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CHAPTER 1

Introduction

1.1. Introduction

Quantum Field Theory arose from the need to unify Quantum Mechanics with
special relativity. It is usually formulated on the flat Minkowski spacetime, on which
classical field equations, such as the Klein-Gordon, Dirac or Maxwell equations are
easily defined. Their quantization rests on the so-called Minkowski vacuum, which
describes a state of the quantum field containing no particles. The Minkowski
vacuum is also fundamental for the perturbative or non-perturbative construction
of interacting theories, corresponding to the quantization of non-linear classical field
equations.

Quantum Field Theory on Minkowski spacetime relies heavily on its symmetry
under the Poincaré group. This is apparent in the ubiquitous role of plane waves in
the analysis of classical field equations, but more importantly in the characterization
of the Minkowski vacuum as the unique state which is invariant under the Poincaré
group and has some energy positivity property.

Quantum Field Theory on curved spacetimes describes quantum fields in an
external gravitational field, represented by the Lorentzian metric of the ambient
spacetime. It is used in situations when both the quantum nature of the fields and
the effect of gravitation are important, but the quantum nature of gravity can be
neglected in a first approximation. Its non-relativistic analog would be for example
ordinary Quantum Mechanics, i.e. the Schrödinger equation, in a classical exterior
electromagnetic field.

Its most important areas of application are the study of phenomena occurring
in the early universe and in the vicinity of black holes, and its most celebrated result
is the discovery by Hawking that quantum particles are created near the horizon of
a black hole.

The symmetries of the Minkowski spacetime, which play such a fundamental
role, are absent in curved spacetimes, except in some simple situations, like sta-
tionary or static spacetimes. Therefore, the traditional approach to quantum field
theory has to be modified: one has first to perform an algebraic quantization, which
for free theories amounts to introducing an appropriate phase space, which is ei-
ther a symplectic or an Euclidean space, in the bosonic or fermionic case. From
such a phase space one can construct CCR or CAR ∗-algebras, and actually nets of
∗-algebras, each associated to a region of spacetime.

The second step consists in singling out, among the many states on these ∗-
algebras, the physically meaningful ones, which should resemble the Minkowski
vacuum, at least in the vicinity of any point of the spacetime. This leads to the
notion of Hadamard states, which were originally defined by requiring that their
two-point functions have a specific asymptotic expansion near the diagonal, called
the Hadamard expansion.

A very important progress was made by Radzikowski, [R1, R2], who intro-
duced the characterization of Hadamard states by the wavefront set of their two-
point functions. The wavefront set of a distribution is the natural way to describe
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2 1. INTRODUCTION

its singularities in the cotangent space, and lies at the basis of microlocal analysis,
a fundamental tool in the analysis of linear and non-linear partial differential equa-
tions. Among its avatars in the physics literature are, for example, the geometrical
optics in wave propagation and the semi-classical limit in Quantum Mechanics.

The introduction of microlocal analysis in quantum field theory on curved
spacetimes started a period of rapid progress, non only for free (i.e. linear) quantum
fields, but also for the perturbative construction of interacting fields by Brunetti
and Fredenhagen [BF]. For free fields it allowed to use several fundamental results
of microlocal analysis, like Hörmander’s propagation of singularities theorem and
the classification of parametrices for Klein-Gordon operators by Duistermaat and
Hörmander.

1.2. Content

The goal of these lecture notes is to give an exposition of microlocal analysis
methods in the study of Quantum Field Theory on curved spacetimes. We will
focus on free fields and the corresponding quasi-free states and more precisely on
Klein-Gordon fields, obtained by quantization of linear Klein-Gordon equations on
Lorentzian manifolds, although the case of Dirac fields will be described in Chapter
17.

There exist already several good textbooks or lecture notes on quantum field
theory in curved spacetimes. Among them let us mention the book by Bär, Ginoux
and Pfaeffle [BGP], the lecture notes [BFr] and [BDFY], the more recent book
by Rejzner [Re], and the survey by Benini, Dappiagi and Hack [BDH]. There
exist also more physics oriented books, like the books by Wald [W2], Fulling [F]
and Birrell and Davies [BD]. Several of these texts contain important developments
which are not described here, like the perturbative approach to interacting theories,
or the use of category theory.

In this lecture notes we focus on advanced methods from microlocal analysis,
like for example pseudodifferential calculus, which turn out to be very useful in the
study and construction of Hadamard states.

Pure mathematicians working in partial differential equations are often deterred
by the traditional formalism of quantum field theory found in physics textbooks,
and by the fact that the construction of interacting theories is, at least for the time
being, restricted to perturbative methods.

We hope that these lecture notes will convince them that quantum field theory
on curved spacetimes is full of interesting and physically important problems, with
a nice interplay between algebraic methods, Lorentzian geometry and microlocal
methods in partial differential equations. On the other hand, mathematical physi-
cists with a traditional education, which may lack familiarity with more advanced
tools of microlocal analysis, can use this text as an introduction and motivation to
the use of these methods.

Let us now give a more detailed description of these lecture notes. The reader
may also consult the introduction of each chapter for more information.

For pedagogical reasons, we have chosen to devote Chapters 2 and 3 to a
brief outline of the traditional approach to quantization of Klein-Gordon fields
on Minkowski spacetime, but the impatient reader can skip them without trouble.

Chapter 4 deals with CCR ∗-algebras and quasi-free states. A reader with a
PDE background may find the reading of this chapter a bit tedious. Nevertheless,
we think it is worth the effort to get familiar with the notions introduced there.

In Chapter 5 we describe well-known concepts and results concerning Lorentzian
manifolds and Klein-Gordon equations on them. The most important are the notion
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of global hyperbolicity, a property of a Lorentzian manifold implying global solvabil-
ity of the Cauchy problem, and the causal propagator and the various symplectic
spaces associated to it.

In Chapter 6 we discuss quasi-free states for Klein-Gordon fields on curved
spacetimes, which is a concrete application of the abstract formalism in Chapter 4.
Of interest are the two possible descriptions of a quasi-free state, either by it space-
time covariances, or by its Cauchy surface covariances, which are both important
in practice. Another useful point is the discussion of conformal transformations.

Chapter 7 is devoted to the microlocal analysis of Klein-Gordon equations. We
collect here various well-known results about wavefront sets, Hörmander’s propaga-
tion of singularities theorem and its related study with Duistermaat of distinguished
parametrices for Klein-Gordon operators, which play a fundamental role in quan-
tized Klein-Gordon fields.

In Chapter 8 we introduce the modern definition of Hadamard states due to
Radzikowski and discuss some of its consequences. We explain the equivalence with
the older definition based on Hadamard expansions and the well-known existence
result by Fulling, Narcowich and Wald.

In Chapter 9 we discuss ground states and thermal states, first in an abstract
setting, then for Klein-Gordon operators on stationary spacetimes. Ground states
share the symmetries of the background stationary spacetime and are the natural
analogs of the Minkowski vacuum. In particular, they are the simplest examples of
Hadamard states.

Chapter 10 is devoted to an exposition of a global pseudodifferential calculus on
non compact manifolds, the Shubin calculus. This calculus is based on the notion
of manifolds of bounded geometry and is a natural generalization of the standard
uniform calculus on Rn. Its most important properties are the Seeley and Egorov
theorems.

In Chapter 11 we explain the construction of Hadamard states using the pseu-
dodifferential calculus in Chapter 10. The construction is done, after choosing a
Cauchy surface, by a microlocal splitting of the space of Cauchy data obtained from
a global construction of parametrices for the Cauchy problem. It can be applied
to many spacetimes of physical interest, like the Kerr-Kruskal and Kerr-de Sitter
spacetimes.

In Chapter 12 we construct analytic Hadamard states by Wick rotation, a well-
known procedure in Minkowski spacetime. Analytic Hadamard states are defined
on analytic spacetimes, by replacing the usual C∞ wavefront set by the analytic
wavefront set, which describes the analytic singularities of distributions. Like the
Minkowski vacuum, they have the important Reeh-Schlieder property. After Wick
rotation, the hyperbolic Klein-Gordon operator becomes an elliptic Laplace oper-
ator, and analytic Hadamard states are constructed using a well-known tool from
elliptic boundary value problems, namely the Calderón projector.

In Chapter 13 we describe the construction of Hadamard states by the charac-
teristic Cauchy problem. This amounts to replacing the space-like Cauchy surface
in Chapter 11 by a past or future lightcone, choosing its interior as the ambient
spacetime. From the trace of solutions on this cone one can introduce a boundary
symplectic space, and it turns out that it is quite easy to characterize states on
this symplectic space which generate a Hadamard state in the interior. Its main
application is the conformal wave equation on spacetimes which are asymptotically
flat at past or future null infinity. We also describe in this chapter the BMS group
of asymptotic symmetries of these spacetimes, and its relationship with Hadamard
states.
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In Chapter 14 we discuss Klein-Gordon fields on spacetimes with Killing hori-
zons. Our aim is to explain a phenomenon loosely related with the Hawking ra-
diation, namely the existence of the Hartle-Hawking-Israel vacuum, on spacetimes
having a stationary Killing horizon. The construction and properties of this state
follow from the Wick rotation method already used in Chapter 12, the Calderón
projectors playing also an important role.

Chapter 15 is devoted to the construction of Hadamard states by scattering
theory methods. We consider spacetimes which are asymptotically static at past or
future time infinity. In this case one can define the in and out vacuum states, which
are states asymptotic to the vacuum state at past or future time infinity. Using the
tools from Chapters 10, 11 we prove that these states are Hadamard states.

In Chapter 16 we discuss the notion of Feynman inverses. It is known that a
Klein-Gordon operator on a globally hyperbolic spacetime admits Feynman para-
metrices, which are unique modulo smoothing operators and characterized by the
wavefront set of its distributional kernels. One can ask if one can also define a
unique, canonical true inverse, having the correct wavefront set. We give a positive
answer to this question on spacetimes which are asymptotically Minkowski.

Chapter 17 is devoted to the quantization of the Dirac equation and to the
definition of Hadamard states for Dirac quantum fields. The Dirac equation on
a curved spacetime describes an electron-positron field which is a fermionic field,
and the CCR ∗-algebra for the Klein-Gordon field has to be replaced by a CAR
∗-algebra. Apart from this difference, the theory for fermionic fields is quite parallel
to the bosonic case. We also describe the quantization of the Weyl equation, which
originally was thought to describe massless neutrinos.

1.2.1. Acknowledgments. The results described in Chapters 11, 12, 15, and
part of those in Chapters 10 and 13, originate from common work with Michal
Wrochna, over a period of several years.

I learned a lot of what I know about quantum field theory from my long collab-
oration with Jan Derezinski, and several parts of these lecture notes, like Chapters
4 and 5 borrow a lot from our common book [DG]. I take the occasion here to
express my gratitude to him.

Finally, I also greatly profited from discussions with members of the AQFT
community. Among them I would like to especially thank Claudio Dappiagi, Valter
Moretti, Nicola Pinamonti, Igor Khavkine, Klaus Fredenhagen, Detlev Bucholz,
Wojciech Dybalski, Kasia Rejzner, Dorothea Bahns, Rainer Verch, Stefan Hollands
and Ko Sanders.

1.3. Notation

We now collect some notation that we will use.
We set 〈λ〉 = (1 + λ2)

1
2 for λ ∈ R.

We write A b B if A is relatively compact in B.
If X,Y are sets and f : X → Y we write f : X

∼−→ Y if f is bijective. If X,Y
are equipped with topologies, we write f : X → Y if the map is continuous, and
f : X

∼−→ Y if it is a homeomorphism.

1.3.1. Scale of abstract Sobolev spaces. Let H a real or complex Hilbert
space and A a selfadjoint operator on H. We write A > 0 if A ≥ 0 and KerA = {0}.

If A > 0 and s ∈ R, we equip DomA−s with the scalar product (u|v)−s =
(A−su|A−sv) and the norm ‖A−su‖. We denote by AsH the completion of DomA−s

for this norm, which is a (real or complex) Hilbert space.



CHAPTER 2

Free Klein-Gordon fields on Minkowski spacetime

Almost all textbooks on quantum field theory start with the quantization of
the free (i.e. linear) Klein-Gordon and Dirac equations on Minkowski spacetime.
The traditional exposition rests on the so-called frequency splitting, which amounts
to splitting the space of solutions of, say, the Klein-Gordon equation into two sub-
spaces, corresponding to solutions having positive/negative energy, or equivalently
whose Fourier transforms are supported in the upper/lower mass hyperboloid.

One then proceeds with the introduction of Fock spaces and the definition of
quantized Klein-Gordon or Dirac fields using creation/annihilation operators.

Since it relies on the use of the Fourier transformation, this method does not
carry over to Klein-Gordon fields on curved spacetimes. More fundamentally, it has
the drawback of mixing two different steps in the quantization of the Klein-Gordon
equation.

The first, purely algebraic step consists in using the symplectic nature of the
Klein-Gordon equation to introduce an appropriate CCR ∗-algebra. The second
step consists in choosing a state on this algebra, which on the Minkowski spacetime
is the vacuum state.

Nevertheless it is useful to keep in mind the Minkowski spacetime as an impor-
tant example. This chapter is devoted to the classical theory of the Klein-Gordon
equation on Minkowski spacetime, i.e. to its symplectic structure. Its Fock quan-
tization will be described in Chapter 3.

2.1. Minkowski spacetime

In the sequel we will use notation introduced later in Section 4.1.
The elements of Rn = Rt × Rdx will be denoted by x = (t, x), those of the dual

(Rn)′ by ξ = (τ, k).

2.1.1. The Minkowski spacetime.

Definition 2.1.1. The Minkowski spacetime R1,d is R1+d equipped with the
bilinear form η ∈ Ls(R1+d, (R1+d)′) given by

(2.1) x·ηx = −t2 + x2.

Definition 2.1.2. (1) A vector x ∈ R1,d is time-like if x ·ηx < 0, null if
x·ηx = 0, causal if x·ηx ≤ 0, and space-like if x·ηx > 0.

(2) C± ··= {x ∈ R1,d : x ·ηx < 0, ±t > 0}, resp. C± ··= {x ∈ R1,d : x ·ηx ≤
0, ±t ≥ 0} are called the open, resp. closed future/past (solid) lightcones.

(3) N ··= {x ∈ R1,d : x · ηx = 0}, resp. N± = N ∩ {±t ≥ 0} are called the null
cone resp. future/past null cones.

There is a similar classification of vector subspaces of R1,d.

Definition 2.1.3. A linear subspace V of R1,d is time-like if it contains both
space-like and time-like vectors, null if it is tangent to the null cone N and space-like
if it contains only space-like vectors.

5



6 2. FREE KLEIN-GORDON FIELDS ON MINKOWSKI SPACETIME

Definition 2.1.4. (1) If K ⊂ R1,d, I±(K) ··= K + C±, resp. J±(K) ··=
K + C±, is called the time-like, resp. causal future/past of K, and J(K) ··=
J+(K) ∪ J−(K) the causal shadow of K.

(2) Two sets K1, K2 are called causally disjoint if K1∩J(K2) = ∅ or, equivalently,
if J(K1) ∩K2 = ∅.

(3) A function f on Rn is called space-compact, resp. future/past space-compact,
if supp f ⊂ J(K), resp. supp f ⊂ J±(K) for some compact set K b Rn. The
spaces of smooth such functions will be denoted by C∞sc (Rn), resp. C∞sc,±(Rn).

2.1.2. The Lorentz and Poincaré groups.

Definition 2.1.5. (1) The pseudo-Euclidean group O(R1+d, η) is denoted by
O(1, d) and is called the Lorentz group.

(2) SO(1, d) is the subgroup of L ∈ O(1, d) with detL = 1.
(3) If L ∈ O(1, d) one has L(J+) = J+ or L(J+) = J−. In the first case L is

called orthochronous and in the second anti-orthochronous.
(4) The subgroup of orthochronous elements of SO(1, d) is denoted by SO↑(1, d)

and called the restricted Lorentz group.

Definition 2.1.6. The (restricted) Poincaré group is the set P (1, d) ··= Rn ×
SO↑(1, d) equipped with the product

(a2, L2)× (a1, L1) = (a2 + L2a1, L2L1).

The Poincaré group acts on Rn by Λx ··= Lx+ a for Λ = (a, L) ∈ P (1, d).

2.2. The Klein-Gordon equation

We recall that the differential operator

P = −2 +m2 ··= ∂2
t −

d∑
i=1

∂2
xi +m2,

for m ≥ 0 is called the Klein-Gordon operator.
We set ε(k) = (k2 + m2)

1
2 and denote by ε = ε(Dx) the Fourier multiplier

defined by F(εu)(k) = ε(k)u(k), where Fu(k) = (2π)−d/2
´

e−ik·xu(x)dx is the
(unitary) Fourier transform. Note that −2 +m2 = ∂2

t + ε2.
The Klein-Gordon equation

(2.2) −2φ+m2φ = 0

is the simplest relativistic field equation. Its quantization describes a scalar bosonic
field of massm. The wave equation (m = 0) is a particular case of the Klein-Gordon
equation. Note that since −2 + m2 preserves real functions, the Klein-Gordon
equation has real solutions, which are associated to neutral fields, corresponding
to neutral particles, while the complex solutions are associated to charged fields,
corresponding to charged particles.

It will be more convenient later to consider complex solutions, but in this
chapter we will, as is usual in the physics literature, consider mainly real solutions.
The case of complex solutions will be briefly discussed in Section 2.4.

We refer the reader to Chapter 4 for a general discussion of the real vs complex
formalism in a more abstract framework.

We are interested in the space of its smooth, space-compact, real solutions de-
noted by Solsc,R(KG). Solsc,R(KG) is invariant under the Poincaré group if we
set

(2.3) αΛφ(x) ··= φ(Λ−1x), Λ ∈ P (1, d).



2.2. THE KLEIN-GORDON EQUATION 7

2.2.1. The Cauchy problem. If φ ∈ C∞(Rn) and t ∈ R we set φ(t)(x) ··=
φ(t, x) ∈ C∞(Rd). Any solution φ ∈ Solsc,R(KG) is determined by its Cauchy data
on the Cauchy surface Σs = {t = s} ∼ Rd, defined by the map

(2.4) %sφ ··=
(

φ(s)
∂tφ(s)

)
= f ∈ C∞0 (Rd;R2).

The unique solution in Solsc,R(KG) of the Cauchy problem

(2.5)
{

(−2 +m2)φ = 0,
%sφ = f,

is denoted by φ = Usf and given by

(2.6) φ(t) = cos(ε(t− s))f0 + ε−1 sin(ε(t− s)f1, f =

(
f0

f1

)
.

The map Us is called the Cauchy evolution operator. The following proposition
expresses the important causality property of Us.

Proposition 2.2.1. One has

suppUsf ⊂ J({s} × supp f).

2.2.2. Advanced and retarded inverses. Let us now consider the inhomo-
geneous Klein-Gordon equation

(2.7) (−2 +m2)u = v,

where for simplicity v ∈ C∞0 (Rn). Since there are plenty of homogeneous solutions,
it is necessary to supplement (2.7) by support conditions to obtain unique solutions,
by requiring that φ vanishes for large negative or positive times.

Theorem 2.2.2. (1) there exist unique solutions uret/adv = Gret/advv ∈ C∞±sc (Rn)
of (2.7). Setting

(2.8) Gret/adv(t) ··= ±θ(±t)ε−1 sin(εt),

where θ(t) = 1l[0,+∞[(t) is the Heaviside function, one has

(2.9) Gret/advv(t, ·) =

ˆ
R
Gret/adv(t− s)v(s, ·)ds;

(2) one has suppGret/advv ⊂ J±(supp v).

The operators Gret/adv are called the retarded/advanced inverses of P . Let us
equip C∞0 (Rn) with the scalar product

(2.10) (u|v)Rn ··=
ˆ
Rn
uvdx,

and C∞0 (Rd;C2) with the scalar product

(2.11) (f |g)Rd =

ˆ
Rd

(
f1g1 + f0g0

)
dx.

It follows from (2.8) that
G∗ret/adv = Gadv/ret,

where A∗ denotes the formal adjoint of A with respect to the scalar product (·|·)Rn .
The operator

(2.12) G ··= Gret −Gadv

is called in the physics literature the Pauli-Jordan or commutator function, or also
the causal propagator. Note that

(2.13) G = −G∗, suppGv ⊂ J(supp v),
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and

(2.14) Gv(t, ·) =

ˆ
R
ε−1 sin(ε(t− s))v(s, ·)ds.

There is an important relationship between G and Us. Namely, if we denote by
%∗s : D′(Rd;R2) → D′(Rn) the formal adjoint of %s : C∞0 (Rn) → C∞0 (Rd;R2) with
respect to the scalar products (2.10) and (2.11), then:

(2.15) %∗sf(t, x) = δs(t)⊗ f0(x)− δ′s(t)⊗ f1(x), f ∈ C∞(Rd;R2).

The following lemma follows from (2.6), (2.8) by a direct computation.

Lemma 2.2.3. One has

Usf = G∗ ◦ %∗s ◦ σf, f ∈ C∞0 (Rd;R2),

for σ =

(
0 −1l
1l 0

)
.

2.2.3. Symplectic structure. It is well-known that the Klein-Gordon equa-
tion is a Hamiltonian equation. Indeed let us equip C∞0 (Rd;R2) with the symplectic
form:

(2.16) f ·σg ··=
ˆ
Rd

(
f1g0 − f0g1

)
dx.

If we identify bilinear forms on C∞0 (Rd;R2) with linear operators using the scalar
product (·|·)Rd , we have

f ·σg = (f |σg)Rd ,

where the operator σ is defined in Lemma 2.2.3. If we introduce the classical
Hamiltonian

f ·Ef ··=
1

2

ˆ
Rd

(
f2

1 + f0ε
2f0

)
dx

and define A ∈ L(C∞0 (Rd;R2)) by

(2.17) f ·σAg ··= f ·Eg, f, g ∈ C∞0 (Rd;R2),

we obtain that

A =

(
0 1l
−ε2 0

)
.

Setting f(t) = %tU0f for f ∈ C∞0 (Rd;C2) we have, by an easy computation

(2.18) f(t) = etAf,

which shows that f 7→ f(t) is the symplectic flow generated by the classical Hamil-
tonian E and the symplectic form σ. In particular, if fi(t) = etAfi, i = 1, 2,
f1(t)·σf2(t) is independent on t.

Equivalently, we can equip Solsc,R(KG) with the symplectic form

(2.19) φ1 ·σφ2 ··= %tφ1 ·σ%tφ2,

where the right-hand side is independent on t. Fixing the reference Cauchy surface
Σ0 ∼ Rd, we obtain the following proposition:

Proposition 2.2.4. The Cauchy data map on Σ0

%0 : (Solsc,R(KG), σ) −→ (C∞0 (Rd;R2), σ),

is symplectic, with %−1
0 = U0, where the Cauchy evolution operator Us was intro-

duced in Subsection 2.2.1.
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This leads to another interpretation of (2.18): the space Solsc,R(KG) is invari-
ant under the group of time translations

τsφ(·, x) ··= φ(· − s, x),

and τs is symplectic on (Solsc,R(KG), σ). Then (2.18) can be rewritten as

%0 ◦ τs ◦ %−1
0 = esA, s ∈ R.

2.3. Pre-symplectic space of test functions

By Proposition 2.2.4, (Solsc,R(KG), σ) is a symplectic space. It is easy to see
that αΛ defined in (2.3) is symplectic if Λ is orthochronous, for example using The-
orem 2.3.2 below. If Λ is anti-orthochronous, αΛ is anti-symplectic, i.e. transforms
σ into −σ.

Identifying (Solsc,R(KG), σ) with (C∞0 (Rd;R2), σ) using %0 is convenient for
concrete computations, but destroys Poincaré invariance, since one fixes the Cauchy
surface Σ0. It would be useful to have another isomorphic symplectic space which
is Poincaré invariant and at the same time easier to understand than Solsc,R(KG).
It turns out that one can use the space of test functions C∞0 (Rn;R), which is a
fundamental step in formulating the notion of locality for quantum fields.

Proposition 2.3.1. Consider the map G : C∞0 (Rn;R)→ C∞sc (Rn). Then:

(1) RanG = Solsc,R(KG),

(2) KerG = PC∞0 (Rn;R).

Moreover, we have
(3) (%0G)∗ ◦ σ ◦ (%0G) = G.

Proof. (1) By P ◦G = 0 and Theorem 2.2.2 (2), we see that RanG ⊂ Solsc,R(KG).
Conversely let φ ∈ Solsc,R(KG). If fs = %sφ, then by Lemma 2.2.3 we obtain that
φ = −G ◦ %∗s ◦ σfs for s ∈ R. Hence, if χ ∈ C∞0 (R) with

´
χ(s)ds = 1 we obtain

that
φ =

ˆ
R
χ(s)φdx = Gv,

for v = −
´
R %
∗
s ◦ σfsds ∈ C∞0 (Rn).

(2) Since G ◦ P = 0 we have PC∞0 (Rn;R) ⊂ KerG. Conversely let v ∈
C∞0 (Rn;R) with Gv = 0. Then for uret/adv = Gret/advv we have uret = uadv =·· u,
u ∈ C∞0 (Rn) by Theorem 2.2.2 (2) and v = Pu since P ◦Gret/adv = 1l.

(3) We have, using (2.14)

%0Gu =

(
−
´
ε−1 sin(εs)u(s)ds´
cos(εs)u(s)ds

)
,

hence

σ ◦ (%0G)u = −
( ´

cos(εs)u(s)ds´
ε−1 sin(εs)u(s)ds

)
,

and
(%0G)∗f = −G%∗0f

= −
´
ε−1 sin(ε(t− s))(δ0(s)⊗ f0 − δ′0(s)⊗ f1)ds

= −ε−1 sin(εt)f0 + cos(εt)f1,

which yields

(%0G)∗◦ σ ◦ (%0G)u

=
´
ε−1 sin(εt) cos(εs)u(s)ds+

´
ε−1 cos(εt) sin(εs)u(s)ds

=
´
ε−1 sin(ε(t− s))u(s)ds = Gu.
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This completes the proof of the proposition. 2

One can summarize Propositions 2.2.4 and 2.3.1 in the following theorem:

Theorem 2.3.2. (1) The following spaces are symplectic spaces:

(
C∞0 (Rn;R)

PC∞0 (Rn;R)
, (·|G·)Rn), (Solsc,R(KG), σ), (C∞0 (Rd;R2), σ).

(2) The following maps are symplectomorphisms:

(
C∞0 (Rn;R)

PC∞0 (Rn;R)
, (·|G·)Rn)

G−→(Solsc,R(KG), σ)
%0−→(C∞0 (Rd;R2), σ).

The first and last of these equivalent symplectic spaces are the most useful for
the quantization of the Klein-Gordon equation.

2.4. The complex case

Let us now discuss the space Solsc,C(KG) of complex space-compact solutions.
We refer to Section 4.2 for notation and terminology.

It is more natural to use the map

(2.20) %sφ ··=
(

φ(s)
i−1∂tφ(s)

)
as Cauchy data map and to equip the space C∞0 (Rd;C2) of Cauchy data with the
Hermitian form

(2.21) f ·qg ··=
ˆ
Rd

(
f1g0 + f0g1

)
dx.

The space Solsc,C(KG) is similarly equipped with the form

φ1 ·qφ2 ··= %tφ1 ·q%tφ2,

which is independent on t. The Cauchy evolution operator becomes

(2.22) U0f(t) = cos(εt)f0 + iε−1 sin(εt)f1.

We have then the following analog of Theorem 2.3.2:

Theorem 2.4.1. (1) The following spaces are Hermitian spaces:

(
C∞0 (Rn;C)

PC∞0 (Rn;C)
, (·|iG·)Rn), (Solsc,C(KG), q), (C∞0 (Rd;C2), q).

(2) The following maps are unitary:

(
C∞0 (Rn;C)

PC∞0 (Rn;C)
, (·|iG·)Rn)

G−→(Solsc,C(KG), q)
%0−→(C∞0 (Rd;C2), q).



CHAPTER 3

Fock quantization on Minkowski space

We describe in this chapter the Fock quantization of the Klein-Gordon equation
on Minkowski spacetime. We recall the definition of the bosonic Fock space over a
one-particle space and of the creation/annihilation operators, which are ubiquitous
notions in quantum field theory.

For example, it is common in the physics oriented literature to specify a state
for the Klein-Gordon field by defining first some creation/annihilation operators.
We will see in Chapter 4 that this is nothing else than choosing a particular Kähler
structure on a certain symplectic space.

In this approach the quantum Klein-Gordon fields are defined as linear oper-
ators on the Fock space, so one has to pay attention to domain questions. These
technical problems disappear if one uses a more abstract point of view and intro-
duces the appropriate CCR ∗-algebra, as will be done in Chapter 4. Fock spaces
will reappear as the (Gelfand-Naimark-Segal) GNS Hilbert spaces associated to a
pure quasi-free state on this algebra. Apart from this fact, they can be forgotten.

3.1. Bosonic Fock space

3.1.1. Bosonic Fock space. Let h be a complex Hilbert space whose unit
vectors describe the states of a quantum particle. If this particle is bosonic, then the
states of a system of n such particles are described by unit vectors in the symmetric
tensor power ⊗ns h, where we take the tensor products in the Hilbert space sense,
i.e. complete the algebraic tensor products for the natural Hilbert norm.

A system of an arbitrary number of particles is described by the bosonic Fock
space

(3.1) Γs(h) ··=
∞⊕
n=0

⊗ns h,

where the direct sum is again taken in the Hilbert space sense and ⊗0
sh = C by

definition. We recall that the symmetrized tensor product is defined by

Ψ1 ⊗s Ψ2 ··= Θs(Ψ1 ⊗Ψ2),

where
Θs(u1 ⊗ · · · ⊗ un) =

1

n!

∑
σ∈Sn

uσ(1) ⊗ · · · ⊗ uσ(n).

The vector Ωvac = (1, 0, . . . ) is called the vacuum and describe a state with no
particles at all. A useful observable on Γs(h) is the number operator N , which
counts the number of particles, defined by

N |⊗ns h = n1l.

The operator N is an example of a second quantized operator, namely N = dΓ(1l),
where

dΓ(a)|⊗ns h ··=
n∑
j=1

1l⊗j−1 ⊗ a⊗ 1l⊗n−j ,

11
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for a a linear operator on h.

3.1.2. Creation/annihilation operators. Since Γs(h) describes an arbitrary
number of particles, it is useful to have operators that create or annihilate particles.
One defines the creation/annihilation operators by

a∗(h)Ψn ··=
√
n+ 1h⊗s Ψn,

a(h)Ψn ··=
√
n(h| ⊗ 1l⊗n−1Ψn, Ψn ∈ ⊗ns (h), h ∈ h,

where one sets (h|u = (h|u) for u ∈ h. It is easy to see that a(∗)(h) are well defined
on DomN

1
2 and that (Ψ1|a∗(h)Ψ2) = (a(h)Ψ1|Ψ2), i.e. a(h)∗ ⊂ a∗(h) on DomN

1
2 .

Moreover

(3.2) h 3 h 7→ a∗(h), resp. a(h) is C-linear, resp. anti-linear,

and as quadratic forms on DomN
1
2 one has

(3.3)
[a(h1), a(h2)] = [a∗(h1), a∗(h2)] = 0,

[a(h1), a∗(h2)] = (h1|h2)1l, h1, h2 ∈ h,

where [A,B] = AB −BA, which a version of the canonical commutation relations,
abbreviated CCR in the sequel.

3.1.3. Field and Weyl operators. One then introduces the field operators
in the Fock representation

(3.4) φF(h) ··=
1√
2

(a(h) + a∗(h)), h ∈ h,

which can be easily shown to be essentially selfadjoint on DomN
1
2 . One has

(3.5) φF(h1 + λh2) = φF(h1) + λφF(h2), λ ∈ R, hi ∈ h, on DomN
1
2 ,

i.e. h 7−→ φF(h) is R-linear, and the Heisenberg form of the CCR are satisfied as
quadratic forms on DomN

1
2

(3.6) [φF(h1), φF(h2)] = ih1 ·σh21l.

for

(3.7) h1 ·σh2 = Im(h1|h2).

Denoting again by φF(h) the selfadjoint closure of φF(h), one can then define the
Weyl operators

(3.8) WF(h) ··= eiφF(h),

which are unitary and satisfy the Weyl form of the CCR

WF(h1)WF(h2) = e−ih1·σh2WF(h1 + h2).

If hR denotes the real form of h, i.e. h as a real vector space, then (hR, σ) is a
real symplectic space. Moreover i, considered as an element of L(hR), belongs to
Sp(hR, σ) and one has

ν ··= σ ◦ i = Re(·|·) ≥ 0.
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3.1.4. Kähler structures. In general, a triple (X , σ, j), where (X , σ) is a real
symplectic space and j ∈ L(X ) satisfies j2 = −1l and σ ◦ j ∈ Ls(X ,X ′), is called
a pseudo-Kähler structure on X . If σ ◦ j ≥ 0, it is called a Kähler structure. The
anti-involution j is called a Kähler anti-involution. We will come back to this notion
in Section 4.1. Given a Kähler structure on X , one can turn X into a complex pre-
Hilbert space by equipping it with the complex structure j and the scalar product:

(3.9) (x1|x2)F ··= x1 ·σjx2 + ix1 ·σx2.

If we choose as one-particle Hilbert space the completion of X for (·|·)F, we can
construct the Fock representation by the map

X 3 x 7−→ φF(x)

which satisfies (3.5), (3.6).

3.2. Fock quantization of the Klein-Gordon equation

From the above discussion we see that the first step in the construction of quan-
tum Klein-Gordon fields is to fix a Kähler anti-involution on one of the equivalent
symplectic spaces in Theorem 2.3.2, the most convenient one being (C∞0 (Rd;R2), σ).

3.2.1. The Kähler structure. There are plenty of choices of Kähler anti-
involutions. The most natural one is obtained as follows: let us denote by h the
completion of C∞0 (Rd;C) with respect to the scalar product

(h1|h2)F ··= (h1|ε−1h2)Rd .

If m > 0, this space is the (complex) Sobolev space H−
1
2 (Rd) and if m = 0 the

complex homogeneous Sobolev space Ḣ−
1
2 (Rd), except when d = 1, since the in-

tegral
´
R |k|

−1dk diverges at k = 0. This is an example of the so-called infrared
problem for massless fields in two spacetime dimensions.

To avoid a somewhat lengthy digression, we will assume that m > 0 if d = 1.
Let us introduce the map

(3.10) V : C∞0 (Rd;R2) 3 f 7−→ εf0 − if1 ∈ h.

An easy computation shows that:

Im(V f |V g)F = f ·σg,

i ◦ V =·· V ◦ j, for j =

(
0 ε−1

−ε 0

)
,

eitε ◦ V = V ◦ etA.

In other words, j is a Kähler anti-involution on C∞0 (Rd;R2) and the associated one-
particle Hilbert space is unitarily equivalent to h. Moreover, after identification by
V , the symplectic group {etA}t∈R becomes the unitary group {eitε}t∈R with positive
generator ε. This positivity is the distinctive feature of the Fock representation.

3.3. Quantum spacetime fields

Let us set

(3.11) ΦF(u) =

ˆ
R
φF(e−itεu(t, ·))dt, u ∈ C∞0 (Rn;R),

the integral being for example norm convergent in B(DomN
1
2 ,Γs(h)). We obtain

from (2.14) and (3.7) that

(3.12) [ΦF(u),ΦF(v)] = i(u|Gv)Rn1l,
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and ΦF(Pu) = 0. Setting formally

ΦF(u) =··
ˆ
Rn

ΦF(x)u(x)dx,

we obtain the spacetime fields ΦF(x), which satisfy

(3.13)
[ΦF(x),ΦF(x′)] = iG(x− x′)1l, x, x′ ∈ Rn,

(−2 +m2)ΦF(x) = 0.

3.3.1. The vacuum state. Let us denote by CCRpol(KG) the ∗-algebra gen-
erated by the ΦF(u), u ∈ C∞0 (Rn;R), see Subsections 4.3.1 and 4.5.1 below for
a precise definition. The vacuum vector Ωvac ∈ Γs(h) induces a state ωvac on
CCRpol(KG), called the Fock vacuum state, by

ωvac(

N∏
i=1

ΦF(ui)) ··= (Ωvac|
N∏
i=1

ΦF(ui)Ωvac)Γs(h)

Clearly, ωvac induces linear maps

⊗nC∞0 (Rn;R) 3 u1 ⊗ · · · ⊗ uN 7−→ ωvac(

N∏
i=1

ΦF(ui)) ∈ C,

which are continuous for the topology of C∞0 (Rn;R), and hence one can write

ωvac(

N∏
i=1

ΦF(ui)) =··
ˆ
RNn

ωN (x1, . . . , xN )

N∏
i=1

ui(xi)dx1 . . . dxN ,

where the distributions ωN ∈ D′(RNn) are called in physics the N -point functions.
Among them the most important one is the 2-point function ω2, which equals

(3.14) ω2(x, x′) = (2π)−n
ˆ
Rd

1

2ε(k)
ei(t−t′)ε(k)+ik·(x−x′)dk.

If we write similarly the distributional kernel of G, we obtain by (2.14)

(3.15) G(x, x′) = (2π)−n
ˆ
Rd

1

ε(k)
sin((t− t′)ε(k))eik·(x−x′)dk.

The fact that ω2(x, x′) and G(x− x′) depend only on x− x′ reflects the invariance
of the vacuum state ωvac under space and time translations.

3.4. Local algebras

We recall that a double cone is a subset

O = I+({x1}) ∩ I−({x2}), x1, x2 ∈ Rn with x2 ∈ J+(x1).

We denote by A(O) the norm closure of Vect({eiΦF(u) : suppu ⊂ O}) in B(Γs(h)).
From (2.13) and (3.12) it follows that

[A(O1),A(O2)] = {0}, if O1, O2 are causally disjoint.

We obtain a representation of the Poincaré group P (1, d) by ∗-automorphisms of
CCRpol(KG) by setting αΛΦF(x) = ΦF(Λ−1x) for Λ ∈ P (1, d). From the invariance
of the vacuum state under translations, we obtain that α(a,1l)(A) = U(a)AU(a)−1

for A ∈ CCRpol(KG), where Rn 3 a 7→ U(a) is a strongly continuous unitary group
on Γs(h).

We have αΛ(A(O)) = A(LO + a), for Λ = (a, L) ∈ P (1, d).
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3.4.1. The Reeh-Schlieder property. One might expect that the closed
subspace generated by the vectors AΩvac for A ∈ A(O) depends on O, since it
describes excitations of the vacuum Ωvac localized in O. This is not the case, and
actually the following Reeh-Schlieder property holds:

Proposition 3.4.1. For any double cone O the space {AΩvac : A ∈ A(O)} is
dense in Γs(h).

Proof. Let u ∈ Γs(h) such that (u|AΩvac) = 0 for all A ∈ A(O). If O1 b O is a
smaller double cone and A ∈ A(O1), the function f : Rn 3 x 7→ (u|U(x)AΩvac) has
a holomorphic extension F to Rn + iC+, i.e. f(x) = F (x+ iC+0), as distributional
boundary values, see Section 12.1.

Since U(x)AU∗(x) ∈ A(O), we have f(x) = 0 for x close to 0, hence by the
edge of the wedge theorem, see Subsection 12.1.2, F = 0 and f = 0 on Rn. Vectors
of the form U(x)AΩvac for x ∈ Rn, A ∈ A(O1) are dense in Γs(h), hence u = 0. 2





CHAPTER 4

CCR algebras and quasi-free states

In this chapter we collect various well-known results on the CCR ∗-algebras
associated to a symplectic space and on quasi-free states. We will often work with
complex symplectic spaces, which will be convenient later on when one considers
Klein-Gordon fields. We follow the presentation in [DG, Section 17.1] and [GW1,
Section 2].

4.1. Vector spaces

In this subsection we collect some useful notation, following [DG, Section 1.2].

4.1.1. Real vector spaces. Real vector spaces will be usually denoted by X .
The complexification of a real vector space X will be denoted by CX = {x1 + ix2 :
x1, x2 ∈ X}.

4.1.2. Complex vector spaces. Complex vector spaces will be usually de-
noted by Y. If Y is a complex vector space, its real form, i.e. Y, regarded as a
vector space over R, will be denoted by YR.

Conversely, a real vector space X equipped with an anti-involution j (also called
a complex structure), i.e. j ∈ L(X ) with j2 = −1l can be equipped with the structure
of a complex space by setting

(λ+ iµ)x = λx+ µjx, x ∈ X , λ+ iµ ∈ C.

If Y is a complex vector space, we denote by Y the conjugate vector space of Y, i.e.
Y = YR as a real vector space, equipped with the complex structure −j, if j ∈ L(YR)
is the complex structure of Y. The identity map 1l : Y → Y will be denoted by
y 7→ y, i.e. y equals y, but considered as an element of Y. The map 1l : Y → Ȳ is
anti-linear.

4.1.3. Duals and antiduals. Let X be a real vector space. Its dual will be
denoted by X ′.

Let Y be a complex vector space. Its dual will be denoted by Y ′, and its anti-
dual, i.e. the space of C-anti-linear forms on Y, by Y∗. By definition, Y∗ = Y ′.
Note that we have a C-linear identification Y ′ ∼ Y ′ defined as follows: if y ∈ Y and
w ∈ Y ′, then

w·y ··= w·y.
This identifies w ∈ Y ′ with an element of Y ′. Similarly, we have a C-linear identi-
fication Y∗ ∼ Y∗.

4.1.4. Linear operators. If Xi, i = 1, 2, are real or complex vector spaces
and a ∈ L(X1,X2), we denote by a′ ∈ L(X ′2,X ′1) or ta its transpose. If Yi, i = 1, 2
are complex vector spaces we denote by a∗ ∈ L(Y∗2 ,Y∗1 ) its adjoint, and by a ∈
L(Y1,Y2) its conjugate, defined by a y1 = ay1. With the above identifications we
have a∗ = a′ = a′. If Xi, i = 1, 2 are real vector spaces and a ∈ L(X1,X2), we
denote by aC ∈ L(CX1,CX2) its complexification.

17



18 4. CCR ALGEBRAS AND QUASI-FREE STATES

4.2. Bilinear and sesquilinear forms

If X is a real or complex vector space, a bilinear form on X is given by an
operator a ∈ L(X ,X ′), its action on a couple (x1, x2) is denoted by x1 ·ax2. We
denote by Ls/a(X ,X ′) the symmetric/antisymmetric forms on X . A form a is
non-degenerate if Ker a = {0}.

Similarly, if Y is a complex vector space, a sesquilinear form on Y is given by
an operator a ∈ L(Y,Y∗), and its action on a couple (y1, y2) will be denoted by

(4.1) (y1|ay2) or y1 ·ay2,

the last notation being a reminder that Y∗ ∼ Y ′. We denote by Lh/a(Y,Y∗) the
Hermitian/anti-Hermitian forms on Y. Non-degenerate forms are defined as in the
real case.

If X is a real vector space and a ∈ L(X ,X ′), we denote by aC ∈ L(CX ,CX ∗)
its sesquilinear extension.

4.2.1. Real symplectic spaces. An antisymmetric form σ ∈ L(X ,X ′) is
called a pre-symplectic form. A non-degenerate pre-symplectic form is called sym-
plectic and a couple (X , σ) where σ is (pre) symplectic a (real) (pre) symplectic
space.

If (X , σ) is symplectic, the symplectic group Sp(X , σ) is the set of invertible r ∈
L(X ) such that r′σr = σ equipped with the usual product. The Lie algebra sp(X , σ)
is the set of a ∈ L(X ) such that a′σ = −σa, equipped with the commutator.

4.2.2. Pseudo-Euclidean spaces. A pair (X , ν) with ν ∈ L(X ,X ′) non-
degenerate and symmetric is called a pseudo-Euclidean space. If ν > 0, it is called
an Euclidean space. The orthogonal group O(X , ν) is the set of invertible r ∈ L(X )
such that r′νr = ν, equipped with the usual product. The Lie algebra o(X , ν) is
the set of a ∈ L(X ) such that a′ν = −νa, equipped with the commutator.

4.2.3. Hermitian spaces. A space (Y, q) with q Hermitian is called a pre-
Hermitian space. If q is non-degenerate, (Y, q) is called a Hermitian space. If q > 0
it is called a pre-Hilbert space.

The (pseudo)-unitary group U(Y, q) is the set of invertible u ∈ L(Y) such that
u∗qu = q equipped with the usual product.

4.2.4. Complex symplectic spaces. An anti-Hermitian form σ on Y is
called a (complex) pre-symplectic form. One sets then q ··= iσ ∈ Lh(Y,Y∗) called
the charge. One identifies in this way complex (pre-)symplectic spaces with (pre-
)Hermitian spaces. The complex structure on Y is sometimes called the charge
complex structure and will often be denoted by j to avoid confusion with the imag-
inary unit i ∈ C.

4.2.5. Charge reversal.

Definition 4.2.1. Let (Y, q) a pre-Hermitian space. A map χ ∈ L(YR) is
called a charge reversal if χ2 = 1l or χ2 = −1l and

χy1 ·qχy2 = −y2 ·qy1 y1, y2 ∈ Y.

Note that a charge reversal is anti-linear.
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4.2.6. Pseudo-Kähler structures. Let (Y, q) be a Hermitian space whose
complex structure is denoted by j ∈ L(YR). Note that (YR, Imq) is a real symplectic
space with j ∈ Sp(YR, Imq) and j2 = −1l. The converse construction is as follows:
a real symplectic space (X , σ) with a map j ∈ L(X ) such that

j2 = −1l, j ∈ Sp(X , σ),

is called a pseudo-Kähler space. If in addition ν ··= σj is positive definite, it is called
a Kähler space. We set now

Y = (X , j),
which is a complex vector space, whose elements are logically denoted by y. If
(X , σ, j) is a pseudo-Kähler space we can set

y1qy2 ··= y1 · σjy2 + iy1 · σy2, y1, y2 ∈ Y,

and check that q ∈ Lh(Y,Y∗) is non-degenerate.

4.3. Algebras

A unital algebra over C equipped with an anti-linear involution A 7→ A∗ such
that (AB)∗ = B∗A∗ is called a ∗-algebra. A ∗-algebra which is complete for a
norm such that ‖A‖ = ‖A∗‖ and ‖AB‖ ≤ ‖A‖‖B‖ is called a Banach ∗-algebra. If
moreover ‖A∗A‖ = ‖A‖2, it is called a C∗-algebra.

4.3.1. Algebras defined by generators and relations. In physics many
algebras are defined by specifying a set of generators and the relations they satisfy.
Let us recall the corresponding rigorous definition.

Let A be a set, called the set of generators, and Cc(A;K) be the vector space
of functions A → K with finite support (usually K = C). Denoting the indicator
function 1l{a} simply by a, we see that every element of Cc(A;K) can be written as∑
a∈B λaa, with B ⊂ A finite, λa ∈ K.
Thus Cc(A;K) can be seen as the vector space of finite linear combinations of

elements of A. We set
A(A,K) ··= ⊗Cc(A;K),

where ⊗E is the tensor algebra over the K-vector space E. Usually one writes
a1 · · · an instead of a1 ⊗ · · · ⊗ an for ai ∈ A.

Let now R ⊂ A(A,K) (the set of ’relations’). We denote by I(R) the two-sided
ideal of A(A;K) generated by R. Then the quotient

A(A,K)/I(R)

is called the unital algebra with generators A and relations R = 0, R ∈ R.

4.3.2. ∗-algebras defined by generators and relations. Assume that K =
C and let i : A → A some fixed involution. A typical example is obtained as follows:
denote by A another copy of A and by A 3 a 7→ a ∈ A the identity. Then A t A
has a canonical involution i mapping a to a (and hence a to a).

One then defines the anti-linear involution ∗ on A(A,K) by

(a1 · · · an)∗ = ian · · · ia1, 1l∗ = 1l.

If R is invariant under ∗, then I(R) is also a ∗-ideal, and A(A,K)/I(R) is called
the unital ∗-algebra with generators A and relations R = 0, R ∈ R. In this case
one usually defines the involution ∗ by adding to R the elements a∗− ia, for a ∈ A,
i.e. by adding the definition of ∗ on the generators to the set of relations.
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4.4. States

A state on a ∗-algebra A is a linear map ω : A → C which is normalized, i.e.
ω(1l) = 1, and positive, i.e. ω(A∗A) ≥ 0 for A ∈ A.

The set of states on A is a convex set. Its extreme points are called pure
states. Note that if A ⊂ B(H) for some Hilbert space H, a state ω on A given by
ω(A) = (Ω|AΩ) for some unit vector Ω may not be pure.

4.4.1. The GNS (Gelfand-Naimark-Segal) construction. If ω is a state on
A, one can perform the so-called GNS construction, which we now recall. Let us
equip A with the scalar product

(A|B)ω ··= ω(A∗B).

From the Cauchy-Schwarz inequality one obtains that I = {A ∈ A : ω(A∗A) = 0}
is a ∗-ideal of A. We denote by Hω the completion of A/I for ‖·‖ω and by [A] ∈ Hω
the image of A ∈ A. The fact that I is a ∗-ideal implies that for A ∈ A the map

πω(A) : Hω 3 [B] 7−→ [AB] ∈ Hω
is well defined and defines a linear operator with Dω = {[B] : B ∈ A} as invariant
domain. If Ωω ··= [1l], then

(4.2) ω(A) = (Ωω|πω(A)Ωω)ω.

The triple (Hω, πω,Ωω) is called the GNS triple associated to ω. It provides a
Hilbert space Hω, a representation πω of A by densely defined operators on Hω and
a unit vector Ωω such that (4.2) holds. Vectors in Hω are physically interpreted as
local excitations of the ground state Ωω.

If A is a C∗-algebra, then one can show that πω(A) ∈ B(Hω) with ‖πω(A)‖ ≤
‖A‖.

4.5. CCR algebras

In this subsection we recall the definition of various ∗-algebras related to the
canonical commutation relations.

4.5.1. Polynomial CCR ∗-algebra.

Definition 4.5.1. Let (X , σ) be a real pre-symplectic space. The polynomial
CCR ∗-algebra over (X , σ), denoted by CCRpol(X , σ), is the unital complex ∗-
algebra generated by elements φ(x), x ∈ X , with relations

(4.3)
φ(x1 + λx2) = φ(x1) + λφ(x2), φ∗(x) = φ(x),

φ(x1)φ(x2)− φ(x2)φ(x1) = ix1 ·σx21l,
x1, x2, x ∈ X , λ ∈ R.

The elements φ(x) are called real or selfadjoint fields.

4.5.2. Weyl CCR algebra. One problem with CCRpol(X , σ) is that its ele-
ments cannot be faithfully represented as bounded operators on a Hilbert space. To
cure this problem one uses Weyl operators, which lead to the Weyl CCR ∗-algebra.

Definition 4.5.2. The algebraic Weyl CCR ∗-algebra over (X , σ), denoted
CCRWeyl(X , σ), is the ∗-algebra generated by the elements W (x), x ∈ X , with
relations

(4.4)
W (0) = 1l, W (x)∗ = W (−x),

W (x1)W (x2) = e−
i
2x1·σx2W (x1 + x2),

x, x1, x2 ∈ X .
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The elementsW (x) are calledWeyl operators. An advantage of CCRWeyl(X , σ)
is that it can be equipped with a unique C∗-norm see e.g. [DG, Definition 8.60].
Its completion for this norm is called the Weyl CCR C∗-algebra over (X , σ), and is
still denoted by CCRWeyl(X , σ).

We will mostly work with CCRpol(X , σ), but it is sometimes important to work
with the C∗-algebra CCRWeyl(X , σ), for example in the discussion of pure states,
see Section 4.9 below. Of course, the formal relation between the two approaches
is

W (x) = eiφ(x), x ∈ X ,

which does not make sense a priori, but from which mathematically correct state-
ments can be deduced.

4.5.3. Charged CCR algebra. Let (Y, q) a pre-Hermitian space. As ex-
plained above, we denote the complex structure on Y by j. The CCR algebra
CCRpol(YR, Im q) can be generated instead of the selfadjoint fields φ(y) by the
charged fields:

(4.5) ψ(y) ··=
1√
2

(φ(y) + iφ(jy)), ψ∗(y) ··=
1√
2

(φ(y)− iφ(jy)), y ∈ Y.

From (4.3) we see that they satisfy the relations

(4.6)

ψ(y1 + λy2) = ψ(y1) + λψ(y2),

ψ∗(y1 + λy2) = ψ(y1) + λψ∗(y2), y1, y2 ∈ Y, λ ∈ C,

[ψ(y1), ψ(y2)] = [ψ∗(y1), ψ∗(y2)] = 0,

[ψ(y1), ψ∗(y2)] = y1 · qy21l, y1, y2 ∈ Y,

ψ(y)∗ = ψ∗(y), y ∈ Y.

Note the similarity with the CCR in (3.3) expressed in terms of creation/annihilation
operators, the difference being the fact that q is not necessarily positive. The CCR
algebra CCRpol(YR, Im q) will be denoted by CCRpol(Y, q).

4.6. Quasi-free states

In this subsection we discuss states on CCRpol(X , σ) or (equivalently) on CCRWeyl(X , σ)
which are natural for free theories, the so-called quasi-free states. We start by dis-
cussing general states on CCRWeyl(X , σ).

4.6.1. States on CCRWeyl(X , σ). Let (X , σ) be a real pre-symplectic space
and ω a state on CCRWeyl(X , σ). The function:

(4.7) X 3 x 7−→ ω(W (x)) =·· G(x)

is called the characteristic function of the state ω, and is an analog of the Fourier
transform of a probability measure.

There is also an analog of Bochner’s theorem:

Proposition 4.6.1. A map G : X → C is the characteristic function of a state
on CCRWeyl(X , σ) iff for any n ∈ N and any xi ∈ X , the n× n matrix[

G(xj − xi)e
i
2xi·σxj

]
1≤i,j≤n

is positive.
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Proof. =⇒ For x1, . . . , xn ∈ X , λ1, . . . , λn ∈ C set A ··=
∑n
j=1 λjW (xj). Such A

are dense in CCRWeyl(X , σ). One computes A∗A using the CCR and obtains

(4.8) A∗A =

n∑
i,j=1

λiλjW (xj − xi)e
i
2xi·σxj ,

from which =⇒ follows.
⇐= One defines ω using (4.7), and (4.8) shows that ω is positive. 2

4.6.2. Quasi-free states on CCRWeyl(X , σ).

Definition 4.6.2. Let (X , σ) be a real pre-symplectic space.
(1) A state ω on CCRWeyl(X , σ) is a quasi-free state if there exists η ∈ Ls(X ,X ′)

such that

(4.9) ω
(
W (x)

)
= e−

1
2x·ηx, x ∈ X .

(2) The form η is called the covariance of the quasi-free state ω.

Quasi-free states are generalizations of Gaussian measures. In fact, let us as-
sume that X = Rn and σ = 0. CCRpol(Rn, 0) is simply the algebra of complex
polynomials on (Rn)′ if we identify φ(x) with the function ξ 7→ x·ξ. If we consider
the Gaussian measure on (Rn)′ with covariance η

dµη ··= (2π)n/2(det η)−
1
2 e−

1
2 ξ·η

−1ξdξ,

then ˆ
eix·ξdµη(ξ) = e−

1
2x·ηx,

which is (4.7). Note also that if xi ∈ Rn, then
ˆ 2n+1∏

1

xi · ξdµη(ξ) = 0,

ˆ 2n∏
1

xi · ξdµη(ξ) =
∑

σ∈Pair2n

n∏
j=1

xσ(2j−1) · ηxσ(2j),

which should be compared with Definition 4.6.5 below. We recall that Pair2m

denotes the set of pairings, i.e. the set of partitions of {1, . . . , 2m} into pairs. Any
pairing can be written as {i1, j1}, · · · , {im, jm} for ik < jk and ik < ik+1, hence
can be uniquely identified with a permutation σ ∈ S2m such that σ(2k − 1) = ik,
σ(2k) = jk.

