇PV and V 7→ ∇PV is smooth hence by [6, Theorem

I.2], P ∈ Oloc(C∞(M)). �
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[64] Elias M Stein and Rami Shakarchi. Complex analysis. Princeton lectures in analysis, II, 2003.

[65] Stora, Raymond. Algebraic structure and topological origin of anomalies. In: Progress in gauge field

theory. Springer, Boston, MA, 1984. p. 543-562.

[66] John Milnor. Remarks on infinite-dimensional Lie groups. In Relativity, groups and topology. 2. 1984.

[67] Michael Taylor. Partial differential equations II: Qualitative studies of linear equations, volume 116.

Springer Science & Business Media, 2013.

[68] Michael Taylor. Partial differential equations I: Basic theory, volume 116. Springer Science & Business

Media, 2013.

[69] Taylor, Michael E. Pseudodifferential operators, volume 34 of Princeton Mathematical Series. (1981).

[70] Henryk Zoladek. The monodromy group, volume 67. Springer Science & Business Media, 2006.


	1. Introduction.
	2. Main results.
	Relation with other works.
	Acknowledgements.
	2.1. Notations.

	3. Functional determinants as entire functions with given zeros.
	3.1. Measures of complexity of entire functions.
	3.2. An infinite dimensional generalization : Fredholm determinants.
	3.3. Gohberg–Krein's determinants.

	4. Proof of Theorem 1.
	4.1. Perturbations with a gap in the spectrum.
	4.2. Analyticity.
	4.3. Functional derivatives.
	4.4. Factorization formula relating det and Gohberg–Krein's determinants detp.

	5. Proof of Theorem 2.
	6. Local renormalization and Theorem 6 on Gaussian Free Field representation.
	6.1. Extracting singular parts.
	6.2. Every Rdet solution of problem 2.7 are obtained by local renormalization.
	6.3. Relation with Gaussian Free Fields.
	6.4. The renormalized functional measure.

	7. Quillen's determinant line bundle.
	8. Proof of Theorem 3.
	9. Appendix.
	References