It will be useful later on to collect some properties of the GNS triple associated
to a quasi-free state ω on CCRWeyl(X , σ), see Subsection 4.4.1. For ease of notation,
we omit the subscript ω.

Lemma 4.6.3. Let us set Wπ(x) ··= π(W (x)) ∈ U(H) for x ∈ X . Then:
(1) the one-parameter group {Wπ(tx)}t∈R is a strongly continuous unitary group

on H;
(2) let φπ(x) be its selfadjoint generator. Then Ω ∈ Dom(

∏n
i=1 φπ(xi)) for n ∈ N,

xi ∈ X .
Proof. (1) It suffices to prove the continuity of t 7→ Wπ(tx)u for u ∈ H at t = 0.
By density and linearity, we can assume that u = Wπ(y)Ω, y ∈ X . Then

‖u−Wπ(tx)u‖2 = (Ω|Wπ(−y)(1l−Wπ(−tx))(1l−Wπ(tx))Wπ(y)Ω),

and using the CCR (4.4) we have

Wπ(−y)(1l−Wπ(−tx))(1l−Wπ(tx))Wπ(y)

= 21l−W (−tx)eitx·σy −W (tx)e−itx·σy.
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Therefore
‖u−Wπ(tx)u‖2 = ω(21l−W (−tx)eitx·σy −W (tx)e−itx·σy)

= 2− e−
1
2 t

2x·ηx+itx·σy − e−
1
2 t

2x·ηx−itx·σy,

which tends to 0 when t→ 0.
(2) By [DG, Theorem 8.29], it suffices to check that if Xfin ⊂ X is a finite-

dimensional subspace, then Xfin 3 x 7→ (Ω|Wπ(x)Ω) belongs to the Schwartz class
S(Xfin) of rapidly decaying smooth functions. This is obvious by (4.9). 2

Proposition 4.6.4. (1) One has

Domφπ(x1) ∩Domφπ(x2) ⊂ Domφπ(x1 + x2),

φπ(x1 + x2) = φπ(x1) + φπ(x2) on Domφπ(x1) ∩Domφπ(x2),

[φπ(x1), φπ(x2)] = ix1 ·σx21l as quadratic forms on Domφπ(x1) ∩Domφπ(x2).

(2) One has

(4.10) (Ω|φπ(x1)φπ(x2)Ω) = x1 ·ηx2 +
i

2
x1 ·σx2, x1, x2 ∈ X .

(3) One has

(Ω|φπ(x1) · · ·φπ(x2m−1)Ω) = 0,(4.11)

(Ω|φπ(x1) · · ·φπ(x2m)Ω) =
∑

σ∈Pair2m

m∏
j=1

(Ω|φπ(xσ(2j−1))φπ(xσ(2j)Ω).(4.12)

Proof. (1) follows from [DG, Theorem 8.25].
(2) We have (Ω|Wπ(tx)Ω) = e−

1
2 t

2x·ηx, which when differentiated twice with
respect to t at t = 0 gives (Ω|φ2

π(x)Ω) = x·ηx. We then apply (1), i.e. linearity and
the CCR to obtain (4.10).

(3) in(Ω|φπ(x1) · · ·φπ(xn)Ω) is the coefficient of t1 · · · tn in the power series
expansion of ω(W (t1x1) · · ·W (tnxn)). One then uses the CCR and (4.9) to compute
this function. Details can be found e.g. in [DG, Proposition 17.8]. 2

4.6.3. Quasi-free states on CCRpol(X , σ). From Proposition 4.6.4 one sees
that a quasi-free state ω on CCRWeyl(X , σ) induces a state ω̃ on CCRpol(X , σ) by
setting

ω̃(

n∏
i=1

φ(xi)) ··= (Ω|
n∏
i=1

φπ(xi)Ω).

Indeed, ω̃ is well defined on CCRpol(X , σ) since it vanishes on elements of the ideal
I(R) for R introduced in (4.3), by Proposition 4.6.4 (1).

This leads to the following definition of quasi-free states on CCRpol(X , σ).

Definition 4.6.5. (1) A state ω on CCRpol(X , σ) is quasi-free if for any m ∈
N and xi ∈ X one has

ω
(
φ(x1) · · ·φ(x2m−1)

)
= 0,(4.13)

ω
(
φ(x1) · · ·φ(x2m)

)
=

∑
σ∈Pair2m

m∏
j=1

ω
(
φ(xσ(2j−1))φ(xσ(2j)

)
.(4.14)

(2) The symmetric form η ∈ Ls(X ,X ′) defined by

(4.15) ω(φ(x1)φ(x2)) =·· x1 ·ηx2 +
i

2
x1 ·σx2

is called the covariance of the state ω.
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4.7. Covariances of quasi-free states

Proposition 4.7.1. Let η ∈ Ls(X ,X ′). Then the following are equivalent:
(1) there exists a quasi-free state ω on CCRWeyl/pol(X , σ) with covariance η.
(2) ηC + i

2σC ≥ 0 on CX , where ηC, σC ∈ L (CX , (CX )∗) are the sesquilinear
extensions of η, σ.

(3) η ≥ 0 and |x1·σx2| ≤ 2(x1·ηx1)
1
2 (x2·ηx2)

1
2 , x1, x2 ∈ X .

Proof. (1) =⇒ (2) If η is the covariance of a state ω on CCRWeyl(X , σ) one
introduces complex fields φπ(w) = φπ(x1) + iφπ(x2), w = x1 + ix2 ∈ CX with
domain Domφπ(x1)∩Domφπ(x2). By Proposition 4.6.4, (φπ(w)Ω|φπ(w)Ω) is well
defined, positive, and equals w · (ηC + i

2σC)w. The same argument, with φπ(·)
replaced by φ(·), gives the proof for CCRpol(X , σ).

(2) =⇒ (1) Let us fix x1, . . . , xn ∈ X and set bij = xi · ηxj + i
2xi · σxj . Then,

for λ1, . . . , λn ∈ C,
n∑

i,j=1

λibijλj = w·ηCw + i
2w·ωCw, w =

n∑
i=1

λixi ∈ CX .

By (2), the matrix
[
bij
]
is positive. The pointwise product of two positive matrices

is positive, see e.g. [DG, Proposition 17.6], which implies that
[
ebij
]
is positive, and

hence
[
e−

1
2xi·ηxiebije−

1
2xj ·ηxj

]
is positive. This matrix equals

[
G(xj − xi)e

i
2xi·σxj

]
with G(x) = e−

1
2x·ηx. By Proposition 4.6.1, η is the covariance of a quasi-free

state on CCRWeyl(X , σ). By the discussion following Subsection 4.6.3, it is also the
covariance of a quasi-free state on CCRpol(X , σ).

The proof of (2)⇐⇒ (3) is an exercise in linear algebra. 2

We will identify in the sequel the two states on CCRWeyl(X , σ) and CCRpol(X , σ)
having the same covariance η.

4.7.1. Quasi-free states on CCRpol(Y, q). Let now (Y, q) a pre-Hermitian
space. Recall that if X = YR and σ = Im q, then (X , σ) is a real pre-symplectic
space, and by definition CCRpol(Y, q) = CCRpol(X , σ).

The complex structure j of Y belongs to Sp(X , σ) and also to sp(X , σ) since
j2 = −1l. It follows that {ejθ}θ∈S1 is a one-parameter group of symplectic transfor-
mations.

Therefore, one can define a group {αθ}θ∈S1 of automorphisms of CCRpol(X , σ)
by

(4.16) αθφ(x) ··= φ(ejθx).

The gauge transformations αθ are global gauge transformations, which should not
be confused with the local gauge transformations arising for example in electro-
magnetism.

Definition 4.7.2. A quasi-free state ω on CCRpol(X , σ) is called gauge invari-
ant if

ω(αθ(A)) = ω(A), A ∈ CCRpol(X , σ), θ ∈ S1.

The following lemma follows immediately from Definition 4.7.2.

Lemma 4.7.3. A quasi-free state ω on CCRpol(X , σ) with covariance η is gauge
invariant iff j ∈ O(X , η) iff j ∈ o(X , η). One can then define η̂ ∈ Lh(Y,Y∗) by

(4.17) y1 ·η̂y2 ··= y1 ·ηy2 − iy1 ·ηjy2, y1, y2 ∈ Y.
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It is then natural to consider the action of ω on products of the charged fields
ψ(y), ψ∗(y) introduced in (4.5). Note that by the CCR (4.6), ω is completely
determined by its action on elements

(4.18) A =

n∏
i=1

ψ∗(yi)

m∏
j=1

ψ(y′j).

Proposition 4.7.4. A quasi-free state ω on CCRpol(Y, q) is gauge invariant
iff

ω(

n∏
i=1

ψ∗(yi)

m∏
j=1

ψ(y′j)) = 0, if n 6= m,(4.19)

ω(

n∏
i=1

ψ∗(yi)

n∏
j=1

ψ(y′j)) =
∑
σ∈Sn

n∏
i=1

ω(ψ∗(yi)ψ(y′σ(i))).(4.20)

Proof. Using that αθ(ψ∗(y)) = ejθψ∗(y), we obtain that if A is as in (4.18) αθ(A) =
ej(n−m)θA, which implies (4.19). The proof of (4.20) is a routine computation, using
(4.5) and Definition 4.6.5. 2

Definition 4.7.5. The sesquilinear forms λ± ∈ Lh(Y,Y∗) defined by

(4.21)
ω(ψ(y1)ψ∗(y2)) =·· y1 ·λ+y2,

ω(ψ∗(y2)ψ(y1)) =·· y1 ·λ−y2, y1, y2 ∈ Y,
are called the complex covariances of the quasi-free state ω.

Note that since [ψ(y1), ψ∗(y2)] = y1 ·qy21l, we have λ+ − λ− = q. Therefore ω
is completely determined by either λ+ or λ−. Nevertheless, it is more convenient
to consider the pair λ± when discussing properties of ω. λ− is usually called the
charge density associated to ω.

Introducing the selfadjoint fields φ(y), we obtain that

(4.22) ω(φ(y1)φ(y2)) = Re(y1 ·(λ+ − 1

2
q)y2) +

i

2
Im(y1 ·qy2).

It follows that the real and complex covariances of a gauge invariant quasi-free state
are connected by the relations

(4.23) η = Re(λ± ∓ 1

2
q), λ± = η̂ ± 1

2
q,

where η̂ is defined in (4.17).
In this situation we will call η the real covariance of the state ω, to distinguish

it from the complex covariances λ±.
It is easy to characterize the complex covariances of a gauge invariant quasi-free

state.

Proposition 4.7.6. Let λ± ∈ Lh(Y,Y∗). Then the following are equivalent:
(1) λ± are the covariances of a gauge invariant quasi-free state on CCRpol(Y, q);
(2) λ± ≥ 0 and λ+ − λ− = q.

Proof. The implication (1) =⇒ (2) is immediate using the CCR and the fact that
ψ(y)ψ∗(y) and ψ∗(y)ψ(y) are positive. Let us now prove that (2) =⇒ (1). We recall
that X = YR. Let η be the real covariance of a gauge invariant quasi-free state. For
x ∈ X let z = 1√

2
(x − ijx), z = 1√

2
(x + ijx). We know that j ∈ O(X , η) ∩ o(X , η),

which after a standard computation yields

(4.24)
(z|ηCz) = x·ηx− ix·ηjx = x·η̂x,

(z|ηCz) = x·ηx− ix·ηjx = x·η̂x.
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Similarly, using that j ∈ Sp(X , σ) ∩ sp(X , σ) we obtain

(4.25)
(z|σCz) = x·σx− ix·σjx = −ix·qx,

(z|σCz) = x·σx+ ix·σjx = ix·qx.

By Proposition 4.7.1 (2) we have ηC+ i
2σC ≥ 0, which implies that η̂± 1

2q = λ± ≥ 0.
The fact that λ+ − λ− = q follows from (4.23). 2

4.7.2. Complexification of a quasi-free state. Let (X , σ) be a real pre-
symplectic space. We equip CX with q = iσC, obtaining a pre-Hermitian space.
The canonical complex conjugation on CX is a charge reversal on (CX , q).

Clearly ((CX )R, Im q) is isomorphic to (X ⊕ X , σ ⊕ σ) as real pre-symplectic
spaces. If ω is a quasi-free state on CCRpol(X , σ) with covariance η, then we can
consider the quasi-free state ω̃ on CCRpol(CX )R, Im q) with covariance Re ηC.

It is easy to see that ω̃ is gauge invariant with covariances λ± equal to

(4.26) λ± = ηC ±
1

2
q.

Moreover, ω̃ is invariant under charge reversal.
Therefore, by complexifying a quasi-free state ω on a real pre-symplectic space

(X , σ), we obtain a gauge invariant quasi-free state ω̃ on A(CX , σC). It follows that,
possibly after complexifying the real pre-symplectic space (X , σ), one can always
restrict the discussion to gauge invariant quasi-free states.

Remark 4.7.7. Let (Y, q) pre-Hermitian and ω a quasi-free state on CCRpol(Y, q).
Assume that ω is not gauge invariant. This means that the complex structure j of
Y is irrelevant for the analysis of ω and hence can be forgotten.

Therefore, we consider ω simply as a quasi-free state on the real pre-symplectic
space (X , σ) = (YR, Imq). If we want to recover a gauge invariant quasi-free state,
we consider the state ω̃ on CCRpol(CX , iσC).

4.8. The GNS representation of quasi-free states

Let us now discuss the GNS representation of a quasi-free state on CCRpol(X , σ).
We will assume for simplicity that its real covariance η is non degenerate, i.e.
Ker η = {0}. From Proposition 4.7.1 (3) we see that Ker η ⊂ Kerσ, hence in
particular Ker η = {0} if σ is symplectic.

Let X cpl the completion of X for (x·ηx)
1
2 , which is a real Hilbert space. The

extension σcpl is bounded on X cpl, but may be degenerate on X cpl. Moreover, ω
induces a unique quasi-free state ωcpl on CCRWeyl(X cpl, σcpl).

To simplify notation, we forget the superscripts cpl in this subsection and as-
sume that X is complete for (x·ηx)

1
2 .

The GNS representation was first constructed by Manuceau and Verbeure [MV]
in the case where σ is non-degenerate. Its extension to the general case was given
by Kay and Wald [KW, Appendix A], where it was called a one-particle Hilbert
space structure. Another equivalent representation if σ is non-degenerate is called
the Araki-Woods representation, see [AW].

An important fact in this context is the following result, due to Leyland,
Roberts and Testard [LRT, Theorem 1.3.2], about dense subspaces of a Fock space
Γs(h). Another proof can be deduced from the results in [DG, Section 17.3].

Theorem 4.8.1. Let h a complex Hilbert space and X ⊂ h a real vector
subspace. Then the space Vect{WF(x)Ωvac : x ∈ X} is dense in Γs(h) iff CX
is dense in h.
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Note that if we denote by X⊥, resp. X perp the space orthogonal to X with
respect to the scalar product (·|·)h, resp. Re(·|·)h, we have (iX )perp = iX perp,
X⊥ = X perp ∩ iX perp and iX perp is also the space orthogonal to X with respect to
the symplectic form σ = Im (·|·)h. Therefore, an equivalent condition in Theorem
4.8.1 is that X perp ∩ iX perp = {0}.

4.8.1. Kähler structures.

Proposition 4.8.2. Let η be the real covariance of a quasi-free state on CCRpol(X , σ)

such that η is non-degenerate and X is complete for (x·ηx)
1
2 . Then if dim Kerσ is

even or infinite, there exists an anti-involution j on X such that (η, j) is Kähler.

Proof. By Proposition 4.7.1 (3), there exists a bounded anti-symmetric operator
c ∈ La(X ) with ‖c‖ ≤ 1 such that

(4.27) σ = 2ηc.

We have of course Ker c = Kerσ and we set Xsing ··= Ker c, Xreg ··= X⊥sing. Since c
is anti-symmetric, it preserves Xreg and Xsing. If creg is the restriction of c to Xreg

then one can perform its polar decomposition creg = −jreg|c|reg, and using the anti-
symmetry of creg one obtain that j2reg = −1l, jreg ∈ O(Xreg, η) and [|creg|, jreg] = 0,
see e.g. [DG, Proposition 2.84].

Since dimXsing is even or infinite, we can choose an arbitrary anti-involution
jsing ∈ O(Xsing, η). Then j = jreg ⊕ jsing has the required properties. 2

4.8.2. The GNS representation. Let us equip X with a complex structure
j as in Proposition 4.8.2, and with the scalar product

(4.28) (x1|x2)KW ··= x1 ·ηx2 − ix1 ·ηjx2.

The completion of X for this scalar product is denoted by XKW in the sequel. We
set

hKW ··= XKW ⊕ 1lR\{1}(|c|)XKW,

where c is as in (4.27) and

(4.29) φKW(x) = φF((1 + |c|) 1
2x⊕ (1− |c|) 1

2x), x ∈ X .
acting on Γs(hKW).

Proposition 4.8.3. The triple (HKW, πKW,ΩKW), defined by

HKW = Γs(hKW), πKWφ(x) = φKW(x), x ∈ X , ΩKW = Ωvac,

is the GNS triple of the quasi-free state ω.

Proof. Using (4.28) we check by standard computations that

[φKW(x1), φKW(x2)] = iIm (x1|x2)hKW
= ix1 ·σx2,

(Ωvac|φKW(x1)φKW(x2)Ωvac) = x1 ·ηx2 + i
2x1 ·σx2.

Using the CCR on Γs(hKW), we then check that ω(A) = (Ωvac|π(A)Ωvac) for all
A ∈ CCRpol(X , σ).

It remains to prove that πKW(CCRWeyl(X , σ))ΩKW is dense in HKW, i.e. by
Theorem 4.8.1, that CRX is dense in hKW for Rx = (1 + |c|) 1

2x⊕ (1− |c|) 1
2x. This

follows easily from the fact that the complex structure on hKW is j⊕−j. 2

If σ is non-degenerate, another equivalent version of the GNS representation is
given by the Araki-Woods representation: one equips X with the complex structure
j = −c|c|−1 given in Proposition 4.8.2, and with the scalar product

(4.30) (x1|x2)AW ··= x1 ·σjx2 + ix1 ·σx2.
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The completion of X for this scalar product is denoted by XAW and equals to
|c|− 1

2XKW, w ith the notation introduced in Subsection1.3.1. One sets then

% =
1− |c|
|c|

as a (possibly unbounded) operator on XAW. From (4.27), (4.30) we obtain that
(x|%x)AW = x ·ηx, hence X ⊂ Dom %

1
2 . The Araki-Woods representation is then

obtained by setting
hAW = XAW ⊕ 1lR\{1}(|c|)XAW,

and defining the left Araki-Woods representation

(4.31) φAW,l(x) ··= φF((1 + %)
1
2x⊕ % 1

2x), x ∈ X .
Setting

HAW = Γs(hAW), πAW,lφ(x) = φAW,l(x), x ∈ X , ΩAW = Ωvac,

one can show by the same arguments that (HAW, πAW,l,ΩAW) is an equivalent GNS
representation for ω.

4.8.3. Doubling procedure. Let us assume that 1l{1}(|c|) = 0, i.e. hAW =

XAW ⊕XAW. One defines the right Araki-Woods representation

φAW,r(x) ··= φF(%
1
2x⊕ (1 + %)

1
2x), x ∈ X ,

which satisfies

[φAW,r(x1), φAW,r(x2)] = −ix1 ·σx2, [φAW,l(x1), φAW,r(x2)] = 0, x1, x2 ∈ X .
One can now combine the left and right Araki-Woods representations by doubling
the phase space. This doubling procedure is due to Kay [Ky2]. One sets

(Xd, σd) ··= (X , σ)⊕ (X ,−σ),

φd(xd) ··= φAW,l(x) + φAW,r(x
′), xd = (x, x′) ∈ Xd,

and the vacuum vector Ωvac induces a quasi-free state ωd on CCRpol(Xd, σd) by

ωd(φ(x1,d)φ(x2,d)) = (Ωvac|φd(x1,d)φd(x2,d)Ωvac)HAW
.

This state is a pure state, see Section 4.9. If we embed CCRpol(X , σ) into
CCRpol(Xd, σd) by the map X 3 x 7→ (x, 0) ∈ Xd, then the restriction of ωd to
CCRpol(X , σ) equals ω.

4.8.4. Charged versions. Let us now describe the complex versions of the
above constructions.

Let λ± be the complex covariances of a quasi-free state on CCRpol(Y, q). As-
sume that λ+ + λ− is non-degenerate, which is the case if q is non-degenerate, and
that Y is complete for the scalar product λ+ + λ−. Then there exists d ∈ Lh(Y)
with ‖d‖ ≤ 1 such that

(4.32) q = (λ+ + λ−)d.

Setting X = YR, we have η = 1
2Re(λ+ + λ−) and σ = Im q which implies that

the operator c in Proposition 4.8.2 equals −id and hence that jreg = isgn(d). Since
Kerσ = Ker q, its (real) dimension is even or infinite.

Assuming for simplicity that Ker d = {0} we can rewrite (·|·)KW as

(4.33) 2(y1|y2)KW = y1 ·(λ+ + λ−)1lR+(d)y2 + y2 ·(λ+ + λ−)1lR−(d)y1.

Similarly, we can rewrite (·|·)AW as

(y1|y2)AW = y1 ·q1lR+(d)y2 − y2 ·q1lR−(d)y1.
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Finally, let us discuss the doubling procedure in the charged case. We start from a
Hermitian space (Y, q) and consider

(Yd, qd) ··= (Y ⊕ Y, q ⊕−q).

Let us denote by λ±d the complex covariances of the doubled state ωd. One can
show, see e.g. [G2, Subsection 5.4] that

λ±d = ±qd ◦ c±d ,
where

(4.34)
c+d =

(
(%+ 1)1lR+(d)− %1lR−(d) −% 1

2 (%+ 1)
1
2 sgn(d)

%
1
2 (%+ 1)

1
2 sgn(d) −%1lR+(d) + (%+ 1)1lR−(d)

)
,

c−d =

(
−%1lR+(d) + (%+ 1)1lR−(d) %

1
2 (%+ 1)

1
2 sgn(d)

−% 1
2 (%+ 1)

1
2 sgn(d) (%+ 1)1lR+(d)− %1lR−(d)

)
,

where d is defined above and % = 1−|d|
|d| . One can check that c±d are a pair of

complementary projections, which is related to the fact that ωd is a pure state.

4.9. Pure quasi-free states

Let us now discuss pure quasi-free states, which are often called vacuum states
in physics. We will always assume that (X , σ) is pre-symplectic, and the covariance
η is non-degenerate.

A basic result, see e.g. [BR, Theorem 2.3.19], says that a state ω on a C∗-
algebra A is pure iff its GNS representation (Hω, πω) is irreducible, i.e. iff Hω does
not contain non-trivial closed subspaces, invariant under πω(A).

To be able to apply this result, we will say that a quasi-free state ω on
CCRpol(X , σ) is pure if it is pure as a state on CCRWeyl(X , σ).

4.9.1. Pure quasi-free states on CCRpol(X , σ). We use the notation X cpl, σcpl, ωcpl

introduced in Section 4.8.

Proposition 4.9.1. A quasi-free state on CCRpol(X , σ) with covariance η is
pure iff (2ηcpl, σcpl) is Kähler, i.e. there exists an anti-involution jcpl ∈ Sp(X cpl, σcpl)
such that σcpljcpl = 2ηcpl.

Note that this implies that σcpl is non-degenerate on X cpl. Equivalent char-
acterizations of pure quasi-free states are given in [MV, Proposition 12] or [KW,
Lemma A.2].
Proof. Let us set A(cpl) = CCRWeyl(X (cpl), σ(cpl)) and let (H(cpl), π(cpl),Ω(cpl)) be
the GNS triple for ω(cpl). Using that X is dense in X cpl for η, we first obtain that
H = Hcpl, Ω = Ωcpl and πcpl|A = π.

We then claim that π(A) is strongly dense in πcpl(Acpl). Indeed, if

A =

N∑
1

πcpl(W (xcpl
i )) ∈ πcpl(Acpl)

and xi,n ∈ X with xi → xcpl
i for η, we obtain that An =

∑N
1 λiπ(W (xi,n)) is

bounded by
∑N

1 |λi| and that An → A strongly on the dense subspace π(A)Ω, and
hence on H.

From this fact we see that a closed subspace K ⊂ H is invariant under π(A) iff
it is invariant under πcpl(Acpl), hence ω is pure iff ωcpl is pure. The statement of
the proposition is now proved for example in [DG, Theorem 17.13]. 2

There is an alternative characterization of pure quasi-free states, due to Kay
and Wald [KW, eq. (3.34) ] which is sometimes very useful.
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Proposition 4.9.2. A quasi-free state on CCRpol(X , σ) with covariance η is
pure iff

(4.35) x·ηx = sup
x1 6=0

1

4

|x·σx1|2

x1 ·ηx1
, x ∈ X .

Proof. It is easy to see that (4.35) on X is equivalent to (4.35) on X cpl, so we can
assume that X is complete for η. Note also that from Proposition 4.7.1 (3) x·ηx is
an upper bound of the rhs in (4.35).

If ω is pure we have 2η = σj by Proposition 4.9.1, hence x·ηjx = 1
2x·ηx, which

implies (4.35). Let us now prove the converse implication.
Let c ∈ La(X ) with ‖c‖ ≤ 1 and σ = 2ηc, as in the beginning of Section 4.8.

Note that Ker c = {0} by (4.35). Performing the polar decomposition of c, see
e.g. [DG, Proposition 2.84], we can write c = u|c| = |c|u, where u ∈ O(Y, η) and
u2 = −1l. Let us check that |c| = 1l, which will prove that ω is pure. If |c| 6= 1l, then
there exist δ ∈ [0, 1[ and x 6= 0 with x = 1l[0,δ](|c|)x, and hence, by Cauchy-Schwarz∣∣x·σx1

∣∣ = 2
∣∣|c|x·ηux1

∣∣ ≤ 2(|c|x·η|c|x)
1
2 (ux1 ·ηux1)

1
2 = 2δ(x·ηx)

1
2 (x1 ·ηx1)

1
2 ,

which contradicts (4.35). 2

4.9.2. Pure quasi-free states on CCRpol(Y, q). Let us now translate the
above results in the case of Hermitian spaces.

Note that Proposition 4.7.6 (2) implies that Ker(λ++λ−) = {0}, hence ‖y‖2ω ··=
y·λ+y+y·λ−y is a Hilbert norm on Y. Denoting by Ycpl the completion of Y for ‖·‖ω,
the Hermitian forms q, λ± extend uniquely to qcpl, λ±,cpl on Ycpl, and ω extends
uniquely to a state ωcpl on CCRpol(Ycpl, qcpl). As in the real case, qcpl may be
degenerate on Ycpl.

If Y1 ⊂ Ycpl with Y ⊂ Y1 densely for ‖·‖ω, then we also obtain unique objects
q1, λ

±
1 , ω1 that extend q, λ±, ω.
The next proposition is the version of Proposition 4.9.1 in the charged case.

Proposition 4.9.3. A gauge invariant quasi-free state ω is pure on CCRpol(Y, q)
iff there exists Y1 ⊂ Ycpl with Y ⊂ Y1 densely for ‖·‖ω and projections c±1 ∈ L(Y1)
such that

(4.36) c+1 + c−1 = 1l, λ±1 = ±q1 ◦ c±1 .
Moreover (4.36) implies that c±∗1 q1c

∓
1 = 0.

Note that (4.36) implies that q1 is non-degenerate on Y1.
Proof. Since λ±1 = λ±∗1 , we obtain from (4.36) that

q1c
±
1 = c±∗1 q1 = c±∗1 q1c

±
1 = c±∗1 q1(c+1 + c−1 ),

which proves the second claim of the proposition.
(1) Let us now prove the first claim of the proposition if Y is complete for

‖ · ‖ω, in which case Y1 = Y. Recall that j is the complex structure on Y. The real
pre-symplectic space (X , σ) for X = YR, σ = Im q is then complete for the norm
(x·ηx)

1
2 and η = Re(λ± ∓ 1

2q) = 1
2Re(λ+ + λ−).

By Proposition 4.9.1, ω is pure iff there exists an anti-involution j1 with 2η =
(Im q)j1 or equivalently 2ηj1 = −(Im q). Since ω is gauge invariant, we have j ∈
sp(X , Im q) ∩ o(X , η) (see Lemma 4.7.3), hence

2ηj1j = −(Im q)j = j Im q = −2jηj1 = 2ηjj1,

so [j, j1] = 0, i.e. j1 is C-linear on Y. Since we know that j1 ∈ Sp(X , Im q) this
implies that j1 ∈ U(Y, q). Moreover, since η = Re(λ+− 1

2q), we have Re(2λ+−q) =
(Im q)j1, which using that j1 is C- linear and λ+, q are sesquilinear yields 2λ+− q =



4.9. PURE QUASI-FREE STATES 31

−qjj1. We now set κ = −jj1 so that κ2 = 1l and κ ∈ U(Y, q), λ+ = 1
2 (q(1l + κ)).

Setting now c± = 1
2 (1l + κ), we see that c± are projections with c+ + c− = 1l,

λ± = ±qc±. From κ∗qκ = q we obtain that c±∗qc∓ = 0, which completes the proof
of =⇒.

To prove the implication ⇐=, assume that (4.36) holds for Y1 = Y and set
j1 = j(c+ − c−) so that j1 ∈ U(Y, q) ⊂ Sp(X , Im q) is an anti-involution. We have
2λ+ − q = q(c+ − c−) = −qjj1 = −iqj1 hence 2η = 2Re(λ+ − q) = (Im q)j1.

(2) Let us now prove the proposition in the general case. We use the notation
in the proof of Proposition 4.9.1 and set additionally A1 = CCRWeyl(Y1,R,Re q1),
and (H1, π1,Ω1) the associated GNS triple. The same argument as in the proof of
Proposition 4.9.1 shows then that ω is pure iff ω1 is pure iff ωcpl is pure. Now the
proof of =⇒ follows from (1) by taking Y1 = Ycpl.

Conversely, if (4.36) holds for some space Y1, then an easy computation shows
that as identities on L(Y1,Y∗1 ), one has

c±∗1 λ±1 c
±
1 = λ±1 , c±∗1 λ∓1 c

±
1 = 0,

hence c±1 are bounded for ‖ · ‖ω. Therefore, they extend to projections on Ycpl

satisfying (4.36). This implies that ωcpl is pure, hence ω is pure. 2

Finally let us prove the analog of Proposition 4.9.2 in the charged case.

Proposition 4.9.4. A gauge invariant quasi-free state ω with complex covari-
ances λ± is pure iff

(4.37) y · (λ+ + λ−)y = sup
y1∈Y,y1 6=0

|y · qy1|2

y1 · (λ+ + λ−)y1
, ∀y ∈ Y.

Proof. Let us set as before (X , σ) = (YR, Im q) and let η be the real covariance of
ω. By Proposition 4.9.2 ω is pure iff

y · ηy1 =
1

4
sup
y1 6=0

|y · Im qy1|2

y1 · ηy1
, y ∈ Y.

Since η = 1
2Re(λ+ + λ−) and q is sesquilinear, this is equivalent to (4.37). 2

4.9.3. The GNS representation of pure quasi-free states. The GNS rep-
resentation of a pure quasi-free state is particularly simple, being a Fock represen-
tation. In fact with the notations in Section 4.8 we have |c| = 1 and σ = −2ηj.

Set

(4.38) (x1|x2)F ··= x1 ·ηx2 +
i

2
x1 ·σx2,

and XF ··= (X , j, (·|·)F) as a complex Hilbert space. Then the GNS representation
of ω is (HF, πF,ΩF), with

HF = Γs(XF), πFφ(x) = φF(x), ΩF = Ωvac.

Let us rephrase this in the complex case, where (Y, q) is a Hermitian space and ω a
gauge invariant quasi-free state with complex covariances λ±. We have, by (4.23),

(4.39) 2η = Re(λ+ + λ−), σ = Im (λ+ − λ−) = −Re((λ+ − λ−)i).

which yields by an easy computation as in (4.33)

(4.40) 2(y1|y2)F = y1 ·λ+y2 + y2 ·λ−y1.

Recall that the Hilbert space Ycpl was introduced in Subsection 4.9.2. We set
j1 = j(c+ − c−), and YF ··= (Ycpl, j1, (·|·)F), which is a complex Hilbert space. The
GNS representation of ω is (HF, πF,ΩF) with

HF = Γs(YF), πFψ
∗(y) = a∗F(c+y) + aF(c−y), ΩF = Ωvac.
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Note that the sesquilinear forms λ± extend continuously to YF (as R-bilinear forms).

4.9.4. The Reeh-Schlieder property for quasi-free states. Let ω be a
pure quasi-free state on CCRpol(X , σ). If X1 ⊂ X is a (real) vector subspace, then
by Theorem 4.8.1 we know that Vect{WF(x)ΩF : x ∈ X1} is dense in the GNS
Hilbert space HF iff CX1 is dense in the Hilbert space XF introduced above.

It is convenient to have a version of this result in the complex case. We fix a
space (Y, q) and a pure gauge invariant quasi-free state ω on CCRpol(Y, q), with
complex covariances λ±. Let us denote by j the charge complex structure of Y.

Proposition 4.9.5. Let Y1 ⊂ Y be a complex vector subspace of Y. Then
Vect{WF(y)ΩF : y ∈ Y1} is dense in the GNS Hilbert space HF iff

(4.41) y ·λ+y1 = y ·λ−y1 = 0 ∀ y1 ∈ Y1 =⇒ y = 0, for y ∈ Ycpl.

Proof. By (4.38) and Theorem 4.8.1, Vect{WF(y)ΩF : y ∈ Y1} is dense in HF iff

(4.42) y ·ηy1 = y ·σy1 = 0 ∀ y1 ∈ Y1 =⇒ y = 0.

Next we use (4.39) and the fact that jY1 = Y1 to obtain that (4.42) is equivalent
to (4.41). 2

4.10. Examples

4.10.1. The vacuum state for real Klein-Gordon fields. We can take
as real symplectic space (X , σ) either the space (C∞0 (Rd;R2), σ) with σ defined in
(2.16), or the space (

C∞0 (Rn;R)
PC∞0 (Rn;R) , (·|G·)Rn).

If we take the first version we obtain from (3.10) that

(4.43) f ·ηg =
1

2
(f0|εg0)L2(Rd) +

1

2
(f1|ε−1g1)L2(Rd), f, g ∈ (C∞0 (Rd;R2), σ).

In the second version, we obtain from (3.14) and (3.15) that

u·ηv =

ˆ
Rn×Rn

u(x)η(x, x′)v(x′)dxdx′, u, v ∈ C∞0 (Rn;R)

where

(4.44) η(x, x′) = (2π)−n
ˆ
Rd

1

2ε(k)
cos((t− t′)ε(k))eik·(x−x′)dk.

4.10.2. The vacuum state for complex Klein-Gordon fields. It is more
convenient to consider complex solutions of the Klein-Gordon equation. We take as
Hermitian space (Y, q) either (C∞0 (Rd;C2), q) with q defined in (2.21), or (

C∞0 (Rn;C)
PC∞0 (Rn;C) , (·|iG·)Rn),

see Theorem 2.4.1.
In the first case the complex covariances λ± of the vacuum state ωvac are given

by

(4.45) λ± =
1

2

(
ε ±1l
±1l ε−1

)
,

where we identify sesquilinear forms with operators using the scalar product on
L2(Rd;C2). The projections c± in Proposition 4.9.3 equal

(4.46) c± =
1

2

(
1l ±ε−1

±ε 1l

)
.

Note that
U0(t)c±f = e±iεt(f0 ± ε−1f1),

so c± are the projections on the spaces of Cauchy data of solutions with posi-
tive/negative energy.
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If we take the second version and denote by

Λ± = (%0 ◦G)∗λ±(%0 ◦G)

the corresponding complex covariances, their distributional kernels are given by

(4.47) Λ±(x, x′) = (2π)−n
ˆ

1

2ε(k)
e±i(t−t′)ε(k)+ik·(x−x′)dk.

4.10.3. Vacuum and kms states for abstract Klein-Gordon equations.
Let us fix a complex Hilbert space h and ε2 > 0 a selfadjoint operator on h. Let us
consider the following abstract Klein-Gordon equation:

(4.48) ∂2
t φ(t) + ε2φ(t) = 0, φ : R→ h.

The main example is the Klein-Gordon equation on an ultra-static spacetime M =
R × S, where (S, h) is a complete Riemannian manifold and M is equipped with
the Lorentzian metric g = −dt2 +hij(x)dxidxj . We take then h = L2(Σ, dVolh) and
ε2 = −∆h +m2, where −∆h is the Laplace-Beltrami operator on (Σ, h).

We take as Hermitian space

Y = ε−
1
2 h⊕ ε 1

2 h, f ·qf = (f1|f0)h + (f0|f1)h.

The vacuum state ωvac is now defined by the complex covariances λ± in (4.45),
where we again identify sesquilinear forms and operators using the scalar product
on h⊕ h.

Another natural quasi-free state is the kms state ωβ at temperature β−1, given
by the covariances

(4.49) λ±β =
1

2

(
εth(βε/2) ±1l
±1l ε−1th(βε/2)

)
,

which is not a pure state. ωvac resp. ωβ , is a ground state, resp. a β-KMS state
for the dynamics {rs}s∈R defined by rsφ(·) = φ(·+ s), for φ solution of (4.48). We
refer the reader to Section 9.1 for a general discussion of KMS states.





CHAPTER 5

Free Klein-Gordon fields on curved spacetimes

In this chapter we describe some well-known results about Klein-Gordon equa-
tions on Lorentzian manifolds. An important notion is the causal structure obtained
from a Lorentzian metric, which leads to the notion of globally hyperbolic spacetimes,
originally introduced by Leray [Le].

Globally hyperbolic spacetimes are Lorentzian manifolds which admit a Cauchy
surface, i.e. a hypersurface intersected only once by each inextensible causal curve.

On a globally hyperbolic spacetime M , one can pose and globally solve the
Cauchy problem for the Klein-Gordon operators P associated to the metric g.
Equivalently one can uniquely solve the inhomogeneous Klein-Gordon equation with
support conditions, i.e. introduce the retarded/advanced inverses Gret/adv for P .

The causal propagator G = Gret−Gadv is anti-symmetric and hence can be used
to equip the space of test functions on the spacetimeM with the structure of a pre-
symplectic space, see Lichnerowicz [Li1] and Dimock [Di1]. If one fixes a Cauchy
surface Σ, one can equivalently use the symplectic space of Cauchy data on Σ, i.e. of
pairs of compactly supported smooth functions on Σ. This is particularly important
for the construction of states for quantized Klein-Gordon fields, see Chapter 6.

5.1. Background

We now collect some background material on vector bundles and connections
on them. Most of it will be used only in Chapter 17 and can be skipped in first
reading.

5.1.1. Fiber bundles. Let E,M be two smooth manifolds and π : E → M
surjective with Deπ surjective for each e ∈ E. The set Ex = π−1({x}) is called the
fiber over x ∈ M . Let F be another smooth manifold. E π−→ M is a fiber bundle
with typical fiber F if there exists an open covering {Ui}i∈I ofM such that for each
Ui there exists φi : π−1(Ui)

∼−→ Ui × F such that

πM ◦ φi = π on π−1(Ui).

The maps φi are called local trivializations of the bundle E π−→ M . The collection
{(Ui, φi)}i∈I is called a bundle atlas for the bundle E π−→ M . For Ui, Uj with
Uij ··= Ui ∩ Uj 6= ∅, we have

φi ◦ φ−1
j (x, f) = (x, tij(x)(f)),

where the maps tij : Uij → Aut(F ) are called transition maps. One has

(5.1) tii(x) = Id, tik(x) = tij(x) ◦ tjk(x), x ∈ Ui ∩ Uj ∩ Uk.

A fiber bundle E π−→ M can be reconstructed from a covering {Ui}i∈I of M and
from a set of transition maps satisfying (5.1).

35
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5.1.2. Morphisms of bundles. If E π−→ M and E′
π′−→ M are two fiber

bundles with typical fibers F and F ′, a smooth map χ : E → E′ is a bundle
morphism if π′ ◦ χ = π. If tij , resp. t′ij are the transition maps of E, resp E′, then
there exists χi : Ui → Hom(F, F ′) such that

(5.2) t′ij ◦ χj = χi ◦ tij on Uij .

A fiber bundle E π−→M is trivial if there exists a bundle isomorphism χ : E →
M × F . By (5.2), this is the case iff there exists χi : Ui → Aut(F ) such that

(5.3) tij = χ−1
i ◦ χj on Uij .

5.1.3. Sections of a bundle. A (smooth) section of a bundle E π−→ M is a
smooth map f : M → E such that π ◦ f = Id. The space of smooth sections of
E

π−→M will be denoted (somewhat improperly) by C∞(M ;E).

5.1.4. Fiber bundles with structure group G. Let E π−→M a fiber bundle
and G a group with an injective morphism ρ : G → Aut(F ), where F is the
typical fiber of E. One says that E π−→M has G as structure group and one writes
G→ E

π−→M if for all compatible i, j one has

tij(x) = ρ(gij(x)), with gij : Uij −→ G.

The maps gij satisfy of course (5.1).

5.1.5. Principal bundles. There is a canonical injective morphism ρ : G→
Aut(G) given by leftmultiplication. A bundle P π−→M with G as fiber and structure
group for the above action is called a G-principal bundle. Its transition maps are
given by maps

gij : Uij −→ G ⊂ Aut(G).

Equivalently, a bundle P π−→M is a G-principal bundle if there is a right action of
G on P , which preserves the fibers and acts freely and transitively on the fibers. It
is known that a principal bundle is trivial iff it has a global section.

5.1.6. Vector bundles. Let K = R or C. A bundle E π−→ M with typical
fiber Kn is called a vector bundle of rank n if Ex is an n-dimensional vector space
over K for each x ∈M and the maps

φi,x = πF ◦ φi|Ex : Ex → Kn, x ∈ Ui

are K-linear. If tij are the transition functions of E one has tij : Uij → GLn(K). If
each fiber Ex is oriented and the maps φi,x : Ex → Kn are orientation preserving,
the vector bundle E π−→ M is said to be oriented, and in this case the transition
maps tij(x) take values in GL+

n (K).
If E π−→ M is a vector bundle, we denote by C∞(M ;E), resp. C∞0 (M ;E), the

space of smooth resp. smooth compactly supported, sections of E.
Similarly, one denotes by D′(M ;E), E ′(M ;E) the space of distributional, resp.,

compactly supported distributional sections of E.
If (M, g) is a spacetime, one denotes by C∞sc (M ;E) the space of smooth space-

compact sections of E, see Subsection 5.2.6 for terminology.
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5.1.7. Tangent and cotangent bundles. If M is a smooth manifold of di-
mension n, its tangent bundle TM π−→ M is the vector bundle with fiber Rn and
transition maps

Uij 3 x 7→ Dxχij ∈ GLn(R),

where {(Ui, χi)}i∈I is an atlas of M and χij = χi ◦ χ−1
j . Likewise its cotangent

bundle T ∗M π−→M is the vector bundle with fiber Rn and transition maps

Uij 3 x 7→ (tDxχij)
−1 ∈ GLn(R).

We denote by ∧p(M) the bundle of p-forms on M and set

∧(M) =

n⊕
p=0

∧p(M).

M is orientable if ∧n(M) admits a non-zero global section. If this is the case the
transition maps tij of TM can be chosen so that det tij > 0 on Uij .

5.1.8. Metric vector bundles. A vector bundle E π−→ M is a metric vector
bundle (of signature (q, p)) if each fiber Ex is equipped with a non-degenerate scalar
product hx and

φi,x : (Ex, hx) −→ Rq,p is orthogonal for x ∈ Ui,

where Rq,p is Rq+p with the canonical scalar product −
∑q
i=1 x

2
i +

∑p+q
i=q+1 x

2
i .

5.1.9. Dual vector bundle. Let E π−→ M a vector bundle of rank n. The
dual bundle E′ π−→ M is defined by the fibers E′x = (Ex)′ and the transition maps
(t−1
ij )′.

5.1.10. Bundle of frames. Let E π−→ M a vector bundle of rank n. We can
associate to it the bundle of frames of E, denoted by Fr(E)

π−→ M and defined as
follows: one sets

Fr(E) =
⊔
x∈M

Fr(Ex),

where Fr(V ) is the set of ordered bases (i.e. frames) of the vector space V , i.e. of
linear isomorphisms F : Kn ∼−→ Ex. The transition functions of Fr(E) are

Tij(x) : GLn(K) ∈ A 7−→ tij(x) ◦A ∈ GLn(K), x ∈ Uij ,

where tij : Uij → GLn(K) are the transition functions of E. The bundle Fr(E)
π−→

M is a GLn(K)-principal bundle.

5.1.11. The bundle End(E). Let E π−→ M a vector bundle of rank n. One
defines the vector bundle End(E)

π−→ M with fibers End(E)x = End(Ex) and
transition maps A→ tij(x) ◦A ◦ t−1

ij (x), x ∈M , A ∈ End(Kn).

5.1.12. The bundle E1 � E2. Let Ei
π−→ Mi be vector bundles of rank ni,

i = 1, 2. One can form the vector bundle E1 � E2
π−→ M1 × M2, with fibers

E1,x1
⊗ E2,x2

over (x1, x2). If {Ui,ji}ji∈Ii and ti,ji,ki are coverings and transition
maps for Ei

π−→Mi, then one takes {U1,j1×U2,j2}(j1,j2)∈I1×I2 as covering ofM1×M2

and t1,j1,k1
⊗ t2,j2,k2

as transition maps.

5.1.13. The bundle End(E,E∗). If E π−→ M is a complex vector bundle
of rank n, the bundle End(E,E∗)

π−→ M is the bundle with fibers End(E,E∗)x =
End(Ex, E

∗
x) and transition mapsA→ tij(x)∗◦A◦tij(x), x ∈M , A ∈ End(Cn,Cn∗).

A vector bundle E equipped with a smooth section λ of End(E,E∗) such that
λ(x) is a non-degenerate Hermitian form on Ex for all x ∈M is called a Hermitian
vector bundle.
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5.1.14. Connections on vector bundles. Let E a complex vector bundle
over M . Note that C∞(M ;E) is a C∞(M) module. A connection ∇ on E is a
bilinear map

∇ : C∞(M ;TM)× C∞(M ;E) −→ C∞(M ;E)

such that
∇X(fϕ) = X(f)ϕ+ f∇Xϕ,

∇fXϕ = f∇Xϕ, f ∈ C∞(M), X ∈ C∞(M ;TM), ϕ ∈ C∞(M ;E).

If g is a metric onM , there exists a unique connection on TM , called the Levi-Civita
connection, denoted by ∇g or often simply by ∇, such that

(5.4)
X(X1 ·gX2) = ∇XX1 ·gX2 +X1 ·g∇XX2, X,X1, X2 ∈ C∞(M ;TM),

∇X1
X2 −∇X2

X1 = [X1, X2], X1, X2 ∈ C∞(M ;TM).

5.1.15. Stokes formula. LetM be a smooth n-dimensional manifold, Σ ⊂M
a smooth hypersurface, i : Σ → M the canonical injection, and i∗ : ∧(M) → ∧(Σ)
the pullback by i.

A vector field X over Σ, i.e. a smooth section of TΣM is said to be transverse
to Σ if TxM = RXx⊕TxΣ for each x ∈ Σ. One still denotes by X any of its smooth
extensions as a section of TM , supported in a neighborhood of Σ in M .

If ω ∈ C∞(M ;∧p(M)), then Xyω ∈ C∞(M ;∧p−1(M)), where y denotes the
interior product, and one sets:

i∗Xω ··= i∗(Xyω) ∈ C∞(Σ,∧p−1(Σ)).

One uses the same procedure to pullback densities on M to densities on Σ: if
µ = |ω| for ω ∈ C∞(M ;∧n(M)) is a smooth density on M , we set i∗Xµ ··= |i∗Xω|
which is a smooth density on Σ.

In local coordinates (x1, . . . , xn), in which Σ = {x1 = 0}, X is transverse to Σ
iff X1(0, x2, . . . , xn) 6= 0, and if µ = fdx1 · · · dxn, then

i∗Xµ = f(0, x2, . . . , xn)|X1(0, x2, . . . , xn)|dx2 · · · dxn.

We will always assume thatM is orientable, see Subsection 5.1.7, and fix a smooth,
nowhere vanishing n-form ωor on M .

If U ⊂M is an open set such that ∂U is a finite union of smooth hypersurfaces,
then one orients ∂U by the (n− 1)-form i∗Xωor, where X is an outwards pointing,
transverse vector field to ∂U and i : ∂U →M is the canonical injection. We recall
Stokes’ formula:

(5.5)
ˆ
U

dω =

ˆ
∂U

i∗ω, ω ∈ C∞(M ;∧n−1(M)).

5.2. Lorentzian manifolds

A Lorentzian manifold is a pair (M, g), where M is a smooth n-dimensional
manifold and g is a Lorentzian metric on M , i.e. a smooth map M 3 x 7→ g(x),
where g(x) ∈ Ls(TxM,T ′xM) has signature (1, n− 1). It is customary to write g as
gµν(x)dxµdxν or g(x)dx2 and to denote the inverse metric g−1(x) ∈ Ls(TxM

′, TxM)
as gµν(x)dξµdξν or g−1(x)dξ2.

Definition 5.2.1. (1) A vector v ∈ TxM is time-like if v · g(x)v < 0, null if
v · g(x)v = 0, causal if v·g(x)v ≤ 0, and space-like if v·g(x)v > 0.

(2) Similarly, a vector field v on M is time-like, etc., if v(x) is time-like, etc., for
each x ∈M .
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(3) The cone of time-like, resp. null vectors in TxM is denoted by C(x), resp.
N(x).

Definition 5.2.2. A vector subspace V ⊂ TxM is time-like if it contains both
space-like and time-like vectors, null if it is tangent to the lightcone N(x), and
space-like if it contains only space-like vectors.

Lemma 5.2.3. If V ⊂ TxM is a vector subspace, one denotes by V ⊥ its orthog-
onal for g(x). Then V is time-like, resp. null, space-like iff V ⊥ is space-like, resp.
null, time-like.

We refer to [Fr, Lemma 3.1.1] for the proof.
There is a similar terminology for submanifolds N ⊂M .

Definition 5.2.4. A submanifold N ⊂ M is time-like resp. space-like, null if
TxN is time-like resp. space-like, null for each x ∈ N .

Null submanifolds are also called characteristic.

5.2.1. Volume forms and volume densities. The metric g induces a scalar
product (·|·)g on the fibers ∧px(M) = ∧pT ′xM , defined by

(5.6) (u1 ∧ · · · ∧ up|v1 ∧ · · · ∧ vp)g(x) = det(ui ·g−1(x)vj) 1 ≤ p ≤ n.
Assuming that M is orientable, one obtains a unique n-form Ωg ∈ C∞(M ;∧nM),
called the volume form, such that (Ωg|Ωg)g(x) = 1 for all x ∈M and Ωg is positively
oriented. The volume density is the 1-density

dVolg ··= |Ωg|.
If (x1, . . . , xn) are local coordinates on M such that dx1 ∧ · · · ∧ dxn is positively
oriented, then one has:

(5.7) Ωg = |g(x)| 12 dx1 ∧ · · · ∧ dxn, dVolg = |g(x)| 12 dx1 · · · dxn,
where |g(x)| = det(gij(x)).

5.2.2. Distributions on M . We denote by D′(M), resp. E ′(M), the space
of distributions on M , resp. compactly supported distributions, see e.g. [H1,
Section 6.3] for definitions. The topological dual of C∞0 (M), resp. C∞(M), is the
space of distribution densities, resp. distribution densities of compact support. One
identifies each distribution u with the distribution density udVolg. Setting

(5.8) (u|v)M ··=
ˆ
M

uv dVolg,

leads to the following natural notation

(5.9) (u|v)M ··= 〈u dVolg|v〉, for u ∈ D′(M), v ∈ C∞0 (M),

where 〈·|·〉 is the duality bracket.

5.2.3. Normal vector field. If Σ ⊂ M is a smooth hypersurface which is
not null, there is a unique (up to sign) transverse vector field n, which is normal
and normalized, i.e.

n(x)·g(x)v = 0, |n(x)·g(x)n(x)| = 1, ∀v ∈ TxΣ, x ∈ Σ.

The induced metric on Σ, h ··= i∗g, is non-degenerate and one has

(5.10) Ωh = i∗nΩg, i∗XΩg = Xa · naΩh,

if X is a vector field on Σ. This can be easily checked in local coordinates, using
(5.7).
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5.2.4. Gauss formula. If X is a vector field on M , then

(5.11) ∇aXaΩg = d(XyΩg),

where ∇ is the Levi-Civita connection associated to g, hence Stokes’ formula can
be rewritten as

(5.12)
ˆ
U

∇aXadVolg =

ˆ
∂U

i∗XdVolg.

To express the right-hand side of (5.12), we fix a vector field l that is transverse
to ∂U and outwards pointing. Let ν be a 1-form on M such that Ker ν = T∂U ,
normalized such that ν ·l = 1. It follows that if X is a vector field on M we have

X = (ν ·X)l +R, where R is tangent to ∂U.

Since R is tangent to ∂U , we have i∗(Ry dVolg) = 0, hence

i∗XdVolg = (ν ·X)i∗l (dVolg).

Thus, we obtain the Gauss formula

(5.13)
ˆ
U

∇aXadVolg =

ˆ
∂U

νaX
ai∗l dVolg.

Let Σ be one of the connected components of ∂U .
If Σ is given by {f = 0} for some function f with df 6= 0 on Σ, and if we can

complete f near Σ with coordinates y1, . . . , yn−1 such that df ∧ dy1 ∧ · · · ∧ dyn−1

is direct, with ∂f pointing outwards, then we take l = ∂f , ν = df and obtain

(5.14) i∗X(dVolg) = Xa∇af |g|
1
2 dy1 · · · dyn−1 on Σ.

5.2.5. Non-characteristic boundaries. If Σ is non-characteristic, we can
take l = n, the outwards pointing normal vector field to Σ. Since i∗ndVolg = dVolh
we obtain

(5.15) i∗XdVolg = naX
adVolh on Σ.

5.2.6. Causal structures. We now recall some notions related to the causal
structure on M induced by the metric g. All the objects below are of course un-
changed under a conformal transformation g → c2g of the metric, where c ∈ C∞(M)
is a strictly positive function.

Definition 5.2.5. (1) A Lorentzian manifold is time orientable if it carries
a continuous time-like vector field v. Given such a vector field, one denotes by
C±(x) the connected component of C(x) such that ±v(x) ∈ C±(x).

(2) The vectors in C±(x) are called future/past directed, and one uses the same
terminology for time-like vector fields. Such a continuous choice of C±(x) is
called a time orientation.

(3) A time oriented Lorentzian manifold is called a spacetime.

In the sequel, we will always assume that the Lorentzian manifold M is ori-
entable, see Subsection 5.1.6, and by spacetime we will always mean an orientable
spacetime.

Definition 5.2.6. Let (M, g) be a spacetime and γ : I 3 s 7→ x(s) ∈ M a
piecewise C1 curve.
(1) γ is time-like, resp. null, space-like, future/past directed if all its tangent

vectors x′(s), s ∈ I are so.
(2) γ is inextensible if no piecewise C1 reparametrization of γ can be continuously

extended beyond its endpoints.
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Definition 5.2.7. (1) The time-like resp. causal future/past of x ∈ M ,
denoted by I±(x), resp. J±(x), is the set of points belonging to time-like, resp.
causal future/past directed curves γ starting at x.

(2) For K ⊂M one sets I±(K) =
⋃
x∈K I±(x), J±(K) =

⋃
x∈K J±(x)

(3) The time-like, resp. causal shadow of K ⊂M is I(K) = I+(K)∪I−(K), resp.
J(K) = J+(K) ∪ J−(K).

(4) Two sets K1,K2 are causally disjoint if J(K1) ∩ K2 = ∅, or, equivalently if
J(K2) ∩K1 = ∅.

(5) A closed set A ⊂ M is space-compact, resp. future/past space-compact if
A ⊂ J(K), resp. A ⊂ J±(K) for some compact set K bM .

(6) A closed set A ⊂ M is time-compact, resp. future/past time compact if
A ∩ J(K), resp. A ∩ J∓(K) is compact for each compact set K bM .

K

a space-compact set a time-compact set

Fig. 1

Note that if U ⊂M is an open subset of the spacetime (M, g), then (U, g) is a
spacetime as well. In this case if K ⊂ U , we use the notation JU± (K), resp. JM± (K)
for the future/past causal shadows of K in U resp. in M .

One says that U ⊂ M is causally compatible if JU± (x) = JM± (x) ∩ U for each
x ∈ U . This is equivalent to the property that a causal curve in M between
two points x, x′ ∈ U is entirely contained in U . The same terminology is used
for an isometric embedding i : (M ′, g′) → (M, g). An example of a non-causally
compatible domain U in Minkowski spacetime is given in Fig. 2 below.

JU+ (x)

xx UU

JM+ (x) ∩ U

Fig. 2

5.3. Stationary and static spacetimes

5.3.1. Killing vector fields. Let X a smooth vector field on M whose flow
s 7→ φX(s) is complete. X is called a Killing vector field for (M, g) if φX(s) are
isometries of (M, g), i.e. φX(s)∗(g) = g for s ∈ R. Equivalently, X should satisfy
Killing’s equation

∇aXb +∇bXa = 0,

where ∇ is the Levi-Civita connection for g.
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5.3.2. Stationary spacetimes.

Definition 5.3.1. The spacetime (M, g) is stationary if it admits a complete,
time-like future directed Killing vector field X.

The standard model of a stationary spacetime is as follows: let (S, h) be a
Riemannian manifold , N ∈ C∞(S) with N > 0, and widxi be a smooth 1-form on
S. Let M = Rt × Sx and

g = −N2(x)dt2 + (dxi + wi(x)dt)hij(x)(dxj + wj(x)dt).

Then (M, g) is stationary with Killing vector field ∂t if N2(x) > wi(x)hij(x)wj(x),
x ∈ S.

It is known, see e.g. [S2, Proposition 3.1], that a stationary spacetime which
is also globally hyperbolic (see Section 5.4) is isometric to such a model.

5.3.3. Static spacetimes. A stationary spacetime (M, g) with Killing vector
field X is called static if there exists a smooth hypersurface S which is everywhere
g-orthogonal to X. The standard model of a static spacetime is the one above for
widx

i = 0. A static, globally hyperbolic spacetime is isometric to the standard
model iff one can choose S to be a Cauchy surface, see [S2, Proposition 3.2].

An ultra-static space time is a spacetimeM = R×S with the Lorentzian metric
g = −dt2 +h(x)dx2, where (S, h) is a Riemannian manifold. It is known that (M, g)
is globally hyperbolic iff (S, h) is complete, see [S, Theorem 3.1], [Ky1, Proposition
5.2].

5.4. Globally hyperbolic spacetimes

Definition 5.4.1. A Cauchy surface S is a closed set S ⊂ M which is inter-
sected exactly once by each inextensible time-like curve.

Definition 5.4.2. A spacetime (M, g) is globally hyperbolic if the following
conditions hold:
(1) J+(x) ∩ J−(x′) is compact for all x, x′ ∈M ,
(2) M is causal, i.e. there are no closed causal curves in M .

The original definition of global hyperbolicity required the stronger condition
of strong causality, see e.g. [BGP, Definition 1.3.8], [W1, Section 8.3]. The fact
that the two definitions are equivalent is due to Bernal and Sanchez [BS3].

Here are three elementary examples of non-globally hyperbolic spacetimes:
(1) M = R1,1\{x0}: J+(x) ∩ J−(x′) may not be compact;
(2) M = Rt× ]0, 1[ x: J+(x) ∩ J−(x′) may not be compact;
(3) M = S1

t × Rx: J±(x) = M .

J+(x) ∩ J−(x′) J+(x) ∩ J−(x′)

x0

x

x′

x

x′

x

(1) R1,1\{x0} (2) Rt× ]0, 1[ x (3) S1
t × Rx

Fig. 3

Later on we will need the following result, which is proved in [BGP, Lemma A.5.7].
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Lemma 5.4.3. Let (M, g) be globally hyperbolic and K1,K2 b M be compact.
Then J+(K1) ∩ J−(K2) is compact.

The following theorem is also due to Bernal and Sanchez [BS1, BS2]. It
extends an earlier result of Geroch [Ge].

Theorem 5.4.4. The following conditions are equivalent:
(1) (M, g) is globally hyperbolic.
(2) M admits a Cauchy surface S.
(3) There exists an isometric diffeomorphism:

χ : (M, g) −→ (R× Σ,−β(t, x)dt2 + ht(x)dx2),

where Σ is a smooth (n−1)-dimensional manifold, β > 0 is a smooth function
on R×Σ, t 7→ ht(x)dx2 is a smooth family of Riemannian metrics on Σ, and
{T} × Σ is a smooth space-like Cauchy surface in R× Σ for each T ∈ R.

5.4.1. Orthogonal decompositions of the metric. An isometry χ : M →
R×Σ such that g = χ∗(−βdt2 +htdx2) as in Theorem 5.4.4 is called an orthogonal
decomposition. Orthogonal decompositions are very useful to analyze Klein-Gordon
equations on (M, g). The decomposition in Theorem 5.4.4 is related to the notion
of temporal functions.

Definition 5.4.5. A smooth function t : M → R is called a temporal function
if its gradient ∇t = g−1dt is everywhere time-like and past directed. It is called a
Cauchy temporal function if, in addition, its level sets t−1(T ) are Cauchy surfaces
for all T ∈ t(M).

Clearly, if χ : M → R × Σ is the diffeomorphism in Theorem 5.4.4 (3), then
t = πR ◦ χ is a Cauchy temporal function.

Now let t be a Cauchy temporal function. Without loss of generality we can
assume that t(M) = R and set Σ ··= t−1({0}), which is a smooth, space-like Cauchy
surface. We equip M with an auxiliary complete Riemannian metric ĥ and set

v = ‖∇t‖−1

ĥ
∇t,

which is a complete, time-like vector field. Since Σ is a Cauchy surface, its integral
curve through x ∈M intersects Σ at a unique point ψ(x) ∈ Σ, and we set

χ : M 3 x 7−→ (t(x), ψ(x)) ∈ R× Σ,

which is a smooth diffeomorphism. If we set Σs = t−1({s}), then TxΣs is orthogonal
to Rv(x), hence is space-like by Lemma 5.2.3. The image of TxΣs, resp. Rv(x),
under Dxχ is {0} × TyΣ, resp. R × {0}. Therefore, the metric (χ−1)∗g is of the
form −βdt2 + ht, with β and t 7→ ht as in Theorem 5.4.4.

It is known, see [BS4, Theorem 1.2], that for any smooth, space-like Cauchy
surface Σ, there exists a Cauchy temporal function t : M → R such that Σ =
t−1({0}).

Therefore, any smooth space-like Cauchy surface Σ can be chosen in Theorem
5.4.4 (3), and the isometry χ is completely determined by fixing Σ and a Cauchy
temporal function t with Σ = t−1({0}).

5.4.2. Neighborhoods of a space-like Cauchy surface.

Lemma 5.4.6. Let Σ ⊂ M be a smooth, space-like Cauchy surface. Then the
open neighborhoods V of Σ such that V ⊂M is causally compatible form a basis of
neighborhoods of Σ in M .
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Proof. We can assume that M = R × Σ with metric −βdt2 + htdx2 and identify
Σ with {0} ×Σ. We can also assume that β = 1 by a conformal transformation. If
U is a neighborhood of Σ, we can find a strictly positive function r ∈ C∞(Σ) such
that for V ··= {(t, x) : |t| < r(x)} one has

(5.16)

(i) V ⊂ U,

(ii) 1
4h0(x) ≤ ht(x) ≤ 4h0(x), ∀ (t, x) ∈ V,

(iii) ∇r(x)·h0(x)∇r(x) ≤ 1
16 , ∀ x ∈ Σ.

In fact, it suffices to fix an open covering {Ui}i∈N of Σ and intervals {Ii}i∈N such
that

⋃
i∈N Ii × Ui ⊂ U and choose r =

∑
i∈N εiχi, where {χi}i∈N is a partition of

unity of Σ subordinate to {Ui}i∈N and the εi are chosen small enough.
Let now γ : [−1, 1] 3 s 7→ x(s) be a future directed causal curve in (M, g)

with x(0), x(1) ∈ V . Since Σ is a Cauchy surface, we can assume, modulo a
reparametrization of γ, that ±t(s) ≥ 0 for ±s ∈ [0, 1]. By (5.16) (ii), we have

t′(s) ≥ 1

2
(x′(s)·h0(x(s))x′(s))

1
2 for s ∈ [−1, 1].

If f(s) = t(s) − r(x(s)) for s ∈ [0, 1], then we deduce from (5.16) (iii) and the
Cauchy-Schwarz inequality that f ′(s) > 0 as long as s ∈ [0, 1] and f(s) < 0. Since
x(1) ∈ V , we have f(1) < 0, hence f(s) < 0 for s ∈ [0, 1], i.e. x(s) ∈ V for s ∈ [0, 1].
For s ∈ [−1, 0] we use the same argument for f(s) = t(s) + r(x(s)). 2

5.4.3. Gaussian normal coordinates. If Σ ⊂ M is a smooth space-like
Cauchy surface, there is another orthogonal decomposition of the metric using
Gaussian normal coordinates to Σ. It does not depend on the choice of a Cauchy
temporal function having Σ as one of its level sets, but Gaussian normal coordinates
exist only in a neighborhood of Σ in M . Let n ∈ TΣM be the future directed unit
normal vector field to Σ, so that ny is g-orthogonal to TyΣ, future directed, and
satisfies ny ·g(y)ny = −1. We denote by expgx for x ∈M the exponential map at x
for the metric g.

Proposition 5.4.7. Let Σ ⊂M be a smooth space-like Cauchy surface. Then
(1) there exist neighborhoods U of {0} × Σ in R × Σ and V of Σ in M such that

V ⊂M is causally compatible and

χ : U 3 (t, x) 7−→ expgx(tnx) ∈ V is a diffeomorphism;

(2) one has χ∗g = −dt2 +ht(x)dx2, where ht is a t-dependent Riemannian metric
on Σ over U .

Proof. The map χ is clearly a local diffeomorphism. The existence of U, V as in
(1) is shown in [O, Proposition 26, Chap. 7] , and V can be chosen to be causally
compatible in M by Lemma 5.4.6.

Let us explain the proof of (2), following [W1, Section 3.3]. Using local co-
ordinates xi, 1 ≤ i ≤ n − 1 on Σ near a point y ∈ Σ we obtain by means of χ
local coordinates t, xi near a point x ∈ V . Let T = ∂t, Xi = ∂xi be the associated
coordinate vector fields. Recall that if ∇ is the Levi-Civita connection, then

T b∇bT a = 0,(5.17)

T b∇bXa
i −Xb

i∇bT a = [T,Xi]
a = 0.(5.18)

(5.17) is the geodesic equation, and the Lie bracket [T,Xi] vanishes since T,Xi

are coordinate vector fields. Denoting by X = Xa one of the vector fields Xi, we
compute:

T b∇b(TaXa) = XaT b∇bTa + TaT
b∇bXa = TaT

b∇bXa,
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using (5.17) and ∇agbc = 0. Next,

TaT
b∇bXa = XbTa∇bT a =

1

2
Xb∇b(T aTa),

by (5.18) and the Leibniz rule for∇. Finally, since T aTa = −1 on Σ and T b∇b(T aTa) =
0, we have T aTa = −1 everywhere, which implies that T b∇b(TaXa) = 0. Since
TaX

a = 0 on Σ, we obtain TaXa = 0, T aTa = −1 everywhere. This implies (2). 2

5.4.4. Spaces of distributions on globally hyperbolic spacetimes. We
now recall some useful spaces of distributions on M , characterized by their support
properties. We refer the reader to [S1, Section 4] for a complete discussion.

Definition 5.4.8. A distribution u ∈ D′(M) is space, (time), future/past com-
pact if its support is space, (time), future/past compact. The spaces of such dis-
tributions are denoted by D′sc(M), D′tc(M), D′sc,±(M), D′tc,±(M). Similarly, one
defines the space, of smooth functions C∞sc (M), C∞tc (M), C∞sc,±(M), C∞tc,±(M).

The most useful space is C∞sc (M); the other spaces appear naturally when
discussing properties of the retarded/advanced inverses for Klein-Gordon operators,
see Section 5.5 below.

It is proved in [S1, Theorem 3.1] that a closed set A ⊂ M is future/past time
compact iff there exists a Cauchy surface Σ in M such that A ⊂ J±(Σ).

Now let us describe the topologies of these spaces. If B ⊂ M is closed, we
denote by C∞(B), resp. D′(B), the smooth functions, resp. distributions with
support in B, equipped with the C∞(M), resp. D′(M) topology. The topologies
of the above spaces are defined as the following inductive limits:
(5.19)

(i) C∞sc (M) =
⋃
KbM C∞(J(K)), D′sc(M) =

⋃
KbM D′(J(K)),

(ii) C∞sc,+(M) =
⋃
KbM C∞(J−(K)), D′sc,+(M) =

⋃
KbM D′(J−(K)),

(iii) C∞sc,−(M) =
⋃
KbM C∞(J+(K)), D′sc,−(M) =

⋃
KbM D′(J+(K)),

(iv) C∞tc,+(M) =
⋃

Σ⊂M C∞(J−(Σ)), D′tc,+(M) =
⋃

Σ⊂M D′(J−(Σ)),

(v) C∞tc,−(M) =
⋃

Σ⊂M C∞(J+(Σ)), D′tc,−(M) =
⋃

Σ⊂M D′(J+(Σ)),

(vi) C∞tc (M) =
⋃

Σ1,Σ2⊂M C∞(J+(Σ1) ∩ J−(Σ2)),

(vii) D′tc(M) =
⋃

Σ1,Σ2⊂M D
′(J+(Σ1) ∩ J−(Σ2)).

In (i), (ii), and (iii) the set of compact subsets K bM is equipped with the order
relation K1 ≤ K2 if K1 ⊂ K2; in (iv), resp. (v) the set of Cauchy surfaces Σ ⊂M is
equipped with the order relation Σ ≤ Σ′ if J−(Σ) ⊂ J−(Σ′), resp. J+(Σ) ⊂ J+(Σ′);
and finally, in (vi) and (vii) the set of pairs of Cauchy surfaces (Σ1,Σ2) is equipped
with the order relation (Σ1,Σ2) ≤ (Σ′1,Σ

′
2) if J+(Σ1)∩J−(Σ2) ⊂ J+(Σ′1)∩J−(Σ′2).

The various duality relations between these spaces are as follows, see [S1, The-
orem 4.3].

Proposition 5.4.9. One has

D′sc(M) = C∞tc (M)′, D′tc(M) = C∞sc (M)′,

D′sc,±(M) = C∞tc,∓(M)′, D′tc,±(M) = C∞sc,∓(M)′,

and all the spaces above are reflexive.
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5.5. Klein-Gordon equations on Lorentzian manifolds

5.5.1. Klein-Gordon operator. Let us fix a smooth real 1-formA = Aµ(x)dxµ

on M and a real function V ∈ C∞(M ;R). A Klein-Gordon operator on (M, g) is a
differential operator

(5.20) P = −(∇µ − iqAµ(x))(∇µ − iqAµ(x)) + V (x),

where ∇µ = |g|− 1
2 (x)∇ν |g|

1
2 (x)gµν(x), Aµ(x) = gµν(x)Aν(x), and q ∈ R.

The quantization of the Klein-Gordon equation Pφ = 0 for φ ∈ C∞(M ;C)
describes a charged bosonic field of charge q in the external electro-magnetic po-
tential Aµ(x)dxµ. If Aµ(x)dxµ = 0, then P = −2g + V (x), where 2g = ∇µ∇µ is
the d’Alembertian. A typical example of V is V = ξScalg +m2, where Scalg is the
scalar curvature on (M, g), which for ξ = n−2

4(n−1) ,m = 0 yields the conformal wave
operator.

Recall that we defined the scalar product

(u|v)M =

ˆ
M

uvdVolg,

on C∞0 (M). Clearly, P is formally selfadjoint with respect to (·|·)M .
Actually, every differential operator of the form

P = −2g +R(x, ∂x),

where R(x, ∂x) is a first-order differential operator on M such that P is formally
selfadjoint with respect to (·|·)M , is of the form (5.20).

We are interested in the Klein-Gordon equation

Pφ = 0,

and we will always consider its complex solutions in D′(M) or C∞(M).

5.5.2. Conserved currents. Let us set

∇Aa ··= ∇a − iqAa, ∇aA ··= ∇a − iqAa

and introduce on M the 1-form

(5.21) Ja(u1, u2) ··= ∇Aa u1u2 − u1∇Aa u2, u1, u2 ∈ C∞(M).

We have

(5.22) ∇aAJa(u1, u2) = −u1Pu2 + Pu1u2.

It follows that if ui ∈ C∞(M) with Pui ∈ C∞0 (M) and U ⊂M is an open set with
∂U a finite union of non-characteristic hypersurfaces, we obtain from Subsection
5.2.4 the Green formula

(5.23)
ˆ
U

(
u1Pu2 − Pu1u2

)
dVolg =

ˆ
∂U

(
na∇Aa u1u2 − u1n

a∇Aa u2

)
dVolh,

where h is the induced metric on ∂U .
To have a satisfactory global theory of Klein-Gordon equations on M , we need

to make some assumptions on its causal structure. It turns out that if (M, g) is
globally hyperbolic the theory is particularly nice and complete.
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5.5.3. Advanced and retarded inverses. The following extension of Theo-
rem 2.2.2 is originally due to Leray [Le]. A proof can be found in [BGP, Theorem
3.3.1].

Theorem 5.5.1. Let (M, g) be globally hyperbolic and let P be a Klein-Gordon
operator on M . Then for v ∈ E ′(M) there exist unique solutions uret/adv ∈
D′sc,±(M) of the equation

Puret/adv = v.

One has uret/adv = Gret/advv, where
(5.24)

(i) Gret/adv : E ′(M)→ D′(M), Gret/adv : C∞0 (M)→ C∞(M) continuously;

(ii) P ◦Gret/adv = Gret/adv ◦ P = 1l;

(iii) suppGret/advv ⊂ J±(supp v).

Using the continuity and support properties of Gret/adv and the topologies of
the spaces introduced in Definition 5.4.8, one easily obtains the following corollary.

Corollary 5.5.2. The maps Gret/adv extend continuously as follows

Gret/adv : C∞sc,±(M) −→ C∞sc,±(M), D′sc,±(M) −→ D′sc,±(M),

Gret/adv : C∞tc,±(M) −→ C∞tc,±(M), D′tc,±(M) −→ D′tc,±(M)

The operator

(5.25) G = Gret −Gadv

is called in physics the Pauli-Jordan function or causal propagator. Using that
P = P ∗ and the uniqueness of Gret/adv, we obtain that Gret/adv = G∗adv/ret on
C∞0 (M), hence

(5.26) G = −G∗, suppGv ⊂ J(supp v).

5.5.4. The Cauchy problem. We now discuss the Cauchy problem for P .
Let Σ be a smooth, space-like Cauchy surface in M , n the future unit normal to
Σ, see Subsection 5.4.3, and ∂An = na∇Aa . As in Section 2.4, we define the Cauchy
data map %Σ by:

(5.27) %Σφ ··=
(

φ�Σ
i−1∂An φ�Σ

)
, φ ∈ C∞(M).

The proof of the following result can be found in [BGP, Theorem 3.2.11].

Theorem 5.5.3. The Cauchy problem

(5.28)
{
Pφ = 0,
%Σφ = f,

has a unique solution φ = UΣf ∈ C∞(M) for each f =

(
f0

f1

)
∈ C∞0 (Σ;C2).

Moreover the map UΣ : C∞0 (Σ;C2)→ C∞(M) is continuous and

suppUΣf ⊂ J(supp f0 ∩ supp f1).

Let us recall a well-known relation between the Cauchy evolution operator UΣ

and G. We first introduce some notation. Since %Σ : C∞0 (M) → C∞0 (Σ;C2) we
obtain by duality the map

(5.29) %∗Σ : D′(Σ;C2) −→ D′(M),
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where in (5.29) we identify the space C∞0 (M)′ (resp. C∞0 (Σ)′), of distribution
densities on M (resp. on Σ), with D′(M) (resp. D′(Σ)) using the density dVolg
(resp. dVolh). A concrete expression of %∗Σ is

(5.30) %∗Σf = f0 ⊗ δΣ + i−1f1 ⊗ n·∇δΣ,

where the distribution δΣ is defined by

〈δΣdVolg, u〉 =

ˆ
Σ

u dVolh, u ∈ C∞0 (M).

We also set

(5.31) qΣ ··=
(

0 1l
1l 0

)
∈ L(C∞0 (Σ;C2)).

Proposition 5.5.4. Set GΣ = i−1qΣ. Then

UΣ = (%ΣG)∗GΣ, on C∞0 (Σ;C2).

Proof. We apply Green’s formula (5.23) to u2 = u = UΣf , u1 = Gadv/retv,
v ∈ C∞0 (M) and U = J±(Σ). This yields

ˆ
J+(Σ)

vu dVolg =

ˆ
Σ

(
−Gadvvn

a∇Aa u+ na∇AaGadvvu
)
dVolh,

ˆ
J−(Σ)

vu dVolg =

ˆ
Σ

(
Gretvn

a∇Aa u−Gretvn
a∇Aa u

)
dVolh.

Adding the two equations above, we get, since J(Σ) = M ,
ˆ
M

vudVolg = −
ˆ

Σ

naJa(Gv, u)dVolh.

By the definition of %∗Σ and the fact that G = −G∗ we obtain the proposition. 2

From Proposition 5.5.4 and Corrollary 5.5.2 we obtain the following continuous
extensions of UΣ:

(5.32) UΣ : E ′(Σ;C2) −→ D′sc(M), D′(Σ;C2) −→ D′(M).

5.6. Symplectic spaces

5.6.1. Symplectic space of Cauchy data. We equip C∞0 (Σ;C2) with the
Hermitian form

(5.33) g ·qΣf ··=
ˆ

Σ

(
g1f0 + g0f1

)
dVolh.

Abusing the notation, we have

g ·qΣf = (g|qΣf)Σ,

for

(5.34) (g|f)Σ =

ˆ
Σ

(
g0f0 + g1f1

)
dVolh,

and the operator qΣ is defined in (5.31). Clearly, (C∞0 (Σ;C2), qΣ) is a Hermitian
space, see Subsection 4.2.4.
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5.6.2. Symplectic space of solutions. Let us denote by Solsc(P ) the space
of smooth complex space-compact solutions of the Klein-Gordon equation Pφ = 0.

Proposition 5.6.1. (1) The Hermitian form q on Solsc(P ) defined by:

(5.35) φ1 ·qφ2 = i

ˆ
Σ

naJAa (φ1, φ2)dVolh

is independent on the choice of the space-like Cauchy surface Σ and (Solsc(P ), q)
is a Hermitian space.

(2) If Σ is a space-like Cauchy surface, the map

%Σ : (C∞0 (Σ;C2, qΣ) −→ (Solsc(P ), q)

is unitary with inverse UΣ.

Proof. If φ1, φ2 ∈ Solsc(P ), then by (5.22) we have ∇Aa Ja(φ1, φ2) = 0. If Σ,Σ′

are two space-like Cauchy surfaces with Σ′ ⊂ J+(Σ), we apply the Gauss formula
to U = Int(J+(Σ) ∩ J−(Σ′)) and obtain thatˆ

Σ

naJAa (φ1, φ2)dVolh =

ˆ
Σ′
naJAa (φ1, φ2)dVolh.

In the general case we pick another Cauchy surface Σ′′ ⊂ J+(Σ)∩J+(Σ′) and apply
the same argument to obtain (1). Statement (2) follows immediately. 2

5.6.3. Pre-symplectic space of test functions.

Theorem 5.6.2. (1) The sequence

0 −→ C∞0 (M)
P−→C∞0 (M)

G−→C∞sc (M)
P−→C∞sc (M) −→ 0

is an exact complex.
(2) Let Σ be a space-like Cauchy surface. Then one has

(%ΣG)∗GΣ(%ΣG) = G on C∞0 (M).

(3) The map

G : (
C∞0 (M)

PC∞0 (M)
, (· |iG ·)M ) −→ (Solsc(P ), q)

is unitary.

Proof. (1) The above sequence is clearly a complex since G◦P = 0 and P ◦G = 0
on C∞0 (M). Let us check that it is exact.

Let u ∈ C∞0 (M) with Pu = 0. Since u ∈ C∞sc (M) we have u = Gret0 = 0 by
Theorem 5.5.1, which proves exactness at the first C∞0 (M).

Let u ∈ C∞0 (M) with Gu = 0. We have v ··= Gretu = Gadvu ∈ C∞0 (M) since
supp v ⊂ J+(suppu) ∩ J−(suppu) is compact by Lemma 5.4.3. Then u = Pv, and
so u ∈ PC∞0 (M), which proves exactness at the second C∞0 (M).

Let φ ∈ C∞sc (M) with Pφ = 0, i.e. φ ∈ Solsc(P ). We can find cutoff functions
χ± ∈ C∞sc,±(M) such that χ+ + χ− = 1 on suppφ, see Fig. 4 below. We have
suppφ ⊂ J(K) and suppχ± ⊂ J±(K±) for K,K± compact. Since ∇χ+ = −∇χ−
on suppφ we have suppφ∩supp∇χ± ⊂ J(K)∩J+(K+)∩J−(K−) which is compact
by Lemma 5.4.3. We set φ± = χ±φ and v = Pφ+ = −Pφ−, which belongs to
C∞0 (M), by the compactness of suppφ∩ supp∇χ±. Since φ± ∈ C∞sc,±(M) we have
φ± = ±Gret/advv hence φ = Gv, which proves exactness at the first C∞sc (M).

Let v ∈ C∞sc (M) and χ± ∈ C∞sc,±(M) such that χ+ + χ− = 1 on supp v. From
Theorem 5.5.1 (iii) we see that Gret/adv can be extended as a map from C∞sc,∓(M)
to C∞sc,±(M). We set then u = Gretχ−v+Gadvχ+v and Pu = v, u ∈ C∞sc (M) which
proves exactness at the second C∞sc (M).
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(2) From UΣ%Σ = 1l on Solsc(P ), UΣ = (%ΣG)∗GΣ on C∞0 (Σ;C2) and Solsc(P ) =
GC∞0 (M) we obtain (2).

(3) The map G and the Hermitian form (· |iG ·)M are well defined on C∞0 (M)
PC∞0 (M)

since G ◦P = P ◦G = 0. By (1), the map G :
C∞0 (M)
PC∞0 (M) → Solsc(P ) is bijective, and

by (2) and the definition of q in (5.35), it is unitary. 2

suppφ

Σ

suppχ+

suppχ−

Fig. 4

Let us summarize the above discussion.

Theorem 5.6.3. The maps

(
C∞0 (M)

PC∞0 (M)
, (· |iG ·)M )

G−→ (Solsc(P ), q)
ρΣ−→ (C∞0 (Σ;C2), qΣ)

are isomorphisms of Hermitian spaces.

As in the Minkowski case, the first and last Hermitian spaces are the most
useful.

5.6.4. Time-slice property. We end this subsection with a remark which is
related to the time-slice axiom see e.g. [BGP, Theorem 4.5.1].

Proposition 5.6.4. Let Σ a space-like Cauchy surface and V ⊂ M a neigh-
borhood of Σ such that V ⊂M is causally compatible. Then the maps

(
C∞0 (V )

PC∞0 (V )
, (· |iG ·)M )

G−→ (Solsc(P ), q)
ρΣ−→ (C∞0 (Σ;C2), qΣ)

are isomorphisms of Hermitian spaces.

Proof. The space (V, g) is globally hyperbolic. Let P |V be the restriction of P to
V . Since V ⊂M is causally compatible, the causal propagator for P |V equals G|V .
If [u] ∈ C∞0 (V )

PC∞0 (V ) , then G|V u = (Gu)|V . Applying this remark and Theorem 5.6.3
for V we obtain the proposition. 2



CHAPTER 6

Quasi-free states on curved spacetimes

We saw in Chapter 5 that to a Klein-Gordon operator P on a globally hyper-
bolic spacetime (M, g) one can associate the Hermitian space (

C∞0 (M)
PC∞0 (M) , (· |iG ·)M ).

Following Chapter 4, one can then consider the associated CCR ∗-algebra and
quasi-free states on it.

The complex covariances of a quasi-free state induce sesquilinear forms on
C∞0 (M) and it is natural to assume their continuity for the topology of C∞0 (M),
which allows to introduce their distributional kernels.

By Proposition 5.6.4 one can equivalently use the Hermitian space (C∞0 (Σ,C2), qΣ)
if Σ is a space-like Cauchy surface. The associated covariances are called Cauchy
surface covariances and are very useful for the concrete construction of states.

6.1. Quasi-free states on curved spacetimes

Definition 6.1.1. We denote by CCR(P ) the ∗-algebra CCRpol(Y, q), see Sub-
section 4.5.3, for

(Y, q) = (
C∞0 (M)

PC∞0 (M)
, (· |iG ·)M ).

6.1.1. Space-time covariances. We will identify distribution densities on
M , resp. M ×M with distributions using the density dVolg, resp. dVolg × dVolg.

Let ω be a gauge invariant quasi-free state on CCR(P ). Its complex covariances
are sesquilinear forms on C∞0 (M)

PC∞0 (M) , or equivalently sesquilinear forms Λ± on C∞0 (M)

such that
u·Λ±Pv = Pu·Λ±v = 0, u, v ∈ C∞0 (M),

or in more compact notation Λ± ◦ P = P ∗ ◦ Λ±, where P ∗ is the formal adjoint of
P defined in Subsection 4.1.4.

It is natural to require that Λ± : C∞0 (M) → D′(M) are continuous, which
we will always assume in the sequel. By the Schwartz kernel theorem, Λ± have
distributional kernels, still denoted by Λ± ∈ D′(M ×M), defined by

(6.1) u·Λ±v =·· (Λ±|u⊗ v)M×M , u, v ∈ C∞0 (M).

Definition 6.1.2. The maps Λ± : C∞0 (M)→ D′(M) are called the spacetime
covariances of ω.

By Proposition 4.7.6 we have:

Proposition 6.1.3. Two maps Λ± : C∞0 (M) → D′(M) are the spacetime
covariances of a gauge invariant quasi-free state ω iff

(i) Λ± : C∞0 (M)→ D′(M) are linear and continuous,

(ii) (u|Λ±u)M ≥ 0, u ∈ C∞0 (M),

(iii) Λ+ − Λ− = iG,

(iv) P ◦ Λ± = Λ± ◦ P = 0.

51
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6.1.2. Cauchy surface covariances. Let Σ ⊂ M a space-like Cauchy sur-
face. We again identify distributions on Σ with distribution densities using the
volume form dVolh, where h is the induced Riemannian metric on Σ.

By Theorem 5.6.3, we can use equivalently the symplectic space (C∞0 (Σ;C2), qΣ)
to describe CCR(P ). Therefore a quasi-free state ω as above can equivalently be
defined by a pair λ±Σ of sesquilinear forms on C∞0 (Σ;C2), or equivalently linear
maps λ±Σ : C∞0 (Σ;C2)→ D′(Σ;C2). We will see later that Λ± : C∞0 (M)→ D′(M)
is linear and continuous iff λ± : C∞0 (Σ;C2)→ D′(Σ;C2) is linear and continuous.

Definition 6.1.4. The maps λ±Σ are called the Cauchy surface covariances of
the state ω.

We recall that the scalar product (·|·)Σ on C∞0 (Σ;C2) was defined in (5.34).

Proposition 6.1.5. Two maps λ±Σ : C∞0 (Σ;C2) → D′(Σ;C2) are the Cauchy
surface covariances of a gauge invariant quasi-free state ω iff

(i) λ±Σ : C∞0 (Σ;C2)→ D′(Σ;C2) are linear and continuous,

(ii) (f |λ±Σf)Σ ≥ 0, f ∈ C∞0 (Σ;C2),

(iii) λ+
Σ − λ

−
Σ = qΣ.

We recall that qΣ is defined in (5.31) and that GΣ = i−1qΣ. Let us now look
at the relationship between Λ± and λ±Σ .

Proposition 6.1.6. (1) Let λ±Σ be Cauchy surface covariances of a quasi-free
state ω. Then

Λ± ··= (%ΣG)∗λ±Σ(%ΣG)

are the spacetime covariances of ω.
(2) let Λ± be the spacetime covariances of a quasi-free state ω. Then

λ±Σ ··= (%∗ΣGΣ)∗Λ±(%∗ΣGΣ).

are the Cauchy surface covariances of ω.

Proof. (1) Since %∗Σλ
±
Σ%ΣG : C∞0 (M)→ D′tc(M) and λ±Σ : C∞(Σ;C2)→ D′(Σ;C2)

are continuous, we see that Λ± : C∞0 (M) → D′(M) is continuous, by Corollary
5.5.2. The rest of the conditions in Proposition 6.1.3 follow from the equalities
P ◦G = G ◦ P = 0 and the fact that

%ΣG : (
C∞0 (M)

PC∞0 (M)
, (· |iG ·)M ) −→ (C∞0 (Σ;C2), qΣ)

is unitary.
(2) The fact that λ±Σ : C∞0 (Σ;C2)→ D′(Σ;C2) is continuous uses properties of

the wavefront set of Λ± deduced from the equalities P ◦Λ± = Λ± ◦ P = 0 and will
be explained later on in Chapter 7, see Subsection 7.2.9.

Item (ii) in Proposition 6.1.5 follows from item (ii) in Proposition 6.1.3. To
check item (iii) in Proposition 6.1.5, we write

λ+
Σ − λ

−
Σ = (%∗ΣGΣ)∗iG(%∗ΣGΣ) = −GΣ%ΣiG%∗ΣGΣ = qΣ,

since %Σ(%ΣG)∗GΣ = 1l, by Proposition 5.5.4. Therefore λ±Σ are the Cauchy surface
covariances of a quasi-free state ω1. To check that ω1 = ω, we use (1) and the fact
that %Σ(%ΣG)∗GΣ = 1l to conclude that Λ± are the spacetime covariances of ω1,
and hence ω1 = ω. 2
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6.1.3. The case of real fields. For comparison with the literature, let us
briefly explain the framework for real Klein-Gordon fields. Let P be a real Klein-
Gordon operator, i.e. such that Pu = Pu. Clearly, Gret/adv and hence G are also
real operators.

Consider the real symplectic space

(X , σ) ··= (
C∞0 (M ;R)

PC∞0 (M ;R)
, (·|G·)M ),

and denote by CCRR(P ) the ∗-algebra CCRpol(X , σ). The real covariance of a
quasi-free state ω is a (continuous) bilinear form H on C∞0 (M ;R), i.e. a continuous
map H : C∞0 (M ;R) → D′(M ;R). It satisfies H ◦ P = P ◦H = 0. The two-point
function ω2 of ω, defined byˆ

M×M
ω2(x, x′)u(x)v(x′)dVolg × dVolg ··= ω(φ(u)φ(v))

is equal by (4.15) to

ω2 = H +
i

2
G,

and we denote by

ω2C = HC +
i

2
GC : C∞0 (M) −→ D′(M)

its sesquilinear extension.
Let us formulate the version of Proposition 6.1.3 in the real case, which follows

from Proposition 4.7.1.

Proposition 6.1.7. A map ω2 : C∞0 (M ;R)→ D′(M ;R) is the two-point func-
tion of a quasi-free state for the real Klein-Gordon operator P iff

(i) ω2C : C∞0 (M)→ D′(M) is continuous,

(ii) (u|ω2Cu)M ≥ 0, u ∈ C∞0 (M),

(iii) ω2C −tω2C = iGC.

6.2. Consequences of unique continuation

Next let us examine some consequences on CCR(P ) of unique continuation
results for the Klein-Gordon operator P . We first introduce some terminology
taken from [KW, Section 2].

Definition 6.2.1. Let O ⊂ M be an open set. The domain of determinacy
D(O) is the largest open set U ⊂ M such that Pφ = 0, φ|O = 0 implies φ|U = 0
for all φ ∈ D′(M).

From the existence and uniqueness for the Cauchy problem, see Theorem 5.5.3,
one sees that if Σ is a Cauchy surface inM , the interior of the domain of dependence
D(Σ∩O), defined as the set {x ∈M : J(x)∩Σ ⊂ O}, is included in D(O). Also, if
O⊥ ··= {x ∈M : x∩J(O) = ∅} is the causal complement of O, then D(O)∩O⊥ = ∅.
From uniqueness results for the Cauchy problem, see e.g. [H4, Section 28.4], one
can get some geometric information on D(O). In particular, it was shown by
Strohmaier in [St] that the envelope of O, see [St, Subsection 2.4] for the precise
definition, is always included in D(O), provided the operator P is locally analytic
in time. This condition means that near any point x0 ∈ M , there exists local
coordinates (t, x) such that ∂t is time-like and the coefficients of P (and hence the
metric g) are locally analytic in t.
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Following Definition 6.1.1 we set

Y(O) =··
C∞0 (O)

P (C∞0 (O))
, for O ⊂M open.

Proposition 6.2.2. Let ω be a quasi-free state on CCR(P ) with spacetime
covariances Λ± and O ⊂ M be open. Then Y(O) is dense in Y(D(O)) for the
scalar product Λ+ + Λ−.

Proof. Let Ycpl be the completion of Y for Λ+ + Λ− and A⊥ the orthogonal
complement of A ⊂ Ycpl. For u ∈ Ycpl we set

w±u (f) ··= u·Λ±f, f ∈ C∞0 (M).

Since Λ± ≥ 0, the Cauchy-Schwarz inequality yields

|w±u (f)| ≤ (u·Λ±u)
1
2 (f ·Λ±f)

1
2 ,

which implies that w±u ∈ D′(M). Moreover since Λ±P = 0 we have Pw±u = 0. If
u ∈ Y(0)⊥ we have w±u = 0 in O hence w±u = 0 in D(O) hence u ∈ Y(D(O))⊥. 2

Note that the density result in Proposition 6.2.2 is valid for any quasi-free state
ω. It is hence different from the Reeh-Schlieder property, see Section 12.4, which is
a property of a given state ω and asserts that Y(O) is dense in Y(O′) for any open
sets O,O′ ⊂M .

6.3. Conformal transformations

If (M, g) is globally hyperbolic and c ∈ C∞(M) with c(x) > 0, then (M, g̃) for
g̃ = c2g is also globally hyperbolic, with the same Cauchy surfaces as (M, g). It is
easy to see from (5.4) that the Levi-Civita connection ∇̃ for g̃ is given by:

(6.2) ∇̃XY = ∇XY + c−1
(
(X ·dc)Y + (Y ·dc)X −X ·gY∇c

)
.

If P is a Klein-Gordon operator on (M, g) and

W : L2(M,dVolg̃) 3 ũ 7−→ cn/2−1ũ ∈ L2(M,dVolg)

then

P̃ ··= W ∗PW = c−n/2−1Pcn/2−1

is a Klein-Gordon operator on (M, g̃). In particular, if P = −2g + n−2
4(n−1)Scalg is

the conformal wave operator for g, then P̃ is the conformal wave operator for g̃,
see e.g. [W1, App. D].

Denoting with tildas the objects associated with g̃, P̃ , we have:

(6.3) Gret/adv = WG̃ret/advW
∗, G = WG̃W ∗.

6.3.1. Conformal transformations of phase spaces. Let us denote by
M̃ the manifold M equipped with the density dVolg̃ = cndVolg. If Σ ⊂ M is a
space-like Cauchy surface, then ñ = c−1n, h̃ = c2h. From (6.2) we obtain that
∇Ã = W−1∇AW . Let us set

U : C∞0 (Σ;C2) 3 f 7−→ Uf =

(
c1−n/2f0

c−n/2f1

)
∈ C∞0 (Σ;C2).

The next proposition follows by easy computations.
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Proposition 6.3.1. The following diagram is commutative, with all arrows
unitary:

(
C∞0 (M)
PC∞0 (M) , (· |iG ·)M )

G−−−−→ (Solsc(P ), q)
%Σ−−−−→ (C∞0 (Σ;C2), qΣ)yW∗ yW−1

yU
(
C∞0 (M̃)

P̃C∞0 (M̃)
, (· |iG̃ ·)M̃ )

G̃−−−−→ (Solsc(P̃ ), q̃)
%̃Σ−−−−→ (C∞0 (Σ;C2), q̃Σ)

6.3.2. Conformal transformations of quasi-free states. Let Λ± be the
spacetime covariances of a quasi-free state ω for P . From (6.3) and Proposition
6.1.3 we obtain that

(6.4) Λ̃± = c1−n/2Λ±c−1−n/2

are the spacetime covariances of a quasi-free state ω̃ for P̃ .
Let us denote by Σ̃ the manifold Σ equipped with the volume element dVolh̃.

Then

U∗f̃ =

(
cn/2f̃0

cn/2−1f̃1

)
, f̃ ∈ C∞0 (Σ̃;C2)

and
λ̃±Σ = (U∗)−1λ±ΣU

−1,

if λ±Σ , resp. λ̃
±
Σ are the Cauchy surface covariances of ω, resp. ω̃.





CHAPTER 7

Microlocal analysis of Klein-Gordon equations

The use of microlocal analysis in quantum field theory on curved spacetimes
started with the fundamental papers of Radzikowski [R1, R2], who gave a def-
inition of the Hadamard states by means of the wavefront set of their two-point
functions, instead of their singularity structure, see e.g. Section 8.2. The work of
Radzikowski relied on the analysis by Duistermaat and Hörmander [DH] of distin-
guished parametrices for Klein-Gordon operators, which was actually motivated by
the desire to understand the notion of ‘Feynman propagators’ on curved spacetimes.

On Minkowski spacetime the interplay of microlocal analysis and quantum field
theory is much older, see for example the proceedings [P].

In this chapter we first recall basic facts on wavefront sets of distributions on
manifolds. We then describe the result of [DH] on distinguished parametrices and
some related results due to Junker [J1].

7.1. Wavefront set of distributions

We recall the well-known definition of the wavefront set of a distribution u ∈
D′(M) for M a smooth manifold. We equip M with a smooth density, for which
one usually takes dVolg if (M, g) is a spacetime. We use the notation (·|·)M in (5.9)
for the duality bracket between D′(M) and C∞0 (M).

Let o ⊂ T ∗M be the zero section. The points in T ∗M \o will be denoted by
X = (x, ξ), x ∈M , ξ ∈ T ∗xM \ {0}.

We recall that Γ ⊂ T ∗M \o is conic if (x, ξ) ∈ Γ ⇒ (x, λξ) ∈ Γ for all λ > 0.
The cosphere bundle S∗M is the quotient of T ∗M \o by the relation X1 ∼ X2 if
x1 = x2 and ξ1 = λξ2 for some λ > 0. A conic set Γ can be seen as a set in S∗M
and it is called closed if it is closed in S∗M in the quotient topology.

Definition 7.1.1. Let Ω ⊂ Rn an open set. A point (x0, ξ0) ∈ T ∗Ω \o does
not belong to the wavefront set WFu of u ∈ D′(Ω) if there exist χ ∈ C∞0 (Ω) with
χ(x0) = 1 and a conic neighborhood Γ of ξ0, such that

|F(χu)(ξ)| ≤ CN 〈λ〉−N , ∀N ∈ N, ξ ∈ Γ.

One can show that the wavefront set transforms covariantly under diffeomor-
phisms, i.e. if ψ : Ω1

∼−→ Ω2 is a diffeomorphism, then

(7.1) WF(ψ∗u2) = ψ∗(WF(u2)), ∀u2 ∈ D′(Ω2).

Another useful equivalent definition of WFu is as follows. We set

(7.2) vλY (x) ··= eiλ(x−y)·η, Y = (y, η) ∈ T ∗Ω, x ∈ Rn, λ ≥ 1.

Lemma 7.1.2. Let Ω ⊂ Rn be an open set, (x0, ξ0) ∈ T ∗Ω \o and u ∈ D′(Ω).
Then (x0, ξ0) 6∈WFu iff there exist χ ∈ C∞0 (Ω) with χ(x0) 6= 0 and a neighborhood
W of (x0, ξ0) in T ∗Ω such that

|(χvλY |u)Ω| ≤ CNλ−N , Y ∈W, λ ≥ 1, N ∈ N.

57
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From (7.1) we see that Definition 7.1.1 immediately extends to distributions on
manifolds.

Definition 7.1.3. A point X0 = (x0, ξ0) ∈ T ∗M \o does not belong to the
wavefront set WFu of u ∈ D′(M) if there exist a neighborhood U of x0 and a chart
diffeomorphism χ : U

∼−→ B(0, 1) such that (χ−1)∗X0 6∈WF(χ−1)∗u|Ω.

The wavefront set WFu is a closed conic subset of T ∗M \o with πMWFu =
singsuppu, the singular support of u.

From Definition 7.1.3 we obtain immediately the covariance property of the
wavefront set under diffeomorphisms.

Proposition 7.1.4. Let M1,M2 be two smooth manifolds and χ : M1 →M2 a
diffeomorphism. Then

WF(χ∗u2) = χ∗(WF(u2)) ∀ u2 ∈ D′(M2).

The following well-known result, see e.g. [SVW, Theorem 2.8], [H1, Theorem
8.4.8] allows to estimate the wavefront set of distributions defined as partial limits
of holomorphic functions. It is usually expressed in terms of the analytic wavefront
set, see Section 12.2.

Proposition 7.1.5. Let I ⊂ R be an open interval, S a smooth manifold and
let F : I ± i ]0, δ[3 z 7→ F (z) ∈ D′(S) be a holomorphic function with values in
D′(S). Assume that f(t, ·) = limε→0+ F (t± iε, ·) exists in D′(I × S). Then

WF(f) ⊂ {(t, τ) : t ∈ I, ±τ > 0} × T ∗S.

Proof. We only prove the + case, and we can assume that S = Ω ⊂ Rn. We write
t = x0, x = (x0, x′) for x′ ∈ S and Y = (Y 0, Y ′) for Y 0 ∈ T ∗I, Y ′ ∈ T ∗S. With
the notation in (7.2) we have vλY (x) = vλY 0(x0)vλY ′(x

′). By Lemma 7.1.2, we need
to show that

(7.3) (vλY |χf)I×S ∈ O(〈λ〉−∞), uniformly for Y ∈W,

where χ0 ∈ C∞0 (I), χ′ ∈ C∞0 (S), χ(x) = χ0(x0)χ′(x′) and W b {Y ∈ T ∗I × S :
η0 < 0} is relatively compact.

Arguing as in the proof of [H1, Theorem 3.1.14], we first obtain that if K b S,
there exist N0 ∈ N and a semi-norm ‖ · ‖k of C∞0 (K), such that

|(v|F (z, ·))S | ≤ C|Imz|−N0‖v‖k, ∀v ∈ C∞0 (K), z ∈ I + i ]0, δ[ .

For v = χ′vλY ′ we obtain:
(7.4)
|(χ′vλY ′ |F (z, ·))S | ≤ C|Imz|−N0〈λ〉k, k ∈ N, uniformly for Y ′ ∈W ′ b T ∗S.

Let χ1 ∈ C∞0 ( ]− δ, δ[ ) with χ1 = 1 in |s| ≤ δ/2 and

χ̃0(t+ is) =

N∑
j=0

∂jtχ
0(t)

(is)j

j!
χ1(s).

We have
χ̃0 ∈ C∞0 (C), χ̃0�R= χ0, and ∂zχ̃0 ∈ O(|Imz|N ),

and χ̃0 is called an (N -th order) almost analytic extension of χ0. Let us set

ϕλY 0(z) = e−
λ
2 (z−x0)2−iλ(z−x0)·ξ0

,

which is holomorphic in C and equals vλY 0 on R. We apply Stokes formula

(7.5)
ˆ

Ω

∂zg(z)dz ∧ dz =

‰
∂Ω

g(z)dz
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to gλY (z) = ϕλY 0(z)χ̃0(z)(χ′vλY ′ |F (z, ·))S , Ω = {Im z > 0}. The right-hand side in
(7.5) equals

lim
ε→0

ˆ
R
(χ′vλY ′ |F (t+ iε, ·))SϕλY 0(t+ iε)χ̃0(t+ iε)dt = (χvλY |f)I×S .

Since ∂zgλY (z) = ϕλY 0(z)(χ′vλY ′ |F (z, ·))S ∂χ̃
0

∂z (z), we obtain using also (7.4) that the
integrand in the lhs is bounded by C|Imz|N−N0e−cλ|Imz|〈λ〉k, uniformly for Y ∈
W b {η0 < 0}, z ∈ supp χ̃0. Therefore the integral in the left-hand side is bounded
by C〈λ〉k+N0−N . Since N was arbitrary, we obtain (7.3). 2

7.2. Operations on distributions

We refer the reader to [H1, Chap. 8].

7.2.1. Operations on conic sets. We first introduce some notation.
If Γ ⊂ T ∗M \o is conic, we set

−Γ ··= {(x,−ξ) : (x, ξ) ∈ Γ},

and if Γ1,Γ2 ⊂ T ∗M \o are conic, we set

Γ1 + Γ2 ··= {(x, ξ1 + ξ2) : (x, ξi) ∈ Γi}.

Let Mi, i = 1, 2 be two manifolds, oi the zero section of T ∗Mi, M = M1 ×M2,
and let Γ ⊂ T ∗M \o be a conic set. The elements of T ∗M \o will be denoted by
(x1, ξ1, x2, ξ2), which allows to consider Γ as a relation between T ∗M2 and T ∗M1,
still denoted by Γ. Clearly Γ maps conic sets into conic sets. We set

Γ′ ··= {(x1, ξ1, x2,−ξ2) : (x1, ξ1, x2, ξ2) ∈ Γ} ⊂ T ∗(M1 ×M2) \o,

Exch(Γ) ··= Γ−1 ⊂ (T ∗M2 × T ∗M1) \o,

M1
Γ ··= {(x1, ξ1) : ∃ x2 such that (x1, ξ1, x2, 0) ∈ Γ} = Γ(o2) ⊂ T ∗M1 \o1,

ΓM2
··= {(x2, ξ2) : ∃ x1 such that (x1, 0, x2, ξ2) ∈ Γ} = Γ−1(o1) ⊂ T ∗M2 \o2.

7.2.2. Distribution kernels. If Mi, i = 1, 2, are smooth manifolds equipped
with smooth densities dµi and K : C∞0 (M2) → D′(M1) is continuous, we will still
denote by K ∈ D′(M1 × M2) its distribution kernel. Such a kernel is properly
supported if the projection π2 : suppK → M2 is proper. If this is the case, then
K : C∞0 (M2)→ E ′(M1).

7.2.3. Complex conjugation and adjoints. If u ∈ D′(M), then

(7.6) WF(u) = −WF(u).

Similarly, if K : C∞0 (M2)→ D′(M1) is continuous and K∗ : C∞0 (M1)→ D′(M2) is
its adjoint with respect to some smooth densities dµ1, dµ2 then:

(7.7) WF(K∗)′ = Exch(WF(K)′).

7.2.4. Pullback and restriction to submanifolds. Under a condition on
WFu it is possible to extend the pullback χ∗u to general smooth maps χ : M1 →
M2. Indeed, let us set χ∗u = u ◦ χ for u ∈ C∞(M2) and

N∗χ ··= {(χ(x1), ξ2) ∈ T ∗M2 \o2 : tDχ(x1)ξ2 = 0}.

Then there is a unique extension of the pullback χ∗ to distributions u ∈ D′(M2)
such that

(7.8) N∗χ ∩WF(u) = ∅,
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and one has

(7.9) WF(χ∗u) ⊂ χ∗WF(u).

In particular, if S ⊂ M is a smooth submanifold and i : S → M is the canonical
injection, the set N∗i is denoted by N∗S and called the conormal bundle to S. One
has:

N∗S = {(x, ξ) ∈ T ∗M : x ∈ S, ξ|TxS = 0}.

The restriction u�S= i∗u of u ∈ D′(M) is then well defined if

(7.10) WFu ∩N∗S = ∅,

and one has

(7.11) WF(u�S) ⊂ i∗WFu.

7.2.5. Tensor products. If ui ∈ D′(Mi) then

WF (u1 ⊗ u2)

⊂(WF (u1)×WF (u2)) ∪ (suppu1 × {0})×WF (u2) ∪WF (u1)× (suppu2 × {0})

⊂(WF (u1)×WF (u2)) ∪o1 ×WF (u2) ∪WF (u1)×o2.

7.2.6. Products. The map C∞0 (M)2 3 (u1, u2) 7→ u1u2 uniquely extends to
distributions u1, u2 ∈ D′(M) such that:

(7.12) (WFu1 + WFu2) ∩o = ∅,

and one has

WF(u1u2) ⊂WFu1 ∪WFu2 ∪ (WFu1 + WFu2).

7.2.7. Kernels. If K ∈ D′(M1 ×M2), then the map K : C∞0 (M2)→ D′(M1)
uniquely extends to distributions such that

(7.13) u ∈ E ′(M2), WF(u) ∩WF(K)′M2
= ∅,

and one has:

(7.14) WF(Ku) ⊂ M1
WF(K)′ ∪ (WF(K)′(WFu)),

where we interpret WF(K)′ as a relation in T ∗M1 × T ∗M2. Quite often one has
M1

WF(K)′ = ∅, and (7.14) simplifies to

(7.15) WF(Ku) ⊂WF(K)′(WFu),

which justifies the use of WF(K)′ instead of WF(K). Note for example that
WF(Id)′ is equal to the diagonal

(7.16) ∆ = {(X,X) : X ∈ T ∗M \o}

which is the relation associated to Id : T ∗M → T ∗M . Similarly, if P is a (properly
supported) pseudodifferential operator (see Chapter 10) one has:

(7.17) WF(P )′ ⊂ ∆, hence WF (Pu) ⊂WF(u), u ∈ D′(M).
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7.2.8. Composition of kernels. Finally, let K1 ∈ D′(M1 × M2), K2 ∈
D′(M2 × M3), where K2 is properly supported. Then K1 ◦ K2 is well defined
if

(7.18) WF(K1)′M2 ∩ M2WF(K2)′ = ∅,

and then
(7.19)
WF(K1 ◦K2)′ ⊂ (WF(K1)′ ◦WF(K2)′) ∪ ( M1

WF(K1)′×o3) ∪ (o1×WF(K2)′M3
).

Again, it often happens that MiWF(Ki)
′ and WF(Ki)

′
Mi+1 are empty. Then (7.18)

is automatic and (7.19) simplifies to the beautiful formula:

(7.20) WF(K1 ◦K2)′ ⊂WF(K1)′ ◦WF(K2)′.

7.2.9. Proof of Proposition 6.1.6. We end this subsection by completing the
proof of (2) in Proposition 6.1.6. Consider the map %∗ΣGΣ : C∞0 (Σ;C2) → D′(M).
It is clearly continuous and introducing local coordinates (t, x) near x0 ∈ Σ such
that Σ = {t = 0} we see that

WF(%∗ΣGΣ)′ ⊂ {(X,Y ) ∈ T ∗M × T ∗Σ : X = i∗Y },

where i : Σ→M is the canonical embedding. From P ◦Λ± = Λ± ◦P = 0 we obtain
(see the proof of Lemma 7.4.3) that WF(Λ±)′ ⊂ N × N . Since Σ is space-like
and hence non-null, we have N ∩ N∗Σ = ∅, which using Subsection 7.2.8 shows
that Λ± ◦ %∗ΣGΣ : C∞0 (Σ;C2) → D′(M) is well defined and continuous. The same
argument shows that (%∗ΣGΣ)∗◦Λ±◦%∗ΣGΣ : C∞0 (Σ;C2)→ D′(Σ;C2) is well defined
and continuous. 2

7.3. Hörmander’s theorem

We now state the famous result of Hörmander on propagation of singularities,
see e.g. [H3, Theorem 26.1.1] or [H4, Theorem 3.2.1]. To this end we need some
notions from pseudodifferential calculus, which will be recalled later on in Chapter
8.

The space of (classical) pseudodifferential operators of orderm on a manifold X
is denoted by Ψm(X). If P ∈ Ψm(X), its principal symbol p = σpr(P ) is a smooth
function on T ∗X, homogeneous of degree m in ξ. Its characteristic manifold is

Char(P ) = p−1({0}) \o,

where o is the zero section in T ∗X. P is said of real principal type if p is real
valued with dp 6= 0 on Char(P ), which is then a smooth, conic hypersurface in
T ∗M , invariant under the flow of the Hamiltonian vector field Hp. The integral
curves of Hp in Char(P ) are traditionally called bicharacteristic curves for P .
Note also that a Klein-Gordon operator P on a Lorentzian manifold (M, g) is of
real principal type with principal symbol p(x, ξ) = ξ ·g−1(x)ξ.

A submanifold S ⊂M is non-characteristic for P iff Char(P ) ∩N∗S = ∅.

Theorem 7.3.1. Let X be a smooth manifold and P ∈ Ψm(X) a properly
supported pseudodifferential operator. Then for u ∈ D′(X) one has:
(1) WF(u) \WF(Pu) ⊂ Char(P ) (microlocal ellipticity).
(2) If P is of real principal type, then WF(u) \WF(Pu) is invariant under the

flow of Hp (propagation of singularities).
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7.4. The distinguished parametrices of a Klein-Gordon operator

We will recall some deep results of Duistermaat and Hörmander [DH] on dis-
tinguished parametrices of P . These results played a very important role in the
work of Radzikowski [R1]. Let us first introduce some notation.

Recall that C±(x) ⊂ TxM are the cones of future/past time-like vectors. We
denote by C±(x)∗ ⊂ T ∗xM the dual cones

C±(x)∗ = {ξ ∈ T ∗xM : ξ · v > 0, ∀v ∈ C±(x), v 6= 0}.
We write ξ � 0 if ξ ∈ C+(x)∗.

In this subsection P will be a Klein-Gordon operator on (M, g). We recall that
its principal symbol is

σpr(P )(x, ξ) = p(x, ξ) = ξ ·g−1(x)ξ.

Duistermaat and Hörmander introduce in [DH] the pseudo-convexity condition of
M with respect to P , which says that for any compact set K b M there exists
a compact K ′ b M such that the projection on M of any bicharacteristic curve
for P with endpoints in K is entirely contained in K ′. Since projections on M
of bicharacteristic curves are null geodesics, and hence causal curves, the pseudo-
convexity of M follows easily from global hyperbolicity, using Lemma 5.4.3.

The characteristic manifold Char(P ) will be denoted by N ; it splits into the
upper/lower energy shells

(7.21) N = N+ ∪N−, N± = N ∩ {±ξ � 0}.
Recall that X = (x, ξ) denote the points in T ∗M \o. We write X1 ∼ X2 if X1, X2 ∈
N and X1, X2 lie on the same integral curve of Hp.

For X1 ∼ X2, we write X1 > X2, resp. X1 < X2 if x1 ∈ J+(x2), resp.
x1 ∈ J−(x2) and x1 6= x2 and we write X1 � X2, resp. X1 ≺ X2 if X1 comes
strictly after, resp. before X2 with respect to the natural parameter on the integral
curve of Hp through X1 and X2. Finally, we set

C = {(X1, X2) ∈ N ×N : X1 ∼ X2},
and we introduce the following subsets of C:

(7.22)

C± ··= C ∩ (N± ×N±),

Cret ··= {(X1, X2) ∈ C : X1 > X2},

Cadv ··= {(X1, X2) ∈ C : X1 < X2},

CF ··= {(X1, X2) ∈ C : X1 ≺ X2},

CF ··= {(X1, X2) ∈ C : X1 � X2}.
Note that

Cret ∪ Cadv = CF ∪ CF = C \∆.

Using an orthogonal decomposition of the metric g, one easily obtains that

(7.23)
CF = (Cret ∩ C+) ∪ (Cadv ∩ C−),

CF̄ = (Cret ∩ C−) ∪ (Cadv ∩ C+).

7.4.1. Parametrices.

Definition 7.4.1. A continuous map G̃ : C∞0 (M) → D′(M) is a left, resp.
right parametrix of P if

G̃ ◦ P = 1l +R, resp. P ◦ G̃ = 1l +R′,

where R, resp. R′ has a smooth kernel. If G̃ is both a left and a right parametrix,
it is called a parametrix of P .
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Parametrices play in microlocal analysis the role played by pseudo-inverses in
Fredholm theory.

7.4.2. Distinguished parametrices. We now state a theorem of Duister-
maat and Hörmander [DH, Theorem 6.5.3].

Theorem 7.4.2. For ] = ret, adv,F,F there exists a parametrix G̃] of P such
that

(7.24) WF(G̃])
′ = ∆ ∪ C].

Any other left or right parametrix G̃ with WF(G̃)′ ⊂ ∆ ∪ C] equals G̃] modulo a
smooth kernel.

The parametrices in Theorem 7.4.2 are called distinguished parametrices. Those
with WF(G̃′) ⊂ ∆∪Cret/adv are called retarded/advanced parametrices, while those
with WF(G̃′) ⊂ ∆ ∪ CF/F are called Feynman/anti-Feynman parametrices.

Note that the closed conic subsets Γ of T ∗(M ×M) \o that can be equal to
WF(G̃)′ for some parametrix G̃ of P were also completely characterized in [DH,
Theorems 6.5.6, 6.5.8]. They can be very different from the sets in Theorem 7.4.2.

Lemma 7.4.3. The retarded/advanced inverses Gret/adv introduced in Subsec-
tion 5.5.3 are advanced/retarded parametrices.

Proof. We note first that since P is a differential operator, P ⊗ 1l and 1l⊗ P are
pseudodifferential operators on M ×M . Let now G̃ be a parametrix of P . We
apply (7.17) and Theorem 7.3.1 (1) to P ⊗1l or 1l⊗P , using the fact that P ◦ G̃−1l

and G̃ ◦ P − 1l have smooth kernels, and obtain that

∆ ⊂WF(G̃)′ ⊂ (N ×N ) ∪∆.

Let us assume now that there exists (X1, X2) ∈WF(Gret)
′ with (X1, X2) 6∈ ∆∪Cret.

If X1 ∼ X2, then necessarily x1 6∈ J+(x2), hence (x1, x2) 6∈ suppGret, which is a
contradiction. If X1 6∼ X2, then necessarily X1, X2 ∈ N . If B(X) denotes the
bicharacteristic curve through X, then B(X1)×{X2} ∩∆ = ∅. We can apply then
Theorem 7.3.1 (2) to P ⊗ 1l, using that P ◦Gret − 1l has a smooth kernel, to obtain
that B(X1)× {X2} ⊂WF(Gret)

′. In particular, WF(Gret)
′ contains (X3, X2) with

x3 6∈ J+(x2), which is a contradiction. The proof for Gadv is similar. 2

By Lemma 7.4.3, there are canonical advanced/retarded parametrices, namely
the advanced/retarded inverses. No such canonical choice exists of Feynman/anti-
Feynman inverses, at least on general spacetimes (M, g), a fact already noted by
Duistermaat and Hömander. This fact is related to the absence of a canonical
choice of Hadamard states for P , see Chapter 8 below. We will come back to this
question in Chapter 16.

We end this subsection with a proposition about the wavefront set of differences
of distinguished parametrices, due to Junker, see [J1, Theorem 2.29].

Proposition 7.4.4. One has:

(1) WF(G̃ret − G̃adv)′ = C,

(2) WF(G̃F − G̃F̄)′ = C,

(3) WF(G̃F − G̃ret)
′ = C−,

(4) WF(G̃F − G̃adv)′ = C+.
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Proof. We will apply the following observation: let S be any of the differences in
Proposition 7.4.4. Since PS, SP ∈ C∞(M ×M), applying Theorem 7.3.1 to P ⊗ 1l
and 1l⊗ P we obtain that

(7.25)
(i) WFS′ ⊂ N ×N ,

(ii) (X1, X2) ∈ (N ×N ) \WFS′ ⇒ B(X1)×B(X2) ∩WFS′ = ∅,
where we recall that B(X) is the bicharacteristic curve through X. In the sequel
we set ∆N = (N ×N ) ∩∆.

Let us prove assertion (1). Since WF(G̃ret)
′ \ ∆N and WF(G̃adv)′ \ ∆N are

disjoint, we obtain that
(7.26)

WF(G̃ret − G̃adv)′ \∆N =
(

WF(G̃ret)
′ \∆N

)
∪
(

WF(G̃adv)′ \∆N

)
= C \∆N .

Next, (7.25) (i) implies that WF(G̃ret − G̃adv)′ ⊂ N ×N , and (7.25) (ii) combined
with (7.26) implies that ∆N ⊂WF(G̃ret − G̃adv)′. This completes the proof of (1).
The proof of (2) is similar.

Now let us prove (3). Since WF(Gret)
′ ∩ {(X1, X2) ∈ N ×N : X1 < X2} = ∅,

we have:

(7.27)

WF(G̃F − G̃ret)
′ ∩ {(X1, X2) ∈ N ×N : X1 < X2}

= WFG̃′F ∩ {(X1, X2) ∈ N ×N : X1 < X2}

= CF ∩ Cadv = Cadv ∩ C−,
where in the last step we used (7.23). Applying then (7.25) we obtain (3). The
proof of (4) is similar. 2



CHAPTER 8

Hadamard states

The main problem one encounters when considering quantum Klein-Gordon
fields on a curved spacetime is that there is no notion of a vacuum state. Unless the
spacetime is stationary, see Chapter 9, there is no one-parameter group of Killing
isometries that can be used to define a vacuum state.

One is forced to find a more general class of physically acceptable states, which
should be those for which the renormalized stress-energy tensor Tab(φ)(x), see Sec-
tion 8.1, can be rigorously defined. Alternatively one can require that the short
distance behavior of their two-point functions, expressed for example in normal
coordinates at any point x ∈ M , should mimic the one of the vacuum state on
Minkowski spacetime.

These states are called Hadamard states and play a fundamental role in quan-
tum field theory on curved spacetimes. In this chapter we describe the characteri-
zation of Hadamard states due to Radzikowski, [R1, R2], relying on the wavefront
set of their two-point functions and various existence and uniqueness theorems for
Hadamard states. The microlocal definition of Hadamard states is very convenient
and natural for applications.

8.1. The need for renormalization

Let us now consider a non-linear Klein-Gordon equation like

(8.1) −2gφ(x) +m2φ(x) + φn(x) = 0,

or a Klein-Gordon equation coupled to another classical field equation, like the
Einstein Klein-Gordon system:

(8.2)

{
Rµν(g)− 1

2R(g)gµν = Tµν(φ),

−2gφ+m2φ = 0.

Here Tab(φ) is the stress-energy tensor of φ, defined as

(8.3) Tab(φ) = ∇aφ∇bφ−
1

2
gab(∇cφ∇cφ+m2φ2),

for a real solution φ. For complex solutions the stress-energy tensor is defined as

(8.4) Tab(φ) = ∇aφ∇bφ+∇bφ∇aφ− gab(∇cφ∇cφ+m2φφ).

Note that if φ ∈ C∞(M) solves the Klein-Gordon equation

−2gφ+ V (x)φ = 0,

then one has the identity

(8.5) ∇aTab(φ) = (V −m2)(φ∇bφ+∇bφφ),

(this vanishes if V = m2), which is the basic ingredient of energy estimates for
Klein-Gordon equations.

To quantize such classical equations, one would like to define expressions like
φn(x), or Tab(φ)(x) as operator-valued distributions.

65
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It is hopeless to define
´
M
φn(x)u(x)dVolg or

´
M
Tab(φ)(x)u(x)dVolg for u ∈

C∞0 (M) as elements of an abstract ∗-algebra.
Instead one can hope that given a state ω for the free Klein-Gordon field, those

expressions may have a meaning as unbounded operators on the GNS Hilbert space
Hω. More precisely one can try to proceed as follows:

Let φω(u) for u ∈ C∞0 (M), be the image of the abstract field φ(u) under
the map πω of the GNS triple (Hω, πω,Ωω), and let φω(x) be the operator-valued
distribution on M defined by φω(u) =··

´
M
φω(x)u(x)dVolg. Then one can try to

define
φ2
ω(x) = lim

x′→x
φω(x)φω(x′),

i.e. φ2
ω(x) will be the trace on the diagonal ∆ = {x = x′} of the operator valued

distribution φω(x)φω(x′) on M × M . If this is possible, then one would expect
that (Ωω|φ2

ω(x)Ωω)Hω will be a well-defined (scalar) distribution on M . In the
Minkowski case this means that the two-point function ω2(x, x′) has a well-defined
trace on ∆. This is clearly impossible, since by (3.14)

ω2(x, x) =

ˆ
Rd
ε(k)−1dk =∞,

an example of ultraviolet divergence. Note also that one has

(8.6) WF(ω2) = {((x, ξ), (x′, ξ′)) : (x, ξ) ∈ N+, (x′, ξ′) ∈ N−, (x, ξ) ∼ (x′,−ξ′)},

so trying to define ω2|∆ by the arguments of Section 7.2 does not work either.

8.1.1. The Wick ordering. The solution to this problem for the vacuum
state on Minkowski is well-known, and called the Wick ordering: it consists in
setting

(8.7) :φ(x)φ(x′) := φ(x)φ(x′)− ω2(x, x′)1l.

If ω is any quasi-free state, then :φω(x)φω(x′) : is clearly well defined as an operator-
valued distribution on M ×M . If ω = ωvac, let us try to define the operator-valued
distribution: φ2

ωvac
(x) : as the trace on ∆ of : φωvac

(x)φωvac
(x′) :. To this end, we

consider the distribution

:φω(x)φω(x′) : × :φω(y)φω(y′) := φω(x)φω(x′)φω(y)φω(y′)

− φω(x)φω(x′)ω2(y, y′)− φω(y)φω(y′)ω2(x, x′) + ω2(x, x′)ω2(y, y′)1l.

Using the fact that ω is quasi-free, see Proposition 4.6.4, we obtain that

ω
(

:φω(x)φω(x′) : × :φω(y)φω(y′)
)

= ω2(x, y)ω2(x′, y′) + ω2(x, y′)ω2(x′, y).

The right-hand side above has a well-defined trace on {x = x′, y = y′}, which equals
2ω2(x, y)2. Note that ω2(x, y)2 is well defined as an element of D′(M ×M), since
if Γ is the right-hand side in (8.6) we have (Γ + Γ) ∩o = ∅.

Summarizing we have shown that the vectorˆ
M

:φ2(x) : u(x)dVolgΩω, u ∈ C∞0 (M)

is well defined as an element of Hω for u ∈ C∞0 (M) (since its norm in Hω is
finite). Using the same argument one can show that the (unbounded) operator´
M

:φ2(x) : u(x)dVolg is well defined with domain

D = Vect{
n∏
i=1

φω(ui)Ωω : ui ∈ C∞0 (M), n ∈ N}.
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8.2. Old definition of Hadamard states

The Wick ordering is well understood for the Klein-Gordon field on Minkowski
spacetime. The search for a natural class of vacuum states for Klein-Gordon fields on
more general globally hyperbolic spacetimes led physicists to introduce the notion
of Hadamard states.

Originally, Hadamard states were defined by specifying the singularity of their
two-point functions ω2(x, x′) = ω(φ(x)φ(x′)) for pair of points (x, x′) ∈ M ×M
near the diagonal, see e.g. [KW, Section 3.3].

We will follow here the exposition of Radzikowski in [R1, Section 5], see also
the PhD thesis of Viet Dang [D, Sections 5.2, 5.3].

Let us first consider the Minkowski case and set Q(x) = x·ηx for x ∈ Rn. We
first claim that

(8.8) Q(x+ iy) ∈ C\ ]−∞, 0], x ∈ Rn, y ∈ C,

where we recall from Section 2.1 that C = C+ ∪ C− ⊂ Rn is the cone of time-like
vectors. Indeed we have

Q(x+ iy) = x·ηx− y ·ηy + 2ix·ηy.

If ImQ(x+iy) = 0 and y ∈ C, then x is space-like by Lemma 5.2.3, hence ReQ(x+
iy) > 0, which proves our claim. Moreover, if Γ b C+ is a closed cone and K b Rn
is compact, then there exist δ > 0 and R > 0 such that

(8.9) |Q(x+ iy)| ≥ δ|y|2, ∀x ∈ K, y ∈ Γ ∩ {|y| ≤ R}.

Writing
|Q(x+ iy)|2 = (x·ηx− y ·ηy)2 + 4(x·ηy)2,

we see that (8.9) is clearly satisfied for x ∈ K,x · ηx ≥ 0 and y ∈ Γ, since −y · ηy ≥
c|y|2 for y ∈ Γ. If x · ηx < 0, x ∈ K, then from Lemma 5.2.3 we obtain that
|x · ηy| ≥ c|y| for y ∈ Γ. This implies (8.9).

In the sequel we take the determination of log z which is defined in C\ ] −
∞, 0]. It follows from (8.8), (8.9) that Q−1(z), logQ(z) are holomorphic functions
of moderate growth in Rn + iC+, see Section 12.1, hence the boundary values

(8.10) (Q−1)+(x) ··= Q−1(x+ iC+0), (logQ)+(x) ··= logQ(x+ iC+0)

are well defined as distributions on Rn.
The limit in (8.10) can be taken in particular along any vector y ∈ C+, see

Subsection 12.1.2, which implies that the distributions (Q−1)+ and (logQ)+ are
invariant under the action of the restricted Lorentz group SO↑(1, d).

Now let (M, g) be a spacetime. There exists a neighborhood U of the zero
section in TM such that the map:

exp : U 3 (x, v) 7−→ (x, expgx(v)) ∈M ×M

is a diffeomorphism onto its range, with V = exp(U) being a neighborhood of the
diagonal ∆ in M ×M . Clearly, such sets V form a basis of neighborhoods of ∆.

Let us also fix a smooth map

R : M 3 x 7−→ R(x) ∈ L(TxM,Rn)

such that R(x) : (TxM, g(x)) → (Rn, η) is pseudo-orthogonal and maps the future
lightcone C+(x) into C+, i.e. preserves the time orientation. One can then define
the map

(8.11) F : V 3 (x, x′) 7−→ R(x′) ◦ (expgx′)
−1(x) ∈ Rn,
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which has a surjective differential. Note that Q◦F (x, x′) equals the (signed) square
geodesic distance σ(x, x′) between x and x′. Since N∗F = ∅, we can by Subsection
7.2.4 define the pullbacks of (Q−1)+ and (logQ)+ by F

(σ−1)+ ··= F ∗((Q−1)+), and (log σ)+ ··= F ∗((logQ)+) ∈ D′(V ).

From the invariance of (Q−1)+ and (logQ)+ under SO↑(1, d), we deduce that
(σ−1)+ and (log σ)+ are independent of the choice of R(x).

One defines also the van Vleck-Morette determinant

∆(x, x′) := −det(−∇α∇β′σ(x, x′))|g|− 1
2 (x)|g|− 1

2 (x′).

Definition 8.2.1. Let P be a real Klein-Gordon operator. A quasi-free state ω
on CCRR(P ) is a Hadamard state if there exist a neighborhood V of the diagonal
in M ×M as above and functions v, w ∈ C∞(V ), such that

(8.12)
ω2C(x, x′) = 1

(2π)2 ∆
1
2 (x, x′)(σ−1)+(x, x′)

+ v(x, x′)(log σ)+(x, x′) + w(x, x′) on V.

Note that the function v(x, x′) is not arbitrary, since Pxω2 = Px′ω2 = 0. One
has

v(x, x′) ∼
∞∑
i=0

vi(x, x
′)σ(x, x′)i,

where vi(x, x′) are the so-called Hadamard coefficients and the ∼ symbol means
that

v −
n∑
i=0

viσ
i ∈ O(|σ|n+1), ∀n ∈ N

together with all derivatives.

8.3. The microlocal definition of Hadamard states

The situation was radically simplified by Radzikowski, who in [R1] introduced
the definition of a Hadamard state via the wavefront set of its two-point function.
Let us first introduce the original definition, which deals with real fields, see Sub-
section 6.1.3.

8.3.1. Hadamard condition for real fields. We use the notation for real
Klein-Gordon fields recalled in Subsection 6.1.3.

Definition 8.3.1. Let ω be a quasi-free state on CCRR(P ), with real covariance
H. Then ω is a Hadamard state if

(8.13) WF(ω2C)′ = {(X,X ′) ∈ T ∗M × T ∗M : X,X ′ ∈ N+, X ∼ X ′}.

8.3.2. The Hadamard condition for complex fields. As already explained
in Chapter 4, it is much more convenient to work with complex fields and gauge
invariant states, i.e. in the framework of Chapter 6. In this case the following
definition was introduced in [GW1].

Definition 8.3.2. Let ω be a (gauge invariant) quasi-free state, with spacetime
covariances Λ± : C∞0 (M)→ D′(M). Then ω is a Hadamard state if

WF(Λ±)′ = {(X,X ′) ∈ T ∗M × T ∗M : X,X ′ ∈ N±, X ∼ X ′}.
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8.4. The theorems of Radzikowski

We now prove the theorems of Radzikowski [R1, R2] on the microlocal char-
acterization of Hadamard states. We will use the formalism of complex fields, in
which case Theorem 8.4.2 is due to Wrochna [W1].

Let us first introduce a list of conditions.

Definition 8.4.1. A pair of continuous maps Λ± : C∞0 (M)→ D′(M) satisfy

(Herm) if Λ± − Λ±∗ = 0 modulo C∞;

(Pos) if Λ± ≥ 0 modulo C∞;

(CCR) if Λ+ − Λ− = iG modulo C∞;

(KG) if PΛ± = Λ±P = 0 modulo C∞;

(Had) if WF(Λ±)′ = {(X,X ′) ∈ T ∗M × T ∗M : X,X ′ ∈ N±, X ∼ X ′};

(genHad) if WF(Λ±)′ ⊂ {X : ±ξ � 0} × {X : ±ξ � 0};

(genHadloc) if WF(Λ±)′ ∩∆ ⊂ {(X,X) : ±ξ � 0};

(Feynm) if i−1Λ+ +Gadv, i−1Λ− +Gret are Feynman parametrices of P.

Theorem 8.4.2. The following conditions are equivalent:
(1) Λ± satisfy (Had), (KG), (CCR);
(2) Λ± satisfy (genHad), (KG), (CCR);
(3) Λ± satisfy (Feynm).

Proof. (1)=⇒ (2) is obvious. Let us prove the implication (2)=⇒(3). Let G̃F be
a Feynman parametrix of P . If S± = i(G̃F − Gadv/ret) we have WF(S±)′ ⊂ C±,
by Proposition 7.4.4 and WF(Λ±)′ ⊂ N± ×N± by (genHad) and Theorem 7.3.1.
Hence, WF(Λ± − S±)′ ⊂ N± ×N± and

WF(Λ+ − S+)′ ∩WF(Λ− − S−)′ = ∅.
On the other hand, by (CCR) we obtain

(Λ+ − S+)− (Λ− − S−) = (Λ+ − Λ−)− (S+ − S−) = iG− iG = 0.

Therefore, S± − Λ± has a smooth kernel, which implies (3).
Finally we prove that (3)=⇒(1). (KG) and (CCR) are immediate and (Had)

follows from Proposition 7.4.4. 2

Since the spacetime covariances Λ± of a Hadamard state satisfy (CCR), (KG)
and (Had), we immediately obtain the following corollary, which says that these
covariances are unique, modulo smooth kernels.

Corollary 8.4.3. Let Λ±i , i = 1, 2 be the spacetime covariances of two Hadamard
states ωi. Then Λ±1 − Λ±2 have smooth kernels.

Another important result is the following theorem, due to Duistermaat and
Hörmander [DH, Theorem 6.6.2] in a more general context. The proof we give
follows from the existence of Hadamard states, see Section 8.7.

Theorem 8.4.4. (Feynm) implies (Pos).

Proof. We know from Thm 8.9.1 that Hadamard states for P exist. Let Λ±1 be the
spacetime covariances of a Hadamard state for P , which satisfy (Had), (KG) and
(CCR), hence (Feynm). If Λ± satisfy also (Feynm), then Λ± − Λ±1 have smooth
kernels. Since Λ±1 ≥ 0, Λ± satisfy (Pos). 2

Finally we prove a variant of a result of Radzikowski [R2] called there a ‘local-
to-global theorem’.
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Proposition 8.4.5. (Pos) and (genHadloc) imply (genHad).

The proof follows immediately from Lemma 8.4.6 below.

Lemma 8.4.6. Let K ∈ D′(M ×M) such that K ≥ 0 modulo a smooth kernel.
Then for X ∈ T ∗M \o we have

(X,X) 6∈WF(K)′ ⇒ (X1, X), (X,X2) 6∈WF(K)′, ∀Xi ∈ T ∗M \o.

Proof. We may assume that K ≥ 0 and that M = Ω ⊂ Rn. Let vλY be defined in
(7.2). We see that (X1, X2) 6∈WF(K)′ iff there exists χi ∈ C∞0 (M) with χi(xi) 6= 0
and neighborhoods Wi b T ∗M of Xi such that

(χ1v
λ
Y1
|Kχ2v

λ
Y2

)M ∈ O(〈λ〉−∞), uniformly for Yi ∈Wi.

Note also that since K : C∞0 (M)→ D′(M) is continuous, we have

|(χvλY |KχvλY )M | ≤ C〈λ〉N0 uniformly for Y ∈W b T ∗M,

for some N0 depending on χ,W . By the Cauchy-Schwarz inequality, we obtain

|(χ1v
λ
Y1
|Kχ2v

λ
Y2

)M | ≤ (χ1v
λ
Y1
|Kχ1v

λ
Y1

)
1
2

M (χ1v
λ
Y2
|Kχ2v

λ
Y2

)
1
2

M ,

which yields the lemma. 2

8.5. The Feynman inverse associated to a Hadamard state

Let ω a Hadamard state with spacetime covariances Λ±. Then

(8.14) GF ··= i−1Λ+ +Gadv = i−1Λ− +Gret

is a Feynman inverse of P , i.e. one has

PGF = GFP = 1l, WF(GF)′ = ∆ ∪ CF.

The operator GF will be called the Feynman inverse associated to ω.

8.6. Conformal transformations

We use the notation in Section 6.3. Let ω be a quasi-free state for P and
ω̃ the associated quasi-free state for P̃ obtained from (6.4), where we recall that
P̃ = c−n/2−1Pcn/2−1 and g̃ = c2g.

Clearly, ω̃ is Hadamard iff ω is Hadamard.

8.7. Equivalence of the two definitions

In this subsection we prove the equivalence of Definition 8.2.1 and Definition
8.3.1, following [R1].

Theorem 8.7.1. A quasi-free state ω for a real Klein-Gordon operator P
satisfies Definition 8.2.1 iff it satisfies Definition 8.3.1.

Proof. Let Λ± the complex covariances of the complexification of the state ω2,
see Subsection 4.7.2. By (4.26) we have

Λ+ = ω2C, Λ− = ω2C − iGC =tω2C,

since ω2C −tω2C = iGC, see Proposition 6.1.7. Note that if K : C∞0 (M) → D′(M)
we have WF(tK)′ = −WF(K)′. Assume that ω2C satisfies (8.12). By Proposition
8.7.2, ω2C satisfies (genHadloc), hence (genHad) by Proposition 8.4.5. By the above
remark, Λ± satisfy (genHad), and of course (CCR) and (KG). By Theorem 8.4.2,
we obtain that i−1ω2C + Gadv is a Feynman parametrix for P , hence ω2C satisfies
(8.13), again by Theorem 8.4.2.
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Conversely, if ω2C satisfies (8.13), then by the same argument i−1ω2C + Gadv

is a Feynman parametrix for P , hence satisfies (8.12) by the above discussion and
the uniqueness of Feynman parametrices modulo smooth kernels. 2

Proposition 8.7.2. Let ω2C ∈ D′(V ) a distribution as in Definition 8.2.1.
Then

(8.15) WF(ω2C)′ ⊂ N+ ×N+.

The proof below shows that actually WF(ω2C)′ ⊂ C+, where C+ is defined in
(7.22).
Proof. We first estimate the wavefront set of (Q−1)+ and (logQ)+.

If x0 ·ηx0 6= 0, then near x0 we have (Q−1)+(x) = Q−1(x) and (logQ)+(x) =
log |Q(x)| + iθ, where θ = 0 if x0 ·ηx0 > 0, and θ = ±π if x0 ∈ C±. In particular,
(Q−1)+ and (logQ)+ are smooth in {x·ηx 6= 0}.

If x0 ·ηx0 = 0 and x0 6= 0, then Q(x0 + iy) = −y ·ηy + 2ix0 ·ηy. It follows that
Q−1(x+ iy) and logQ(x+ iy) are holomorphic in Ux0

+ iΓx0
where Ux0

⊂ Rn is a
small neighborhood of x0 and Γx0

= {y ∈ Rn : ±x0 ·ηy > 0} for x0 ∈ N±.
Finally, we saw in Section 8.2 that Q−1(x+iy) and logQ(x+iy) are holomorphic

in U0+iΓ0, where U0 ⊂ Rn is a small neighborhood of 0 and Γ0 = C+, and that Q−1

and logQ are of moderate growth in Ux0 + iK, where Ux0 is a small neighborhood
of x0 and K b Γx0

is any relatively compact cone. Note that the cone Γx0
always

contains C+.
From Section 12.2 we obtain the estimate

WF((Q−1)+),WF((logQ)+) ⊂
⋃
x0∈N

x0 × Γ◦x0
,

where the polar cone Γ◦ of a cone Γ ⊂ Rn is the set

(8.16) Γ◦ ··= {ξ ∈ (Rn)′ \o : x·ξ ≥ 0, ∀x ∈ Γ}.
It follows that

(8.17)
WF((Q−1)+),WF((logQ)+)

⊂ {(x,±ληx) : x ∈ N±, x 6= 0, λ > 0} ∪ {(0, ξ) : ξ · η−1ξ = 0, ξ0 > 0},

where ξ0 = ξ ·e0, e0 = (1, . . . , 0).
Let now u = (Q−1)+ or (logQ)+ ∈ D′(Rn), and let F : V → Rn be the map in

(8.11). By Subsection 7.2.4, we have

(8.18) WF(F ∗u)′ ⊂ {
(
(x,tDxFξ), (x

′,−tDx′Fξ)
)

: (F (x, x′), ξ) ∈WFu}.
Note that we can forget the isometry R(x′) in the definition of F if we introduce
the orthonormal frame ei(x) = R−1(x)ei, where (e1, . . . , en) is the canonical basis
of Rn.

Let us first estimate WF(F ∗u)′ away from the diagonal x = x′. We obtain
from (8.17) that the right-hand side in (8.18) is included in

{
(
(x, λtDxFηv), (x′,−λtDx′Fηv)

)
: v = F (x, x′) ∈ N,λv ∈ N+}.

Since σ(x, x′) = F (x, x′)·ηF (x, x′), we have

Dxσ(x, x′) = 2DxF (x, x′)·ηF (x, x′), Dxσ(x, x′) = 2Dx′F (x, x′)·ηF (x, x′),

hence the set above equals

(8.19) {((x, λDxσ), (x′,−λDx′σ)) : v = F (x, x′) ∈ N,λv ∈ N+}.
By the Gauss lemma, the radial geodesic between x′ and x is normal to the hyper-
surface σ(·, x′) = Cst, which implies that the vectors λ∇xσ(x, x′),−λ∇x′σ(x, x′)
are tangent to the (null) geodesic between x′ and x, and future pointing. This
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implies that the set in (8.19) is included in N+×N+ (actually in C+). Let us now
estimate WF(F ∗u)′ above the diagonal x = x′. If we work in normal coordinates
at x, we have DxF = 1l, Dx′F = −1l at (x, x) hence above the diagonal we have
also WF(F ∗u)′ ⊂ {(X,X) : X ∈ N+}.

In conclusion we have shown that WF((σ−1)+)′ and WF((log σ)+)′ are included
in the right-hand side of (8.15). This implies the same estimate for WF(ω2)′. 2

8.8. Examples of Hadamard states

Let us consider one of the simplest examples of globally hyperbolic spacetimes,
namely ultra-static spacetimes, see Section 5.3. We assume that (S, h) is complete.
More examples will be given in Chapter 9.

The associated Klein-Gordon operator P = −2g +m2 for m > 0 is

∂2
t + ε2,

where ε2 = −∆h+m2 is essentially selfadjoint on C∞0 (S). By Subsection 4.10.3, we
can construct the vacuum state ωvac for P , whose spacetime covariances are given
by the analog of (4.47):

(u|Λ±vacv) =

ˆ
R

(u(t, ·)| 1

2ε
e±itεv(t, ·))Sdt, u, v ∈ C∞0 (R× S),

where (u|v)S =
´
S
uv dVolh and ut(·) = u(t, ·).

One can similarly express the Feynman inverse associated to ωvac, which equals

GFu(t, ·) =

ˆ
R
GF(t− t′)u(t′, ·)dt′,

with

(8.20) GF(t) = (2iε)−1
(
eitεθ(t) + e−itεθ(−t)

)
.

Theorem 8.8.1. The vacuum state ωvac is a pure Hadamard state.

Proof. We saw in Subsection 4.10.3 that ωvac is a pure state. It suffices then
to verify (genHad). Since m > 0, we see that Λ±vac : L2(R × S) → L2(R × S)
have distributional kernels. We have Λ±vac(t, t, x, x′) = F±(t − t′, x, x′) for F±u =
(2ε)−1e±itεu, u ∈ C∞0 (S). By Subsection 7.2.4, it suffices to show that WF(F±)′ ⊂
{±τ > 0} × T ∗S × T ∗S. But this follows from Proposition 7.1.5, since if we set
G±(z)u = (2ε)−1e±izεu, u ∈ C∞0 (S), functional calculus shows that G±(z, ·) is
holomorphic in {±Im z > 0} with values in D′(S×S) with F±(t, ·) = G±(t± i0, ·).
2

8.9. Existence of Hadamard states

In this subsection we prove the important result of Fulling, Narcowich and
Wald [FNW], about existence of Hadamard states.

Theorem 8.9.1. Let P be a Klein-Gordon operator on a globally hyperbolic
spacetime (M, g). Then there exists a pure Hadamard state for P .

Proof. By Theorem 5.4.4 we can assume that M = R× Σ and g = −β(t, x)dt2 +
ht(x)dx2, where Σ is a Cauchy surface of (M, g). We fix an ultra-static metric
gus = −dt2 + h(x)dx2 and an interpolating metric gint = χ−(t)gus + χ+(t)g, with
cutoff functions χ± such that gint = gus in {t ≤ −T + 1}, gint = g in {t ≥ T − 1}.

We set Pus = −2gus
+m2, m > 0, and fix a Klein-Gordon operator Pint for gint

such that Pint = Pus in {t ≤ −T + 1}, Pint = P in {t ≥ T − 1}.



8.9. EXISTENCE OF HADAMARD STATES 73

For Σ±T = {±T} × Σ, we denote by λ±−T,vac the Cauchy surface covariances
on Σ−T of the vacuum state ωus for Pus. By Proposition 6.1.5, λ±−T,vac are also the
Cauchy surface covariances of a pure state ωint for Pint.

Since Pus = Pint on a causally compatible neighborhood V of Σ−T , we have
Gvac = Gint on V ×V . Therefore, the spacetime covariances of ωint and ωus, given in
Proposition 6.1.6, coincide on V ×V . Since ωus is a Hadamard state, the spacetime
covariances Λ±int of ωint satisfy (Had) over V ×V , hence everywhere by propagation
of singularities, see e.g. (7.25).

Let now λ±T,int be the Cauchy surface covariances of ωint on ΣT . Again by
Proposition 6.1.5, they are the Cauchy surface covariances of a pure state ω for P .
By the same argument as above ω is a Hadamard state. 2





CHAPTER 9

Vacuum and thermal states on stationary
spacetimes

In this chapter we introduce the notions of vacuum and thermal states for
Klein-Gordon fields on stationary spacetimes, see [Ky1], [S2]. These states are
important examples of Hadamard states, the vacuum state giving in particular a
preferred pure Hadamard state on a stationary spacetime.

9.1. Ground states and KMS states

It is convenient to introduce these notions first in an abstract framework. We
work in the complex framework (to which the real one can be reduced).

Thus, let (Y, q) be a Hermitian space and {rs}s∈R be a unitary group on (Y, q),
i.e. such that r∗sqrs = q for s ∈ R. It follows that {rs}s∈R induces a group {τs}s∈R
of ∗-automorphisms of CCRpol(Y, q) defined by τs(ψ(∗)(y)) = ψ(∗)(rsy).

We recall the definitions, see e.g. [S2, Definitions 2.3, 2.4 ], of ground states
and KMS states for {τs}s∈R. We set Dβ = R+i ]0, β[ for β > 0, D∞ = R+i ]0,+∞[.

Let ω be a state on CCRpol(Y, q) which is invariant under {τs}s∈R i.e. ω(A) =

ω(τs(A)) for s ∈ R, A ∈ CCRpol(Y, q). Assume moreover that the function

(9.1) R 3 s 7−→ ω(A∗τsB) ∈ C is continuous for all A,B ∈ CCRpol(Y, q).

It follows that if (Hω, πω,Ωω) is the GNS triple for ω, see Subsection 4.4.1, there
exists a selfadjoint operator H on Hω such that

πω(τs(A)) = eisHπω(A)e−isH , HΩω = 0.

Definition 9.1.1. A state ω is a non-degenerate ground state for {rs}s∈R if
ω is invariant under {τs}s∈R, (9.1) holds, and moreover

(9.2) H ≥ 0, KerH = CΩω.

Let us assume in addition that ω is gauge-invariant and quasi-free and let λ±
be its complex covariances. Since ω(ψ(∗)(y)) = 0, we know that πω(ψ(∗)(y))Ωω is
orthogonal to Ωω.

It follows then from (9.2) and the spectral theorem that for all y1, y2 ∈ Y there
exists a function F±y1,y2

holomorphic in D∞, bounded and continuous in D∞, such
that

(9.3)
F+
y1,y2

(s) = y1 ·λ+rsy2, F−y1,y2
(s) = rsy1 ·λ+y2,

limσ→+∞ sups∈R |F±y1,y2
(s+ iσ)| = 0.

Definition 9.1.2. A state ω is a KMS state at temperature T = β−1 if for
all A1, A2 ∈ CCR(Y, q) there exists a function FA1,A2

holomorphic in Dβ, bounded
and continuous in Dβ, such that

FA1,A2
(s) = ω(A1τs(A2)),

FA1,A2
(s+ iβ) = ω(τs(A2)A1), s ∈ R.

75
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If ω is gauge-invariant and quasi-free, taking A1 = ψ(y1), A2 = ψ∗(y2), we
obtain as above that for all y1, y2 ∈ Y there exists a function Fy1,y2

holomorphic in
Dβ , bounded and continuous in Dβ , such that

(9.4) Fy1,y2(s) = y1 ·λ+rsy2, Fy1,y2(s+ iβ) = y1 ·λ−rsy2.

9.1.1. Positivity of the energy. We now prove an important result, due to
Kay and Wald [KW, Section 6.2], which relates the existence of ground or KMS
states to the positivity of the classical energy associated to {rs}s∈R.

Theorem 9.1.3. Let (Y, q, {rs}s∈R) be as above and ω be a quasi-free non-
degenerate ground state or a quasi-free KMS state. Assume moreover that Y is
equipped with a vector space topology for which λ±, q are continuous and such that
∂srsy = ibrsy, for all y ∈ Y for some b ∈ L(Y). Then the classical energy associated
to {rs}s∈R E = qb is positive.

Proof. Since q = λ+ − λ− is non-degenerate, (·|·)ω = λ+ + λ− is a Hilbertian
scalar product on Y and we denote by Ycpl the completion of Y with respect to
(·|·)ω. We still denote by λ±, q the bounded extensions of λ±, q to Ycpl.

The state ω is τs invariant, which implies that r∗sλ±rs = λ±. Moreover by
Definitions 9.1.1 and 9.1.2, the map R 3 s 7→ y1 ·λ±rsy2 ∈ C is continuous for
y1, y2 ∈ Y. It follows that {rs}s∈R extends to a weakly, hence strongly continuous
unitary group {eisbcpl}s∈R on Ycpl, with bcpl selfadjoint on Ycpl. We have bcpl|Y = b
and Y is a core for bcpl by Nelson’s invariant domain theorem.

We first check that (9.3), (9.4) extend to yi ∈ Ycpl with rs replaced by eisbcpl

.
Let y1, y2 ∈ Ycpl, yi,n ∈ Y with yi,n → yi in Ycpl, and let Fn = Fy1,n,y2,n . Note that
Fn(t) → y1 ·λ+eitbcpl

y2 and Fn(t + iβ) → y1 ·λ−eitbcpl

y2 uniformly on R. It follows
from the three lines theorem that

supz∈Dβ |Fn(z)− Fm(z)| ≤ sups∈R∪R+iβ |Fn(s)− Fm(s)|, β <∞

supz∈D∞ |Fn(z)− Fm(z)| ≤ sups∈R |Fn(s)− Fm(s)|.

Therefore, Fn converges uniformly in Dβ to Fy1,y2
, which is holomorphic in Dβ ,

bounded and continuous in Dβ for β ∈ ]0,+∞] and satisfies (9.3), resp. (9.4).
Let us first assume that β < ∞. If we choose y1, y2 ∈ Ycpl with y2 an entire

vector for bcpl, we have Fy1,y2(z) = y1 ·λ+eizbcpl

y2, which using (9.4) implies that

y1 ·λ+e−βb
cpl

y2 = y1 ·λ−y2,

and hence, using that λ+ − λ− = q,

λ+(1− e−βb
cpl

) = λ−(eβb
cpl

− 1) = q.

This implies that (λ+ + λ−) tanh(βbcpl/2) = q. Let us set B = bcpl tanh(βbcpl/2).
By functional calculus DomB = Dom bcpl. If y ∈ Y ⊂ DomB, we have

(y|By)ω = y ·(λ+ + λ−)By = y ·qbcply = y ·qby = y ·Ey,

where E = qb is the classical energy associated to {rs}s∈R. Since B ≥ 0 for (·|·)ω
this proves the proposition for β <∞.

Now assume that β =∞. For y an entire vector for bcpl, we have

F+
y,y(z) = y ·λ+eizbcpl

y, F−y,y(z) = eizbcply ·λ−y.

Let A± ∈ B(Ycpl) be such that y1 ·λ±y2 = (y1|A±y2)ω. We have A± ≥ 0 and
[A±, eisbcpl

] = 0 by the invariance of ω under τs. From (9.3) we obtain that

lim
σ→+∞

(y|A+e−σb
cpl

y)ω = lim
σ→+∞

(y|eσb
cpl

A−y)ω = 0,
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i.e. limσ→+∞ ‖e∓σb
cpl/2(A±)

1
2 y‖ = 0. This implies that

1lR−(bcpl)(A+)
1
2 y = 1lR+(bcpl)(A−)

1
2 y = 0, R± = ±[0,+∞[ ,

hence λ±1lR±(bcpl) = 0 by density. For y ∈ Y we then have

y ·qby = y ·λ+by − y ·λ−by = y ·λ+1lR+(bcpl)bcply − y ·λ−1lR−(bcpl)bcply

= (y|(A+ +A−)|bcpl|y)ω = (y||bcpl| 12 (A+ +A−)|bcpl| 12 y)ω ≥ 0,

which completes the proof if β =∞. 2

9.1.2. Existence of ground and KMS states. We saw in Theorem 9.1.3
that the positivity of the classical energy is a necessary condition for the existence
of a ground or KMS state. Let us now describe the converse result.

Let (Y, q) be a Hermitian space and E ∈ Lh(Y,Y∗) with E > 0, the function
Y 3 y 7→ y ·Ey being the classical energy. The energy space Yen is the completion
of Y for the scalar product (y1|y2)en = y1·Ey2 and is a complex Hilbert space. Let
rs = eisb be a strongly continuous unitary group on Yen with selfadjoint generator
b. We assume that rs : Y → Y, Y ⊂ Dom b, Ker b = {0}, and
(9.5) y1 ·Ey2 = y1 ·qby2, y1, y2 ∈ Y.
The meaning of (9.5) is that {rs}s∈R is the symplectic evolution group associated
to the classical energy y ·Ey and the symplectic form σ = i−1q.

One introduces then the dynamical Hilbert space

Ydyn ··= |b|
1
2Yen,

see [DG, Subsection 18.2.1], with the scalar product (y1|y2)dyn = (y1||b|−1y2)en.
The group {rs}s∈R extends obviously as a unitary group on Ydyn whose generator
will be still denoted by b.

From (9.5) we obtain that

(9.6) y1 ·qy2 = (y1|sgn(b)y2)Ydyn

so q is a bounded sesquilinear form on Ydyn, but in general not on Yen, unless
0 6∈ σ(b).

Definition 9.1.4. The ground state ω∞ is defined by the covariances

(9.7) y1 ·λ±∞y2 = (y1|1lR±(b)y2)dyn.

Definition 9.1.5. The β-KMS state ωβ is defined by the covariances

(9.8)
y1 ·λ+

β y2 = y1 ·q(1− e−βb)−1y2,

y1 ·λ−β y2 = y1 ·q(eβb − 1)−1y2.

9.1.3. Infrared problem. The covariances λ±∞ and λ±β are a priori not de-
fined on Y if 0 ∈ σ(b). This is usually called an infrared problem.

However, if

(9.9) Y ⊂ Ydyn ∩ |b|
1
2Ydyn

then using that (1 − eλ)−1 behaves like λ−1 near λ = 0, we see that λ±∞ and λ±β
are well defined on Y, and hence ω∞ and ωβ are well defined quasi-free states on
CCRpol(Y, q).

Note that (9.9) is equivalent to

y ·E|b|−1y <∞, y ·Eb−2y <∞, ∀y ∈ Y,
which follows from

(9.10) y ·Eb−2y <∞, ∀y ∈ Y,
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since Y ⊂ Yen.

9.1.4. Pure invariant states. Let (Y, q) be a Hermitian space with a unitary
group {rs}s∈R. Assume that rs = eisb on Y and that the classical energy E = qb
is positive definite on Y. Then any pure state invariant under the induced group
{τs}s∈R is actually equal to the ground state ω∞.

As in Theorem 9.1.3, by rs = eisb on Y we mean that Y is equipped with a
vector space topology for which q is continuous and such that ∂srsy = ibrsy, for
all y ∈ Y for some b ∈ L(Y). The classical energy E = qb ∈ Lh(Y,Y∗) is thus well
defined.

Proposition 9.1.6. Let ω a quasi-free state on CCR(Y, q) such that its co-
variances λ± are continuous in the topology of Y. Assume that ω is pure and
invariant under the induced group {τs}s∈R, and that E is positive definite on Y.
Then ω = ω∞.

Proof. As in the proof of Theorem 9.1.3, we obtain that {rs}s∈R extends as a
strongly continuous unitary group on the completion Ycpl of Y for (·|·)ω, whose
generator bcpl has Y as a core.

Since ω is pure, we deduce from Proposition 4.9.3 that there exist projections
c± ∈ B(Ycpl), selfadjoint for (·|·)ω, with c+ + c− = 1l, λ± = ±qc±. From the
invariance of ω we see that [c±, bcpl] = 0. Next we compute for y ∈ Y:

(y|(c+ − c−)bcply)ω = y ·qby = y ·Ey.

Since Y is a core for bcpl, this implies, by the uniqueness of the polar decomposition
of bcpl, that c+ − c− = sgn(bcpl), i.e. c± = 1lR±(bcpl).

From this fact we deduce that Ycpl is the dynamical Hilbert space Ydyn intro-
duced in 9.1.2, and hence ω = ω∞. 2

9.2. Klein-Gordon operators

Let us now go back to a concrete situation and consider a globally hyperbolic
spacetime (M, g) with a complete Killing vector field X. For the moment we do not
assume X to be time-like. Assume that there exists a space-like Cauchy surface Σ
transverse to X. If n is the future directed normal vector field to Σ, we have

(9.11) X = Nn+ w on Σ,

where N ∈ C∞(Σ;R) is called the lapse function and wi is a smooth vector field
on Σ called the shift vector field.

We can identify M with Rt × Σy by the map

χ : R× Σ 3 (t, y) 7−→ ψt(y) ∈M,

where ψt is the flow of X. We have

(9.12) χ∗g = −N2(y)dt2 + hij(y)(dyi + wi(y)dt)(dyj + wj(y)dyj), χ∗X =
∂

∂t
.

It follows that X is time-like at y iff

(9.13) N2(y) > wi(y)hij(y)wj(y),

and space-like at y iff

(9.14) N2(y) < wi(y)hij(y)wj(y),

where h is the induced metric on Σ.
We fix a Klein-Gordon operator on (M, g) of the form

(9.15) P = −2g + V, V ∈ C∞(M ;R) with X ·V = 0.
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The flow {ψs}s∈R of X induces then a unitary group {rs}s∈R on the Hermitian
spaces (

C∞0 (M)
PC∞0 (M) , (· |iG ·)M ), (Solsc(P ), q), defined as:

rs[u] = [u ◦ ψs], u ∈ C∞0 (M), rsφ = φ ◦ ψs, φ ∈ Solsc(P ).

9.2.1. A non-existence result. The next proposition, due to Kay and Wald
[KW, Subsection 6.2], shows that the fact that X is everywhere time-like on Σ, i.e.
that (M, g) is stationary, is a necessary condition for the existence of a ground or
KMS state for X.

Proposition 9.2.1. Let (M, g) a globally hyperbolic spacetime with a complete
Killing vector field X and let P = −2g + V , where V ∈ C∞(M ;R) with X ·V = 0.
Let {τs}s∈R be the group of ∗-automorphisms of CCR(P ) induced by X.

Assume that there exists a Cauchy surface Σ such that X is transverse to Σ
and space-like at some y0 ∈ Σ. Then there exists no KMS state nor non-degenerate
ground state on CCR(P ) for {τs}s∈R.

Proof. We identifyM with R×Σ, the metric g being then as in (9.12). We choose
(Y, q) = (Solsc(P ), q) with q defined in (5.35) and rsφ(t, y) = φ(t+ s, y).

We identify (Solsc(P ), q) with (C∞0 (Σ);C2, qΣ) for qΣ defined in (5.31) using
%Σ and denote still by {rs}s∈R the image of rs on (C∞0 (Σ);C2, qΣ). A standard
computation shows that for f ∈ C∞0 (Σ;C2), ∂srsf = iNHrsf , where H is defined
in (9.20). The associated energy E = qH is given by (9.21) below.

For y0 ∈ Σ we introduce local coordinates on Σ near y0, fix χ ∈ C∞0 (U) for U
a small neighborhood of y0 in Σ, and set fλ0 (y) = eiλη0·yχ(y), fλ1 = iN−1wfλ0 for
λ� 1 and η0 ∈ T ∗y0

Σ. Then we have

(9.16) fλ ·Efλ = λ2

ˆ
Σ

χ2(y)(η0 ·h−1(y)η0 −N−2(y)(η0 ·w(y))2)|h| 12 dy +O(λ).

If X = ∂
∂t is space-like at y0, then N2(y0) < wi(y0)hij(y0)wj(y0), and so there

exists a neighborhood U of y0 in Σ such that

η0 ·h−1(y)η0 −N−2(y)(η0 ·w(y))2 < 0, y ∈ U, for η0 = h(y0)w(y0).

By (9.16) we obtain that fλ·Efλ < 0 for λ� 1. This is a contradiction by Theorem
9.1.3. 2

9.3. The Klein-Gordon equation on stationary spacetimes

We assume now that the Killing vector field is everywhere time-like and consider
a Klein-Gordon operator P = −2g +V . We will assume that V is preserved by the
Killing field X and is strictly positive:

X ·V = 0, V > 0.

Remark 9.3.1. Of course, the condition X ·V = 0 is necessary for P to be
invariant under the flow of X. The condition V > 0 is used in Section 9.5to
ensure that the covariances of the vacuum and thermal state are well defined on
C∞0 (Σ;C2), i.e. to avoid a possible infrared problem. If V takes large negative
values the conserved energy E defined in (9.21) may not be positive. In this case it
seems impossible to construct vacuum or KMS states.

The Klein-Gordon operator P takes the form

(9.17) P = (∂t + w∗)N2(∂t + w) + h0,

with

(9.18) h0 = ∇∗h−1∇+ V, w = wi∂yi ,
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where in (9.17) and (9.18) the adjoints are computed with respect to the scalar
product

(u|v) =

ˆ
R×Σ

uvN |h| 12 dtdy.

We denote by H̃ the Hilbert space L2(Σ, N |h| 12 dy). Let us point out a useful
operator inequality which follows from (9.13).

Lemma 9.3.2. One has

h0 ≥ w∗N−2w + V on C∞0 (Σ), for the scalar product of H̃.

Proof. Let X be a real vector space, k ∈ Ls(X ,X ′) be strictly positive, and c ∈ X .
Then for γ = kc ∈ X ′ and ξ ∈ CX ′ we have

(ξ − 〈ξ|c〉γ)·k−1(ξ − 〈ξ|c〉γ)

= ξ ·k−1ξ − 2Re(〈ξ|c〉γ ·k−1ξ) + |〈ξ|c〉|2γ ·k−1γ

= ξ ·k−1ξ − (2− c·kc)|〈ξ|c〉|2,

whence

(9.19) k−1 − |c〉〈c| ≥ (1− c·kc〉|c〉〈c|.

For u ∈ C∞0 (Σ) we write

(u|(h0 − w∗N−2w)u) =

ˆ
Σ

[
(∂yiu(hij − wiN−2wj)∂yju+ V |u|2

]
N |h| 12 dy.

Applying (9.19) under the integral sign for k = h(y) and c = N−1(y)wi(y), we
obtain the lemma. 2

If %t : Solsc(P )→ C∞0 (Σ;C2) is the Cauchy data map on Σt = {t}×Σ we have,
by (9.11) that

%tφ =

(
φ(t, ·)

i−1N−1(∂t − w)φ(t, ·)

)
,

and if we identify Solsc(P ) with C∞0 (Σ;C2) using the map %0, we obtain that
rs : C∞0 (Σ;C2)→ C∞0 (Σ;C2) is given by

rsf = %sU0f, f ∈ C∞0 (Σ;C2),

where φ = U0f is the solution of the Cauchy problem{
Pφ = 0,
%0φ = f.

An easy computation shows that:

(9.20) N−1∂srsf = iHrsf,H =

(
−iN−1w 1l

h0 iw∗N−1

)
, f ∈ C∞0 (Σ;C2).

The classical energy

(9.21) f ·Ef = ‖f1 − iN−1wf0‖2H̃ + (f0|h0f0)H̃ − (wf0|N−2wf0)H̃,

and the charge

(9.22) f ·qf = (f1|N−1f0)H̃ + (f0|N−1f1)H̃,

are both conserved by the evolution eisH on C∞0 (Σ;C2).
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9.4. Reduction

It is useful to reduce (9.20) to a simpler evolution equation. To this end one
introduces

P̃ = NPN = (∂t + w̃∗)(∂t − w̃) + h̃0,

for

(9.23) h̃0 = Nh0N, w̃ = N−1wN, w̃∗ = Nw∗N−1.

Setting

(9.24) %̃tφ̃ =

(
φ̃(t, ·)

i−1(∂t − w̃)φ̃(t, ·)

)
, H̃ =

(
−iw̃ 1l

h̃0 iw̃∗

)
,

we have

(9.25)
%tN = Z%̃t on C∞(M),

N−1∂s − iH = Z ′(∂s − iH̃)Z−1 on C∞0 (Σ;C2),

where

(9.26) Z =··
(
N 0
0 1l

)
, Z ′ ··=

(
1l 0
0 N−1

)
,

Setting
f ·Ẽf = ‖f1 − iw̃f0‖2H̃ + (f0|h̃0f0)H̃ − (w̃f0|w̃f0)H,

f ·q̃f = (f1|f0)H̃ + (f0|f1)H̃,

we have

(9.27) Z∗EZ = Ẽ, Z∗qZ = q̃ on C∞0 (Σ;C2).

9.5. Ground and KMS states for P

From Lemma 9.3.2 we obtain that

(9.28) h̃0 − w̃∗w̃ ≥ V N2,

which using that V > 0 implies that Ẽ > 0 on C∞0 (Σ;C2). We can apply the
abstract constructions in Subsection 9.1.2 provided we check (9.10). To check this
condition we note that bg = f is equivalent to

(h̃0 − w̃∗w̃)g0 = f1 − iw̃∗f0, g1 − iw̃g0 = f0.

By Lemma 9.3.2, h̃0 − w̃∗w̃ ≥ NVN on C∞0 (Σ). Let h̃ be the Friedrichs extension
of h̃0 − w̃∗w̃, acting on the Hilbert space H̃. By the Kato-Heinz theorem, we have
h̃−1 ≤ (NVN)−1, hence C∞0 (Σ) ⊂ Dom(NVN)−

1
2 ⊂ Dom h̃−

1
2 .

For f ∈ C∞0 (Σ;C2), we can express g = b−1f as

g0 = h̃−1(f1 − iw̃∗f0), g1 = g0 + iw̃h̃−1(f1 − iw̃∗f0),

noting that f1 − iw̃∗f0 ∈ C∞0 (Σ). We have

(f |b−2f)en = (g|g)en = ‖f0‖2H̃ + (f1 − iw̃∗f0|h̃−1(f1 − iw̃∗f0))H̃ <∞,

since f1 − iw̃∗f0 ∈ C∞0 (Σ) ⊂ Dom h̃−
1
2 . Therefore, (9.10) is satisfied and one can

define ground and thermal states ω̃β , β ∈ ]0,∞] for P̃ , whose covariances, denoted
by λ̃±β are introduced in Definitions 9.1.4 and 9.1.5.

It is now easy to define the vacuum and thermal states for P , since by (9.27)
Z : (C∞0 (Σ;C2), q̃)→ (C∞0 (Σ;C2), q) is unitary.

Definition 9.5.1. The ground state ω∞ associated to the Killing vector field
X is the quasi-free state on CCRpol(C∞0 (Σ;C2), q) defined by the covariances

(9.29) λ±∞ = (Z−1)∗λ̃∞Z
−1.
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The state ω∞ is a pure state.

Definition 9.5.2. The β-KMS state ωβ associated to the Killing vector field
X is the quasi-free state on CCRpol(|b|C∞0 (Σ;C2), q) defined by the covariances

(9.30) λ±β = (Z−1)∗λ̃∞Z
−1.

The state ωβ is not a pure state.

Remark 9.5.3. If the shift vector field w vanishes, then the spacetime (M, g) is
static and the reduction in Section 9.4 produces an abstract Klein-Gordon operator
P̃ of the form considered in Subsection 4.10.3. The formulas giving λ±∞ and λ±β
simplify greatly using (4.46), (4.49).

9.6. Hadamard property

In this subsection we prove that ωβ , β ∈ ]0,+∞] are Hadamard states, a result
due to Sahlmann and Verch [SV1].

Theorem 9.6.1. The states ωβ with β ∈ ]0,+∞] are Hadamard states.

Proof. Let Λ±β ∈ D′(M ×M) be the spacetime covariances of ωβ for 0 < β ≤ ∞.
In the Killing time coordinates (t, y) we have Λ±β (t1, t2, y1, y2) = T±β (t1− t2, y1, y2),
with T±β ∈ D′(R× Σ× Σ), since ωβ is τt invariant.

From the ground state or KMS condition, it follows that there exist F±β :

R± i ]0, β[→ D′(Σ×Σ) holomorphic such that T±β (t, y1, y2) = F±β (t± i0, y1, y2). By
Proposition 7.1.5, we obtain that

WF(T±β ) ⊂ {±τ > 0}.
Applying then the results on the pullback of distributions in 7.2.4 we see that

WF(Λ±β )′ ⊂ {±τ1 > 0} × {±τ2 > 0}.

Since WF(Λ±β )′ ⊂ N × N , this implies that WF(Λ±β )′ ⊂ N+ × N+, using that
X = ∂

∂t is future directed time-like. 2



CHAPTER 10

Pseudodifferential calculus on manifolds

In this chapter we describe various versions of pseudodifferential calculus on
manifolds. The pseudodifferential calculus is a standard tool in microlocal analysis,
but it is also useful for the global analysis of partial differential equations on smooth
manifolds. Of particular interest to us is the Shubin calculus, which is a global
calculus on non compact manifolds relying on the notion of bounded geometry. Its
two important properties are the Seeley and Egorov theorems.

In applications to quantum field theory the manifold is taken to be a Cauchy
surface Σ in a spacetime (M, g). It turns out that the Cauchy surface covariances
of pure Hadamard states can be constructed as pseudodifferential operators on Σ.
This will be treated in detail in Chapter 11.

10.1. Pseudodifferential calculus on Rn

We now recall standard facts about the uniform pseudodifferential calculus on
Rn. We refer the reader to [H3, Section 18.1] or [Sh1, Chap. 4] for details.

10.1.1. Symbol classes. Let U ⊂ Rn an open set. We denote by Sm(T ∗U),
m ∈ R the symbol class defined by:
(10.1)

a ∈ Sm(T ∗U) if |∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ(〈ξ〉m−|β|), ∀ α, β ∈ Nd, (x, ξ) ∈ T ∗U.

We denote by Smh (T ∗U) the subspace of Sm(T ∗U) of symbols homogeneous of
degree m in the ξ variable (outside a neighborhood of the origin)

(10.2) a ∈ Smh (T ∗U) if a ∈ Sm(T ∗U) and a(x, λξ) = λma(x, ξ), λ ≥ 1, |ξ| ≥ 1.

If am−k ∈ Sm−k(T ∗U) for k ∈ N and a ∈ Sm(T ∗U) we write

a ∼
∞∑
k=0

am−k

if

(10.3) rm−n−1(a) = a−
n∑
k=0

am−k ∈ Sm−n−1(T ∗U), ∀ n ∈ N.

If am−k ∈ Sm−k(T ∗U) for k ∈ N, then there exists a ∈ Sm(T ∗U), unique modulo
S−∞(T ∗U), such that a ∼

∑∞
k=0 am−k.

We say that a symbol a ∈ Sm(T ∗U) is poly-homogeneous if a ∼
∑∞
k=0 am−k

for am−k ∈ Sm−kh (T ∗U). The symbols am−k are then clearly unique modulo
S−∞(T ∗U). The subspace of poly-homogeneous symbols of degree m will be de-
noted by Smph(T ∗U).

We equip Sm(T ∗U) with the Fréchet space topology given by the semi-norms

‖a‖m,N := sup
|α|+|β|≤N,(x,ξ)∈T∗U

|〈ξ〉−m+|β|∂αx ∂
β
ξ a|.

83
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The topology of Smph(T ∗U) is a bit different: we equip Smph(T ∗U) with the semi-
norms of am−k in Sm−k(T ∗U) and of rm−n−1(a) in Sm−n−1(T ∗U), for 0 ≤ k ≤ n ∈
N, where am−k and rm−n−1(a) are defined in (10.3).

We set

S∞(ph)(T
∗U) :=

⋃
m∈R

Sm(ph)(T
∗U), S−∞(T ∗U) :=

⋂
m∈R

Sm(T ∗U).

equipped with the inductive, resp. projective limit topology.

10.1.2. Principal part and characteristic set. The principal part of a ∈
Sm(T ∗Rn), denoted by σpr(a), is the equivalence class of a in Sm/Sm−1. If a ∈ Smph,
then a+Sm−1 has a unique representative in Smh , namely the function am in (10.3).
Therefore, in this case the principal part of a is a function on T ∗Rn, homogeneous
of degree m in ξ.

The characteristic set of a ∈ Smph is defined as

(10.4) Char(a) := {(x, ξ) ∈ T ∗Rn \o : am(x, ξ) = 0};

it is clearly conic in the ξ variable.
A symbol a ∈ Sm(T ∗Rn) is elliptic if there exist C,R > 0 such that

|a(x, ξ)| ≥ C〈ξ〉m, |ξ| ≥ R.

Clearly, a ∈ Smph(T ∗Rn) is elliptic iff Char(a) = ∅.

10.1.3. Pseudodifferential operators on Rn. For a ∈ Smph(T ∗Rn), we de-
note by Op(a) the Kohn-Nirenberg quantization of a, defined by

Op(a)u(x) = a(x,D)u(x) := (2π)−n
¨

ei(x−y)ξa(x, ξ)u(y)dydξ, u ∈ C∞0 (Rn).

10.1.4. Mapping properties. Denote by Hs(Rn) the Sobolev space of order
s and put

H∞(Rn) ··=
⋂
s∈R

Hs(Rn), H−∞(Rn) ··=
⋃
s∈R

Hs(Rn)

Then if a ∈ Smph(T ∗Rn) we have the continuous mapping

Op(a) : Hs(Rn) −→ Hs−m(Rn),

hence Op(a) : H∞(Rn)→ H∞(Rn) and Op(a) : H−∞(Rd)→ H−∞(Rd).
We denote by Ψm(Rn) the space Op(Smph(T ∗Rn)) and set

Ψ∞(Rn) =
⋃
m∈R

Ψm(Rn), Ψ−∞(Rn) =
⋂
m∈R

Ψm(Rn).

We will often write Ψm instead of Ψm(Rn). We equip Ψm(Rn) with the Fréchet
space topology obtained from the topology of Smph(T ∗Rn).

10.1.5. Principal symbol. IfA = a(x,Dx) ∈ Ψm(Rn), then them-homogeneous
function σpr(A) =: am(x, ξ) is called the principal symbol of A.
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10.1.6. Composition and adjoint. If we equip Ψ∞(Rn) with the product
and ∗ involution of L(H∞(Rn)), then Ψ∞(Rn) is a graded ∗-algebra with

A∗ ∈ Ψm(Rn), A1A2 ∈ Ψm1+m2(Rn), for A ∈ Ψm(Rn), Ai ∈ Ψmi(Rn).

One has
σpr(A

∗) = σpr(A), σpr(A1A2) = σpr(A1)σpr(A2),

σpr([A1, A2]) = {σpr(A1), σpr(A2)},
where {a, b} = ∂ξa · ∂xb− ∂xa · ∂ξb is the Poisson bracket of a and b.

Let s,m ∈ R. Then the map

(10.5) Smph(T ∗Rn) 3 a 7−→ Op(a) ∈ B(Hs(Rn), Hs−m(Rn))

is continuous.

10.1.7. Ellipticity. An operator A ∈ Ψm is elliptic if its principal symbol
σpr(A) is elliptic. If A ∈ Ψm is elliptic, then there exists B ∈ Ψ−m, unique modulo
Ψ−∞, such that AB− 1l, BA− 1l ∈ Ψ−∞. Such an operator B is a parametrix of A
in the sense of Definition 7.4.1. We denote it by A(−1).

10.1.8. Seeley’s theorem. The uniform pseudodifferential calculus on Rn
enjoys plenty of nice properties. For example, if A ∈ Ψm(Rn), m > 0 is elliptic,
then A with domain DomA = Hm(Rn) is closed as an unbounded operator on
L2(Rn).

If z ∈ res(A), where res(A) ⊂ C is the resolvent set of A, the resolvent (A−z)−1

belongs to Ψ−m(Rn) and its principal symbol equals σpr(A)−1. If moreover A is
symmetric on S(Rn), then it is selfadjoint on Hm(Rn). If 0 ∈ res(A) then As for
s ∈ R belongs to Ψms(Rn) with principal symbol σpr(A)s. This last result is an
example of Seeley’s theorem.

10.2. Pseudodifferential operators on a manifold

The uniform pseudodifferential calculus transforms covariantly under local dif-
feomorphisms. This means that if Ui ⊂ Vi are precompact open sets, ψ = V1 → V2

is a diffeomorphism and χi ∈ C∞0 (Vi) with χi = 1 on Ui, for A ∈ Ψm(Rn) one has

χ1Aψ
∗(χ2u) = Bu, ∀u ∈ D′(Rn),

where B ∈ Ψm(Rn) and

(10.6) σpr(B)(x, ξ) = σpr(A)(ψ(x),tDψ(x)−1ξ), (x, ξ) ∈ T ∗U1.

This allows to extend the pseudodifferential calculus to smooth manifolds. We
follow the exposition in [Sh1, Chap. 1], [H3, Section 18.1].

10.2.1. Pseudodifferential calculus on a manifold. Let M be a smooth,
n-dimensional manifold. Let U ⊂M be a precompact chart open set and ψ : U →
Ũ a chart diffeomorphism, where Ũ ⊂ Rn is precompact, open. We denote by
ψ∗ : C∞0 (Ũ)→ C∞0 (U) the map defined by ψ∗u(x) ··= u ◦ ψ(x).

Definition 10.2.1. A linear continuous map A : C∞0 (M) → C∞(M) belongs
to Ψm(M) if the following condition holds:

Let U ⊂ M be precompact open, ψ : U → Ũ a chart diffeomorphism, χ1, χ2 ∈
C∞0 (U) and χ̃i = χi ◦ ψ−1. Then there exists Ã ∈ Ψm(Rn) such that

(10.7) (ψ∗)−1χ1Aχ2ψ
∗ = χ̃1Ãχ̃2.

The elements of Ψm(M) are called (classical) pseudodifferential operators of order
m on M .

The subspace of Ψm(M) of pseudodifferential operators with properly supported
kernels is denoted by Ψm

c (M).
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We set
Ψ∞(c)(M) ··=

⋃
m∈R

Ψm
(c)(M).

We also denote by

R−∞(M) ··= L(E ′(M), C∞(M))

the space of smoothing operators, or equivalently of operators with kernels in
C∞(M ×M).

If A ∈ Ψm(M) there exists (many) Ac ∈ Ψm
c (M) such that A−Ac ∈ R−∞(M).

10.2.2. Mapping properties. If A ∈ Ψm(M), then

A : Hs
c (M) −→ Hs−m

loc (M), E ′(M) −→ D′(M), C∞0 (M) −→ C∞(M) continuously,

while if A ∈ Ψm
c (M)

A :
Hs

c (M) −→ Hs−m
c (M), E ′(M) −→ E ′(M), C∞0 (M) −→ C∞0 (M),

Hs
loc(M) −→ Hs−m

loc (M), D′(M) −→ D′(M), C∞(M) −→ C∞(M),

where Hs
loc(M), resp. Hs

c (M) are the local, resp. compactly supported Sobolev
spaces on M .

10.2.3. Principal symbol. From (10.6) and (10.7) it follows that to A ∈
Ψm(M) one can associate its principal symbol σpr(A) ∈ C∞(T ∗M \o), which is
homogeneous of degree m in the fiber variable ξ in T ∗xM , in {|ξ| ≥ 1}. The operator
A is called elliptic in Ψm(M) at X0 ∈ T ∗M \o if σpr(A)(X0) 6= 0.

10.2.4. Composition and adjoint. Note that if Ψ∞(c)(M) ··=
⋃
m∈R Ψm

(c)(M),
then Ψ∞c (M) is an algebra, but Ψ∞(M) is not, since without the proper support
condition, pseudodifferential operators cannot in general be composed. Of course,
if M is compact, then Ψ∞(M) = Ψ∞c (M), so this problem disappears.

If we fix a smooth density dµ on M , then we can define the adjoint A∗ of
A ∈ Ψ∞c (M). Then Ψ∞c (M) is a graded ∗-algebra with

A∗ ∈ Ψm
c (M), A1A2 ∈ Ψm1+m2

c (M), for A ∈ Ψm
c (M), Ai ∈ Ψmi

c (M).

One has
σpr(A

∗) = σpr(A), σpr(A1A2) = σpr(A1)σpr(A2),

σpr([A1, A2]) = {σpr(A1), σpr(A2)},
where {a, b} is again the Poisson bracket of a and b.

10.2.5. Ellipticity. For A ∈ Ψm(M) we set

Char(A) ··= {X ∈ T ∗M \o : σpr(A)(X) = 0},

which is a closed, conic subset of T ∗M \o, called the characteristic set of A. If
X0 6∈ Char(A) one says that A is elliptic at X0. If Char(A) = ∅, we say that A is
elliptic in Ψm(M).

An elliptic operator A ∈ Ψm(M) has properly supported parametrices B ∈
Ψ−mc (M), unique modulo R−∞(M) such that AB − 1l, 1l−AB ∈ R−∞(M). Again
such a parametrix will be denoted by A(−1).

The essential support essupp(A) of A ∈ Ψ∞(M) is the closed conic subset of
T ∗X \o defined by X0 6∈ essupp(A) if there exists B ∈ Ψ∞c (M) elliptic at X0 such
that A ◦B is smoothing.
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10.2.6. The wavefront set. It is well known that the wavefront set of distri-
butions on M can be characterized by means of pseudodifferential operators. We
summarize this type of results in the next proposition.

Proposition 10.2.2. (1) Let u ∈ D′(M), X0 ∈ T ∗M \o. Then X0 6∈WFu iff
there exists A ∈ Ψ0

c(M), elliptic at X0 such that Au ∈ C∞(M).
(2) Let A ∈ Ψ∞(M). Then

WF(A)′ = {(X,X) : X ∈ essupp(A)}.

(3) Let K : C∞0 (M1)→ D′(M2). Then (X1, X2) 6∈WF(K)′ for Xi ∈ T ∗Mi \oi iff
there exists Ai ∈ Ψ0

c(Mi), elliptic at Xi such that A1KA2 is smoothing.

The above pseudodifferential calculus is sufficient for a large part of microlocal
analysis, as long as we study distributions onlymicrolocally, i.e. if nearX0 ∈ T ∗M\o
we identify two distributions u1 and u2 if X0 6∈WF(u1 − u2).

However, it is not sufficient for more advanced topics. For example, if M is
equipped with a complete Riemannian metric h, the Laplace-Beltrami operator
−∆h is elliptic in Ψ2

c(M), with principal symbol ξ · h−1(x)ξ. It is also essentially
selfadjoint on C∞0 (M). One can show that its resolvent (−∆h+i)−1 does not belong
to Ψ−2

c (M), but only to Ψ−2(M).
So if M is not compact, one needs an intermediate calculus, lying between

Ψ∞c (M) and Ψ∞(M), which is large enough to be stable under taking resolvents,
and small enough to remain a ∗-algebra. There are many possible choices, essen-
tially determined by the behavior of symbols near infinity in M . One of them is
Shubin’s calculus, [Sh2], which relies on the notion of bounded geometry.

This calculus turns out to be sufficient for constructing Hadamard states on
many physically relevant spacetimes, like cosmological spacetimes, Kerr, Kerr-de
Sitter, Kerr-Kruskal spacetimes, or cones, double cones and wedges in Minkowski
spacetime, see Section 11.7.

10.3. Riemannian manifolds of bounded geometry

The notion of a Riemannian manifold (M, g) of bounded geometry was intro-
duced by Gromov, see e.g. [CG], [Ro]. For our purposes the only use of the metric
g is to provide local coordinates near any x ∈ M , namely the normal coordinates
at x, and to equip the spaces of sections of tensors on M with Euclidean norms.
Therefore we will use an alternative definition of bounded geometry, which is easier
to check in practice.

We denote by δ the flat metric on Rn and by Bn(y, r) ⊂ Rn the open ball of
center y and radius r. If U ⊂ Rn is open, we denote by BT pq(U, δ) the space of
smooth (q, p) tensors on U , bounded together with all their derivatives on U . We
equip BT pq(U, δ) with its Fréchet space topology. For q = p = 0 we obtain the space
C∞b (U) of smooth functions bounded together with all their derivatives.

Definition 10.3.1. A Riemannian manifold (M, g) is of bounded geometry if
for each x ∈M , there exist an open neighborhood Ux of x and a smooth diffeomor-
phism

ψx : Ux
∼−→ Bn(0, 1)

with ψx(x) = 0, such that if gx ··= (ψ−1
x )∗g, then

(1) the family {gx}x∈M is bounded in BT 0
2 (Bn(0, 1), δ),

(2) there exists c > 0 such that c−1δ ≤ gx ≤ cδ, x ∈M .
A family {Ux}x∈M resp. {ψx}x∈M as above will be called a family of bounded chart
neighborhoods, resp. bounded chart diffeomorphisms.
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One can show, see e.g. [GOW, Theorem 2.4 ] that Definition 10.3.1 is equiva-
lent to the usual definition, which requires that the injectivity radius r = infx∈M rx
is strictly positive and that (∇g)kRg is a bounded tensor for all k ∈ N, where Rg
and ∇g are the Riemann curvature tensor and Levi-Civita connection associated
to g. Here the norm on (q, p)-tensors is the norm inherited from the metric g. The
canonical choice of Ux, ψx is as follows: one fixes for all x ∈ M a linear isometry
ex : (Rn, δ)→ (TxM, g(x)) and sets

Ux = BgM (x, r/2), ψ−1
x (v) = expgx((r/2)exv), v ∈ Bn(0, 1),

whereBgM (x, r) is the geodesic ball of center x and radius r and expgx : B
g(x)
TxM

(0, rx)→
M the exponential map at x.

10.3.1. Atlases and partitions of unity. It is known (see [Sh2, Lemma
1.2]) that if (M, g) is of bounded geometry, there exist coverings by bounded chart
neighborhoods

M =
⋃
i∈N

Ui, Ui = Uxi , xi ∈M,

which in addition are uniformly finite, i.e. there exists N ∈ N such that
⋂
i∈I Ui = ∅

if ]I > N . Setting ψi = ψxi , we will call {Ui, ψi}i∈N a bounded atlas of M . One
can associate (see [Sh2, Lemma 1.3]) to a bounded atlas a partition of unity

1 =
∑
i∈N

χ2
i , χi ∈ C∞0 (Ui)

such that {(ψ−1
i )∗χi}i∈N is a bounded sequence in C∞b (Bn(0, 1)). Such a partition

of unity will be called a bounded partition of unity.

10.3.2. Bounded tensors. We now recall the definition of bounded tensors
on a manifold (M, g) of bounded geometry, see [Sh2].

Definition 10.3.2. Let (M, g) be of bounded geometry. We denote by BT pq (M, g)

the spaces of smooth (q, p) tensors T on M such that if Tx = (ψ−1
x )∗T , then the

family {Tx}x∈M is bounded in BT pq (Bn(0, 1)). We equip BT pq (M, g) with its natural
Fréchet space topology.

The Fréchet space topology on BT pq (M, g) is independent on the choice of the
family of bounded chart diffeomorphisms {ψx}x∈M .

10.3.3. Bounded differential operators. Form ∈ N we denote by Diffmb (Bn(0, 1))
the Fréchet space ofm-th order differential operators on Bn(0, 1) with C∞b (Bn(0, 1))
coefficients. We denote by Diffb(M) the space of m-th order differential opera-
tors on M such that if Px = (ψ−1

x )∗P , then the family {Px}x∈M is bounded in
Diffmb (Bn(0, 1)).

10.3.4. Sobolev spaces. Let−∆g be the Laplace-Beltrami operator on (M, g),
defined as the closure of its restriction to C∞0 (M).

Definition 10.3.3. For s ∈ R we define the Sobolev space Hs(M, g) as

Hs(M, g) ··= 〈−∆g〉−s/2L2(M,dVolg),

with its natural Hilbert space topology.
One sets

H∞(M, g) ··=
⋂
m∈R

Hs(M ; g), H−∞(M, g) ··=
⋃
m∈R

Hs(M, g),

equipped with the inductive, resp. projective limit topology.
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It is known (see e.g. [Kr, Section 3.3]) that if {Ui, ψi}i∈N is a bounded atlas
and 1 =

∑
i χ

2
i is a subordinate bounded partition of unity, then an equivalent

norm on Hs(M, g) is given by

(10.8) ‖u‖2s =
∑
i∈N
‖(ψ−1

i )∗χiu‖2Hs(Bn(0,1)).

10.3.5. Equivalence classes of Riemannian metrics. If g′ is another Rie-
mannian metric on M , we write g′ ∼ g if g′ ∈ BT 0

2(M, g) and (g′)−1 ∈ BT 2
0(M, g).

One can show, see [GOW, Section 2.5], that then (M, g′) is also of bounded ge-
ometry, that BT pq(M, g) = BT pq(M, g′) and Hs(M, g) = Hs(M, g′) as topological
vector spaces, and that ∼ is an equivalence relation.

10.3.6. Examples. Compact Riemannian manifolds are clearly of bounded
geometry, as are compact perturbations of Riemannian manifolds of bounded ge-
ometry.

Gluing two Riemannian manifolds of bounded geometry along a compact region
or taking their cartesian product produces again a Riemannian manifold of bounded
geometry.

If (K,h) is of bounded geometry, then the warped product (Rs × K, g) for
g = ds2 + F 2(s)h is of bounded geometry if

F (s) ≥ c0 > 0, ∀s ∈ R for some c0 > 0,

|F (k)(s)| ≤ ckF (s), ∀s ∈ R, k ≥ 1,

see [GOW, Proposition 2.13].

10.4. The Shubin calculus

We now define the Shubin pseudodifferential calculus, see [Sh2], [Kr], which is
a version of the uniform calculus of Section 10.1, adapted to manifolds of bounded
geometry. We fix a manifold (M, g) of bounded geometry.

10.4.1. Symbol classes. Let us first define the symbol classes of Shubin’s
calculus. Recall that the topology of Smph(T ∗Bn(0, 1)) was defined in Subsection
10.1.1.

Definition 10.4.1. We denote by BSmph(T ∗M) the space of all a ∈ C∞(T ∗M)

such that for each x ∈ M , ax ··= (ψ−1
x )∗a ∈ Smph(T ∗Bn(0, 1)) and the family

{ax}x∈M is bounded in Smph(T ∗Bn(0, 1)). We equip BSmph(T ∗M) with the semi-
norms

‖a‖m,i,p,α,β = sup
x∈M
‖ax‖m,i,p,α,β ,

where ‖ · ‖m,i,p,α,β are the semi-norms defining the topology of Smph(T ∗Bn(0, 1)).

The definition of BSmph(T ∗M) and its Fréchet space topology is independent of
the choice of the atlas {Ux, ψx}x∈M with the above properties. As usual, we set

BS∞ph(T ∗M) =
⋃
m∈R

BSmph(T ∗M).

A symbol a ∈ BSmph(T ∗M) has a principal part am ∈ BSmh (T ∗M) which is homo-
geneous of degree m in the fiber variables.

A symbol a ∈ BSmph(T ∗M) is elliptic if there exists C,R > 0 such that

|ax(y, η)| ≥ C|η|m, ∀x ∈M, (y, η) ∈ T ∗Bn(0, 1),

hence ellipticity in BSmph(T ∗M) means uniform ellipticity.
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10.4.2. Pseudodifferential operators. Let {Ui, ψi}i∈N be a bounded atlas
of M and ∑

i∈N
χ2
i = 1l

a subordinate bounded partition of unity, see Subsection 10.3.1. Let

(ψ−1
i )∗dVolg =·· midx,

so that {mi}i∈N is bounded in C∞b (Bn(0, 1)). We set also

Ti : L2(Ui, dVolg) −→ L2(Bn(0, 1), dx),

u 7−→ m
1
2
i (ψ−1

i )∗u,

so that Ti : L2(Ui, dVolg)→ L2(Bn(0, 1), dx) is unitary.

Definition 10.4.2. Let a ∈ BSm(T ∗M). We set

Op(a) ··=
∑
i∈N

χiT
∗
i ◦Op(Eai) ◦ Tiχi,

where ai = axi (see Definition 10.4.1), and E : Smph(T ∗B(0, 1))→ Smph(T ∗Rn) is an
extension map.

Such a map Op constructed by means of a bounded atlas and a bounded par-
tition of unity will be called a bounded quantization map.

Note that if a ∈ BS∞ph(T ∗M), then the distributional kernel of Op(a) is sup-
ported in

{(x, y) ∈M ×M : d(x, y) ≤ C},
for some C > 0, where d is the geodesic distance on M . In particular, Op(a) ∈
Ψ∞c (M), hence such operators can be composed. However, because of the above
support property, Op(S∞c (T ∗M)) is not stable under composition.

To obtain an algebra of operators, it is necessary to add to Op(BS∞ph(T ∗M)) an
ideal of smoothing operators, which we introduce below. In the sequel the Sobolev
spaces Hs(M, g) will be simply denoted by Hs(M).

Definition 10.4.3. We set

W−∞(M) ··=
⋂
m∈N

B(H−m(M), Hm(M)),

equipped with its natural topology given by the semi-norms

‖A‖m = ‖(−∆g + 1)m/2A(−∆g + 1)m/2‖B(L2(M)).

Note that W−∞(M) is strictly included in the ideal R−∞(M) of smoothing
operators.

The next result shows the independence moduloW−∞(M) of Op(BS∞(T ∗M))
on the above choices of {Ui, ψi, E, χi}.

Proposition 10.4.4. Let Op′ be another bounded quantization map. Then

Op−Op′ : BS∞ph(T ∗M) −→W−∞(M).

is continuous.

Definition 10.4.5. We set for m ∈ R ∪ {∞}:
Ψm

b (M) ··= Op(BSmph(T ∗M)) +W−∞(M).

Clearly, Ψm
c (M) ⊂ Ψm

b (M) ⊂ Ψm(M).
One can show that

Ψm
b (M) : Hs(M) −→ Hs−m(M), continuously for s ∈ R ∪ {±∞}.
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10.4.3. Composition and adjoint. To A ∈ Ψm
b (M) one can associate its

principal symbol σpr(A) ∈ C∞(T ∗M \o), which is homogeneous of degree m on the
fibers.

Again, A is elliptic in Ψm
b (M) if σpr(A) is elliptic in the sense of Subsection

10.4.1. An elliptic operator A ∈ Ψm
b (M) has parametrices B ∈ Ψ−mb (M), unique

modulo W−∞(M) such that AB − 1l, 1l − AB ∈ W−∞(M). As before, such a
parametrix will be denoted by A(−1). If we equip M with the density dVolg, then
we can define the adjoint A∗ of A ∈ Ψ∞b (M). Then Ψ∞b (M) is a graded ∗-algebra
with

A∗ ∈ Ψm
b (M), A1A2 ∈ Ψm1+m2

b (M), for A ∈ Ψm
b (M), Ai ∈ Ψmi

b (M).

We have
σpr(A

∗) = σpr(A), σpr(A1A2) = σpr(A1)σpr(A2),

σpr([A1, A2]) = {σpr(A1), σpr(A2)},
where {a, b} is the Poisson bracket of a and b. The results on adjoints are still true
if dVolg is replaced by an arbitrary smooth, bounded density dµ on M .

10.5. Time-dependent pseudodifferential operators

We also need a time-dependent version of the calculus in Section 10.4, which
we will briefly outline, referring to [GOW, Section 5] for details.

If I ⊂ R is an open interval and F is a Fréchet space whose topology is defined
by the semi-norms ‖ · ‖n, n ∈ N, then the space C∞b (I;F) is also a Fréchet space,
with semi-norms supt∈I ‖∂kt f(t)‖n, k, n ∈ N.

One can define in this way the spaces C∞b (I;BSmph(T ∗M)), C∞b (I;W−∞(M))
and

C∞b (I; Ψm
b (M)) ··= Op(C∞b (I;BSmph(T ∗M))) + C∞b (I;W−∞(M)),

where Op refers of course to quantization in the (x, ξ) variables. An element A
of C∞b (I; Ψm

b (M)) will be usually denoted by A(t). All the results in Section 10.4
extend naturally to the time-dependent situation.

10.6. Seeley’s theorem

The most important property of the Shubin calculus is its invariance under
complex powers, which was shown in [ALNV] and is an extension of a classical
result of Seeley [Se]. We consider here the simpler case of real powers, see [GOW,
Theorem 5.12]. The Hilbert space L2(M,dVolg) is denoted simply by L2(M).

Theorem 10.6.1. Let a = a(t) ∈ C∞b (I; Ψm
b (M)), be elliptic and symmetric

on C∞0 (I;H∞(M)). Then a is selfadjoint with domain L2(I;Hm(M)). If a(t) ≥ c1l
for some c > 0 then as(t) ∈ C∞b (I; Ψms

b (M)) for all s ∈ R and

σpr(a
s)(t) = (σpr(a))s(t), t ∈ I.

10.7. Egorov’s theorem

We now state another important property of the Shubin calculus, namely
Egorov’s theorem, see [GOW, Section 5.4]. Let us consider an operator ε(t) =
ε1(t) + ε0(t), such that

(10.9)
εi(t) ∈ C∞b (I; Ψi

b(M)), i = 0, 1,

ε1(t) is elliptic, symmetric and bounded from below on H∞(M).
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By Theorem 10.6.1, ε1(t) with domain Dom ε(t) = H1(M) is selfadjoint, hence
ε(t) with the same domain is closed, with non-empty resolvent set. We denote by
Texp

(
i
´ t
s
ε(σ)dσ

)
the associated propagator, defined by

(10.10)



∂

∂t
Texp

(
i

ˆ t

s

ε(σ)dσ

)
= iε(t)Texp

(
i

ˆ t

s

ε(σ)dσ

)
, t, s ∈ I,

∂

∂s
Texp

(
i

ˆ t

s

ε(σ)dσ

)
= −iTexp

(
i

ˆ t

s

ε(σ)dσ

)
ε(s), t, s ∈ I,

Texp

(
i

ˆ s

s

ε(σ)dσ

)
= 1l, s ∈ I.

The notation Texp comes from the time-ordered exponential, which is the standard
tool to solve (10.10) when ε(t) is bounded. The existence of Texp

(
i
´ t
s
ε(σ)dσ

)
is

a classic result of Kato, see [SG] for a recent summary.

Theorem 10.7.1. Let a ∈ Ψm(M) and ε(t) satisfying (10.9). Then

a(t, s) ··= Texp

(
i

ˆ t

s

ε(σ)dσ

)
aTexp

(
i

ˆ s

t

ε(σ)dσ

)
∈ C∞b (I2,Ψm(M)).

Moreover,
σpr(a)(t, s) = σpr(a) ◦ Φ(s, t),

where Φ(t, s) : T ∗M \o → T ∗M \o is the flow of the time-dependent Hamiltonian
σpr(ε)(t).

One can show, see [GOW, Lemma 5.14], that Texp
(

i
´ t
s
ε(σ)dσ

)
∈ B(Hm(M))

for m ∈ R ∪ {±∞}, hence a(t, s) above is well defined.



CHAPTER 11

Construction of Hadamard states by
pseudodifferential calculus

In this chapter we explain the construction in [GW1, GOW] of pure Hadamard
states using the global pseudodifferential calculus described in Chapter 10. These
Hadamard states are constructed via their Cauchy surface covariances with respect
to some fixed Cauchy surface Σ. It is important to assume that the normal geodesic
flow, see Subsection 5.4.3, exists for some uniform time interval. This apparently
strong condition can actually be considerably relaxed, since one can perform confor-
mal transformations on the metric. For example the Kerr or Kerr-de Sitter exterior
spacetimes and the Kerr-Kruskal spacetime can be treated by this method.

An interesting pair of notions that appears in this context is the one of Lorentzian
metrics and Cauchy surfaces of bounded geometry , with respect to some reference
Riemannian metric. If Σ and (M, g) are of bounded geometry, Klein-Gordon opera-
tors on (M, g) can be reduced to a simple model form, which fits into the framework
of Chapter 10.

It is rather clear that the construction of Hadamard states is intimately related
to parametrices for the Cauchy problem on Σ. Traditionally those parametrices
are constructed as Fourier integral operators, using solutions of the eikonal and
transport equations.

Since we need to control the conditions in Proposition 6.1.5 on Cauchy surface
covariances, like for example positivity, we need a global construction of paramet-
rices, and it turns out that an approach via time-ordered exponentials is more
convenient and, we think, more elegant, see Section 11.3.

Our construction is also equivalent to a factorization of the Klein-Gordon oper-
ator as a product of two first-order pseudodifferential operators, which was already
used by Junker [J1, J2], who gave the first construction of the Cauchy covari-
ances of Hadamard states using pseudodifferential calculus. His constructions were
however restricted to the case when Σ is compact.

11.1. Hadamard condition on Cauchy surface covariances

The Hadamard condition in Section 8.3 is formulated in terms of the spacetime
covariances Λ±. We need a condition in term of the Cauchy surface covariances λ±Σ
for a space-like Cauchy surface Σ. We recall that UΣ : E ′(Σ;C2) → D′sc(M) is the
Cauchy evolution operator for P , see Theorem 5.5.3.

Proposition 11.1.1. Let c± be linear maps that are continuous from C∞0 (Σ;C2)
to C∞(Σ;C2) and from E ′(Σ;C2) to D′(Σ;C2), such that for some neighborhood U
of Σ in M we have

WF(UΣ ◦ c±)′ ⊂ N± × (T ∗Σ \o), over U.

Let
Λ± = ±(%ΣG)∗qΣc

±(%ΣG).

Then

(11.1) WF(Λ±)′ ⊂ N± × (T ∗M \o).

93
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Proof. Clearly Λ± : C∞0 (M) → D′(M) are continuous. By Proposition 5.5.4,
we have UΣ = i−1(%ΣG)∗qΣ, and so Λ± = ±i−1UΣc

±(%ΣG). We apply Subsection
7.2.8 for M1 = U , M2 = Σ, M3 = M , K1 = UΣc

±, K2 = %ΣG and obtain (11.1),
first over U ×M , and then over M ×M by propagation of singularities, using that
PΛ± = 0. 2

11.2. Model Klein-Gordon operators

We now describe a rather simple class of Klein-Gordon operators to which more
complicated ones can be reduced.

We fix an (n − 1)-dimensional Riemannian manifold (Σ, k0) of bounded ge-
ometry and an open interval I ⊂ R with 0 ∈ I. Let I 3 t 7→ ht a time-
dependent Riemannian metric on Σ such that ht ∈ C∞b (I;BT 0

2 (Σ, k0)) and h−1
t ∈

C∞b (I;BT 2
0 (Σ, k0)).

We equip M = I × Σ with the Lorentzian metric g = −dt2 + ht(x)dx2 and
consider a Klein-Gordon operator P on (M, g) such that moreover P ∈ Diff2

b(M,k)
for k = dt2 + k0dx

2.
It is easy to see that P is then of the form

(11.2) P = ∂2
t + r(t, x)∂t + a(t, x, ∂x),

where a(t, x, ∂x) ∈ C∞b (I; Diffb(Σ; k0)) such that

(i) σpr(a)(t, x, ξ) = ξ ·ht(x)ξ,

(ii) a(t, x, ∂x) = a∗(t, x, ∂x),

where the adjoint is defined with respect to the time-dependent scalar product

(11.3) (u|v)t =

ˆ
Σ

uv dVolht ,

and rt = |ht|−
1
2 ∂t|ht|

1
2 . The two energy shells for P are

N± = {(t, x, τ, ξ) : τ = ±(ξ ·ht(x)ξ)
1
2 , ξ 6= 0}.

We set Σt = {t} × Σ in M equipped with the density dVolht .

11.2.1. Cauchy problem. It is usual to rewrite the Klein-Gordon equation

(∂2
t + r(t)∂t + a(t))φ(t) = 0

as a first-order system

(11.4) i−1∂tψ(t) = H(t)ψ(t), where H(t) =

(
0 1l
a(t) ir(t)

)
,

by setting

ψ(t) =

(
φ(t)

i−1∂tφ(t)

)
=·· %tφ.

We denote by

(11.5) UH(t, s) ··= Texp

(
i

ˆ t

s

H(σ)dσ

)
, s, t ∈ I,

the evolution operator associated to H(t). We equip L2(Σt;C2) with the time-
dependent scalar product obtained from (11.3), by setting

(f |g)t ··=
ˆ

Σt

(
f1g1 + f0g0

)
dVolht .
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We will use it to define adjoints of linear operators and to identify sesquilinear
forms on L2(Σ;C2) with linear operators. For

q ··=
(

0 1l
1l 0

)
we have

(11.6) q = U∗H(s, t)q UH(s, t), s, t ∈ I,

i.e. the evolution operator UH(t, s) is symplectic.

11.3. Parametrices for the Cauchy problem

Let U0 : E ′(Σ;C2) → D′sc(M) be the Cauchy evolution operator for P , which
solves

(11.7)
{
PU0 = 0,
%0U0 = 1l.

We will construct a parametrix Ũ0 for (11.7) such that{
PŨ0 = 0,

%0Ũ0 = 1l,
modulo smoothing errors.

The theory of Fourier integral operators, one of the important topics in microlocal
analysis, originated from the construction of parametrices by Lax [La] and Ludwig
[Lu] for the Cauchy problem for wave equations (or, more generally, strictly hyper-
bolic systems). It amounts to looking for Ũ0 as a sum of two oscillatory integrals

(2π)−d
ˆ

ei(ϕ±(t,x,ξ)−y·ξ)a±(t, x, ξ)dξ.

The phase functions ϕ±(t, x, ξ) are solutions of the eikonal equation{
(∂tϕ

±(t, x, ξ))2 − a(t, x, ∂xϕ
±(t, x, ξ)) = 0,

ϕ±(0, x, ξ) = x·ξ,

and the amplitudes a±(t, x, ξ) solve a first-order differential equation along the
bicharacteristics of P .

It is actually simpler and more convenient to use a more operator theoretical ap-
proach. Instead, we will try to find time-dependent operators b±(t) ∈ C∞b (I; Ψ1

b(Σ))
such that

U±(t) = Texp

(
i

ˆ t

0

b±(σ)dσ

)
solve the equation

(11.8) PU±(t) = 0, modulo smoothing errors.

If we try to solve (11.8) exactly, we see that b(t) should satisfy the Riccati equation

(11.9) i∂tb
± − (b±)2 + a+ irb± = 0.

A straightforward computation shows that (11.9) is equivalent to a factorization

(11.10) P = (∂t + ib± + r)(∂t − ib±).

Such a factorization was already used by Junker [J1, J2] to construct Hadamard
states by pseudodifferential calculus, in the case where the Cauchy surface Σ is
compact.
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11.3.1. Solving the Riccati equation. We now explain how to solve (11.9),
modulo smoothing errors. The first step consists in reducing the task to the case
when a(t) ··= a(t, x, ∂x) is strictly positive, as an operator on L2(Σ, |ht|

1
2 dx).

One can find, see [GOW, Proposition 5.11], an operator c−∞(t) ∈ C∞b (I;W−∞(Σ))
and a constant c > 0 such that a(t) + c−∞(t) ≥ c1l, for all t ∈ I. One sets then
ε(t) ··= (a(t) + c−∞(t))

1
2 , which by Theorem 10.6.1 belongs to C∞b (I; Ψ1

b(Σ)), with
principal symbol (ξ ·ht(x)ξ)

1
2 .

Proposition 11.3.1. There exists an operator b(t) ∈ C∞b (I; Ψ1
b(Σ)), unique

modulo C∞b (I;W−∞(Σ)), such that

(i) b(t) = ε(t) + C∞b (I; Ψ0
b(Σ)),

(ii) (b(t) + b∗(t))−1 = (2ε(t))−
1
2 (1l + r−1)(2ε(t))−

1
2 , r−1 ∈ C∞b (I; Ψ−1

b (Σ)),

(iii) (b(t) + b∗(t))−1 ≥ cε(t)−1, for some c > 0,

(iv) i∂tb
±(t)− (b±)2(t) + a(t) + ir(t)b±(t) = r±−∞(t) ∈ C∞b (I;W−∞(Σ)),

for b+(t) ··= b(t), b− ··= −b∗(t).

Proof. We follow the proof in [GOW, Theorem 6.1]. Discarding error terms in
C∞b (I;W−∞(Σ)), we can assume that ε(t) = Op(ε̂)(t), ε̂(t) ∈ C∞b (I;BS1

ph(T ∗Σ)).
We look for b(t) of the form b(t) = ε(t) + d(t) for

d(t) = Op(d̂)(t), d̂(t) ∈ C∞b (I;BS0
ph(T ∗Σ)).

Since ε(t) is elliptic, it admits a parametrix

ε(−1)(t) = Op(ĉ)(t), ĉ(t) ∈ C∞b (I;BS−1
ph (Σ)).

The equation (11.9) becomes, modulo error terms in C∞b (I;W−∞(Σ)),

(11.11) d(t) =
i

2

(
ε(−1)(t)∂tε(t) + ε(−1)(t)r(t)ε(t)

)
+ F (d)(t),

with

F (d)(t) =
1

2
ε(−1)(t)

(
i∂td(t) + [ε(t), d(t)] + ir(t)d(t)− d2(t)

)
.

By means of symbolic calculus, we obtain that

F (d)(t) = Op(F̃ (d̂))(t) + C∞b (I;W−∞(Σ)),

with

F̃ (d̂)(t) =
1

2
ĉ(t)]

(
i∂td̂(t) + ε̂(t)]d̂(t)− d̂(t)]ε̂(t) + ir(t)]d̂(t)− d̂(t)]d̂(t)

)
,

where the operation ] (sometimes called the Moyal product) is defined by

Op(a)Op(b) = Op(a]b) modulo BS−∞(Σ).

The equation (11.11) becomes

(11.12) d̂(t) = d̂0(t) + F̃ (d̂)(t),

for

d̂0(t) =
i

2

(
ĉ(t)]∂tε̂(t) + ĉ(t)]r(t)]ε̂(t)

)
∈ C∞b (I;BS0

ph(T ∗Σ)).

The map F̃ has the following property:
(11.13)

d̂1(t), d̂2(t) ∈ C∞b (I;BS0
ph(T ∗Σ)), d̂1(t)− d̂2(t) ∈ C∞b (I;BS−jph (T ∗Σ))

=⇒ F̃ (d̂1)(t)− F̃ (d̂2)(t) ∈ C∞b (I;BS−j−1
ph (T ∗Σ)).
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This allows to solve (11.13) symbolically by setting

d̂−1(t) = 0, d̂n(t) ··= d̂0(t) + F̃ (d̂n−1)(t),

and
d̂(t) ∼

∑
n∈N

d̂n(t)− d̂n−1(t),

which is an asymptotic series, since, by (11.13), d̂n(t)−d̂n−1(t) ∈ C∞b (I;BS−nph (T ∗Σ)).
It follows that ε(t) + d(t) solves (11.9) modulo C∞b (I;W−∞(Σ)), hence satisfies (i)
and (iv) in the proposition.

In the rest of the proof ε(t) will again denote the square root ε(t) = (a(t) +

c−∞(t))
1
2 , which differs from Op(ε̂)(t) by an error in C∞b (I;W−∞(Σ)), so that

ε(t) + d(t) still solves (11.9) modulo C∞b (I;W−∞(Σ)).
To satisfy (ii), (iii) we need to further modify ε(t) + d(t) by an error term in

C∞b (I;W−∞(Σ)), which will not invalidate (i) and (iv). We set

s(t) = ε(t) + d(t) + ε∗(t) + d∗(t),

which is selfadjoint, with principal symbol equal to 2(ξ ·h−1
t (x)ξ)

1
2 . By [GOW,

Proposition 5.11], there exist an r−∞ ∈ C∞b (I;W−∞(Σ)) and a constant c > 0
such that

(11.14) c−1ε(t) ≤ s(t) + r−∞(t) ≤ cε(t), t ∈ I.

Now set

b(t) ··= ε(t) + d(t) +
1

2
r−∞(t).

Property (iii) follows from (11.14) and the Kato-Heinz theorem. To prove property
(ii), we write

b(t) + b∗(t) = (2ε)
1
2 (t)(1l + r̃−1(t))(2ε)

1
2 (t),

where r̃−1(t) ∈ C∞b (I; Ψ−1
b (Σ)), by Theorem 10.6.1. Since (1l+ r̃−1)(t) is boundedly

invertible, we have, again by Theorem 10.6.1, that

(1l + r̃−1)−1(t) = 1l + r−1(t), r−1(t) ∈ C∞b (I; Ψ−1
b (Σ)),

which implies (ii).
We observe then that if b(t) ∈ C∞b (I; Ψ∞b (Σ)) we have

(∂tb)
∗(t) = ∂t(b

∗)(t) + r(t)b∗(t)− b∗(t)r(t).

Note that the adjoint is computed with respect to the time-dependent scalar product
(11.3), so (∂tb)

∗ 6= ∂t(b
∗). This implies that −b∗(t) is also a solution of (11.9)

modulo C∞b (I;W−∞(Σ)). The proof of the proposition is complete. 2

11.3.2. Parametrices for the Cauchy problem. We can now construct
parametrices for the Cauchy problem (11.7). In fact, if

(11.15) u±f = (b+ − b−)−1(0)(∓b∓(0)f0 ± f1), f ∈ H∞(Σ),

we obtain by an easy computation that

(11.16) Ũ0f(t) ··= U+(t)u+f + U−(t)u−f

solves {
PŨ0 ∈ C∞b (I;W−∞(Σ)),

%0Ũ0 = 1l,

hence is a parametrix for the Cauchy problem (11.7).



98 11. CONSTRUCTION OF HADAMARD STATES BY PSEUDODIFFERENTIAL CALCULUS

11.3.3. Microlocal splitting of Cauchy data. It is easy to see that if
u ∈ H∞(Σ), then WF(U±(·)u) ⊂ N±. Therefore, if f ∈ Keru∓, one has also
WF(U0f) ⊂ N±.

It turns out that Keru∓ are complementary spaces, for example in H∞(Σ;C2),
which are moreover orthogonal with respect to q. This is summarized in the next
proposition.

Proposition 11.3.2. Let

T ··=
(

1l −1l
b+(0) −b−(0)

)
(b+ − b−)−

1
2 (0).

Then:
(1)

T−1 = (b+ − b−)−
1
2 (0)

(
−b−(0) 1l
−b+(0) 1l

)
.

(2)

T ∗qT =

(
1l 0
0 −1l

)
.

(3) Let

π+ =

(
1l 0
0 0

)
, π− =

(
0 0
0 1l

)
and

c± ··= Tπ±T−1 =

(
∓(b+ − b−)−1b∓ ±(b+ − b−)−1

∓b+(b+ − b−)−1b− ±b±(b+ − b−)−1

)
(0);

then
c+ + c− = 1l, (c±)2 = c±, Keru∓ = Ranc±,

(c∓)∗qc± = 0, ±(c±)∗qc± ≥ 0,

on H∞(Σ;C2).
(4)

WF(U0c
±)′ ⊂ N± × (T ∗Σ \o).

(5) The map T : L2(Σ)⊕ L2(Σ)→ H
1
2 (Σ)⊕H− 1

2 (Σ) is an isomorphism.

Proof. The proof of (1) and (2) is a routine computation, and (3) follows from
(2). Note that c± are bounded on H∞(Σ;C2) and H−∞(Σ;C2), since their entries
belong to Ψ∞b (Σ).

We have U0c
± = Ũ0c

± modulo C∞(M × M) and Ũ0c
± = U±(·)c± by (3),

so WF(U0c
±)′ = WF(U+(·)c±)′. By (11.10), we have PU±(·)c± ∈ C∞(M ×M)

hence WF(U+(·)c±)′ ⊂ N × (T ∗Σ \o). Furthermore, (∂t − ib±(t)U+(·)c± = 0, but
∂t − ib±(t) is not a classical pseudodifferential operator on M . However, one can
find χ± ∈ Ψ0

c(M), elliptic near N±, such that χ± ◦ (∂t− ib±(t)) belongs to Ψ1(M).
We have χ± ◦ (∂t − ib±(t))U+(·)c± = 0 and χ± ◦ (∂t − ib±(t)) is elliptic near N∓.
Now applying Theorem 7.3.1 we conclude that WF(U+(·)c±)′ ⊂ N± × (T ∗Σ \o),
which proves (4).

It remains to prove (5). Using the expression of T−1 in (2), we see that
the norm ‖T−1f‖L2(Σ;C2) is equivalent to the norm ‖(b+ − b−)

1
2 f0‖L2(Σ) + ‖(b+ −

b−)−
1
2 f1‖L2(Σ;C2). By (11.14), we have

c−1ε(0) ≤ b+(0)− b−(0) ≤ cε(0),

which by the Kato-Heinz theorem implies that ‖T−1f‖L2(Σ;C2) is equivalent to
‖ε(0)

1
2 f0‖L2(Σ) +‖ε(0)−

1
2 f1‖L2(Σ). By the ellipticity of ε(0), this norm is equivalent

to the norm of H
1
2 (Σ)⊕H− 1

2 (Σ). 2
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Remark 11.3.3. c± are complementary projections, with Ran c± = Keru∓.
Moreover, Ranc± are orthogonal for q, with WFU0c

±f ⊂ N± for f ∈ H−∞(Σ).
Therefore the pair of projections c± will be called a microlocal splitting of Cauchy
data.

The space H
1
2 (Σ)⊕H− 1

2 (Σ) is the charge space, which appears in the quantiza-
tion of Klein-Gordon equations. It is more natural in this context than the energy
space H1(Σ)⊕ L2(Σ), which is usually considered in the PDE literature.

11.4. The pure Hadamard state associated to a microlocal splitting

It is now straightforward to associate a pure Hadamard state to the pair of
projections c± in Proposition 11.3.2.

Theorem 11.4.1. Let c± be a microlocal splitting and

(11.17) λ±0 ··= ±qc±.

Then λ±0 are the Σ0 covariances of a pure Hadamard state ωb for P .

Proof. We first check the conditions in Proposition 6.1.5. (i) is obvious and (iii)
follows from c+ + c− = 1. To check (ii), we note that c± : C∞0 (Σ;C2)→ L2(Σ;C2)
since c± : H∞(Σ;C2)→ H∞(Σ;C2). We have then(

f |λ±0 f
)

0
= ±

(
(c+ + c−)f |qc±f

)
0

= ±
(
c±f |qc±f

)
0
≥ 0,

by Proposition 11.3.2 (3). Therefore λ±0 are the Σ0 covariances of a quasi-free state
ωb for P .

If Λ± are the spacetime covariances of ωb, we deduce from Proposition 11.1.1
and Proposition 11.3.2 (4) that WF(Λ±)′ ⊂ N± ×N . Since (Λ±)∗ = Λ± we have
WF(Λ±)′ ⊂ N± ×N±, hence by Theorem 8.4.2 ωb is a Hadamard state.

It remains to prove that ωb is pure. To that end, let us first examine the norm
‖ · ‖ω associated to ωb, see Subsection 4.9.2. By Proposition 11.3.2, we have

λ+
0 + λ−0 = qT (π+ − π−)T−1 = (T−1)∗(π+ − π−)2T−1 = (T−1)∗T−1.

Therefore, ‖f‖2ω = (f |(λ++λ−)f)L2(Σ;C2) = ‖T−1f‖2L2(Σ;C2). By Proposition 11.3.2
(5), the completion Ycpl of Y = C∞0 (Σ;C2) with respect to the norm ‖ · ‖ω equals
H

1
2 (Σ)⊕H− 1

2 (Σ).
Again by Proposition 11.3.2 (5), we obtain that c± = Tπ±T−1 extend by

density to projections on Ycpl that satisfy (4.36) in Proposition 4.9.3. Therefore,
ωb is a pure state. 2

11.5. Spacetime covariances and Feynman inverses

We now give more explicit formulas expressing the spacetime covariances Λ±

of ωb and the Feynman inverse associated to ωb, see Section 8.5.
It is convenient to formulate these results using the ‘time kernel’ notation:

namely, if A : C∞0 (M ;Cp) → C∞(M ;Cq) we denote by A(t, s) : C∞0 (Σ;Cp) →
C∞(Σ;Cq) its operator-valued kernel, defined by

Au(t) =

ˆ
R
A(t, s)u(s)ds, u ∈ C∞0 (M ;Cp).

If UH(t, s) is the propagator introduced in (11.5), we set

U±H (t, s) ··= UH(t, 0)c±UH(0, s).

The following theorem is shown in [GOW, Theorems 6.8, 7.10].
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Theorem 11.5.1. Let Λ± and GF be the spacetime covariances and the Feyn-
man inverse, respectively, of the state ωb constructed in Theorem 11.4.1. Then

(11.18)
Λ±(t, s) = ±π0U±H (t, s)π∗1 ,

GF(t, s) = i−1π0

(
U+
H(t, s)θ(t− s)− U−H (t, s)θ(s− t)

)
π∗1 ,

where πi
(
f0

f1

)
= fi and θ(t) is the Heaviside function.

Let us conclude this subsection by stating without proofs some more results
taken from [GOW, Section 7].

11.5.1. Regular states. Recall that Σs = {s} × Σ for s ∈ I and let λ±s be
the Cauchy surface covariances of ωb on Σs. Then one can show that

λ±s = ±qc±(s),

where c±(s) = T (s)π±T−1(s) and T (s) is defined as in Proposition 11.3.2, with
b±(0) replaced by b±(s).

A quasi-free state ω for P is called regular if its Cauchy surface covariances λ±s
on Σs belong to Ψ∞b (Σ;M2(C)) for some s ∈ I. One can show that if ω is regular,
then λ±s on Σs ∈ Ψ∞b (Σ;M2(C)) for all s ∈ I.

11.5.2. Bogoliubov transformations. It is well known, see e.g. [DG, The-
orem 11.20] that if (Y, q) is a Hermitian space and if ω, ω̃ are two pure quasi-free
states on CCRpol(Y, q), then there exists u ∈ U(Y, q) such that

λ̃± = u∗λ±u.

Such a map u corresponds to a Bogoliubov transformation.
One can show that if ω is a pure, regular Hadamard state for P , with covariances

λ±0 on Σ0, then there exists a ∈ W−∞(Σ) such that

λ±0 = ±T−1(0)∗U∗π±UT−1(0), with U =

(
(1l + aa∗)

1
2 a

a∗ (1l + a∗a)
1
2

)
.

11.6. Klein-Gordon operators on Lorentzian manifolds of bounded
geometry

We now introduce a class of spacetimes and associated Klein-Gordon equations
whose analysis can be reduced to the model situation in Section 11.2. The results in
this subsection are taken from [GOW, Section 3]. We start with some definitions.

11.6.1. Lorentzian manifolds of bounded geometry. Let M a smooth
manifold equipped with a reference Riemannian metric ĥ such that (M, ĥ) is of
bounded geometry.

Definition 11.6.1. If g is a Lorentzian metric on M , we say that (M, g) is of
bounded geometry if g ∈ BT 0

2 (M, ĥ) and g−1 ∈ BT 2
0 (M, ĥ).

Definition 11.6.2. Let Σ an (n− 1)-dimensional submanifold. An embedding
i : Σ → M is called of bounded geometry if there exists a family {Ux, ψx}x∈M of
bounded chart diffeomorphisms for ĥ such that if Σx ··= ψx(i(Σ) ∩ Ux) we have

Σx = {(v′, vn) ∈ Bn(0, 1) : vn = Fx(v′)},

where {Fx}x∈M is a bounded family in C∞b (Bn−1(0, 1)).
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The typical example of an embedding of bounded geometry is as follows: let
M = I × S, where I is an open interval and (S, h) is of bounded geometry, and let
ĥ = dt2 + h(x)dx2. Then the submanifolds {t = F (x)} for F ∈ BT 0

0(S, h) are of
bounded geometry in (M, ĥ).

Definition 11.6.3. A space-like Cauchy surface Σ ⊂ M is of bounded geom-
etry if:
(1) the injection i : Σ→M is of bounded geometry for ĥ;
(2) if n(y) for y ∈ Σ is the future directed unit normal to Σ for g, then

sup
y∈Σ

n(y) · ĥ(y)n(y) <∞.

Clearly, the above definitions depend only on the equivalence class of ĥ for the
equivalence relation ∼ in Subsection 10.3.5.

11.6.2. Gaussian normal coordinates. The following result is proved in
[GOW, Theorem 3.5]. It says that the bounded geometry property of g and Σ
carries over to the Gaussian normal coordinates to Σ.

Theorem 11.6.4. Let (M, g) a Lorentzian manifold of bounded geometry and
Σ a Cauchy surface of bounded geometry. Then the following holds:
(1) there exists δ > 0 such that the normal geodesic flow to Σ:

χ :
]− δ, δ[×Σ −→M
(t, y) 7−→ expgy(tn(y))

is well defined and is a smooth diffeomorphism onto its range;
(2) χ∗g = −dt2 +ht, where {ht}t∈ ]−δ,δ[ is a smooth family of Riemannian metrics

on Σ such that

(i) (Σ, h0) is of bounded geometry,

(ii) t 7→ ht ∈ C∞b ( ]− δ, δ[, BT 0
2(Σ, h0)),

(iii) t 7→ h−1
t ∈ C∞b ( ]− δ, δ[, BT 2

0(Σ, h0)).

11.6.3. Klein-Gordon operators on Lorentzian manifolds of bounded
geometry. Let (M, g) a globally hyperbolic spacetime of bounded geometry, with
respect to a reference Riemannian metric ĥ. We fix a 1-form Aµdx

µ ∈ BT 0
1 (M, ĥ)

and a real function V ∈ BT 0
0 (M, ĥ), and consider the associated Klein-Gordon

operator P as in Subsection 5.5.1. Note that P ∈ Diff2
b(M, ĥ).

Let χ : ]− δ, δ[×Σ→ M the diffeomorphism in Theorem 11.6.4 and let us still
denote by Aµdxµ, V and P their respective pullbacks by χ. Then P equals

P = |ht|−
1
2 (∂t − iqA0)|ht|

1
2 (∂t − iqA0)− |ht|−

1
2 (∂j − iqAj)|ht|

1
2hjkt (∂k − iqAk) + V.

Setting F (t, x) = q
´ t

0
A0(s, x)dx, we have e−iF (∂t − iqA0)eiF = ∂t, hence

Pred = e−iFP eiF

is a model Klein-Gordon operator of the form (11.2).
If Λ±red are the spacetime covariances of the pure Hadamard state for Pred

constructed in Theorem 11.4.1, then Λ± = eiFΛ±rede−iF are the covariances of a
pure Hadamard state for P , on ]− δ, δ [×Σ. Pushing Λ± to M by χ, we obtain a
pure Hadamard state for the original Klein-Gordon operator on M .
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11.7. Conformal transformations

The conditions in Section 11.6 are rather strong, since they imply in particular
that (M, g) has a Cauchy surface Σ such that the normal geodesic flow to Σ exists
for some uniform time interval. However it is possible to greatly enlarge the class
of Klein-Gordon equations which can reduced to the model case in Section 11.2.

Thus, let
P = −(∇µ − iqAµ(x))(∇µ − iqAµ(x)) + V (x)

be a Klein-Gordon operator on (M, g), Σ be a space-like Cauchy surface for (M, g)

and ĥ be a reference Riemannian metric on M such that (M, ĥ) is of bounded
geometry.

As in Section 6.3, we consider g̃ = c2g and P̃ = c−n/2−1Pcn/2−1.
One can check that if

(i) (M, g̃) is of bounded geometry for ĥ,

(ii) Σ is of bounded geometry in (M, g̃),

(iii) c−2V ∈ BT 0
0 (M, ĥ), Aµdx

µ, c−1∇µcdxµ ∈ BT 0
1(M, ĥ),

then P̃ is Klein-Gordon operator on (M, g̃) belonging to Diffb(M, ĥ). Therefore,
P̃ can be reduced to the model case, over a causally compatible neighborhood of
Σ in M . The pure Hadamard state for P̃ constructed as in Section 11.4 yields by
Section 8.6 a pure Hadamard state for P .

11.7.1. Examples. As mentioned in the introduction, the above reduction
can be applied for example to the Kerr or Kerr-de Sitter exterior spacetimes and
the Kerr-Kruskal spacetime for Aµ = 0, V = m2. Other examples are cones, double
cones and wedges in Minkowski spacetime. We refer the reader to [GOW, Section
4] for details.

11.8. Hadamard states on general spacetimes

Let us now go back to the general situation, where (M, g) is a globally hyper-
bolic spacetime and P a Klein-Gordon operator on (M, g). Let us fix a space-like
Cauchy surface Σ in (M, g). We will prove the following theorem, which follows
from a construction in [GW1, Section 8.2]. The classes Ψ∞(c)(Σ) were introduced
in Section 10.2.

Theorem 11.8.1. Let P a Klein-Gordon operator on the globally hyperbolic
spacetime (M, g) and Σ a space-like Cauchy surface Σ in (M, g). Then:
(1) there exists a Hadamard state ω for P whose Cauchy surface covariances λ±Σ

belong to Ψ∞c (Σ;M2(C));
(2) the Cauchy surface covariances λ±Σ of any Hadamard state ω for P belong to

Ψ∞(Σ;M2(C)).

Proof. Let us first note that (2) follows from (1). Indeed, let ω1 be the Hadamard
state in (1) and let ω be another Hadamard state. By Corollary 8.4.3, Λ± − Λ±1
have smooth kernels, hence λ±Σ−λ

±
Σ,1 have smooth kernels by Proposition 6.1.6 (2).

Since λ±Σ,1 ∈ Ψ∞c (Σ;M2(C)), we see that λ±Σ ∈ Ψ∞(Σ;M2(C)).
It remains to prove (1). By Proposition 5.4.7, we can assume that M is a

neighborhood U of {0} ×Σ in R×Σ and g = −dt2 + ht(x)dx2. Let us fix an atlas
{Vi, ψi}i∈N of Σ with Vi relatively compact and relatively compact open intervals
Ii, i ∈ N with 0 ∈ Ii and Ii × Vi b U .

The metrics (ψ−1
i )∗ht can be extended to metrics h̃it on Rd such that h̃it ∈

C∞b (R;BT 0
2 (Rd)) and h̃−1

it ∈ C∞b (R;BT 2
0 (Rd)), where we equip Rd with the flat

metric δ. This means that for each i ∈ N the derivatives in (t, x) of h̃it and h̃−1
it
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are uniformly bounded on R × Rd. The Klein-Gordon operators ψi ◦ P ◦ ψ−1
i can

similarly be extended as Klein-Gordon operators P̃i on R × Rd which belong to
Diffb(R1+d).

We fix a partition of unity 1 =
∑
i∈N χ

2
i subordinate to the cover {Vi}i∈N. Note

that if q =

(
0 1l
1l 0

)
, then in view of the expression (5.31) of qΣ we have

(11.19) qΣ =
∑
i∈N

χiψ
∗
i (q)χi.

Let λ̃±i be the Cauchy surface covariances in Theorem 11.4.1 for P̃i and the
Cauchy surface {t = 0} in R× Rd. We set

λ± ··=
∑
i∈N

χiψ
∗
i (λ̃±i )χi.

By (11.19), we have λ+
Σ−λ

−
Σ = qΣ. Moreover, λ±Σ ≥ 0, since λ̃±i ≥ 0. Let ωU be the

associated quasi-free state for P on (U, g). By Proposition 11.1.1 and the covariance
of the wavefront set under diffeomorphisms, we obtain that ωU is a Hadamard state
for P on (U, g).

Now we apply the time-slice property Proposition 5.6.4 and the propagation
of singularity theorem to extend ωU to a Hadamard state ω for P on (M, g).
Its Cauchy surface covariances on Σ are of course equal to λ±Σ . Since λ̃±i ∈
Ψ∞b (Rd;M2(C)), we obtain that λ±Σ ∈ Ψ∞c (Σ;M2(C)), by the definition of Ψ∞c (Σ).
This completes the proof of (1). 2





CHAPTER 12

Analytic Hadamard states and Wick rotation

In Minkowski spacetime the Wick rotation consists in the substitution t 7→ is.
The Minkowski space R1,d becomes the Euclidean space R1+d and the wave operator
−2 becomes the Laplacian −∆.

Being elliptic, the operator −∆ +m2 has a unique inverse GE, given by

GEv(s, ·) =

ˆ
R
GE(s− s′)v(s′, ·)ds′,

with
GE(s) = (2ε)−1(e−sεθ(s) + esεθ(−s)),

where we recall that ε = (−∆x +m2)
1
2 . A remarkable fact is that

i−1GE(it) = GF(t),

where, see (8.20), GF(t) is the kernel of the Feynman inverse associated to the
vacuum state for −2+m2. The Wick rotation or Euclidean approach is particularly
important when one tries to construct interacting field theories. It is the basis of
the constructive field theory, whose most celebrated achievements are the rigorous
constructions of the P (ϕ)2 and ϕ4

3 theories. We refer the reader to the books
of Glimm and Jaffe [GJ] and Simon [Si], or to [DG, Chap. 21], for a detailed
exposition.

In the Euclidean approach the main goal is the construction of an ‘interacting’
probability measure on a path space, or the construction of its moments, which
are called Schwinger functions. The return to the Lorentzian world can be done
by ’reconstruction theorems’, like the Osterwalder-Schrader theorem. This step is
actually often forgotten, to such an extent that physicists speaking of quantum field
theories often have in mind their Euclidean versions.

It is clear that the Wick rotation can be defined if we replace R1,d by an ultra-
static spacetime, see Section 5.3, if we set ε = (−∆h + m2)

1
2 . Static spacetimes

are reduced to ultra-static ones by the procedure explained in Section 9.4 and with
some more effort stationary spacetimes can be treated as well, see [G2].

For general spacetimes, its not clear what the Wick rotation should mean, since
there is no canonical time coordinate. In this chapter we will explain a result of
[GW5], where the Wick rotation is performed in the Gaussian time coordinate near
a Cauchy surface of (M, g). To the elliptic operator obtained by Wick rotation one
can associate the so-called Calderón projectors, which are a standard tool in elliptic
boundary value problems.

It turns out that it is possible to use the Calderón projectors to define a pure
quasi-free state for a Klein-Gordon operator on (M, g). This state has the important
property of being an analytic Hadamard state. As a consequence, it satisfies the
Reeh-Schlieder property.

12.1. Boundary values of holomorphic functions

Let us recall the well-known definition of distributions as boundary values of
holomorphic functions.

105
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12.1.1. Notation. We first introduce some notation.
- A cone of vertex 0 in Rn, which is convex open and proper, will be simply

called a convex open cone. If Γ,Γ′ are two cones of vertex 0 in Rn we write Γ′ b Γ
if (Γ′ ∩ Sn−1) b (Γ ∩ Sn−1).

- We recall that Γ◦ denotes the polar of Γ, see (8.16). Γ◦ is a closed convex
cone.

- Let Ω ⊂ Rn be open and let Γ ⊂ Rn be a convex open cone. Then a domain
D ⊂ Cn is called a tuboid of profile Ω + iΓ if
(1) D ⊂ Ω + iΓ,
(2) for any x0 ∈ Ω and any subcone Γ′ b Γ there exists a neighborhood Ω′ of x0

in Ω and r > 0 such that

Ω′ + i{y ∈ Γ′ : 0 < |y| ≤ r} ⊂ D.

- If D ⊂ Cn is open, we denote by O(D) the space of holomorphic functions in
D.

- We write F ∈ Otemp(Ω + iΓ0) and say that F is temperate, if F ∈ O(D) for
some tuboid D of profile Ω + iΓ and if for any K b Ω, any subcone Γ′ b Γ, there
exist C, r > 0 and N ∈ N such that K + i{y ∈ Γ′ : 0 < |y| ≤ r} ⊂ D and

(12.1) |F (x+ iy)| ≤ C|y|−N , x ∈ K, y ∈ Γ′, 0 < |y| ≤ r.

12.1.2. Boundary values of holomorphic functions. If F ∈ Otemp(Ω +
iΓ0) the limit

(12.2) lim
Γ′3y→0

F (x+ iy) = f(x) exists in D′(Ω),

for any Γ′ b Γ and is denoted by F (x+ iΓ0), (see e.g. [Ko, Theorem 3.6]).
If Γ1, . . . ,ΓN are convex open cones such that

⋃N
1 Γ◦i = Rn, then any u ∈ D′(Ω)

can be written as

(12.3) u(x) =

N∑
j=1

Fj(x+ iΓj0),

for some Fj ∈ Otemp(Ω + iΓj0). This fact comes from the construction of a so-
called decomposition of δ, see e.g. [H1, Theorem 8.4.11]. If n = 1 this is simply
the identity δ(x) = (2iπ)−1((x+ i0)−1 − (x− i0)−1).

The non-uniqueness of the decomposition (12.3) is described by Martineau’s
edge of the wedge theorem, which states that

N∑
j=1

Fj(x+ iΓj0) = 0 in D′(Ω)

for Fj ∈ Otemp(Ω + iΓj0) iff there exist Hjk ∈ Otemp(Ω + iΓjk0), with Γjk =
(Γj + Γk)conv (Aconv denotes the convex hull of A) such that

Fj =
∑
k

Hjk in Ω + iΓj , Hjk = −Hkj in Γjk,

see for example [Ko, Theorem 3.9].

12.1.3. Partial boundary values. One can also obtain distributions as bound-
ary values of partially holomorphic distributions in one variable, as in Proposition
7.1.5. Let us assume that Ω = I×Y , where I ⊂ R is an open interval and Y ⊂ Rn−1

is open, writing x ∈ Ω as (t, y).
We denote by Otemp(I ± i0;D′(Y )) the space of temperate D′(Y )-valued holo-

morphic functions on some tuboid D of profile I ± i0. This means that for each
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K b I there exist r > 0 and N ∈ N, such that for each bounded set B ⊂ D(Y )
there exist CB > 0 such that

sup
ϕ∈B
|〈u(z, ·), ϕ(·)〉Y | ≤ CB |Im z|−N , Re z ∈ K, ±Im z > 0, |Im z| ≤ r,

where 〈·, ·〉Y is the duality bracket between D′(Y ) and D(Y ).
Let us set ϕz(s) = (s − z)−1 for z ∈ C \ R. If u ∈ D′(R × Rn−1) has compact

support, then

F (z, y) =
1

2iπ
〈ϕz(·), F (·, y)〉R

belongs to Otemp(R± i0;D′(Rn−1)) and

u(s, y) = F (s+ i0, y)− F (s− i0, y),

where F (s± i0, y) = limε→0± F (s+ iε, y) in D′(R× Rn−1).

12.2. The analytic wavefront set

We now recall the definition of the analytic wavefront set of a distribution on
Rn originally due to Bros and Iagolnitzer [BI], following [Sj]. We set

ϕλz (x) ··= e−
λ
2 (z−x)2

, z ∈ Cn, x ∈ Rn, λ ≥ 1.

Definition 12.2.1. Let Ω ⊂ Rn be an open set. A point (x0, ξ0) ∈ T ∗Ω\o does
not belong to the analytic wavefront set WFau of u ∈ D′(Ω) if there exist a cutoff
function χ ∈ C∞0 (Ω) with χ = 1 near x0, a neighborhood W of x0 − iξ0 in Cn, and
constants C, ε > 0 such that

(12.4) |〈u|χϕλz 〉| ≤ Ce
λ
2 ((Imz)2−ε), z ∈W, λ ≥ 1,

where 〈·|·〉 is the duality bracket between D′(Rn) and C∞0 (Rn).

Note that in Definition 12.2.1 one identifies Rn with (Rn)′ using the quadratic
form x·x appearing in the definition of ϕλz .

If u ∈ E ′(Rn), the holomorphic function Cn 3 z 7→ Tλu(z) = 〈u|ϕλz 〉 is called
the F.B.I. transform of u.

The C∞ wavefront set WFu can also be characterized by the F.B.I. transform,
if one requires instead of (12.4) that

(12.5) |〈u|χϕλz 〉| ≤ CNe
λ
2 (Imz)2

λ−N , z ∈W, λ ≥ 1, N ∈ N,

see e.g. [De, Corollary 1.4]. The projection of WFau on Rn is equal to the analytic
singular support singsuppau.

The analytic wavefront set is covariant under analytic diffeomorphisms, which
allows to extend its definition to distributions on a real analytic manifold M in the
usual way.

There is an equivalent definition of WFau based on the representation of a
distribution as sum of boundary values of temperate holomorphic functions. The
equivalence of the two definitions was shown by Bony [Bo], who also showed the
equivalence with a third definition due to Hörmander, see [H1, Definition 8.4.3].

Definition 12.2.2. Let u ∈ D′(Ω) for Ω ⊂ Rn open and (x0, ξ0) ∈ Ω×Rn\{0}.
Then (x0, ξ0) does not belong to WFau if there exist N ∈ N, a neighborhood Ω′ of
x0 in Ω, and convex open cones Γj, 1 ≤ j ≤ N , such that

u(x) =

N∑
j=1

Fj(x+ iΓj0) over Ω′,

for Fj ∈ Otemp(Ω′ + iΓj0), 1 ≤ j ≤ N , and Fj holomorphic near x0 if ξ0 ∈ Γ◦j .
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Theorem 7.3.1 extends to the analytic wavefront set, at least when one considers
differential operators. For completeness let us state this extension, see (see [Kw,
Theorem 3.3’] or [H5, Theorems 5.1, 7.1]).

Theorem 12.2.3. Let X be a real analytic manifold and P ∈ Diffm(X) be an
analytic differential operator of order m. Then for u ∈ D′(X) we have
(1) WFa(u) \WFa(Pu) ⊂ Char(P ) (microlocal ellipticity),
(2) If P is of real principal type with ∂ξpm(x, ξ) 6= 0 on Char(P ), then WFa(u) \

WFa(Pu) is invariant under the flow of Hp (propagation of singularities).

The analytic wavefront set of a distribution has deep relations with its support.
An example of such a relation is the Kashiwara-Kawai theorem, which we now
explain.

If F ⊂M is a closed set, the normal set N(F ) ⊂ T ∗M \o is the set of (x0, ξ0)
such that x0 ∈ F , ξ0 6= 0, and there exists a real function f ∈ C2(M) such
that df(x0) = ξ0 or df(x0) = −ξ0 and F ⊂ {x : f(x) ≤ f(x0)}. Note that
N(F ) ⊂ T ∗∂FM and N(F ) = N∗(∂F ) if ∂F is a smooth hypersurface.

The Kashiwara-Kawai theorem (see e.g. [H2, Theorem 8.5.6′]) states that

(12.6) N(suppu) ⊂WFa(u), ∀u ∈ D′(M).

We end this subsection by stating the analog of Proposition 7.1.5 for the ana-
lytic wavefront set, which is proved in [K, Theorem 4.3.10].

Proposition 12.2.4. Let F ∈ Otemp(I ± i0;D′(Y )). Then

WFa(F (t± i0, y)) ⊂ {τ ≥ 0}.

12.3. Analytic Hadamard states

A spacetime (M, g) is called analytic if M is a real analytic manifold and g is
an analytic Lorentzian metric on M . Similarly, a Klein-Gordon operator P as in
Subsection 5.5.1 is analytic if (M, g) and Aµdxµ, V are analytic.

In [SVW] Strohmaier, Verch and Wollenberg introduced the notion of analytic
Hadamard states, obtained from Definition 8.3.2 by replacing the C∞ wavefront set
WF by the analytic wavefront set WFa.

Definition 12.3.1. A quasi-free state for P is an analytic Hadamard state if
its spacetime covariances Λ± satisfy

(12.7) WFa(Λ±)′ ⊂ N± ×N±.

Note that in [SVW] the analytic Hadamard condition is defined also for more
general states for P by extending the microlocal spectrum condition of Brunetti,
Fredenhagen and Köhler [BFK] on the n-point functions to the analytic case.

It is quite likely that the results of Section 7.4 on distinguished parametrices for
Klein-Gordon operators extend to the analytic setting, although we do not know a
published reference. We content ourselves with stating the extension of Corollary
8.4.3, see [GW5, Proposition 2.8]

Proposition 12.3.2. Let Λ±i , i = 1, 2 be the spacetime covariances of two
analytic Hadamard states ωi. Then Λ±1 − Λ±2 have analytic kernels.

Proof. Let R± = Λ±1 − Λ±2 . Since Λ+
1 − Λ−1 = Λ+

2 − Λ−2 = iG, we have R+ =
−R−. On the other hand, from (12.7) we have WFa(R±)′ ⊂ N± × N±, hence
WFa(R+)′ ∩WFa(R−)′ = ∅. Since R− = −R+, this implies that WFa(R±)′ = ∅,
and so R± have analytic kernels. 2
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12.4. The Reeh-Schlieder property of analytic Hadamard states

An important property of analytic Hadamard states, proved in [SVW], is that
they satisfy the Reeh-Schlieder property. The Reeh-Schlieder property of a state has
important consequences. For example, it allows us to apply the Tomita-Takesaki
modular theory to the local von Neumann algebras associated to a bounded region
O ⊂M .

We start with a lemma, related to a result of Strohmaier, Verch and Wollenberg,
see [SVW, Propositions 2.2, 2.6]. Note that the notion of Hilbert space valued
distributions, used in [SVW], is not necessary. We first recall some notation.

If Λ± are the spacetime covariances of a Hadamard state for P , we denote by
Ycpl the completion of Y = C∞0 (M) with respect to the scalar product (f |g)ω =
(f |Λ+g)M + (f |Λ−g)M . Note that Λ± extend as bounded, positive sesquilinear
forms on Ycpl, still denoted by Λ±.

As in Section 6.2 we set for u ∈ Ycpl

w±u (f) ··= u·Λ±f, f ∈ C∞0 (M),

and we recall that w±u ∈ D′(M) and

(12.8) |w±u (f)| ≤ (u·Λ±u)
1
2 (f ·Λ±f)

1
2 .

Lemma 12.4.1. Let X0 = (x0, ξ0) ∈ T ∗Rn \o. Then for any u ∈ Ycpl one has

X0 ∈WF(a)(w
±
u ) =⇒ (X0, X0) ∈WF(a)(Λ

±)′.

Proof. We can assume thatM = Rn. Let X0 = (x0, ξ0) ∈ T ∗Rn\o with (X0, X0) 6∈
WFa(Λ±)′. By (12.8), we have for χ ∈ C∞0 (Rn)

(12.9) |w±u (χϕλz )| ≤ C(χϕz
λ ·Λ±χϕλz )

1
2 ,

χϕz
λ ·Λ±χϕλz = 〈Λ±|χϕλz ⊗ χϕλz 〉.

Note that ϕλz1 ⊗ ϕλz2 = ϕλ(z1,z2), with the obvious notation. Since (X0, X0) 6∈
WFa(Λ±)′ we can, by Definition 12.2.1, find χ equal to 1 near x0, a neighborhood
W of ξ0 in Cn, and C, ε > 0 such that

〈Λ±|χϕλz ⊗ χϕλz 〉 ≤ Ce
λ
2 ((Imz)2+(Imz)2−ε).

By (12.9), this implies that X0 6∈ WFa(w±u ). Using (12.5) one obtains the same
result for the C∞ wavefront set. 2

Theorem 12.4.2. Let P an analytic Klein-Gordon operator on (M, g) and ω a
pure, analytic Hadamard state for P . Then ω satisfies the Reeh-Schlieder property,
i.e. if (Hω, πω,Ωω) is the GNS triple of ω and O ⊂ M is an open set, the space
Vect{Wω(u)Ωω : u ∈ C∞0 (O)} is dense in Hω.

Proof. We will apply Proposition 4.9.5 for Y =
C∞0 (M)

PC∞0 (M)
and Y1 =

C∞0 (O)

PC∞0 (O)
.

Let u ∈ Ycpl such that u · Λ+f = u · Λ−f = 0, ∀f ∈ C∞0 (O), i.e. suppw±u ⊂
M \ O. By (12.6), N(suppw±u ) ⊂ WFa(w±u ), hence N(suppw±u ) ×N(suppw±u ) ⊂
WFa(Λ±)′. This contradicts the fact that ω is an analytic Hadamard state, since
it is impossible that both (x, ξ) and (x,−ξ) belong to N+ or to N−. Therefore,
∂ suppw±u = ∅, i.e. w± = 0. This implies that u is orthogonal to C∞0 (M) for (·|·)ω,
hence u = 0. 2

Remark 12.4.3. Note that much weaker conditions than the Hadamard property
of ω are sufficient to ensure that the Reeh-Schlieder property holds: it suffices that
if (X,X) ∈ WFa(Λ±)′, then (−X,−X) 6∈ WFa(Λ±)′, where −X = (x,−ξ) if
X = (x, ξ).
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12.5. Existence of analytic Hadamard states

The question of the existence of analytic Hadamard states cannot be settled as
easily as in the C∞ case. In fact, the deformation argument of Fulling, Narcowich
and Wald presented in Section 8.9 relies on cutoff functions, and hence does not
apply in the analytic case.

Strohmaier, Verch and Wollenberg [SVW, Theorem 6.3] proved that if (M, g)
is stationary, then the vacuum and thermal states associated to the group of Killing
isometries are analytic Hadamard states.

The following theorem, which essentially settles the existence question, is proved
in [GW5] using a general Wick rotation argument.

Theorem 12.5.1. Let (M, g) be an analytic, globally hyperbolic spacetime hav-
ing an analytic Cauchy surface. Let P be an analytic Klein-Gordon operator on
(M, g). Then there exists a pure analytic Hadamard state for P .

12.6. Wick rotation on analytic spacetimes

Let (M, g) be an analytic, globally hyperbolic spacetime and assume that Σ
admits an analytic, space-like Cauchy surface. Let P an analytic Klein-Gordon
operator on M .

Clearly the diffeomorphism χ : U → V in Proposition 5.4.7 given by Gaussian
normal coordinates to Σ is analytic. We have χ∗g = −dt2 + h(t, x)dx2, where
h(t, x)dx2 is a t-dependent Riemannian metric on Σ, analytic in (t, x) on U .

One can moreover ensure, after an analytic conformal transformation, that the
Riemannian manifold (Σ, h(0, x)dx2) is complete, see [GW5, Subsection 3.1].

After conjugation by an analytic function of the form eiF , see Subsection 11.6.3,
the pullback of P to U can be reduced to a model Klein-Gordon operator

P = ∂2
t + r(t, x)∂t + a(t, x, ∂x),

as in Section 11.2.

12.6.1. The Wick rotated operator. The function t 7→ r(t, ·) and the dif-
ferential operator t 7→ a(t, x, ∂x) extend holomorphically in t in a neighborhood W
of {0}×Σ in C×Σ. Therefore, there exists a neighborhood V of {0}×Σ in R×Σ
on which the Wick rotated operator

(12.10) K ··= −∂2
s − ir(is, x)∂s + a(is, x, ∂x)

obtained from P by the substitution t = is is well defined and analytic in (s, x) on V .
Shrinking V we can assume that V is invariant under the reflection (s, x) 7→ (−s, x).
We have σpr(K) = σ2 + ξ ·h(is, x)ξ, hence after further shrinking V , we can also
assume that K is elliptic on V .

Note that for the moment K has no realization as an unbounded operator. To
fix such a realization, one introduces Dirichlet boundary conditions on the boundary
of some open set Ω ⊂ V . The natural way to do this is by sesquilinear form
arguments. Namely, we set ĥ(s, x) = (h(is, x)∗h(is, x))

1
2 , which is positive definite,

and denote by L2(Ω) the space L2(Ω, |ĥ(s, x)| 12 dxds). Similarly, we denote by
L2(Σ;C2) the space L2(Σ, |h(0, x)| 12 dx;C2).

Let H1
0 (Ω) be the closure of C∞0 (Ω) with respect to the norm

‖u‖2H1(Ω) =

ˆ
Ω

(
|∂su|2 + ∂juh

jk
0 ∂ku+ |u|2

)
|h(0, x)| 12 dxds,

and let
QΩ(v, u) = (v|Ku)L2(Ω), DomQΩ = C∞0 (Ω).
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One can show, see [GW5, Proposition 3.2], that one can choose Ω close enough
to {0} × Σ so that QΩ is closeable on C∞0 (Ω) and its closure QΩ is sectorial with
domain H1

0 (Ω), see [Ka, Chapter 6] for terminology.
One denotes by KΩ the closed operator associated to QΩ. One can show that

0 6∈ σ(KΩ) if Ω is close enough to {0}×Σ. This is deduced from the one-dimensional
Poincaré inequality

´ a
−a |∂su|

2ds ≥ ( π2a )2
´ a
−a |u|

2ds.

12.7. The Calderón projectors

The Calderón projectors are a well-known tool in the theory of elliptic boundary
value problems. Let us first explain this in an informal way.

Let X a smooth manifold and Ω ⊂ X an open set with smooth boundary. If
F(X) ⊂ D′(X) is a space of distributions, we denote by F(Ω) ⊂ D′(Ω) the space
of restrictions to Ω of elements in F(X). So, for example, D′(Ω) is the space of
extendable distributions on Ω and any u ∈ D′(Ω) has an extension eu with eu = 0
in X \ Ωcl.

Now letK be an elliptic, second-order differential operator onX. Let us assume
that K has some realization as an unbounded operator, still denoted by K with
0 6∈ σ(K). Set Ω+ = Ω and Ω− = X \ Ωcl. If u ∈ D′(Ω±) satisfies Ku = 0 in Ω±,
then its trace

γ±u =

(
u�∂Ω

∂νu�∂Ω

)
∈ D′(∂Ω;C2)

is well defined, where ∂ν is some fixed transverse vector field to ∂Ω. Let

Z± = {f ∈ D′(∂Ω;C2) : f = γ±u, for some u ∈ D′(Ω±), Ku = 0}.

Then Z+, Z− are complementary subspaces in D′(∂Ω). The Calderón projectors
C±Ω are the projectors on Z± along Z∓.

Let us assume for example that X = Rs × S, where (S, h) is a compact Rie-
mannian manifold, K = −∂2

s −∆h + m2 and Ω± = R± × S. Then if u ∈ D′(Ω±)
satisfies Ku = 0 in Ω± we have u(s, ·) = e∓sεv(·) for v ∈ D′(S) and ε2 = −∆h+m2.

Further, we have γ±u =

(
v
±εv

)
and an easy computation shows that

C±Ω =
1

2

(
1l ±ε−1

±ε 1l

)
,

which are exactly the projections c± in (4.46) associated to the vacuum state for
the ultra-static spacetime (Rt × S, g), g = −dt2 + h(x)dx2 and the Klein-Gordon
operator −2g +m2.

We now define the Calderón projectors in our concrete situation. We take
Ω± = Ω ∩ {±s > 0}, set

γu =

(
u�Σ
−∂su�Σ

)
, u ∈ C∞(Ω),

and denote by γ± the analogous trace operators defined on C∞(Ω±). Let also

γ∗f = δ(s)⊗ f0 + δ′(s)⊗ f1, f =

(
f0

f1

)
∈ C∞0 (Σ)2,

which is the formal adjoint of γ : L2(Ω)→ L2(Σ;C2), and

S =

(
2i∂td(0, y) −1l

1l 0

)
,

where d(t, y) = |h(t, x)|1/4|h(0, x)|−1/4.
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Definition 12.7.1. The Calderón projectors for KΩ are the operators

C±Ω ··= ∓γ
±K−1

Ω γ∗S.

Note that it is not a priori clear that C±Ω are well defined, even as maps from
C∞0 (Σ)2 to D′(Σ)2. Despite their name, it is even less clear whether C±Ω are projec-
tors on suitable spaces. The first issue is fixed by the following result from [GW5],
which is well known if Σ = ∂Ω± is compact.

Proposition 12.7.2. The maps C±Ω belong to Ψ∞(Σ;M2(C)). In particular,
they are well defined from C∞0 (Σ;C2) to C∞(Σ;C2).

12.8. The Hadamard state associated to Calderón projectors

We recall that q =

(
0 1l
1l 0

)
.

Theorem 12.8.1. Let λ±Wick = ±q ◦ C±Ω . Then λ±Wick are the Cauchy surface
covariances on Σ of a pure analytic Hadamard state ωWick for P .

The proof that λ±Wick are the covariances of a quasi-free state is rather technical.
It relies on various integration by parts formulas and also on the fact thatKΩ+K∗Ω ≥
0. This positivity is a version of reflection positivity in this context.

The proof of the purity of ωWick is also quite delicate, since to show that C±Ω
are projections, one has to give a meaning to C±Ω ◦C

±
Ω , which seems difficult in this

very general situation. One has to use the characterization of quasi-free states in
Proposition 4.9.4 and an approximation argument, see [GW5, Section 4].

The essential ingredient for establishing the analytic Hadamard property of
ωWick is the following proposition, whose proof is sketched below.

Proposition 12.8.2.

WFa(UΣC
±
Ω f) ⊂ N±, ∀f ∈ E ′(Σ)2.

Proof. We prove the result for the + case. Let us set

v ··= −K−1
Ω γ∗Sf, g ··= γ+v = C+

Ω f, u ··= UΣC
+
Ω f,

where UΣ is the Cauchy evolution operator for P . Let us assume for simplicity that
P is defined and analytic in I × Σ for I 3 0 an open interval, and that it extends
holomorphically in t to (I × iI) × Σ. This can easily be ensured by a localization
argument. Writing z = t + is, we denote the holomorphic extension of P by Pz,
and hence P by Pt and K by Pis. We set also

Ir/l = I ∩ {±t > 0}, I± = I ∩ {±s > 0},

D = I × iI, D+ = I × iI+, Dr/l = Ir/l × iI.

Step 1:
we can write v as:

v(s, y) = vr(is+ 0, y)− vl(is− 0, y),

with vr/l ∈ Otemp(Dr/l;D′(Σ)). We have

Pisv = δ(s)⊗ h0(x) + δ′(s)⊗ h1(x) on I × Σ.

Using that δ(s) =
1

2iπ

( 1

s+ i0
− 1

s− i0

)
, this implies that Pzvr/l = w in Dr/l × Σ,

where

w(z, y) =
1

2πz
⊗ h0(x) +

1

2iπz2
⊗ h1(x) + r(z, x),



12.9. EXAMPLES 113

and r(z, x) ∈ O(D;D′(Σ)). Note that w ∈ Otemp(D+;D′(Σ)). We now define
distributions ur/l(t, x) on Ir/l × Σ by

ur/l(t, x) ··= vr/l(t+ i0, y),

so that Ptur/l(t, x) = Pzv
r/l(t+ i0, x) = w(t+ i0, x). In Fig. 5 below we explain the

relation between v, vr/l and ur/l, the arrows corresponding to boundary values.

00

t

is

vvl vr

ul ur

Σ

Fig. 5.

Since Pt is hyperbolic with respect to dt, we can extend ur/l as ũr/l ∈ D′(I×Σ)
with

Ptũ
r/l(t, x) = w(t+ i0, x), ũr/l(t, x) = ur/l(t, x) in Ir/l.

By Proposition 12.2.4, WFa(w(t + i0, x)) ⊂ {τ ≥ 0} and WFau
r/l ⊂ {τ ≥ 0} over

Ir/l × Σ, and so by Theorem 12.2.3 we know that WFaũ
r/l ⊂ {τ ≥ 0} over I × Σ.

One can then deduce from Martineau’s edge of the wedge theorem that there
exist ṽr/l(z, x) ∈ Otemp(D+;D′(Σ)) such that ũr/l(t, x) = ṽr/l(t+ i0, x), Pz ṽr/l = w

and ṽr/l(z, x) = vr/l(z, x) for z ∈ D+ ∩Dr/l.
Now let ṽ(z, x) = ṽr(z, x) − ṽl(z, x) ∈ Otemp(D+;D′(Σ)) and ũ = ṽ(t + i0, x).

We have Pz ṽ = 0 hence Ptũ = 0 and WFa(ũ) ⊂ {τ ≥ 0}, and so WFa(ũ) ⊂ N+ by
microlocal ellipticity.

It remains to check that ũ = UΣC
+
ω f or, equivalently, that %Σu = γ+v, which

will complete the proof of the proposition.
Note that since ṽ(z, x) = ṽr(z, x) − ṽl(z, x), we have v(s, x) = ṽ(is, x) for

s > 0. If we were allowed to take directly the limit s→ 0+, this would imply that
ũ(0, x) = lims→0+ ṽ(is, x) = lims→0+ v(0, x), and similarly i−1∂tũ(0, x) = lims→0+ -
psv(0, x) i.e. %Σũ = γ+v = C+

Ω f .
To justify this computation we use the fact that ũ ∈ C∞(I;D′(Σ)), which in

turn follows from the fact that Ptũ = 0. If ϕ ∈ C∞0 (Σ), then we have 〈ũ(t, ·)|ϕ〉 =
limε→0+〈ṽ(t+iε, ·)|ϕ〉 inD′(I). Since 〈ũ(t, ·)|ϕ〉 ∈ C∞(I), we actually have 〈ũ(t, ·)|ϕ〉 =
limε→0+〈ṽ(t+ iε, ·)|ϕ〉 in C∞(I), which justifies the above computation. 2

12.9. Examples

We conclude this chapter by giving some explicit examples of Calderón pro-
jectors and of the quasi-free state they generate in the ultra-static case. We have
then

P = ∂2
t + ε2, K = −∂2

s + ε2, for ε = (−∆h +m2)
1
2 .

One can realize K as a selfadjoint operators in various ways. Let us list a few
examples.
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12.9.1. Boundary conditions at infinity. Let K∞ the natural selfadjoint
realization of K on L2(R) ⊗ L2(Σ). We saw in Section 12.7 that the associated
Calderón projectors for Ω+ = R+ × Σ are

C±∞ =
1

2

(
1l ±ε−1

±ε 1l

)
,

and the associated state is the vacuum ωvac for P .

12.9.2. Dirichlet boundary conditions. Let now KT be the selfadjoint
realization of K on L2( ] − T, T [ ) ⊗ L2(Σ) with Dirichlet boundary conditions on
s = ±T . We can easily compute K−1

T , namely K−1
T v = u− r, where

u(s) = (2ε)−1

ˆ +∞

−∞

(
θ(s− s′)e−(s−s′)ε + θ(s′ − s)e(s−s′)ε

)
v(s′)ds′,

and

r(s) = (2ε)−1
(

e4Tε − 1
)−1(

e(2T−s)εv+ − esεv+ − e−sεv− + e(s+2T )εv−
)
,

v± =

ˆ T

−T
e±s

′εv(s′)ds′.

Taking Ω+ = ]0, T [×Σ, the Calderón projectors are

(12.11) C±T =
1

2

(
1l ±ε−1th(Tε)

±ε coth(Tε) 1l

)
.

The associated state is a pure Hadamard state for P . If m = 0 the infrared
singularity at ε = 0 is smoothed out by the Dirichlet boundary condition. When
T →∞, C±T converge to C±∞.

12.9.3. β-periodic boundary conditions. Let Sβ = ]−β/2, β/2 [ with end-
points identified be the circle of length β and Kper

β be the β-periodic realization
of K on L2(Sβ) ⊗ L2(Σ). The kernel of (Kper

β )−1 has the following well-known
expression:

(Kper
β )−1(s) =

e−sε + e(s−β)ε

2ε(1− e−βε)
, s ∈ ] 0, β [,

extended to s ∈ R by β-periodicity. Let us take Ω+ = ] 0, β/2 [. Since ∂Ω+ =
{0} × Σ ∪ {β/2} × Σ, we can identify C∞0 (∂Ω+;C2) with C∞0 (Σ;C2)⊕ C∞0 (Σ;C2)
by writing f ∈ C∞0 (∂Ω+;C2) as f = f (0) ⊕ f (β/2) for f (i) ∈ C∞0 (Σ;C2). We set

T (f (0) ⊕ f (β/2)) = f (β/2) ⊕ f (0)

and denote by εd the operator ε⊕ ε.
Then an easy computation shows that the Calderón projectors are:

C±β =
1

2

(
1l ±ε−1

d (coth(β2 εd)) + T sh−1((β2 εd))

±εd(coth(β2 εd))− T sh−1((β2 εd)) 1l

)
.

Since ∂Ω+ consists of two copies of Σ, the projections C±β are associated to a
pure quasi-free state on the doubled phase space (Yd, qd) obtained from (Y, q) =
(C∞0 (Σ;C2), q), see Subsection 4.8.4.

If we restrict this state to CCR(Y, q), we obtain the thermal state ωβ at tem-
perature β−1 for P , see Subsection 4.10.3.



CHAPTER 13

Hadamard states and characteristic Cauchy
problem

In this chapter we describe a different construction of Hadamard states which
relies on the use of characteristic cones and is due to Moretti [Mo1, Mo2]. The
original motivation was to construct a canonical Hadamard state on spacetimes
with some asymptotic symmetries. The class of spacetimes considered are those
that are asymptotically flat at past (or future) null infinity. After a conformal
transformation, the original spacetime (M, g) can be regarded as the interior of a
future light cone I −, called the past null infinity in some larger space time (M̃, g̃),
where g̃ = Ω2g in M .

Since I − is a null hypersurface, any normal vector field to I − is also tangent
to I −, so the trace on I − of a solution φ ∈ Solsc(P ) of the Klein-Gordon equation
in M consists of a single scalar function. The symplectic form on Solsc(P ) induces
a boundary symplectic form qI− on a space HI− of scalar functions on I −. One
can use this boundary symplectic space as a new phase space and a quasi-free state
ωI− on CCRpol(HI− , qI−) induces a quasi-free state ω on CCR(P ).

The Hadamard condition for ω is rather easy to characterize in terms of ωI− ,
since the covariances of ωI− are simply scalar distributions, and not 2×2 matrices
as in the case of a space-like Cauchy surface Σ considered in Chapter 11.

The past null infinity in an asymptotically flat spacetime (M, g) is traditionally
denoted by I − and the metric g̃ and conformal factor Ω induce on I − a conformal
frame, consisting of a degenerate Riemannian metric h̃ on I − and a vector field n.
The group of diffeomorphisms of I − leaving the set of conformal frames invariant
is called the (Bondi-Metzner-Sachs) BMS group, which is interpreted as the group
of asymptotic symmetries of M at past null infinity.

At the end of this chapter we give a short description of these objects. The BMS
groupGBMS acts onHI− by symplectic transformations, and a natural state on I −

should be invariant under the action of GBMS. We will describe the construction of
this state due to Moretti [Mo1].

13.1. Klein-Gordon fields inside future lightcones

13.1.1. Future lightcones. Let (M, g) a globally hyperbolic spacetime and
p ∈M a base point. It is known, see [W1, Section 8.1], that on any spacetime M ,
I+(p) is open with I+(p)cl = J+(p)cl, ∂I+(p) = ∂J+(p). Moreover, any causal curve
from p to q ∈ ∂I+(p) must be a null geodesic. Since (M, g) is globally hyperbolic,
J+(p) is closed, see [BGP, Appendix A.5], hence I+(p)cl = J+(p).

We set

(13.1) M0 ··= I+(p), C ··= ∂I+(p) \ {p},

so C is the future lightcone from p, with its tip p removed and M0 is the interior of
C. The following results on the causal structure of M0 are due to Moretti [Mo1,
Theorem 4.1] and [Mo2, Lemma 4.3].

115
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Proposition 13.1.1. The spacetime (M, g0) is globally hyperbolic. Moreover

(13.2) JM0
+ (K) = JM+ (K), JM0

− (K) = JM− (K) ∩M0, ∀K ⊂M0.

Proposition 13.1.2. Let K b M0. Then there exists a neighborhood U of p
in M such that no null geodesic starting from K intersects Ccl ∪ U .

13.1.2. Klein-Gordon fields in M0. Let P = P (x, ∂x) be a Klein-Gordon
operator in M , Gret/adv its retarded/advanced inverses and P0 = P0(x, ∂x) the
restriction of P to M0. From Proposition 13.1.1 we obtain immediately that the
retarded/advanced inverses Gret/adv,0 of P0 are the restrictions of Gret/adv to M0

and hence
G0 = G�M0×M0

,

where G,G0 are the Pauli-Jordan functions for P, P0.

13.1.3. Null coordinates near C. Clearly, the cone C will in general not
be an embedded submanifold of M , due to the possible presence of caustics.

Let us introduce some assumptions from [GW2], which avoid this problem and
are a version of the notion of asymptotic flatness (with past time infinity). We will
come back to this notion in Section 13.5.

We assume that there exists a function f ∈ C∞(M) such that
(13.3)

(1) C ⊂ f−1({0}), ∇af 6= 0 on C, ∇af(p) = 0, ∇a∇bf(p) = −2gab(p),

(2) the vector field ∇af is complete on C.

It follows that C is a smooth hypersurface, although Ccl is not. Moreover, since C
is a null hypersurface, ∇af is tangent to C.

To construct null coordinates near C, one needs to fix a compact submanifold
S ⊂ C, of codimension 2 in M , such that ∇af is transverse to S. Then S is
diffeomorphic to Sn−2 and C to R× Sn−2.

One can then, see e.g., [GW2, Lemmas 2.5, 2.6], prove the following standard
fact:

Proposition 13.1.3. There exist a neighborhood U of C in M and a diffeo-
morphism

χ : U −→ R× R× Sn−2

x 7−→ (f(x), s(x), θ(x))

such that

(13.4) (χ−1)∗(∇af�C) = −∂s,
(
(χ−1)∗g

)
�C= −2dfds+ hij(s, θ)dθ

idθj ,

where hij(s, θ)dθidθj is a smooth s-dependent Riemannian metric on Sn−2. More-
over, if hij(θ)dθidθj is the standard metric on Sn−2 one has

(13.5) |hij(s, θ)|
1
2 = O(e2s(n−2))|hij(θ)|

1
2 for s ∈ ]−∞, R], R > 0.

The above diffeomorphism depends only on f satisfying (13.3) and on the choice
of the submanifold S.

Restricting χ to C gives a diffeomorphism χ�C : C → R × Sn−2 that is rather
easy to describe: let us first fix normal coordinates (y0, y) at p such that in a
neighborhood of p, C = {(y0)2 − |y|2 = 0, y0 > 0}.

If {φt}t∈R is the flow of ∇af on C, we define s = s(x) for x ∈ C by x = φs(x
′)

for a unique x′ ∈ S. One sees that φt(x′) → p when t → −∞ and one defines
θ(x) = limt→−∞

y
|y| (φt(x

′)) ∈ Sn−2.
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13.1.4. Change of gauge. One can view the choice of (f, S) as the choice of
a gauge. If ω ∈ C∞(M) is such that ω > 0 on C and ω(p) = 1, then f ′ = ωf also
satisfies (13.3). Let also S′ be another submanifold transverse to ∇af .

If χ′ : U ′ → R× R× Sn−2 is the corresponding diffeomorphism in Proposition
13.1.3 one can easily see that

ψ ··= (χ′�C) ◦ (χ�C)−1 : (s, θ) 7−→ (s′(s, θ), θ),

for some function s′(s, θ) on R × Sn−2. Explicitly, if S′ is given in the (s, θ) coor-
dinates by {s = b(θ)}, one has

(13.6) s′(s, θ) = −b(θ) +

ˆ s

0

ω−1(σ, θ)dθ.

The map ψ is quite similar to the so-called supertranslations, see Section 13.5. If
h′(s′, θ′)dθ′2 is the corresponding metric in (13.4), then h′dθ′2 = (ψ)∗hdθ2.

13.2. The boundary symplectic space

Let us consider the symplectic space (Solsc(P0), q). Clearly, any solution φ0 ∈
Solsc(P0) extends to a solution φ ∈ Solsc(P ), hence its trace on C

(13.7) %Cφ0 ··= φ0�C ,

is well defined. Note that since C is null, a vector field n normal to C is also tangent
to C, so ∂nφ0�C is determined by φ0�C .

We would like to introduce a boundary symplectic space (HC , qC) of functions
on C which will play the role of (C∞0 (Σ;C2), q) for a Cauchy surface Σ in M0 and
such that

%C : (Solsc(P0), q) −→ (HC , qC)

is weakly symplectic, i.e. such that %∗CqC%C = q. Note that this implies that %C is
injective. The map %C is sometimes called a bulk-to-boundary correspondence.

The space HC should be small enough to admit interesting quasi-free states,
and depend only on C, not on a particular gauge (f, S).

Let us denote by H∞f,S the set of g ∈ D′(C) such that
ˆ
R×Sn−2

∣∣∂αs ∂βθ g(s, θ)
∣∣2∣∣h(s, θ)

∣∣ 1
2 dsdθ <∞, ∀(α, β) ∈ Nn−1.

equipped with its Fréchet space topology and

H∞f,S,R ··= {g ∈ H∞f,S : supp g ⊂ ]−∞, R], R ∈ R}.

The space H∞f,S depends on (f, S), but the inductive limit

HC ··=
⋃
R∈R

H∞f,S,R

does not. This can be verified quite easily using (13.6) and the estimates in [GW2,
Lemmas 2.7, 2.8].

Proposition 13.2.1. Set

(13.8) g1 ·qCg2 ··= i

ˆ
R×Sn−2

(
∂sg1g2 − g1∂sg2

)
|h(s, θ)| 12 dsdθ, g1, g2 ∈ HC .

Then:
(1) qC is well defined and independent on the choice of the gauge (f, S),
(2) (HC , qC) is a Hermitian space,
(3) %C : (Solsc(P0), q)→ (HC , qC) is unitary.



118 13. HADAMARD STATES AND CHARACTERISTIC CAUCHY PROBLEM

Proof. qC is clearly well defined on HC . Its independence on the choice of the
gauge follows from the discussion of changes of gauge in Subsection 13.1.4.

Let us now prove (2). We denote by m(θ)dθ2 the canonical metric on Sn−2 and
set

(13.9) Ug(s, θ) = |m|−1/4|h|1/4g ◦ (χ�C)−1(s, θ).

We have

g1 ·qCg2 = i−1

ˆ
R×Sn−2

(
∂sUg1Ug2 − Ug1∂sUg2

)
|m| 12 (θ)dsdθ.

We can integrate by parts in s with no boundary terms since Ug → 0 when s→ −∞
and suppUg ⊂ ]−∞, R] and obtain that

(13.10) g1 ·qCg2 = 2i−1

ˆ
R×Sn−2

Ug1∂sUg2|m|
1
2 (θ)dsdθ.

Hence, if g1 ·qCg2 = 0 for all g1 ∈ HC , we have ∂sUg2 = 0, and so Ug2 = 0.
Now let us prove (3). We first show that %C maps Solsc(P0) into HC . Let us

verify that

(13.11) %C : C∞0 (M) −→ HC continuously.

This can be easily deduced from [GW2, Lemma 2.8]. Next, if φ0 ∈ Solsc(P0) with
suppφ0 ⊂ JM0(K) for some K bM0, then we can extend φ0 as φ ∈ Solsc(P ) with
suppφ ⊂ J(K) and suppφ ∩ C ⊂ (J+(K) ∩ J+(p)) ∪ J−(K) ∩ J+(p). The first set
is empty by Proposition 13.1.1, the second is compact by Lemma 5.4.3. Therefore,
%Cφ0 = %Cu for some u ∈ C∞0 (M) hence belongs to HC .

We now fix a Cauchy surface Σ in M0 and pick φ1, φ2 ∈ Solsc(P0), gi = %Cφi.
For Ja(φ1, φ2) as in Subsection 5.5.2 we have φ1 · qφ2 =

´
Σ
Ja(φ1, φ2)nadVolh.

Applying the Gauss formula as in Subsection 5.2.4 using the coordinates (f, s, θ)
on C, we obtain that φ1 · qφ2 = g1 ·qCg2.

To justify the application of the Gauss formula to the non-smooth surface Ccl,
it suffices to replace Ccl in an ε-neighborhood of p by a piece of a smooth Cauchy
surface in M , the contribution of the integral on this part tends then to 0 when
ε→ 0. 2

13.3. The Hadamard condition on the boundary

Let ωC a quasi-free state on CCRpol(HC , qC), with covariances λ±C . We will
call ωC a boundary state. From Proposition 13.2.1 we see that ωC induces a state
ω0 for CCR(P0) , called the induced bulk state, by setting

(13.12) Λ±0 ··= (%C ◦G0)λ±C(%C ◦G0).

We would like to give sufficient conditions on λ±C which ensure that the induced
state ω0 is a Hadamard state.

Recall that we use the density dVolg to identify distributions with distributional
densities onM0. Similarly, we use the density |h(s, θ)| 12 dsdθ to identify distributions
with distributional densities on C. Changing the gauge (f, S) amounts to multiply-
ing distributions on C by a smooth, non-zero function hence does not change their
wavefront set.

We will denote by X = (x, ξ) resp. Y = (y, η) the elements of T ∗X \o resp.
T ∗C \o. If necessary, we introduce near C the local coordinates (f, s, θ) as in Propo-
sition 13.1.3, which we will denote by (r, s, y), the dual variables being (%, σ, η).

Let i∗ : T ∗CM → T ∗C be the pullback by the injection i : C →M and recall that
N∗C = (i∗)−1(o) is the conormal bundle of C in M , see Subsection 7.2.4. Recall
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also that N± ⊂ T ∗M \o are the two connected components of the characteristic
manifold N of p.

Lemma 13.3.1. Consider the function F (y, η) = η·∇af(y) on T ∗C and denote

(13.13) T ∗C± ··= {Y ∈ T ∗C : ±F (Y ) > 0}, T ∗C0 ··= {Y ∈ T ∗C : F (Y ) = 0}.
Then
(1) i∗ : T ∗CM ∩N± −→ T ∗C± is bijective.
(2) (i∗)−1(T ∗C0) ∩N = N∗C,
(3) For Y ∈ T ∗C, X ∈ T ∗M let us write Y ∼ X if Y ∈ T ∗C± and (i∗)−1(Y ) ∼ X.

Let χ, ψ ∈ C∞0 (M) with p 6∈ suppψ. Then WF(%CψGχ)′ ⊂ {(Y,X) : Y ∼
X,x ∈M0}.
The sets T ∗C±, T ∗C0 are clearly independent on the choice of f .

Proof. Let us use the above coordinates, so that F (Y ) = σ. By Proposition 13.1.3
we have

(13.14) p(X) = −2%σ + h(0, y, η), X ∈ T ∗CM.

for h(s, y, η) = η ·h−1(s, y)η and N∗C = {r = σ = η = 0}. The proof of (1) and
(2) is then easy. Let us prove (3). Since p 6∈ suppψ, the singularity of C at p is
harmless. We check that WF(%C)′ = {(Y,X) ∈ T ∗C \o× T ∗M \o : Y = i∗X} and
know that WF(ψGχ)′ ⊂ {(X1, X2) : X1 ∼ X2, x2 ∈ M0}, see Proposition 7.4.4.
Then we apply the composition rule in Subsection 7.2.8. 2

T ∗C+
T ∗C−

T ∗C0

Fig. 6

Theorem 13.3.2. Let λ±C be the covariances of a boundary state ωC . Assume
that λ±C : HC → H∗C are continuous and let

Λ±0 = (%C ◦G0)∗λ±C(%C ◦G0).

Then
(1) Λ±0 ∈ D′(M0 ×M0) are the spacetime covariances of a quasi-free state ω0 for

P0.
(2) Assume that

(13.15) WF(λ±C)′ ∩ T ∗C∓ × T ∗C = ∅.
Then the bulk state ω0 is a Hadamard state for P0.

Proof. Assertion (1) follows from (13.11).
The proof of assertion (2) relies on a idea due to Moretti [Mo2], which allows

to avoid the difficulties caused by the tip p of C. Note first that since λ±C = λ±∗C
we deduce from (13.15) that

(13.16) WF(λ±C)′ ⊂ (T ∗C± ∪ T ∗C0)× (T ∗C± ∪ T ∗C0).
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It clearly suffices to estimate WF(χΛ±0 χ)′ for χ ∈ C∞0 (M0).
Observe first that %CG0χ = %CGχ since G0 = G �M0×M0

. By the support
property of G, we can pick ψ ∈ C∞0 (M) such that %CGχ = %CψGχ. By Proposition
13.1.2, we can split ψ as ψ0 + ψ∞, where ψi ∈ C∞0 (M), ψ0 = 1 near p, and no null
geodesics from suppχ intersect C in suppψ0. Using that WF(G)′ ⊂ C we obtain
that ψ0Gχ : D′(M0)→ C∞0 (M) continuously, hence

%ψ0Gχ : D′(M) −→ HC
continuously, by (13.11). Since by assumption λ±C : HC → H∗C is continuous, in the
definition of Λ±0 we can replace %CGχ by %Cψ∞Gχ, modulo a smoothing operator
on M0.

From Lemma 13.3.1 we know that
WF(%Cψ∞Gχ)′ ⊂ {(Y,X) : Y ∼ X,x ∈M0},

WF((%Cψ∞Gχ)∗)′ ⊂ {(X,Y ) : Y ∼ X,x ∈M0}.

We observe that if Y ∼ X for x ∈ M0, then Y 6∈ T ∗Y 0. Indeed, if we assume that
Y ∈ T ∗Y 0 and Y = i∗X ′ for X ′ ∼ X, then necessarily X ′ ∈ N∗C, by Lemma
13.3.1. Since C is null, N∗C is invariant under the Hamiltonian flow of p, hence
X ∈ N∗C and x ∈ C, which is a contradiction.

This implies that we can find a pseudodifferential operator Q ∈ Ψ0
c(C) with

essential support (see Subsection 10.2.5) disjoint from T ∗C0 such that

%Cψ∞Gχ = Q%Cψ∞Gχ modulo a smoothing operator,

and hence we can replace λ±C by Q∗λ±CQ with

WF(Q∗λ±CQ) ⊂ T ∗C+ × T ∗C+,

by (13.16). We can then apply twice the rules for composition of kernels in Sub-
section 7.2.8 and obtain by Lemma 13.3.1 that

WF(χΛ±0 χ)′ ⊂ N± ×N±,
i.e. condition (genHad) in Definition 8.4.1 is satisfied. By Thm 8.4.2 ω0 is a
Hadamard state for P0. 2

13.4. Construction of pure boundary Hadamard states

It is now rather easy to construct, for each given gauge (f, S), a boundary state
ωC which induces a Hadamard state ω0 in M0. We denote L2(R× Sn−2; |m| 12 dθds)
simply by L2(R × Sn−2) and recall that the map U : HC → L2(R × Sn−2) was
defined in (13.9).

Theorem 13.4.1. Set

g1 ·λ±Cg2 ··= 2(Ug1|1lR±(Ds)|Ds|Ug2)L2(R×Sn−2).

Then the following holds:
(1) λ±C are the covariances of a pure quasi-free state ωC on CCRpol(HC , qC).
(2) ωC depends on the choice of f but not of S.
(3) ωC induces a Hadamard state ω0 in P0.
(4) Assume that dimM ≥ 4. Then the state ω0 is pure.

Proof. The fact that λ±C are the covariances of a quasi-free state is obvious. To
prove that ωC is pure, we can apply Proposition 4.9.3. The completion of UHC for
the norm obtained from λ±C is equal to |Ds|

1
2L2(R × Sn−2), on which 1l±R (Ds) are

complementary projections. This completes the proof of (1).
Changing the surface S amounts to replacing s by s′ = s−b(θ) for some function

b on Sn−2, so Ds′ = Ds, which proves (2). Statement (3) follows from Theorem
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13.3.2 and the fact that in the coordinates (f, θ) on C, T ∗C± is given by {±σ > 0}.
We refer the reader to [GW2] for details.

It remains to explain the proof of (4). The fact that ωC is pure does not
automatically ensure that ω0 is pure. To prove this one has to show, again by
Proposition 4.9.3, that U%CSolsc(P0) is dense in |Ds|

1
2L2(R× Sn−2).

This can be deduced from the solvability of the characteristic Cauchy problem

(13.17)
{
P0φ = 0 in M0,
φ�C= g,

in energy spaces, by adapting a method due to Hörmander [H6]. We refer again
the reader to [GW2]. The restriction to n ≥ 4 comes from the use of a Hardy-type
inequality on the cone C. 2

13.5. Asymptotically flat spacetimes

The above method of constructing a bulk Hadamard state from a boundary
state was originally developed by Moretti [Mo1, Mo2] for spacetimes that are
asymptotically flat at past (or future) null infinity. In this case it is important
to consider only the conformal wave equation and to assume that the spacetime
dimension n is equal to 4 (the value of n is important when one takes the trace of
some identities between tensors). In this subsection we would like to explain this
notion and its relationship to the previous subsections. Our exposition below follows
[Mo2], [DMP1] or [W1, Section 11], with some slight differences. For example,
the conformal factor Ω already incorporates a change of gauge Ω→ Ω′ = ωΩ such
that (13.18) is satisfied.

Definition 13.5.1. A spacetime (M, g) is asymptotically flat at past null in-
finity if there exists another spacetime (M̃, g̃) such that:
(1) M ⊂ M̃ is open, I − ··= ∂M is a smooth hypersurface homeomorphic to R×S2,
(2) there exists Ω ∈ C∞(M̃) with Ω > 0 on M , Ω = 0, dΩ 6= 0 on I −,
(3) g̃|M = Ω2|Mg and I − ∩ JM̃+ (M) = ∅,
(4) g̃ab∇̃aΩ∇̃bΩ = 0 on I −,
(5) If i : I − → M̃ is the canonical injection, then

(13.18)
(i) na = ∇̃aΩ is complete on I −,

(ii) i∗(∇̃a∇̃bΩ) = 0.

Let us denote byM the set of (g̃,Ω) such that conditions (2), (3), (4), (5) hold.
From conditions (2), (3) we see that if (g̃,Ω) and (g̃′,Ω′) belong toM, then there
exists ω ∈ C∞(M̃), ω > 0 such that Ω′ = ωΩ, g̃′ = ω2g̃. Moreover from conditions
(4) and (5) it follows that na∇̃aω = 0 on I −, see Lemma 13.5.3 below.

13.5.1. Conformal frames. Let (g̃,Ω) ∈M. The manifold I − is null for g̃
and is naturally equipped with the vector field n, which is tangent to I − and with
h̃ = g̃�I− , which is a degenerate Riemannian metric with kernel spanned by n.

Definition 13.5.2. The pair (h̃, n) is called the conformal frame on I − as-
sociated to (g̃,Ω). The set of all conformal frames associated to elements of M is
denoted by C.

The above change of conformal factor Ω→ Ω′ = ωΩ is called a gauge transfor-
mation and induces the change (h̃, n) → (h̃′, n′) = (ω2h̃, ω−1n) on the associated
conformal frames.
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Lemma 13.5.3. (1) Let (g̃,Ω) ∈ M. Then the associated conformal frame
(h̃, n) satisfies:

(13.19) Ker h̃(x) = Rn(x), x ∈ I −, Lnh̃ = 0, n is complete.

(2) Let (h̃, n), (h̃′, n′) ∈ C. Then there exists ω ∈ C∞(I −) with ω > 0 and
Lnω = 0 such that (h̃′, n′) = (ω2h̃, ω−1n).

Proof. Let us complete x0 = Ω with local coordinates xi, 1 ≤ i ≤ 3, and remove
the tildes to simplify notation. Then if b = i∗(∇i∇jΩ), we have bij = −Γ0

ij =

− 1
2g

0k(∂igjk + ∂jgik − ∂kgij) since g00 = 0 on I −. We compute the Lie derivative
Lnhij = nk∂kgij + ∂in

kgkj + gik∂in
k. Using again that g00 = 0, we see that

g0kgkj = δ0
j = 0. Taking derivatives of this identity we obtain that bij = 1

2Lnhij ,
which proves (1).

Let us prove (2). The existence of ω ∈ C∞(I −) with ω > 0 is obvious. To
show that Lnω = 0 we compute

Ln(ω2h) = ω2Lnh+ 2ωLn(ω)h,

Lω−1n(h) = ω−1Lnh+ dω−1 ⊗ hn+ hn⊗ dω−1,

whence
Lω−1n(ω2h) = ωLnh+ 2Lnωh− d lnω ⊗ hn− hn⊗ d lnω.

Using (1) for (h̃, n) and (h̃′, n′) this implies that Lnω = 0. 2

13.5.2. Bondi frames. Let now (h̃, n) be a conformal frame and S, S′ ⊂ I −

be two smooth surfaces transverse to n. Since n is complete, its flow defines a
diffeomorphism

φS′←S : S −→ S′,

by identifying points in S and S′ which are on the same integral curve of n. This
diffeomorphism is independent on (h̃, n). Moreover, the flow of n defines a diffeo-
morphism

(13.20)
ψn,S : Ru × S −→ I −, with

S = ψn,S({0} × S), n = (ψn,S)∗
∂
∂u , (ψn,S)∗h̃ = hS(y)dy2,

where hS(y)dy2 is a Riemannian metric on S, independent on u. We have ψ−1
n,S(S′) =

{(u, y) : u = f(y))} for some f ∈ C∞(S) and

(13.21) ψ−1
n,S′ ◦ ψn,S(u, y) = (u− f(y), φS′←S(y)), (u, y) ∈ Ru × S.

Since I − is diffeomorphic to R× S2, S is diffeomorphic to S2. Let mS denote
the unique Riemannian metric on S of constant Gaussian curvature equal to 1. By
uniqueness, we have mS = (φS′←S)∗mS′ .

Definition 13.5.4. A conformal frame (h̃, n) is a Bondi frame if for some (and
hence for all) surface S transverse to n one has h̃�S= mS.

Lemma 13.5.5. The set C of conformal frames contains a unique Bondi frame
(h̃B , nB).

Proof. Let us fix (h̃, n) ∈ C and S transverse to n. After transportation by ψn,S ,
all conformal frames are of the form (ω2

ShS , ω
−1
S ∂u) for some ωS ∈ C∞(S), ωS > 0.

It is well known that any Riemannian metric on S2 is conformal to the standard
metric. This means that there is a unique such ωS with ω2

ShS = mS . 2

If we fix a transverse surface S and identify S with S2 we can introduce the
so-called Bondi coordinates on I −, (u, θ, ϕ), such that nB = ∂u and h̃B = dθ2 +
sin2 θdϕ2.
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The existence of a unique Bondi frame implies the following rigidity result: we
saw that there exists a diffeomorphism ψ : I − → Ru × S2 such that the natural
image of C under ψ is the set of pairs (ω2mS2 , ω−1∂u) for ω > 0 an arbitrary
smooth function on S2.This implies that if (Mi, gi) i = 1, 2, are two asymptotically
flat spacetimes, there exists a diffeomorphism ψ : I −1 → I −2 such that ψ(C1) = C2.
Another illustration of this rigidity is the fact that the BMS group defined below
is independent of the asymptotically flat spacetime (M, g).

13.5.3. The BMS group. We now recall the definition of the Bondi-Metzner-
Sachs group, see e.g. [W1, Section 11] or [DMP1]. Its physical interpretation is the
group of asymptotic symmetries of (M, g) near past null infinity. If χ : I − → I −

is a diffeomorphism, we let χ act on (h̃, n) by

αχ(h̃, n) ··= ((χ−1)∗h̃, χ∗n).

Definition 13.5.6. The BMS group GBMS is the group of diffeomorphisms
χ : I − → I − such that αχ(C) ⊂ C.

One can associate to χ ∈ GBMS a conformal factor ωχ by the rule

(13.22) αχ(h̃B , nB) =·· (ω2
χ(χ−1)∗h̃B , ω

−1
χ χ∗nB),

where (h̃B , nB) is the Bondi frame. From αχ1
◦αχ2

= αχ1◦χ2
we obtain the identity

(13.23) ωχ1◦χ2
= (ωχ1

◦ χ2)ωχ2
.

It is convenient to describe the action of the BMS group in Bondi coordinates
(u, θ, ϕ) on I − associated to the Bondi frame.

Let us identify S2 with C by stereographic projection: (θ, ϕ) 7→ z = eiϕ coth( θ2 ),
so that dθ2 + sin2 θdϕ2 = 4(1 + zz)−2dzdz.

Functions on C will be denoted by f(z, z), to emphasize the fact that they do
not need to be holomorphic (nor anti-holomorphic). One can prove that GBMS can
be identified with the semi-direct product of SO↑(1, 3) and C∞(S2) as follows, see
[DMP1]:

Let Π : SL(2,C) → SO↑(1, 3) be the covering map with Π−1(1l) = {±1l}. For

Λ = Π

(
aΛ bΛ
cΛ dΛ

)
one sets

KΛ(z, z) =
1 + |z|2

|aΛz + bΛ|2 + |cΛz + dΛ|2

and one associates to (Λ, f) ∈ SO↑(1, 3)× C∞(S2) the map: χ : I − → I − given
in the Bondi coordinates fixed above by the rule

(u, z, z) 7−→ (u′, z′, z′),

where

(13.24) u′ = KΛ(z, z)(u+ f(z, z)) and z′ =
aΛz + bΛ
cΛz + dΛ

.

We have

(13.25) ωχ(z, z) = KΛ(z, z)−1.

The diffeomorphisms obtained for Λ = 1l are called supertranslations.
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13.6. The canonical symplectic space on I −

Assume that (M, g) and (M̃, g̃) (and hence (M, g̃)) are globally hyperbolic and
the inclusion i : (M, g̃) → (M̃, g̃) is causally compatible, see Subsection 5.2.6. Let
P = −2g + 1

6Scalg, resp. P̃ , be the conformal wave operator on (M, g), resp.
(M̃, g̃). By Proposition 6.3.1, the map

(Solsc(P ), q) 3 φ 7−→ φ̃ = Ω−1φ ∈ Solsc(P̃ , q̃)

is an injective homomorphism of pseudo-Hermitian spaces, and we can consider

v ··= φ̃�I−∈ C∞(I −).

Since an element χ of the BMS group corresponds to a change Ω→ Ω′ = ωχΩ, we
see that the natural action of χ ∈ GBMS on functions on I − is

(13.26) Uχv ··= (ωχv) ◦ χ−1,

and by (13.23) GBMS 3 χ 7→ Uχ ∈ L(C∞(I −)) is a group homomorphism.
In analogy with Proposition 13.2.1, one can now equip suitable subspaces of

C∞(I −), such as, for example, C∞0 (I −), with a canonical Hermitian form. Let
(h̃B , nB) be the Bondi frame and S be transverse to nB .

Definition 13.6.1. We set for v1, v2 ∈ C∞0 (I −)

v1 ·qv2 ··= i

ˆ
R×S

(
∂uw1w2 − w1∂uw2

)
du dVolmS ,

where

(13.27) w = v ◦ ψnB ,S .

Proposition 13.6.2. (1) the Hermitian form q is independent on the choice
of the transverse surface S,

(2) one has (Uχ)∗qUχ = q for χ ∈ GBMS, i.e. GBMS acts as unitary transforma-
tions of (C∞0 (I +), q).

Proof. Let us first prove (1). If S′ is another tranverse surface and w′ = v◦ψnB ,S′ ,
then from (13.21) it follows that

(13.28) w′j(u
′, y′) = wj(u

′ + f ′(y′), φS←S′(y
′)),

and (φS←S′)
∗mS′ = mS , which implies (1).

To prove (2), we work again with the Bondi frame (h̃B , nB), and identify I −

with R× S using ψnB ,S and S with C as in Subsection 13.5.3. The charge q takes
the form

v1 ·qv2 = i

ˆ
R×C

(
∂uw1w2 − w1∂uw2

) 4

(1 + zz)2
dudzdz.

We equip R×C with the density 4(1 + |z|2)−2dudzdz and denote by w 7→ Vχw the
action of χ ∈ GBMS obtained from Uχ and the identification (13.27). The operator
Du = i−1∂u is essentially selfadjoint on C∞0 (R × C), and integrating by parts we
obtain that

v1 ·qv2 = 2(w1|Duw2)L2(R×C).

From (13.24) it follows, by an easy computation, that

(13.29) V ∗χ Vχ = KΛ1l, V ∗χDuVχ = Du,

where we consider Vχ as an operator on L2(R × C) and KΛ is the operator of
multiplication by KΛ(z, z). This implies (2). 2

There is a considerable freedom in the choice of a symplectic space Y on which
q is defined.
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A natural canonical choice is the space H1(I −) defined as the completion of
C∞0 (I −) with respect to the norm

‖v‖21 = ‖w‖2L2(R×S) + ‖∂uw‖2L2(R×S),

where as above w = v ◦ ψnB ,S and R× S is equipped with the density du dVolmS .
The operator Du = i−1∂u acting on L2(R × S) is essentially selfadjoint on

C∞0 (R× S) and H1(I −) is the inverse image of DomDu under the map v 7→ w =
v ◦ ψnB ,S .

A change of transverse surface S does not change the space H1(I −), but
simply equips it with an equivalent norm. The group GBMS acts on (H1(I −), q)
by bounded unitary transformations and q is non-degenerate on H1(I −), since Du

is injective.

13.6.1. The canonical quasi-free state on I −. We now describe the con-
struction of a canonical quasi-free state ωI− on CCRpol(H1(I −), q), due to Moretti
[Mo1].

Proposition 13.6.3. Let us set

v1 ·Λ±v2 ··= 2(w1|1lR±(Du)|Du|w2)L2(R×S), vi ∈ H1(I −),

for wi = vi ◦ ψnB ,S. Then
(1) Λ± are independent of the choice of the transverse surface S,
(2) Λ± are the covariances of a pure, quasi-free state ωI− on CCRpol(H1(I −), q)

which is invariant under the action of GBMS.

Proof. If S, S′ are two transverse surfaces and w = v ◦ ψnB ,S , w′ = v ◦ ψnB ,S′ ,
then w′ = US′←Sw, where US′←S is given in (13.28). We check that US′←S :
L2(R× S)→ L2(R× S′) is unitary with US′←SDuU

∗
S′←S = Du. This implies that

Λ± are independent of the choice of S.
To prove (2), we use the notation in the proof of Proposition 13.6.2. Let Sχ =

VχK
− 1

2

Λ , which is unitary by (13.29). SinceKΛ commutes withDu we have S∗ΛDuSΛ

= Du, hence S∗Λ1lR±(Du)|Du|SΛ = 1lR±(Du)|Du| by functional calculus. Using
again the fact that KΛ commutes with Du, this implies that V ∗Λ 1lR±(Du)|Du|VΛ =
1lR±(Du)|Du|, i.e. that U∗χΛ±Uχ = Λ±. 2

Moretti proved in [Mo1] that ωI− is the unique pure quasi-free state ω on
CCRpol(H1(I −), q) with the following two properties:
(1) ω is invariant under GBMS,
(2) if {Ts}s∈R ⊂ GBMS is the one-parameter subgroup of translations in u and

αs = UTs , then ω is a non-degenerate ground state for {αs}s∈R, see Definition
9.1.1.

13.6.2. Construction of a quasi-free state in M . To obtain quasi-free
states for P in M from states on CCRpol(H1(I −), q), %I−Solsc(P ) should be
contained in H1(I −) for %I−φ = (Ω−1φ)�I− .

If we introduce coordinates (u, y) on I − as in Subsection 13.5.2, then it follows
from Definition 13.5.1 (3) that JM̃ (K)∩I − is included in ψ−1

n,S({u ≤ CK}) for any
K bM , so the support of %I−φ for φ ∈ Solsc(P ) only extends towards −∞ in the
u variable.

If (M, g) is asymptotically flat with past time infinity, see [Mo2, Appendix A]
for a precise definition, then u = −∞ corresponds to an actual point i− of M̃ , and
the situation is essentially the same as the one in Section 13.1, i.e. (M, g) is modulo
a conformal transformation the interior of a smooth, future lightcone.
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In more complicated situations, like the Schwarzschild spacetime, see [DMP3]
or cosmological spacetimes, see [DMP4], it is necessary to prove some decay esti-
mates of %I−φ and its derivative in u when u→ −∞ to ensure that %I−Solsc(P ) ⊂
H1(I −). The discussion of these estimates is beyond the scope of this survey.



CHAPTER 14

Klein-Gordon fields on spacetimes with Killing
horizons

As recalled in the Introduction, one of the most spectacular results of QFT on
curved spacetimes is the Hawking effect, discovered by Hawking [Ha]. Hawking
considered a Klein-Gordon field in a spacetime describing the formation of a black
hole by gravitational collapse of a spherically symmetric star, the spacetime being
eventually equal to the Schwarzschild spacetime in the exterior of the black hole
horizon. Considering the state which in the past is the vacuum state for the region
outside of the star, he gave some heuristic arguments to show that in the far future
and far away from the horizon this state is a thermal state at Hawking temperature
TH = κ(2π)−1.

The first complete justification of the Hawking effect is due to Bachelot [B],
who considered the same situation as Hawking.

Another derivation of the Hawking effect is due to Fredenhagen and Haag [FH].
They considered the same situation as Hawking and the more general case of a state
for the Klein-Gordon field whose two-point function is assumed to be asymptotic
to that of the vacuum at spatial infinity and of Hadamard form near the horizon.

We discuss in this chapter another phenomenon related to the Hawking radia-
tion, namely, the existence of a ‘vacuum state’ for a Klein-Gordon field on space-
times with a bifurcate Killing horizon, see Section 14.1 for a precise definition. The
existence of such a state is related to the so-called Unruh effect, [U], which we now
briefly describe.

In the Minkowski spacetime (R1,d, η) one considers a right wedgeM+ = {(t, x) :
|t| < x1}, where x1 is a space coordinate. The spacetime (M+, η) is invariant under
the Lorentz boosts with generator

X = a(x1∂t + t∂x1
),

where a > 0 is an arbitrary constant. Although X is not globally time-like in R1,d,
it is time-like in M+ and its integral curves in M+ are worldlines of uniformly
accelerated observers, with acceleration equal to a.

Since X is time-like in M+, one can construct, for any β > 0, the associ-
ated β-KMS state ωβ for the Klein-Gordon operator −2 + m2 restricted to M+,
see Chapter 9. Unruh proved that if β = (2π)a−1, then ωβ is the restriction to
M+ of the Minkowski vacuum ωvac. This result is interpreted as the fact that the
Minkowski vacuum state is seen by uniformly accelerated observers with accelera-
tion a as a thermal state at temperature a(2π)−1.

Note that the Killing vector field X vanishes at B = {t = x1 = 0}, which is
the intersection of the two null hyperplanes {t = ±x1}, whose union is an example
of a bifurcate Killing horizon. In spacetimes with a bifurcate Killing horizon, the
existence of a state analogous to the Minkowski vacuum, called the Hartle-Hawking-
Israel state, was conjectured by Hartle and Hawking [HH] and Israel [Is], using
formal Wick rotation arguments.

127



128 14. KLEIN-GORDON FIELDS ON SPACETIMES WITH KILLING HORIZONS

We will explain the rigorous construction of the HHI state in [G2], which is
based on methods already used in Chapter 12, namely the Calderón projectors from
the theory of elliptic boundary value problems.

For static Killing horizons, i.e. when X is orthogonal to some Cauchy surface
in the exterior region, the HHI state was already constructed by Sanders in [S3].

The condition that the Killing vector field X generating the horizon is time-like
in the exterior region excludes the physically important Kerr spacetime. In fact,
applying Proposition 9.2.1 to the exterior region of the Kerr spacetime, we know
that no KMS state for X exists in the exterior region.

Much more general non-existence results on the Kerr spacetime were shown by
Kay and Wald in [KW]. For example assuming the existence of some solutions
of the Klein-Gordon equation exhibiting superradiance, it is shown in [KW] that
there exist no X-invariant state which is Hadamard near the horizon. Therefore, it
is expected that no HHI state exists in the Kerr spacetime.

14.1. Spacetimes with bifurcate Killing horizons

Let (M, g) be a globally hyperbolic spacetime with a complete Killing vector
field X. We assume that B ··= {x ∈ M : X(x) = 0} is a compact, connected
submanifold of codimension 2, called the bifurcation surface. If moreover there
exists a smooth, space-like Cauchy surface Σ containing B, the triple (M, g,X) is
called a spacetime with a bifurcate Killing horizon, see [KW, Section 2]. If N,w
are the lapse function and shift vector field associated to X,Σ as in Section 9.2, the
Cauchy surface Σ splits as

Σ = Σ− ∪ B ∪ Σ+, Σ± ··= {y ∈ Σ : ±N(y) > 0},

i.e. X is future/past directed on Σ±. Accordingly one can split M as

M =M+ ∪M− ∪ F ∪ P,

where the future cone F ··= I+(B), the past cone P ··= I−(B), and the right/left
wedgesM± ··= D(Σ±), are all globally hyperbolic when equipped with g.

The boundary of the future cone ∂F may be a black hole horizon, in which
case ∂P is the corresponding white hole horizon. The bifurcate Killing horizon is

H ··= ∂F ∪ ∂P,

and the Killing vector field X is tangent to H. In Fig. 7 below the vector field X
is represented by arrows.

Σ

M+
M−

F

P

HH

HH

B

Fig. 7
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14.1.1. The surface gravity. An important quantity associated to the Killing
horizon H is its surface gravity, defined by

κ2 = −1

2
(∇bXa∇bXa)|B, κ > 0.

It is a fundamental fact, see [KW, Section 2], that the scalar κ is constant on B
and actually on the whole horizon H.

14.1.2. Wedge reflection. In concrete situations, like the Schwarzschild or
Kerr spacetimes, the metric g is originally defined only on the right wedgeM+ and
first extended to the future cone F by a new choice of coordinates. The regions
P,M− are constructed as copies of F ,M+, with reversed time orientation, glued
together along B. This motivates one to assume the existence of a wedge reflection,
i.e. an isometric involution R ofM− ∪ U ∪M+, where U is a neighborhood of B
in M , such that R reverses the time orientation, R = Id on B and R∗X = X.

It can be shown, see [S3], that there exists a smooth, space-like Cauchy surface
Σ with B ⊂ Σ such that R : Σ

∼−→ Σ. The restriction r of R to Σ is called a weak
wedge reflection. We have

(14.1) r|B = Id, r : Σ±
∼−→ Σ∓.

In the sequel we will fix such a Cauchy surface.

14.1.3. Stationary Killing horizons. The bifurcate Killing horizon H is
called stationary, resp. static, if the Killing vector field X is time-like inM+, resp.
time-like and orthogonal to Σ inM+.

14.2. Klein-Gordon fields

Let us consider a Klein-Gordon operator

P = −2g + V,

where V ∈ C∞(M ;R) has the same invariance properties as g, i.e. X ·V = 0,
V ◦R = V . We also strengthen the condition V > 0 in Section 9.3 to

V (x) ≥ m2, x ∈M, m > 0,

i.e. we restrict our attention to massive Klein-Gordon fields.
If X is time-like in M+, we can apply Sections 9.3, Subsection 9.5 to the

Klein-Gordon operator P , on the globally hyperbolic spacetime (M+, g), with
Cauchy surface Σ+. We obtain, for each β > 0 the β-KMS state ωβ acting on
CCRpol(C∞0 (Σ+;C2), q).

Following Section 4.8, we can associate to ωβ the doubled state ωd, which is
associated to the doubled Hermitian space

(14.2) (C∞0 (Σ+;C2)⊕ C∞0 (Σ+;C2), q ⊕−q).

14.3. Wick rotation

The key step in the construction of the Hartle-Hawking state is the inter-
pretation of the double β-KMS state ωD using the Wick rotation in Killing time
coordinates. We will now explain this important step.
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14.3.1. The Wick rotated metric. As in Section 9.2, we can identifyM+

with R× Σ+, the metric g taking the form

g = −N2(y)dt2 + hij(y)(dyi + wi(y)dt)(dyj + wj(y)dt),

see (9.12). As in Chapter 12, we can perform the Wick rotation, replacing the
Killing time coordinate t by is. In this way we obtain from g the complex metric

geucl = N2(y)ds2 + hij(y)
(
dyi + iwi(y)ds

)(
dyj + iwj(y)ds

)
.

If ξ = (τ, η) ∈ CTyM and y ∈ Σ+, then

ξ ·geucl(y)ξ = (N2(y)− w(y)·h(y)w(y))ττ + η ·h(y)η

+i(w(y)·h(y)ητ + τw(y)·h(y)η).

Since X = ∂
∂t is time-like in M+, we know that N2(y) > wi(y)hij(y)wj(y), from

which we deduce that

(14.3) |Im(ξ ·geucl(y)ξ)| ≤ c(y)Re(ξ ·geucl(y)ξ), y ∈ Σ+,

for some c(y) > 0. It is convenient to have some uniformity in y in the inequality
(14.3), which follows if we require that there exists δ > 0 such that

(14.4) X(y) + δw(y) is time-like for y ∈ Σ.

One can show that it suffices to assume that (14.4) holds away from a compact
neighborhood of B in Σ, i.e. near spatial infinity. From (14.4) we deduce the
uniform version of (14.3), namely, there exists c > 0 such that

(14.5) |Im(ξ ·geucl(y)ξ)| ≤ cRe(ξ ·geucl(y)ξ), y ∈ Σ+.

Another useful fact is that |geucl|(y) = |det geucl(y)| = N2(y)|h(y]) > 0 for all
y ∈ Σ, so the density dVolgeucl = |geucl| 12 dsdy is positive.

14.3.2. The Wick rotated operator. The Klein-Gordon operator P takes
the form

P = (∂t + w∗)N−2(∂t + w) + h0,

see (9.17), and becomes after Wick rotation the differential operator

P eucl = (−∂s + iw∗)N−2(∂s + iw) + h0.

One can define the Laplace-Beltrami operator ∆geucl associated to the complex
metric geucl as in the Riemannian case and one has P eucl = −∆geucl +V (y). It also
follows from (14.5) that P eucl is an elliptic differential operator.

Let us now associate to P eucl some densely defined operator. It is a well-known
fact that to describe quantum fields at temperature β−1 by Euclidean methods, the
Euclidean time s should belong to the circle Sβ of length β.

Therefore, we set M eucl ··= Sβ × Σ+ and consider the sesquilinear form

Qβ(u, u) =

ˆ
Meucl

uP euclu dVolgeucl , DomQβ = C∞0 (M eucl).

It follows from (14.5) that Qβ is sectorial, i.e.,

|ImQβ(u, u)| ≤ cReQβ(u, u), u ∈ DomQβ ,

and hence closeable. The domain of its closure Qcl
β equals the Sobolev space

H1(M eucl), defined as the completion of C∞0 (M eucl) with respect to the norm

‖u‖21 =

ˆ
Meucl

(
∇u·Re(geucl)−1(y)∇u+ V (y)uu

)
dVolgeucl .

By the Lax-Milgram theorem, one associates to Qcl
β a boundedly invertible operator

P eucl
β : H1(M eucl)

∼−→ H1(M eucl)∗,
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which corresponds to imposing β-periodic boundary conditions for the operator
P eucl.

14.3.3. Calderón projectors. Consider the open set

Ω ··= ]0, β/2[×Σ+ ⊂M eucl.

Note that ∂Ω has two connected components {0} × Σ+ and {β/2} × Σ+, both
identified with Σ+. We will use the notation introduced in Section 12.7 for spaces
of distributions on Ω.

One defines the outer unit normal to ∂Ω for the complex metric geucl as the
unique complex vector field ν such that

(i) ν(x)·geucl(x)v = 0, ∀v ∈ Tx∂Ω,

(ii) ν(x)·geucl(x)ν(x) = 1,

(iii) Re ν(x) is outwards pointing.

We see that ν equals −N−1( ∂∂s − iw) on {0}×Σ+ and its opposite on {β/2}×Σ+.
One can then define the trace

γu =

(
u�∂Ω

ν ·∇u�∂Ω

)
∈ C∞(∂Ω;C2)

for u ∈ C∞(Ω) with P euclu = 0 in Ω and the Calderón projectors c±β associated
to (P eucl

β ,Ω) as in Section 12.7, see [G2, Subsection 8.7] for the precise definitions.
The important observation now is that the doubled state ωd constructed from ωβ
can be expressed in terms of the Calderón projectors c±β . In fact one has, see [G2,
Proposition 8.8]:

Proposition 14.3.1. The covariances of ωd are equal to

λ±d = ±Q ◦ (1l⊕ T )−1c±β (1l⊕ T ), Q = q ⊕ q,

where T =

(
1l 0
0 −1l

)
.

Two comments are in order at this point. First, the Calderón projectors c±β
are defined on C∞0 (∂Ω;C2), or equivalently on C∞0 (Σ+;C2) ⊕ C∞0 (Σ+;C2), which
is exactly the doubled phase space on which the doubled state ωd is defined.

Second the operator T takes care of the fact that ωd is associated to the Her-
mitian form q ⊕−q, see (14.2), and not Q = q ⊕ q.

14.4. The double β-KMS state in M+ ∪M−

Recall that the wedge reflection R maps M+ to M− and reverses the time
orientation. It is hence easy to obtain from ωd a pure quasi-free state ωD inM+ ∪
M−, called the double β-KMS state. This provides a first extension of the thermal
state ωβ inM+ to a pure state inM+ ∪M−. The Cauchy surface covariances λ±D
of ωD are the sesquilinear forms on (C∞0 (Σ+;C2), q)⊕ (C∞0 (Σ−;C2), q) given by

λ±D = ±Q ◦ (1l⊕ r∗)−1c±β (1l⊕ r∗),

where r∗f(y) = f(r(y)). Note that

RΣ = Tr∗ : (C∞0 (Σ−;C2), q)
∼−→(C∞0 (Σ+;C2),−q).

is exactly the unitary map on Cauchy data induced by the wedge reflection R :
C∞0 (M+)

∼−→ C∞0 (M−).
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14.5. The extended Euclidean metric and the Hawking temperature

The constructions carried out up to now are valid for any β > 0. The Euclidean
metric geucl usually degenerates at the bifurcation surface B. In fact, for ω ∈ B, let
nω the unit normal to B for the induced metric h on Σ, pointing towards Σ+. Using
nω one can introduce Gaussian normal coordinates (u, ω) on a neighborhood of B
in Σ, with Σ+ corresponding to u > 0. One can then show that in the coordinates
(s, u, ω), the Euclidean metric geucl near u = 0 takes the form

κ2u2ds2 + du2 + k(ω)dω2,

modulo higher-order terms depending only on (u2, ω), where the Riemannian metric
k(ω)dω2 is the restriction of h(y)dy2 to B, see [G2, App. A].

We recognize in the first two terms the expression of the flat Riemannian metric
dX2 + dY 2, if X = u cos(κs), Y = u sin(κs), i.e. if (u, s) are polar coordinates.

Since s ∈ Sβ , we see that if β = (2π)κ−1, i.e. if β−1 equals the Hawking
temperature κ(2π)−1, then geucl extends across B to a smooth complex metric geucl

ext ,
living on a smooth manifold M eucl

ext , which near B is diffeomorphic to R2 × B. For
other values of β, no such smooth extension exists, and geucl has a conical singularity
at B.

It is also important to understand the open set Ωext ⊂ M eucl
ext corresponding

to Ω ⊂ M eucl. Its boundary ∂Ωext is obtained by gluing together along B the
two connected components {0} × Σ+ and {β/2} × Σ+ of ∂Ω. Actually, ∂Ωext is
diffeomorphic to Σ. The reason for this is that in coordinates (u, ω), the weak wedge
reflection r becomes simply the reflection (u, ω) 7→ (−u, ω), and Σ+ is identified
with Σ− by r.

14.6. The Hartle-Hawking-Israel state

One can associate to the extended metric geucl
ext a Laplace-Beltrami operator

P eucl
ext and consider its Calderón projectors c±ext for the open set Ωext.

Since the boundary ∂Ωext is diffeomorphic to Σ, it is tempting to use c±ext

to construct Cauchy surface covariances on Σ, which, if the required positivity
properties are satisfied, will define a quasi-free state on the whole of M . It turns
out that this is indeed the case, the resulting state being the sought-for Hartle-
Hawking-Israel state. Let us thus summarize the main result of [G2].

Theorem 14.6.1. There exists a state ωHHI for P in (M, g), called the Hartle-
Hawking-Israel state, such that:
(1) ωHHI is a pure Hadamard state in M ;
(2) the restriction of ωHHI toM+∪M− is the double β-KMS state ωD at Hawking

temperature TH = κ(2π)−1, where κ is the surface gravity of the horizon;
(3) ωHHI is the unique extension of ωD such that its spacetime covariances Λ± map

C∞0 (M) into C∞(M) continuously. In particular, it is the unique Hadamard
extension of ωD.

Proof. Let us now explain some ingredients of the proof of Theorem 14.6.1, which
essentially relies on known results on Calderón projectors and Sobolev spaces. We
recall that Hs

loc(N), resp. Hs
c (N) denote the local, resp. compactly supported

Sobolev spaces on the manifold N .
Let us first check that ωHHI is indeed an extension of ωD, i.e., that λ±HHI equal

λ±D on C∞0 (Σ \ B;C2).
The Calderón projectors c±ext are constructed using the inverse of P eucl

ext , which
as for P eucl is constructed from a sesquilinear form Qext. Clearly, Qext and Qβ
coincide on C∞0 (M eucl

ext \ B). Near B the topology of the domain of the closure of
Qext is the topology of H1

loc(M eucl
ext ). Since B is of codimension 2 in M eucl

ext , this
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implies that C∞0 (M eucl
ext \ B) is a form core for Qext. This immediately implies that

λ±HHI and λ
±
D coincide on C∞0 (Σ \ B;C2).

From this fact one can also easily deduce that λ±HHI are indeed the Cauchy
surface covariances of a state, i.e., that

(14.6) λ±HHI ≥ 0, λ+
HHI − λ

−
HHI = q.

Let us explain this argument: it is known that Calderón projectors for second-order
elliptic operators, hence in particular c±, are continuous from H

1
2
c (Σ)⊕H−

1
2

c (Σ) to
H

1
2

loc(Σ)⊕H−
1
2

loc (Σ). From this we deduce immediately that λ±HHI are continuous on

H
1
2
c (Σ)⊕H−

1
2

c (Σ).
Since B is of codimension 1 in Σ, we know that the space C∞0 (Σ \ B;C2) is

dense in H
1
2
c (Σ) ⊕ H−

1
2

c (Σ). The restrictions of λ±HHI to C∞0 (Σ \ B;C2) equal λ±D,
and so satisfy (14.6), since they are the Cauchy surface covariances of the state
ωD. By the above density result, this implies that (14.6) holds on C∞0 (Σ;C2), as
claimed. The purity of ωHHI follows similarly from the purity of ωD.

Further, let us explain how to prove that ωHHI is a Hadamard state. The
restriction of ωHHI to M+ is a Hadamard state for P , since it is a (2π)κ−1-KMS
state for a time-like, complete Killing vector field. The restriction of ωHHI toM−
is also a Hadamard state for P .

This implies that the restriction of ωHHI to M+ ∪M− is a Hadamard state.
The same is true of the restriction of a reference Hadamard state ωref in M (see
Theorem 11.8.1) toM+∪M−. Passing to Cauchy surface covariances on Σ+∪Σ−,
this implies that if χ ∈ C∞0 (Σ±), then χ ◦ (λ±HHI−λ

±
ref) ◦χ is a smoothing operator

on Σ. This implies that λ±HHI − λ±ref is smoothing, which shows that ωHHI is a
Hadamard state.

If fact let a be one of the entries of λ±HHI − λ
±
ref , which is a scalar pseudodif-

ferential operator belonging to Ψm(Σ) for some m ∈ R. We know that χ ◦ a ◦ χ
is smoothing for any χ ∈ C∞0 (Σ\B). Then its principal symbol σpr(a) vanishes on
T ∗(Σ\B) hence on T ∗Σ by continuity, so a ∈ Ψm−1(Σ). Iterating this argument,
we obtain that a is smoothing.

For the proof of the uniqueness statement (3) we refer the reader to [G2]. 2





CHAPTER 15

Hadamard states and scattering theory

In this chapter we study the construction of Hadamard states from scattering
data, i.e., from data at future or past time infinity. This construction is related to
the construction of Hadamard states from past or future null infinity on asymptot-
ically flat spacetimes, which we reviewed in Chapter 13. The geometric assumption
on the spacetime (M, g) is that it should be asymptotically static, at past or future
time infinity, see Section 15.1. Roughly speaking, this means that M should be of
the form R×Σ and g should tend to a standard static metric gout/in, see Subsections
5.3.3, when t→ ±∞.

The existence of the out and in vacuum states ωout/in for a Klein-Gordon opera-
tor P on (M, g), i.e., of states looking like the Fock vacua for the static Klein-Gordon
operators Pout/in on (M, gout/in) at large positive or negative times, is often taken
for granted in the physics literature.

We will explain the result of [GW3], which provides a proof of the existence
of ωout/in and more importantly of their Hadamard property.

15.1. Klein-Gordon operators on asymptotically static spacetimes

Let us now introduce a class of spacetimes that are asymptotically static at
future and past time infinity and corresponding Klein-Gordon operators We fix an
(n−1)-dimensional manifold Σ and set M = Rt×Σy, y = (t, y). We equip M with
the Lorentzian metric

(15.1) g = −c2(y)dt2 +
(
dyi + bi(y)dt

)
hij(y)

(
dyj + bj(y)dt

)
,

where c ∈ C∞(M), h(t, y)dy2, resp. b(t, y) is a smooth t-dependent Riemannian
metric, resp. vector field on Σ.

If there exist a reference Riemannian metric k(y)dy2 on Σ and constants c0, c1 >
0 such that
(15.2)

h(t, y) ≤ c1k(y), b(t, y)·h(t, y)b(t, y) ≤ c1, c0 ≤ c(t, y) ≤ c1, (t, y) ∈M,

then it follows from [CC, Theorem 2.1] that t : M → R is a Cauchy temporal
function for (M, g), see Definition 5.4.5, hence in particular (M, g) is globally hy-
perbolic.

It is natural to use the framework of bounded geometry and to equip Σ with
a reference Riemannian metric k such that (Σ, k) is of bounded geometry. The
version of (15.2) is then

(15.3) (bg)

{
h ∈ C∞b (R;BT 0

2 (Σ, k)), h−1 ∈ C∞b (R;BT 2
0 (Σ, k)),

b ∈ C∞b (R;BT 1
0 (Σ, k)) c, c−1 ∈ C∞b (R;BT 0

0 (Σ, k)).

A concrete example of (Σ, k) is Rd equipped with the uniform metric.

15.1.1. Asymptotically static spacetimes. Let us consider a Klein-Gordon
operator

P = −(∇µ − iqAµ(x))(∇µ − iqAµ(x)) + V (x)

135
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on (M, g). We now impose conditions on h, b, c, A, V which mean that (M, g) is
asymptotically static at t = ±∞. Let us first introduce a convenient notation.

Definition 15.1.1. Let F be a Fréchet space whose topology is defined by the
semi-norms ‖ · ‖n, n ∈ N. For I ⊂ R an interval, we denote by Sδ(I;F), δ ∈ R,
the space of functions I 3 t 7→ X(t) ∈ F such that

sup
t∈I
〈t〉−δ+m‖∂mt X(t)‖n <∞, ∀m,n ∈ N.

We introduce two static metrics

gout/in = −c2out/in(y)dt2 + hout/in(y)dy2

and time-independent potentials Vout/in and assume the following conditions

(as)



h(y)− hout/in(y) ∈ S−µ(R±;BT 0
2(Σ, k)),

b(y) ∈ S−µ′(R;BT 1
0(Σ, k)), A(y) ∈ S−µ′(R;BT 0

1(Σ, k)),

c(y)− cout/in(y) ∈ S−µ(R±;BT 0
0(Σ, k)),

V (y)− Vout/in(y) ∈ S−µ(R±;BT 0
0(Σ, k)),

for some µ > 0, µ′ > 1. Here the space Sδ(R;BT pq (Σ, k)), δ ∈ R is defined as in
Definition 15.1.1.

The above conditions are standard scattering type conditions, with µ, µ′ mea-
suring the rate of convergence of h, b, etc. to their limits at t = ±∞. The condition
µ′ > 1 is traditionally called a short-range condition in the scattering theory for
Schrödinger equations, while µ > 0 corresponds to the weaker long-range condition.

15.2. The in and out vacuum states

15.2.1. The asymptotic Klein-Gordon operators. It follows from condi-
tion (as) that when t→ ±∞, P is asymptotic to the Klein-Gordon operator

Pout/in = −2gout/in
+ Vout/in,

associated to the static metric gout/in. We can introduce the ultra-static metric

g̃out/in = c−2
out/ingout/in = −dt2 + h̃out/in(y)dy

and obtain from Section 6.3 that

Pout/in = c
−n/2−1
out/in P̃out/inc

n/2−1
out/in ,

where

P̃out/in = −2g̃out/in
+

n− 2

4(n− 1)
Scalg̃out/in

+ c−2
out/inṼout/in,

and Ṽout/in = Vout/in − n−2
4(n−1)Scalgout/in

. The ultra-static Klein-Gordon operator
P̃out/in equals ∂2

t + ãout/in(y, ∂y), and to avoid technical complications coming from
infrared problems we will assume that

(pos)
n− 2

4(n− 1)
Scalg̃out/in

+ c−2
out/inṼout/in ≥ m2, for some m > 0,

which simply means that

ãout/in ≥ m2 > 0 on L2(Σ, |h̃out/in|
1
2 (y)dy),

for h̃out/in = c−2
out/inhout/in.
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It follows that P̃out/in admits a vacuum state ω̃vac
out/in, see Subsection 4.10.2,

whose Cauchy surface covariances are

λ̃±,vac
out/in =

1

2

(
ε̃out/in ±1l
±1l ε̃−1

out/in

)
, ε̃out/in = ã

1
2

out/in.

By Subsection 6.3.2, Pout/in admit the vacuum state ωvac
out/in, whose Cauchy surface

covariances on Σ0 = {0} × Σ are

λ±,vac
out/in = (U∗out/in)−1 ◦ λ̃±,vac

out/in ◦ U
−1
out/in, U =

(
c
1−n/2
out/in 0

0 c−n/2
out/in

)
.

15.2.2. The out and in vacuum states. We have seen that Σs = {s} × Σ
are Cauchy surfaces for (M, g). Denoting by %s : Solsc(P ) → C∞0 (Σs;C2) the
Cauchy data map on Σs, see (5.27) and by Usf , f ∈ C∞0 (Σs;C2), the solution of
the Cauchy problem on Σs we set

U(t, s) ··= %tUs : C∞0 (Σs;C2) −→ C∞0 (Σt;C2).

If ω is a quasi-free state for P , with spacetime covariances Λ±, we will denote by
λ±t its Cauchy surface covariances on Σt, called the time t covariances of the state
ω.

From Propositions 5.5.4, 6.1.6 it easily follows that

(15.4) λ±s = U(t, s)∗ ◦ λ±t ◦ U(t, s), s, t ∈ R.
We would like to define quasi-free states ωout/in for P , called the out/in vacua

which look like the ‘free’ vacua ωvac
out/in when t→ ±∞. Taking (15.4) into account,

we see that ωout/in should be defined by the time 0 covariances:

(15.5) λ±out/in(0) = lim
t→±∞

U(t, 0)∗ ◦ λ±,vac
out/in ◦ U(t, 0),

where the limit above is taken as sesquilinear forms on C∞0 (Σ0;C2). Of course, the
reference time t = 0 is completely arbitrary.

The following theorem is the main result of [GW3].

Theorem 15.2.1. Assume the conditions (bg), (as) and (pos). Then:
(1) the limits (15.5) when t→ +∞, resp. −∞, exist and are the time 0 covariances

of a quasi-free state for P denoted by ωout, resp. ωin, called the out resp. in
vacuum state.

(2) ωout/in are pure Hadamard states.

15.2.3. Wave operators. The static vacua ωvac
out/in are invariant under time

translations: if Uout/in(t, s) is the Cauchy evolution operator for Pout/in, then
Uout/in(t, s) = Uout/in(t+ T, s+ T ) and

λ±,vac
out/in = Uout/in(t, s)∗ ◦ λ±,vac

out/in ◦ Uout/in(t, s).

Therefore we can rewrite (15.5) as

λ±out/in(0) = lim
t→±∞

(Uout/in(0, t) ◦ U(t, 0))∗ ◦ λ±,vac
out/in ◦ (Uout/in(0, t) ◦ U(t, 0)).

If the exponent µ in conditions (as) satisfies µ > 1, then one can prove that the
strong limits

(15.6) Wout/in = s− lim
t→±∞

Uout/in(0, t) ◦ U(t, 0)

exist on some natural energy spaces. The operators Wout/in are called (inverse)
wave operators and (15.5) takes the more familiar form

λ±out/in(0) = W ∗out/inλ
±,vac
out/inWout/in,
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which is often found in the physics literature. Note however that the existence of
Wout/in requires µ > 1, while the existence of ωout/in only requires µ > 0.

15.3. Reduction to a model case

We now give some ideas of the proof of Theorem 15.2.1. The existence of ωout/in,
at least in the short-range case µ > 1, is not very difficult, using the arguments
outlined in Subsection 15.2.3.

The Hadamard property is more delicate. For example, the covariances U(t, 0)∗◦
λ±,vac

out/in ◦ U(t, 0) in the right-hand side of (15.5) are not Hadamard for P for finite
t. In fact, the free vacua ωvac

out/in are Hadamard states for Pout/in, but not for P . It
is only after taking the limit t→∞ that one obtains a Hadamard state for P .

The proof of Theorem 15.2.1 is done by reduction to a model case, similar to
the one considered in Section 11.2. Since we want to use the time coordinate t
and not the Gaussian time, we use the orthogonal decomposition associated to t
explained in Subsection 5.4.1.

15.3.1. Orthogonal decomposition. One can identify {0} × Σ with Σ and
use the vector field

v = (∇t·g∇t)−1∇t = ∂t + bi(y)∂yi

as in Subsection 5.4.1 to construct an orthogonal decomposition of g by the diffeo-
morphism

χ : R× Σ 3 (t, x) 7−→ (t, y(t, 0, x)) ∈ R× Σ,

where y(t, s, ·) : Σ→ Σ is the flow of the time-dependent vector field bi(y)∂yi on Σ.
The metric χ∗g takes the form

χ∗g = ĉ2(t, x)dt2 + ĥ(t, x)dx2.

After a further conformal transformation, the operator

P̃ ··= ĉ1−n/2χ∗P ĉ1+n/2

take on the form, see [GW3, Subsection 5.2]

P̃ = ∂2
t + r(t, x)∂t + a(t, x, ∂x),

i.e. is a model Klein-Gordon operator of the type considered in Section 11.2.

15.3.2. Properties of the model operator. In the sequel the model oper-
ator P̃ will be denoted by P for simplicity.

Let us first introduce classes of time-dependent pseudodifferential operators
on Σ that are analogs of the classes of time-dependent tensors Sδ(R;BT pq (Σ, k))
defined in Subsection 15.1.1. We set

Ψm,δ
td (I; Σ) ··= Op(Sδ(I;BSmph(Σ))) + Sδ(I;W−∞(Σ)),

where BSmph(Σ) and W−∞(Σ) are defined in Definitions 10.4.1, 10.4.3, and we use
Definition 15.1.1.

One can show that the conditions (bg), (as), (pos) imply the conditions

(td)


a(t, x, ∂x) = aout/in(x, Dx) + Ψ2,−δ

td (R±; Σ), δ > 0,

r(t) ∈ Ψ0,−1−δ
td (R; Σ),

aout/in(x, ∂x) ∈ Ψ2(Σ) elliptic, aout/in(x, Dx) = aout/in(x, Dx)∗ ≥ C∞ > 0,

for δ = min(µ, µ′ − 1). The asymptotic Klein-Gordon operators are now

Pout/in = ∂2
t + aout/in(x, ∂x).
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The decay conditions (td) lead to an improvement of the properties of the
generator b(t) constructed in Section 11.3. Indeed, setting ε(t) = a(t, x, ∂x)

1
2 and

εout/in = a
1
2

out/in one can show that b(t) in Proposition 11.3.1 can be chosen so that

(15.7)
b(t) = ε(t) + Ψ0,−1−δ

td (R;±Σ) = εout/in + Ψ1,−δ
td (R±; Σ),

i∂tb− b2 + a+ irb ∈ Ψ−∞,−1−δ
td (R; Σ).

15.3.3. Almost diagonalization. In Chapter 11 the microlocal splitting de-
duced from a solution b(t) was used to construct a pure Hadamard state. It is
also possible, see [GOW, Section 6], to use it to diagonalize the evolution U(t, s)
associated to P , modulo smoothing error terms. Let us set

T (t) ··= i−1

(
1l −1l
b+ −b−

)
(b+ − b−)−

1
2 (t),

where we recall that b+(t) = b(t), b−(t) = −b∗(t). Then one can check that

T−1(t) = i(b+ − b−)−
1
2

(
−b− 1l
−b+ 1l

)
(t).

We now define

(15.8) U(t, s) =·· T (t) ◦ Uad(t, s) ◦ T (s)−1, t, s ∈ R

which is (at least formally) a two-parameter group. Computing the infinitesimal
generator of {Uad(t, s)}t,s∈R one obtains

(15.9) Had(t) =

(
−b− + r−b 0

0 −b+ + r+
b

)
(t) +R−∞(t),

where R−∞ ∈ Ψ−∞,−1−δ
td (R; Σ) ⊗ M(C2) and r±b ∈ Ψ0,−1−δ

td (R; Σ), i.e. Had(t)
is diagonal, modulo the regularizing in space and decaying in time error term
R−∞(t). There is a similar well-known exact diagonalization of the Cauchy evolu-
tions Uout/in(t, s) for Pout/in. If

Tout/in = (i
√

2)−1

 ε
− 1

2

out/in −ε−
1
2

out/in

ε
1
2

out/in ε
1
2

out/in

 , εout/in = a
1
2

out/in,

then
Uout/in(t, s) = Tout/in ◦ Uad

out/in(t, s) ◦ T−1
out/in,

and the (time-independent) generator Had
out/in of Uad

out/in(t, s) equals

Had
out/in =

(
εout/in 0

0 −εout/in

)
.

The vacua ωvac
out/in are pure states associated to the projections

c±out/in = Tout/in ◦ π+ ◦ T−1
out/in, for π+ =

(
1l 0
0 0

)
, π− = 1l− π+.

Rather straightforward arguments show that the existence of the limits in Theorem
15.2.1 follows from the existence of

(15.10) lim
t→±∞

Wout/in(t)◦π±◦Wout/in(t)−1, for Wout/in(t) = Uad(0, t)Uad
out/in(t, 0),

for example in B(L2(Σ;C2)). Using the properties of Had(t) one can actually prove
that

(15.11) s− lim
t→±∞

Wout/in(t) ◦ π± ◦Wout/in(t)−1 = π± +W−∞(Σ)⊗M(C2).
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This implies not only the existence of the out/in vacuum states, but also their
Hadamard property. Indeed, if c± = T (0)π±T (0)−1 then λ±(0) = ±q ◦ c± are
the Cauchy surface covariances on Σ0 of the Hadamard state associated to the
microlocal splitting obtained from b, see Section 11.4. From (15.11) we obtain that
λ±out/in(0) differ from λ±(0) by a smoothing error, which proves that ωout/in are
Hadamard states.



CHAPTER 16

Feynman propagator on asymptotically Minkowski
spacetimes

We have seen in Section 7.4 that a Klein-Gordon operator P on a globally hyper-
bolic spacetime (M, g) possesses four distinguished parametrices, the retarded/advanced
parametrices G̃ret/adv and the Feynman/anti-Feynman parametrices G̃F/F, unique
modulo smooth kernels and uniquely characterized by the wavefront set of their
distributional kernels.

One can ask if there exist true inverses of P , corresponding to the above para-
metrices and canonically associated to the spacetime (M, g).

By Lemma 7.4.3, there exists true retarded/advanced inverses of P , namely
Gret/adv, see Theorem 5.5.1, which are uniquely determined by the causal structure
of (M, g).

The situation is more complicated for the Feynman/anti-Feynman inverses. Of
course, given a Hadamard state ω for P , the Feynman inverse associated to ω, see
(8.14), has the correct wavefront set, but it depends on the choice of the Hadamard
state ω, and hence is not canonical.

There are some situations where such a canonical Feynman inverse exists. If
(M, g) is stationary with Killing vector field X and P is invariant under X, one can,
under the conditions in Chapter 9, construct the vacuum state ωvac associated to
X and the corresponding Feynman inverse GF is a canonical choice of a Feynman
inverse, respecting the symmetries of (M, g).

In the particular case of the Minkowski spacetime R1,d and P = ∂2
t − ∆x +

m2, the Feynman inverse obtained from the vacuum state is equal to the Fourier
multiplier by the distribution

−1

τ2 − (k2 +m2) + i0
.

In this chapter we will describe the results of [GW4, GW6], devoted to this
question on spacetimes which are asymptotically Minkowski, and hence have in
general no global symmetries, only asymptotic ones.

It turns out that it is possible in this case to define a canonical Feynman inverse
GF, which is the inverse of P between some appropriate Sobolev type spaces.

More concretely, one introduces spaces Ym, XmF for m ∈ R, see Section 16.3,
where Ym is a space of functions decaying fast enough when t → ±∞, while the
functions in XmF satisfy asymptotic conditions at t = ±∞ which are analogs of the
wavefront set condition which characterizes Feynman parametrices.

One can show that P : XmF → Ym is invertible, and that its inverse GF is a
Feynman parametrix in the sense of Subsection 7.4.2.

Vasy [Va] considered the same problem by working directly on the scalar oper-
ator P using microlocal methods. He constructed the Feynman inverse GF between
microlocal Sobolev spaces, as the boundary value (P − i0)−1 of the resolvent of P .
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16.1. Klein-Gordon operators on asymptotically Minkowski spacetimes

In this subsection we recall the framework considered in [GW4].

16.1.1. Asymptotically Minkowski spacetimes. We consider M = R1+d

equipped with a Lorentzian metric g such that

(aM(i)) gµν(x)− ηµν ∈ S−δstd(R1+d), δ > 1,

(aM(ii)) (R1+d, g) is globally hyperbolic,

(aM(iii)) (R1+d, g) has a temporal function t̃ with t̃− t ∈ S1−ε
std (R1+d) for ε > 0,

where ηµν is the Minkowski metric and Sδstd(R1+d) denotes the class of smooth
functions f such that, for 〈x〉 = (1 + |x|) 1

2 ,

∂αx f ∈ O(〈x〉δ−|α|), α ∈ N1+d.

Recall that t̃ is called a temporal function if ∇t̃ is a time-like vector field, and is
called a Cauchy temporal function if in addition its level sets are Cauchy surfaces
for (M, g).

It is shown in [GW4] that if (aM(i)) holds, then (aM(ii)) is equivalent to the
familiar non trapping condition for null geodesics of g, and if (aM(i), (ii), (iii)) hold,
then there exists a Cauchy temporal function t̃ such that t̃− t ∈ C∞0 (M).

Replacing t by t − c, t̃ by t̃ − c for c � 1 we can also assume that Σ ··= {t =
0} = {t̃ = 0} is a Cauchy surface for (M, g), which can be canonically identified
with Rd. In the sequel we will fix such a temporal function t̃.

16.1.2. Klein-Gordon operator. We fix a real function V ∈ C∞(M ;R)
such that

(aM(iv)) V (x)−m2 ∈ S−δstd(R1+d), for some m > 0, δ > 1,

and consider the Klein-Gordon operator

P = −2g + V.

16.2. The Feynman inverse of P

We now introduce the Hilbert spaces XmF , Ym between which P will be invert-
ible. The spaces Ym are standard spaces of right-hand sides for the Klein-Gordon
equations, their essential property being that their elements are L1 in t, with val-
ues in some Sobolev spaces of order m. The spaces XmF incorporate the Feynman
boundary conditions, which are imposed at t = ±∞.

16.2.1. Hilbert spaces. Using the Cauchy temporal function t̃ we can iden-
tify M with R×Σ using the flow φt of the vector field v = g−1dt̃

dt̃·g−1dt̃
, and obtain the

diffeomorphism

(16.1) χ : R× Σ 3 (t, x) 7−→ φt(x) ∈M,

such that
χ∗g = −c2(t, x)dt2 + h(t, x)dx2.

For m ∈ R we denote by Hm(Rd) the usual Sobolev spaces on Rd. We set, for
1
2 < γ < 1

2 + δ

Ym ··= {u ∈ D′(M) : χ∗u ∈ 〈t〉−γL2(R;Hm(Rd))},
with norm ‖v‖Ym = ‖χ∗u‖L2(R;Hm(Rd)). The exponent γ is chosen such that
〈t〉−γL2(R) ⊂ L1(R). Similarly we set

Xm ··= {u ∈ D′(M) : χ∗u ∈ C0(R;Hm+1(Rd)) ∩ C1(R;Hm(Rd)), Pu ∈ Ym}.
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We equip Xm with the norm

‖u‖Xm = ‖%0u‖Em + ‖Pu‖Ym ,

where %su =

(
u�Σs

i−1∂nu�Σs

)
is the Cauchy data map on Σs ··= t̃−1({s}) and

Em ··= Hm+1(Rd)⊕Hm(Rd) is the energy space of orderm. From the well-posedness
of the inhomogeneous Cauchy problem for P one easily deduces that Xm is a Hilbert
space.

16.2.2. Feynman boundary conditions. Let us set

c±free =
1

2

(
1l ±

√
−∆x +m2

±
√
−∆x +m2 1l

)
.

Of course, λ±free = ±q ◦ c±free for q =

(
0 1l
1l 0

)
are the Cauchy surface covariances

on Σ of the free vacuum state ωfree associated to Pfree. We set then

XmF ··= {u ∈ Xm : lim
t→∓∞

c±free%tu = 0 in Em}.

It is easy to see that XmF is a closed subspace of Xm.
The following theorem is proved in [GW6].

Theorem 16.2.1. Assume (aM). Then P : XmF → Ym is boundedly invertible
for all m ∈ R. Its inverse GF is called the Feynman inverse of P . It satisfies

WF(GF)′ = ∆ ∪ CF.

We recall that CF was defined in Section 7.4. In particular GF is a Feynman
parametrix for P .

16.3. Proof of Theorem 16.2.1

We now give some ideas of the proof of Theorem 16.2.1. As in Section 15.3,
the first step consists in the reduction to a model Klein-Gordon equation, by using
successively the diffeomorphism χ in Subsection 16.2.1 and the conformal transfor-
mation χ∗g → c−2(t, x)χ∗g. After this reduction, we work on R1+d with elements
x = (t, x) equipped with the Lorentzian metric

g = −dt2 + hij(t, x)dxidxj ,

where t 7→ ht = hij(t, x)dxidxj is a smooth family of Riemannian metrics on Rd.
The Klein-Gordon operator P = −2g + V takes the form

(16.2) P = ∂2
t + r(t, x)∂t + a(t, x, ∂x),

where
a(t) = a(t, x, ∂x) = −|h|− 1

2 ∂ih
ij |h| 12 ∂j + V (t, x),

r(t) = r(t, x) = |h|− 1
2 ∂t(|h|

1
2 )(t, x).

The operator a(t) is formally selfadjoint for the time-dependent scalar product

(u|v)t =

ˆ
Σ

uv|ht|
1
2 dx,

and P is formally selfadjoint for the scalar product

(u|v) =

ˆ
R×Σ

uv|ht|
1
2 dxdt.
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Conditions (aM) on the original metric g and potential V imply similar asymptotic
conditions on a(t, x, ∂x) and r(t, x) when t→ ±∞. More precisely, one has

(Hstd)



a(t, x, ∂x) = aout/in(x, ∂x) + Ψ2,−δ
std (R±;Rd),

r(t) ∈ Ψ0,−1−δ
std (R;Rd),

aout/in(x, ∂x) ∈ Ψ2,0
sc (Rd) is elliptic,

aout/in(x, ∂x) = aout/in(x, ∂x)∗ ≥ C∞ > 0,

where Ψm,δ
std (R±;Rd) is the class of time-dependent pseudodifferential operators on

Rd associated to symbols m(t, x, k) such that

∂γt ∂
α
x ∂

β
km(t, x, k) ∈ O((〈t〉+ 〈x〉)δ−γ−|α|〈k〉m−|β|), γ ∈ N, α, β ∈ Nd, t ∈ R±.

Similarly, Ψm,δ
sc (Rd) is the class of pseudodifferential operators on Rd associated to

symbols m(x, k) such that

∂αx ∂
β
km(x, k) ∈ O(〈x〉δ|α|〈k〉m−|β|), α, β ∈ Nd.

We refer the reader to [GW4, Subsection 2.3] for more details.
The Hilbert spaces Ym and Xm become

Ym = 〈t〉−γL2(R;Hm(Rd)),

Xm = {u ∈ C0(R;Hm+1(Rd)) ∩ C1(R;Hm(Rd)) : Pu ∈ Ym},

equipped with the norm

‖u‖2Xm = ‖%0u‖2Em + ‖Pu‖2Ym ,

where %tu =

(
u(t)

i−1∂tu(t)

)
and the energy space Em is defined in Subsection 16.2.1.

The subspaces XmF become

XmF ··= {u ∈ Xm : lim
t→−∞

c−out%tu = lim
t→+∞

c+in%tu = 0 in Em}

where

c±out/in =
1

2

 1 ±a
1
2

out/in

±a
1
2

out/in 1


are the projections for the out/in vacuum state ωout/in associated to the Klein-
Gordon operator ∂2

t + aout/in(x, ∂x).

16.3.1. A further reduction. It is convenient to perform a further reduction
to the case r = 0. Namely, setting R = |h0|

1
4 |ht|−

1
4 , we see that

L2(Σ, |h0|
1
2 dx) 3 ũ 7−→ Rũ ∈ L2(Σ, |ht|

1
2 dx)

is unitary and that
R−1PR =·· P̃ = ∂2

t + ã(t, x, ∂x),

where
ã(t) = rR−1∂tR+R−1(∂2

tR) +R−1a(t)R

is formally selfadjoint for (·|·)0. Clearly, ã(t, x, ∂x) satisfies also (Hstd), with the
same asymptotic aout/in(x, ∂x). It is also immediate that the Hilbert spaces Ym,
Xm and XmF introduced in Section 2.2 are invariant under the map u 7→ Ru and
hence we can assume that r(t, x) = 0.



16.3. PROOF OF THEOREM ?? 145

16.3.2. Almost diagonalization. One can then perform the same almost
diagonalization as in Subsection 15.3.3. The stronger spacetime decay in conditions
(Hstd) give stronger decay conditions on the off diagonal terms. More precisely, if

H(t) =

(
0 1l
a(t) 0

)
is the generator of the Cauchy evolution for P and T (t) is as

in Subsection 15.3.3 we have

T−1(Dt −H(t))T = Dt −Had(t) =·· P ad,

where Had(t) is almost diagonal, i.e.

Had(t) = Hd(t) + V ad
−∞(t),

(16.3) Hd(t) =

(
ε+(t) 0

0 ε−(t)

)
,

where ε±(t) belong to Ψ1,0(R;Rd), with principal symbols equal to ±(k·h−1(t, x)k)
1
2 ,

and V ad
−∞(t) is an off-diagonal matrix of time-dependent operators on Rd such that

(16.4) (〈x〉+ 〈t〉)mV ad
−∞(t)(〈x〉+ 〈t〉)−m+δ : H−p(Rd) −→ Hp(Rd)

is uniformly bounded in t for all m, p ∈ R. Compared with the situation in Section
15.3, we obtain extra decay in x and hence compactness properties of V ad

−∞.
We denote by U(t, s), resp. Uad(t, s), for t, s ∈ R, the Cauchy evolution gener-

ated by H(t), resp. Had(t). Recall from (15.8) that

(16.5) U(t, s) = T (t) ◦ Uad(t, s) ◦ T (s)−1.

Moreover, U(t, s)(ad) are unitary with respect to the Hermitian scalar product

(16.6) f ·q(ad)g = (f |q(ad)g)H0 , q =

(
0 1l
1l 0

)
, qad ··=

(
1l 0
0 −1l

)
where H0 = L2(Rd, |h0|

1
2 dx;C2), which implies the identity

(16.7) Had(t)∗qad = qadHad(t),

where the adjoint is computed with respect to the scalar product of H0.
The spaces corresponding to Ym, XmF with the scalar operator P replaced by

the matrix operator Dt −Had(t) are the following:

Yad,m = 〈t〉−γL2(R,Hm),

X ad,m = {uad ∈ C0(R;Hm+1) ∩ C1(R;Hm) : P aduad ∈ Yad,m},
equipped with the norm

‖uad‖2X ad,m = ‖%0u
ad‖2Hm + ‖P adu‖2Yad,m ,

where Hm = Hm(Rd) ⊕ Hm(Rd) and %ad
t u

ad = uad(t). The subspace X ad,m
F is

defined as

X ad,m
F

··= {uad ∈ X ad,m : lim
t→−∞

π+%ad
t u

ad = lim
t→+∞

π−%ad
t u

ad = 0 in Hm},

where

π+ =

(
1 0
0 0

)
, π− =

(
0 0
0 1

)
.

Note that π± are the spectral projections on R± for the Hamiltonian

Had
out/in =

 a
1
2

out/in 0

0 −a
1
2

out/in


and we will denote by Uad

out/in(t, s) the evolution generated by Had
out/in.
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Proposition 16.3.1. Assume (aM). Then the operator P ad : X ad,m
F → Ym is

Fredholm of index 0.

Proof. Set P d = Dt −Hd(t). Then P d : X ad,m
F → Yad,m is boundedly invertible,

with inverse Gd
F given by

Gd
Fv

ad(t) ··= i

ˆ t

−∞
Ud(t, 0)π+Ud(0, s)vad(s)ds

− i

ˆ +∞

t

Ud(t, 0)π−Ud(0, s)vad(s)ds.

It is easy to show, see [GW4, Lemma 3.7], that V ad
−∞ is compact from X ad,m to

Ym, hence also from X ad,m
F to Ym since X ad,m

F is closed in X ad,m. 2

Now let us prove that P ad : X ad,m
F → Ym is injective, and hence boundedly

invertible by Proposition 16.3.1. The proof of Lemma 16.3.2 below is inspired by
the work of Vasy [Va, Proposition 7], which in turn relies on arguments of Isozaki
[I] from N -body scattering theory.

Lemma 16.3.2. One has:

KerP ad|X ad,m
F

= {0} for all m ∈ R.

Proof. We first note that if uad ∈ KerP ad|X ad,m
F

, we have uad = −Gd
FV

ad
−∞u

ad,

from which we deduce that uad ∈ X ad,m′

F for any m′, using that V ad
−∞ is smoothing

in x. Therefore, it suffices to prove the lemma for m ≥ 1.
Let us set χε(t) =

´ +∞
|t| 1l[1,2](εs)s

−rds for some 0 < r < 1. Note that suppχε ⊂
{|t| ≤ 2ε−1}. Let us still denote by χε the operator χε ⊗ 1lC2 . Recalling that qad is
defined in (16.6), we compute for u ∈ X ad,m

F :ˆ
R

(
P aduad(t)|qadχε(t)u

ad(t)
)
H0 −

(
χε(t)u

ad(t)|qadP aduad(t)
)
H0dt

=

ˆ
R

(
Dtu

ad(t)|qadχε(t)u
ad(t)

)
H0 −

(
uad(t)|qadχε(t)Dtu

ad(t)
)
H0dt

+

ˆ
R

(
uad(t)|qad[Had(t), χε(t)]u

ad(t)
)
H0dt,

using that Had∗(t)qad = qadHad(t), χε(t)∗qad = qadχε(t) and uad(t) ∈ DomHad(t)
since m ≥ 1. We have [Had(t), χε(t)] = 0, and since χε is compactly supported in
t we can integrate by parts in t in the second line and obtain
(16.8) ˆ

R

(
P aduad(t)|qadχε(t)u

ad(t)
)
H0dt−

ˆ
R

(
χε(t)u

ad(t)|qadP aduad(t)
)
H0dt

= −i

ˆ
R

(
uad(t)|qad∂tχε(t)u

ad(t)
)
H0dt.

Note that we used here that the scalar product in H0 does not depend on t, which
is the reason for the reduction to r = 0 in Subsection 16.3.1.

Since P aduad = 0, this yields

(16.9)
ˆ
R

(
uad(t)|qad∂tχε(t)u

ad(t)
)
H0dt = 0.

We claim that:

(16.10)
(i) ‖π±uad(t)‖2H0 ∈ O(t1−δ), when t→ ∓∞,

(ii) ‖π±uad(t)‖2H0 = c± +O(t1−δ), when t→ ±∞,
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for c± = limt→± ‖π±uad(t)‖2H0 . The proof of (16.10) is elementary: we have
Had(t) − Had

out/in ∈ O(t−δ) in B(H0) when t → ±∞, see e.g. [GW1, Subsection
2.5], which using that δ > 1 and the Cook argument yields

W †out/inu
ad = limt→± Uad

out/in(0, t)uad(t) exists in H0,

‖W †out/inu
ad − Uad

out/in(0, t)uad(t)‖H0 ∈ O(t1−δ).

Since Uad
out/in(0, t) is unitary on H0, this yields (16.10). We then compute
ˆ
R

(
uad(t)|qad∂tχε(t)u

ad(t)
)
H0dt

=

ˆ
R
∂tχε(t)‖π+uad(t)‖2H0dt−

ˆ
R
∂tχε(t)‖π−uad(t)‖2H0dt =·· I+ + I−.

Since ∂tχε(t) = −sgn(t)1l[ε−1,2ε−1](|t|)|t|−r, we have, using (16.10):

0 ≤
ˆ
R∓
|∂tχε(t)|‖π±uad(t)‖2H0dt ≤ C

ˆ
1l[ε−1,2ε−1](|t|)|t|−r−δ+1dt ∈ O(εr+δ−2),

ˆ
R±

∂tχε(t)‖π±uad(t)‖2H0dt = ∓
ˆ
R±

1l[ε−1,2ε−1](|t|)c+|t|−rdt+O(εr+δ−2)

= ∓Cc±εr−1 +O(εr+δ−1).

Using (16.9), this yields Cεr−1(c+ + c−) ∈ O(εr+δ−2), hence c+ = c− = 0, since
δ > 1. Therefore by (16.10) we have limt→±∞ ‖uad(t)‖H0 = 0. Since the Cauchy
evolution Uad(t, s) is uniformly bounded in B(H0) we have uad(0) = 0, hence u = 0.
2

The reduction explained at the beginning of Section 16.3 shows that Theorem
16.2.1 follows from

Theorem 16.3.3. P : XmF → Ym is boundedly invertible, with inverse

GF = −π0TG
ad
F T−1π∗1 .

Moreover, GF is a Feynman inverse of P , i.e.

(16.11) WF(GF)′ = ∆ ∪ CF.

Proof. It is straightforward using the expression of T to check that

π0T ∈ B(X ad,m+ 1
2 ,Xm), T−1π∗1 ∈ B(Ym,Yad,m+ 1

2 ),

and so GF : Ym → Xm. Since (Dt −H(t))TGad
F T−1 = TGad

F T−1(Dt −H(t)) = 1l,
we obtain that PGF = GFP = 1l. We have also %π0TG

ad
F T−1π∗1 = TGad

F T−1π∗1v.
From [GW4, equ. (3.25)] we obtain that π0T : X ad,m+ 1

2

F → XmF , hence %FGF = 0,
i.e. GF : Ym → XmF .

To prove the second statement, let G̃F = −π0TG
d
FT
−1π∗1 . We have Gd

F−Gad
F =··

R−∞ = Gd
FV

ad
−∞G

ad
F by the resolvent identity. It is shown in [GW1, Lemma 3.7]

that V ad
−∞ : X ad,m → Ym′ is bounded for all m′ > m, hence R−∞ : Yad,m → X ad,m′

for all m′ > m, i.e. is smoothing in the x variables. We use then that DtR−∞ =
Hd(t)R−∞+V ad

−∞G
ad
F , R−∞Dt = R−∞H

ad(t) +Gd
FV

ad
−∞ to gain regularity in the t

variable and obtain that R−∞ : E ′(R1+d;C2)→ C∞(R1+d;C2). Therefore, GF−G̃F

is a smoothing operator.
Let also GF,ref be defined as G̃F with Ud(t, s) replaced by Uad(t, s). From

(16.4) it follows that Ud(·, ·)−Uad(·, ·), and hence GF,ref − G̃F have smooth kernels
in M ×M .
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Using (16.5), we see thatGF,ref is the Feynman inverse associated to a Hadamard
state, see Theorems 11.4.1, 11.5.1. Therefore, WF(GF,ref)

′ = ∆ ∪ CF, which com-
pletes the proof of the theorem. 2



CHAPTER 17

Dirac fields on curved spacetimes

In this chapter we will give a brief description of quantized Dirac fields on
curved spacetimes. Usually Dirac equations on a Lorentzian manifold are intro-
duced starting from spin structures, see [Di2, Li2] or [LM, Chaps. 1, 2]. Here
we use the approach through spinor bundles, with which analysts may be more
comfortable. We will follow the exposition by Trautman [T] and refer to [FT] for
a comparison between the two approaches.

The quantization of Dirac fields on curved spacetimes is due to Dimock [Di2].
The definition of Hadamard states for quantized Dirac fields on globally hyperbolic
spacetimes was given by Hollands [Ho1] and Sahlmann and Verch [SV2] and is
completely analogous to the Klein-Gordon case. Another nice reference is [S4].

The massless Dirac equation can be written as a pair of uncoupled Weyl equa-
tions which were for some time supposed to describe neutrinos and anti-neutrinos.
We describe the quantization of the Weyl equation, the corresponding definition of
Hadamard states, and the relationship between Hadamard states for Weyl and for
Dirac fields.

17.1. CAR ∗-algebras and quasi-free states

The fermionic version of Chapter 4, namely CAR ∗- algebras and quasi-free
states on them, is quite parallel to the bosonic case. A detailed exposition can be
found for example in [DG, Sections 12.5, 17.2]. The complex case, corresponding
to charged fermions, is the most important in practice, although the real case
corresponding to neutral or Majorana fermions is sometimes also considered. For
simplicity we will only consider the complex case.

Definition 17.1.1. Let (Y, ν) be a pre-Hilbert space. The CAR ∗-algebra over
(X , ν), denoted by CAR(Y, ν), is the unital complex ∗-algebra generated by elements
ψ(y), ψ∗(y), y ∈ Y, with the relations

(17.1)

ψ(y1 + λy2) = ψ(y1) + λψ(y2),

ψ∗(y1 + λy2) = ψ(y1) + λψ∗(y2), y1, y2 ∈ Y, λ ∈ C,

[ψ(y1), ψ(y2)]+ = [ψ∗(y1), ψ∗(y2)]+ = 0,

[ψ(y1), ψ∗(y2)]+ = y1 · νy21l, y1, y2 ∈ Y,

ψ(y)∗ = ψ∗(y),

where [A,B]+ = AB +BA is the anti-commutator.

Quasi-free states on CAR(Y, ν) are defined in a way quite similar to the bosonic
case.

Definition 17.1.2. A state ω on CAR(Y, ν) is a (gauge invariant) quasi-free
state if

ω(
∏n
i=1 ψ

∗(yi)
∏m
j=1 ψ(y′j)) = 0, if n 6= m,

ω(
∏n
i=1 ψ

∗(yi)
∏n
j=1 ψ(y′j)) =

∑
σ∈Sn sgn(σ)

∏n
i=1 ω(ψ∗(yiψ(yσ(i))).

149
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A quasi-free state is again characterized by its covariances λ± ∈ Lh(Y,Y∗),
defined by

ω(ψ(y1)ψ∗(y2)) =·· y1 ·λ+y2, ω(ψ∗(y2)ψ(y1)) =·· y1 ·λ−y2, y1, y2 ∈ Y.

One has the following analog of Proposition 4.7.6.

Proposition 17.1.3. Let λ± ∈ Lh(Y,Y∗). Then the following statements are
equivalent:
(1) λ± are the covariances of a gauge invariant quasi-free state on CAR(Y, ν);
(2) λ± ≥ 0 and λ+ + λ− = ν.

Let us note an important difference with the bosonic case. Since ν > 0, one
can always consider the completion (Ycpl, ν) of (Y, ν) and uniquely extend any
quasi-free state ω to CAR(Ycpl, ν). This is related to the fact that the ∗-algebra
CAR(Y, ν) can be equipped with a unique C∗-norm, see e.g. [DG, Proposition
12.50]. Therefore, if necessary, one can assume that (Y, ν) is a Hilbert space.

Let us conclude this subsection with the characterization of pure quasi-free
states, see e.g. [DG, Theorem 17.31].

Proposition 17.1.4. A quasi-free state ω on CAR(Y, ν) is pure iff there exist
projections c± ∈ L(Y) such that

λ± = ν ◦ c±, c+ + c− = 1l.

Note that c± are bounded selfadjoint projections on (Y, ν).

17.2. Clifford algebras

We now collect some standard facts about Clifford algebras. For simplicity, we
will only discuss the case of Lorentzian signature. Let X be an n-dimensional real
vector space and ν ∈ Lh(X ,X ′) be a symmetric non-degenerate bilinear form of
signature (1, d).

Definition 17.2.1. The Clifford algebra Cliff(X , ν) is the abstract real algebra
generated by the elements γ(x), x ∈ X , and the relations

γ(x1 + λx2) = γ(x1) + λγ(x2),

γ(x1)γ(x2) + γ(x2)γ(x1) = 2x1 ·νx21l, x1, x2 ∈ X , λ ∈ R.

As a vector space Cliff(X , ν) is isomorphic to ∧X .
Cliff(X , ν) has an involutive automorphism α defined by α(γ(x)) = −γ(x),

which defines a Z2-grading Cliff(X , ν) = Cliff0(X , ν)⊕Cliff1(X , ν). The set Cliff0(X , ν)
of elements of even degree is a sub-algebra of Cliff(X , ν).

The Clifford algebras Cliff(0)(R1,d) will be simply denoted by Cliff(0)(1, d).

17.2.1. Volume element. Let (x1, . . . , xn) be an orthonormal basis of (X , ν),
i.e. such that x1 · νx1 = −1, xi · νxi = 1 for 2 ≤ i ≤ n. In particular, this fixes an
orientation of X . Set

η = γ(x1) · · · γ(xn);

η is called the volume element and is independent of the choice of the oriented
orthonormal basis (x1, . . . , xn). One has

(17.2) ηγ(x) = (−1)n+1γ(x)η, η2 =

{
−1l, if n ∈ {0, 1} mod 4,
1l, if n ∈ {2, 3} mod 4.
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17.2.2. Pseudo-Euclidean group. Each r ∈ O(X , ν) induces an automor-
phism r̂ of Cliff(X , ν), defined by

r̂(γ(x)) = γ(rx), x ∈ X .

The map O(X , ν) 3 r 7→ r̂ ∈ Aut(Cliff(X , ν)) is a group morphism. More generally,
if r : (X , ν)→ R1,d is orthogonal, then it induces an isomorphism r̂ : Cliff(X , ν)→
Cliff(R1,d).

17.3. Clifford representations

Let S a complex vector space. A morphism

ρ : Cliff(X , ν) −→ L(S)

is called a representation of Cliff(X , ν) in S. It is called faithful if it is injective.
It is called irreducible if [B, ρ(A)] = 0 for all A ∈ Cliff(X , ν) implies B = λ1lS for
λ ∈ C. We set γρ(x) = ρ(γ(x)) for x ∈ X . Let ı ∈ {1, i} such that

(17.3) η2 = ı21l, i.e.
{
ı = i, if n ∈ {0, 1} mod 4,
ı = 1l, if n ∈ {2, 3} mod 4.

Proposition 17.3.1. (1) Assume that n = 2m is even.
Then there is a unique up to equivalence, faithful and irreducible represen-

tation of Cliff(X , ν), called the Dirac representation in a space S of dimension
2m, whose elements are called Dirac spinors. One has C ⊗ ρ(Cliff(X , ν)) =
End(S).

Setting H = ıρ(η), we have H2 = 1l and [H, ρ(Cliff0(X , ν))] = 0. Setting
We/o = {ψ ∈ S : Hψ = ±ψ}, the representation ρ restricted to Cliff0(X , ν)
splits as the direct sum ρ+ ⊕ ρ− of two irreducible representations on We/o.
The elements of We/o are called even/odd Weyl spinors.

(2) Assume that n = 2m+ 1 is odd.
Then there is a unique up to equivalence, faithful and irreducible represen-

tation of Cliff0(X , ν), called the Pauli representation in a space S of dimension
2m, whose elements are called Pauli spinors.

Setting ρ(η) = ı1l, the representation of Cliff0(X , ν) extends to an irre-
ducible representation ρ of Cliff(X , ν) in S. One has C ⊗ ρ(Cliff(X , ν)) =
C⊗ ρ(Cliff0(X , ν)) = End(S).

The representations ρ ◦ α and ρ are not equivalent, and none of them is
faithful.

If n is odd then ηCliff0(X , ν) = Cliff0(X , ν)η = Cliff1(X , ν), which is used in
(2) of Proposition 17.3.1 to extend ρ from Cliff0(X , ν) to Cliff(X , ν).

In the sequel ρ will denote a representation of Cliff(X , ν) as in Proposition
17.3.1, which will be called a spinor representation. We have

(17.4) C⊗ ρ(Cliff(X , ν)) = End(S).

17.3.1. Charge conjugations. Let ρ a spinor representation.

Proposition 17.3.2. (1) Assume that n is even. Then there exists κ ∈ End(SR)
anti-linear such that κγρ(x) = γρ(x)κ and κ2 = 1l if n ∈ {2, 4} mod 8, κ2 = −1l
if n ∈ {0, 6} mod 8.

(2) Assume that n is odd. Then there exists κ ∈ End(SR) anti-linear such that
κγρ(x) = (−1)(n+1)/2γρ(x)κ and κ2 = 1l if n ∈ {1, 3} mod 8, κ2 = −1l if
n ∈ {5, 7} mod 8.
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We refer, e.g. to [DG, Theorem 15.19] for the proof. An anti-linear map κ as
above is called a charge conjugation, with some abuse of terminology if κ2 = −1l (if
κ2 = −1l, then S becomes a quaternionic vector space).

Later on we will be only interested in the existence of a true charge conjugation,
i.e. with κ2 = 1l, which is the case iff n ∈ {1, 2, 3, 4} mod 8. We have κγ(x) = γ(x)κ
iff n ∈ {1, 2, 4} mod 8, κγ(x) = −γ(x)κ iff n = 3 mod 8.

If κ, κ̃ are two such charge conjugations, then κ−1κ̃ ∈ Aut(S) (in particular, it
is C-linear) and commutes with γρ(x) for all x ∈ X . Since ρ is irreducible, we have
κ̃ = λκ, λ ∈ C and from κ2 = κ̃2 we obtain that λλ = 1.

Let us denote by C(ρ) the set of charge conjugations in Proposition 17.3.2. By
the above discussion, we have

(17.5) C(ρ) ∼ S1,

or, more pedantically, the group S1 acts freely and transitively on C(ρ).

17.3.2. Positive energy Hermitian forms.

Proposition 17.3.3. Let us equip (X , ν) with an orientation and a time ori-
entation, so that (X , ν) ∼ R1,d. Let ρ : Cliff(X , ν)→ End(S) be a spinor represen-
tation. Then there exists a Hermitian form β ∈ Lh(S, S∗) such that

γρ∗(x)β = −βγρ(x), x ∈ X , iβγρ(e) > 0,

for all time-like, future directed e ∈ X .

Hermitian forms β as above are called positive energy Hermitian forms.
Proof. Let us fix a positively oriented orthonormal basis (e0, e1, . . . , en) of (X , ν)
with e0 time-like and future directed. We set

φ0 = iγρ(e0), φj = γρ(ej), 1 ≤ j ≤ n.
From the φj we obtain an irreducible representation of Cliff(Rn), defined as in
Definition 17.2.1 with ν replaced by the Euclidean scalar product on Rn. It is well
known that one can equip S with a positive definite scalar product λ ∈ Lh(S, S∗)
such that φj = φ∗j for this scalar product. Setting β = iλ ◦ γ0, we obtain that
γ∗j β = −βγj and iβγ0 > 0. Let now e ∈ X be time-like future directed. We can
assume that e·νe = −1, and hence there exists r ∈ SO↑(X , ν) such that e = re0.

It is well known that there exists an element U of the restricted spin group
Spin↑(X , ν), see Section 17.4, such that γ(rx) = Uγ(x)U−1, for x ∈ X .

Denoting by A∗ the adjoint of A ∈ End(S) for the Hermitian form β, one
then checks that γ(rx) = U∗γ(x)(U∗)−1 hence UU∗ = ±1l. Since Spin↑(X , ν) is
connected, we have UU∗ = 1l. Now we have γρ(e) = Uγρ(x0)U∗, hence iβγρ(e) > 0.
2

As in Subsection 17.3.1, we denote by B(ρ) the set of positive energy Hermitian
forms on S. Then the same argument yields

(17.6) B(ρ) ∼ R+∗,

with the same meaning that the group R+∗ acts freely and transitively on B(ρ).

17.4. Spin groups

The spin group Spin(X , ν) is the group

Spin(X , ν) ··= {γ(x1) · · · γ(x2p) : xi ·νxi = ±1, p ∈ N} ⊂ Cliff(X , ν).

The restricted spin group Spin↑(X , ν) is the connected component of 1l in Spin(X , ν).
One can show that a = γ(x1) · · · γ(x2p) belongs to Spin↑(X , ν) iff the number of
indices i, 1 ≤ i ≤ p, with xi ·νxi = −1 is even.
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The spin groups Spin(↑)(R1,d) will be simply denoted by Spin(↑)(1, d).
If a ∈ Spin(↑)(X , ν), then

(17.7) aγρ(x)a−1 = γρ(Ad(a)x), Ad(a) ∈ SO(↑)(X , ν),

and we have the exact sequence of groups:

1 −→ Z2−→ Spin(↑)(X , ν)
Ad−→SO(↑)(X , ν)−→ 1.

Let us fix a spinor representation ρ0 : Cliff(1, d) → L(S0) (recall that S0 is a
complex vector space of dimension 2[n/2]). We denote ρ0(γ(v)) by γ0(v) for v ∈ R1,d

and identify Spin↑(1, d) with its image in L(S0). We fix a positive energy Hermitian
form β0 and a charge conjugation κ0 on S0.

One can show that Spin↑(1, d) is the set of elements a ∈ GL(S0) such that

(17.8)
(i) a∗β0a = β0, aκ0 = κ0a,

(ii) aγ0(v)a−1 = γ0(Ad(a)v), ∀v ∈ R1,d.

This characterization of Spin↑(1, d) inside GL(S0) is independent on the choice of
β0, κ0.

17.5. Weyl bi-spinors

Let us assume that n = 4, and let ρ : Cliff(X , ν) → End(S) be a spinor
representation, so that dimC S = 4. To simplify notation, we denote ρ(A) simply
by A for A ∈ Cliff(X , ν).

Let κ be a charge conjugation as in Proposition 17.3.2 and let β ∈ Lh(S, S∗)
be a positive energy Hermitian form as in Proposition 17.3.3. Recall that

(17.9)
κγ(x) = γ(x)κ, κ2 = 1l,

γ∗(x)β = −βγ(x), iβγ(e) > 0 for e ∈ X future directed time-like.

If η is the volume element we have η2 = −1l, η∗β = βη, hence H = iη satisfies
H2 = 1l, H∗β = −βH. We recall that S =We ⊕Wo for We/o = Ker(H ∓ 1l). Since
κη = ηκ we have κH = −Hκ hence dimCWe/o = 2 and

(17.10) κ :We/o
∼−→Wo/e.

We obtain also that

(17.11) ue/o ·βve/o = 0, ue/o, ve/o ∈ We/o

hence

(17.12) β =We/o
∼−→W∗o/e.

Let β̃ = κ∗βκ ∈ Lh(S, S∗), i.e.

v̄1 ·β̃v2 ··= κv2 ·βκv1, v1, v2 ∈ S.

From (17.9) we obtain that γ(x)∗β̃ = −β̃γ(x) for x ∈ X . Moreover, we have

iβ̃γ(e) = iκ∗βκγ(e) = −κ∗iβγ(e)κ < 0,

if e ∈ X is future directed time-like, using that κ and hence κ∗ is anti-linear and
that [κ, γ(e)] = 0. Therefore, by (17.6), we have β̃ = αβ, α ∈ R−. Using that
κ2 = 1l we obtain that α2 = 1, hence

(17.13) v̄2 ·βκv1 = −v̄1 ·βκv2, vi ∈ S.
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17.5.1. Weyl bi-spinors. We know that S =We ⊕Wo, but we can use β to
obtain a different decomposition. We introduce the space of Weyl spinors:

S ··=W∗e ,

and identify linearly S with S∗ ⊕ S′ by the map

S 3 ψ 7−→ ψe ⊕ κψo =: χ⊕ φ ∈ S∗ ⊕ S′,

where ψ = ψe ⊕ ψo with ψe/o ∈ We/o. We have ψ = χ⊕ κφ.
The space S is canonically equipped with the symplectic form

ε ··=
1√
2

(βκ)−1 ∈ L(S,S′).

The fact that ε is anti-symmetric follows from (17.13), and Ker ε = {0} since
Kerβ = {0}.

17.5.2. Another identification. We can identify X with La(S∗,S) as real
vector spaces by

(17.14) X 3 x 7−→ βγ(x) ∈ La(We,W∗e ).

This map is injective, since ρ is faithful, and since both spaces have the same
dimension, it is bijective. By complexification we obtain an isomorphism

(17.15) T : CX 3 z 7−→ βγ(z) ∈ L(We,W∗e ) ∼ W∗e ⊗W ′e = S⊗ S.

In the next proposition we still denote by ν ∈ Ls(CX , (CX )′) the bilinear extension
of ν.

Proposition 17.5.1. The map

T : (CX , ν)
∼−→(S⊗ S, ε⊗ ε).

is an isomorphism, i.e.

(17.16) T ′ ◦ (ε⊗ ε) ◦ T = ν.

Proof. Let a(x) = κγ(x) ∈ L(We,We). Since a(x)2 = x·νx1l, we have (det a(x))2 =
(x·νx)2, hence det a(x) = ±x·νx, where the sign ± is independent on x by connect-
edness. Note also that a(x) =

√
2ε ◦ βγ(x).

Let B = (s1, s2) be a symplectic basis of S with s1 ·εs2 = 1. We denote by B′
the dual basis of S′ and by B the basis B considered as a basis of S. Computing the
determinants of a(x), ε and βγ(x) in the above bases, we obtain that 2 detβγ(x) =
2 detβγ(x) det ε = det a(x) = ±x ·νx. Since iβγ(e) > 0 for e ∈ X time-like and
future directed, we have detβγ(e) < 0 so det a(e) = e·νe and det a(x) = x·νx for
all x ∈ X .

If [γjk(x)] is the matrix of βγ(x) in B′,B, so that T (x) =
∑
j,k γjk(x)sj ⊗ sk,

we check that 〈T (x)|(ε⊗ ε)T (x)〉 = 2 det[βγ(x)] = det a(x) = x·νx. 2

17.6. Clifford and spinor bundles

In this subsection and the next two we will use notions on fiber bundles, recalled
in Section 5.1.

Let (M, g) be an orientable and time orientable Lorentzian manifold. After
fixing an orientation and a time orientation ofM , we can assume that the transition
maps oij of TM , see Subsection 5.1.7, take values in SO↑(R1,d). Equivalently, one
can view oij as the transition maps of the principal bundle Fr↑on(TM) of oriented
and time oriented orthonormal frames of TM .
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Definition 17.6.1. The Clifford bundle Cliff(M, g) is the bundle over M with
typical fiber Cliff(R1,d) defined by the transition maps ôij ∈ Aut(Cliff(R1,d)), where
oij : Uij → SO↑(R1,d) are the transition maps of TM .

Note that Cliff(M, g) is a bundle of algebras.

Definition 17.6.2. Let (M, g) a Lorentzian manifold. A complex vector bundle
S π−→M is a spinor bundle over (M, g) if there exists a morphism

ρ : Cliff(M, g) −→ End(S)

of bundles of algebras overM such that for each x ∈M the map ρx : Cliff(TxM, gx)→
End(Sx) is a spinor representation.

Let us fix a spinor representation ρ0 : Cliff(1, d) → L(S0), a positive energy
Hermitian form β0 and a charge conjugation κ0 on S0 as at the end of Section 17.4.

Lemma 17.6.3. Let S π−→M be a spinor bundle over M . Then one can assume
that its transition maps tij : Uij → GL(S0) satisfy:

(17.17) tij ◦ ρ0(a) ◦ t−1
ij = ρ0(ôij(a)), a ∈ Cliff(1, d) on Uij .

Proof. By Subsections 5.1.2 and 5.1.11, we deduce from the existence of the bundle
morphism ρ that there exist χi : Ui → Hom(Cliff(1, d), L(S0)) such that

tij ◦ χj(a) ◦ t−1
ij = χi(ôij(a)), a ∈ Cliff(1, d).

By irreducibility of the spinor representation, there exists Vi : Ui → GL(S0) such
that

χi(a) = Vi ◦ ρ0(a) ◦ V −1
i , a ∈ Cliff(1, d).

Let us set t̃ij = V −1
i ◦ tij ◦ Vj . We check that t̃ij satisfy (17.17) and note that

changing tij to t̃ij corresponds by Subsection 5.1.2 to a vector bundle isomorphism.
This completes the proof of the lemma. 2

17.6.1. The bundles B(ρ) and C(ρ). Let B(ρ0), resp. C(ρ0), the sets of
positive energy Hermitian forms, resp. of charge conjugations, associated to ρ0, see
Subsections 17.3.1 and 17.3.2.

Definition 17.6.4. Let S π−→ M be a spinor bundle and ρ : Cliff(M, g) →
End(S) the associated morphism.

The bundle B(ρ)
π−→ M is the bundle with typical fiber B(ρ0) and transition

maps
β 7→ t∗ijβtij , β ∈ B(ρ0).

The bundle C(ρ)
π−→M is the bundle with typical fiber C(ρ0) and transition maps

κ 7→ t−1
ij κtij , κ ∈ C(ρ0).

Note that using that t−1
ij γ0(v)tij = γ0(oijv) for v ∈ R1,d, we obtain that the

transition maps above preserve the fibers. By the definition of B(ρ) and C(ρ), we
immediately obtain the following proposition.

Proposition 17.6.5. There exist canonical bundle morphisms

B(ρ) −→ End(S,S∗), C(ρ) −→ End(S, S̄).

From Subsections 17.3.2 and 17.3.1, we see that B(ρ), resp. C(ρ) are principal
bundles over M with fiber R+∗, resp. S1. Being principal, these bundles are trivial
iff they admit a global section.

Remark 17.6.6. Local sections of B(ρ) can be pieced together using a partition
of unity on M , since the set B(ρ0) is convex. Therefore B(ρ) is a trivial bundle.
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17.7. Spin structures

Next, let us explain the relationship between spin structures and spinor bundles,
following [T].

Definition 17.7.1. A spin structure on M is a Spin↑(1, d)-principal bundle

Spin(M)
π−→M

with a bundle map χ : Spin(M)→ Fr↑on(TM) such that

(17.18) ∀a ∈ Spin↑(1, d), q ∈ Spin(M) one has χ(qa) = χ(q)Ad(a).

We recall that a principal bundle admits a right action of its structure group,
see Subsection 5.1.5, which is used in (17.18). If sij : Uij → Spin↑(1, d) are the
transition maps of Spin(M) and oij : Uij → SO↑(1, d) are the transition maps of
Fr↑on(TM), (17.18) means that

oij(x) = Ad(sij)(x), x ∈ Uij .

Theorem 17.7.2. Let (M, g) be an orientable and time-orientable Lorentzian
manifold and let Spin(M)

π−→M be a spin structure over (M, g). Then there exists
a canonical spinor bundle S π−→M with canonical global sections β, κ of the bundles
B(ρ), C(ρ).

Remark 17.7.3. Conversely, one can show that if S π−→ M is a spinor bundle
over (M, g) such that the bundle C(ρ) is trivial, then M admits a spin structure
Spin(M)

π−→M . The two constructions are inverse to one another, modulo bundle
isomorphisms.

Proof. Recall that sij : Uij → Spin↑(1, d) are the transition maps of Spin(M).
Let S π−→M be the vector bundle with typical fiber S0 and transition maps

tij = ρ0(sij) : Uij → GL(S0).

We define the bundle morphism ρ : Cliff(M, g)→ End(S) by

ρi = ρ0 : Ui → Hom(Cliff(1, d), L(S0)),

see Subsection 5.1.2. From (17.8) (ii), we obtain that ρ is indeed a morphism of
bundles of algebras, ie that S is a spinor bundle over M .

From (17.8) (i) and the definition of tij , we see that the local sections of B(ρ),
resp. C(ρ) defined by βi(x) = β0, resp. κi(x) = κ0 for x ∈ Ui can be patched
together as global sections of B(ρ), resp. C(ρ). This completes the proof of the
theorem. 2

17.8. Spinor connections

Let ∇ be the Levi-Civita connection on (M, g). Since Cliff(M, g) is a vector
sub-bundle of

⊕n
k=0⊗kTM , ∇ induces a unique connection ∇Cl, defined by

∇ClX γ(Y ) = γ(∇XY ), X, Y ∈ C∞(M ;TM).

Since ∇ is metric for g, ∇Cl is adapted to the algebra structure of Cliff(M, g), i.e.

∇ClX (γ(Y1)γ(Y2)) = ∇ClX γ(Y1)γ(Y2) + γ(Y1)∇ClX γ(Y2).

Let now S π−→M be a spinor bundle and let us denote ρ(γ(X)) simply by γ(X) for
X a vector field on M . One can show, see [T], that there exists a (non unique)
connection ∇S on S such that

∇SX(γ(Y )ψ) = γ(∇XY )ψ + γ(Y )∇SXψ, X, Y ∈ C∞(M ;TM), ψ ∈ C∞(M ;S).

The following result is shown in [T, Proposition 9].
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Theorem 17.8.1. Let S π−→M a spinor bundle. Assume that the bundle C(ρ)
is trivial. Then given a section β ∈ C∞(M ;B(ρ)) and a section κ ∈ C∞(M ;C(ρ)),
there exists a unique connection ∇S on S such that

(17.19)

(i) ∇SX(γ(Y )ψ) = γ(∇XY )ψ + γ(Y )∇SXψ,

(ii) X((ψ|βψ)) = (∇SXψ|βψ) + (ψ|β∇SXψ),

(iii) ∇SX(κψ) = κ∇SXψ,

for all X,Y ∈ C∞(M ;TM) and ψ ∈ C∞(M ;S).

From Theorem 17.7.2 we see that if Spin(M)
π−→M is a spin structure over M ,

then there exists a canonical spinor bundle S π−→ M , canonical sections β, κ and
spin connection ∇S .

17.9. Dirac operators

In the rest of this chapter we will assume that the hypotheses of Theorem
17.8.1 are satisfied. One defines a Dirac operator, acting on smooth sections of S
as follows:

let U ⊂ M a chart open set for S and the bundle of frames Fr(TM). Choose
sections eµ, 1 ≤ µ ≤ n of Fr(TM) over U , i.e. (e1(x), · · · en(x)) is a ordered basis
of TxM for x ∈M (not necessarily orthogonal). We define

(17.20)
/D = gµνγ(eµ)∇Seν ,

D = /D +m(x)

where ∇S is the connection on S from Theorem 17.8.1 and m ∈ C∞(M ;End(S))
is such that m∗β = βm where β is the section of B(ρ) in Theorem 17.8.1. Such an
operator will be called a Dirac operator.

17.9.1. Characteristic manifold. Denoting by X = (x, ξ) the elements of
T ∗M \o, the principal symbol d(x, ξ) of D is the section of C∞(T ∗M \o;End(S)),
homogeneous of degree 1 in ξ, given by

d(x, ξ) = γ(g−1(x)ξ).

From the Clifford relations we obtain that

(17.21) d2(x, ξ) = ξ ·g−1(x)ξ1l.

The characteristic manifold of D is

Char(D) ··= {(x, ξ) ∈ T ∗M \o : d(x, ξ) is not invertible},

and by (17.21) we have

Char(D) = {(x, ξ) ∈ T ∗M \o : ξ ·g−1(x)ξ = 0} = N .

As usual, we denote by N± the two connected components of N .

17.9.2. Charge conjugation. Assume that the charge conjugation κ satisfies
κ2 = 1l, i.e. that n ∈ {1, 2, 3, 4} mod 8 by Proposition 17.3.2. By (17.19), we have
[κ,∇SX ] = 0. Assuming also that m is real, i.e. [m,κ] = 0, we obtain that

Dκ = κD if n ∈ {1, 2, 4} mod 8,

Dκ = −κD if n = 3 mod 8 and m = 0.
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17.9.3. Conserved current. Let ψ1, ψ2 ∈ C∞(M ;S). Define the 1-form
J(ψ1, ψ2) ∈ C∞(M ;T ∗M) by

J(ψ1, ψ2)·X ··= ψ1 ·βγ(X)ψ2, X ∈ C∞(M ;TM).

The following lemma follows easily from (17.19).

Lemma 17.9.1. We have

∇µJµ(ψ1, ψ2) = −Dψ1 ·βψ2 + ψ1 ·βDψ2, ψi ∈ C∞(M ;S).

Proposition 17.9.2. The Dirac operator D is formally selfadjoint on C∞0 (M ;S)
with respect to the Hermitian form

(17.22) (ψ1|ψ2)M ··=
ˆ
M

ψ1 ·βψ2 dVolg.

Proof. We apply the identity ∇µJµΩg = d(JµyΩg), where Ωg is the volume form
on (M, g), and the Stokes formula (5.11)

´
U
dω =

´
∂U

ω to ω = JµyΩg, U bM an
open set with smooth boundary, containing suppψi. 2

17.9.4. Decomposition of the Dirac operator. Let us assume that n = 4
and that m in (17.20) is scalar, i.e. m(x) = m(x)1l for m ∈ C∞(M ;R).

Section 17.5 provides a section H ∈ C∞(M ;End(S)) locally defined by H =
iγ(e1) · · · γ(e4), where (e1, . . . , e4) is an oriented orthonormal frame of TM . We
have

H2 = 1l, Hγ(X) = −γ(X)H, X ∈ C∞(M ;TM).

Using (17.19), the fact that ∇ is metric for g, and the Clifford relations, one can
prove that ∇ClH = 0, which implies that /DH = −H /D.

Using Pe/o = 1
2 (1±H), we can construct the vector bundlesWe/o = Pe/oS and

identify C∞(M ;S) with C∞(M ;We)⊕ C∞(M ;Wo). The Dirac operator becomes

(17.23) D =

(
m /Do

/De m

)
, with /De/o = (gµνγ(eµ)∇eν )�C∞(M ;We/o) .

By Subsection 17.9.2, there exists a charge conjugation κ with κ2 = 1l and
Dκ = κD, κ :We/o

∼−→Wo/e, and we obtain that

(17.24) /De/o = κ /Do/eκ.

As in Subsection 17.5.1, we identify S
π−→ M with S∗ ⊕ S′ π−→ M and a section

ψ ∈ C∞(M ;S) with (χ, φ) ∈ C∞(M ;S∗) ⊕ C∞(M ;S′). We can rewrite the Dirac
equation

/Dψ +mψ = 0

as

(17.25)

{
β /Dχ+ m√

2
ε−1φ = 0,

κ′β /Dκφ+ m√
2
ε̄−1χ = 0.

17.10. Dirac equation on globally hyperbolic spacetimes

Assume now that (M, g) is a globally hyperbolic spacetime. We denote by
Solsc(D) the space of smooth, space compact solutions of the Dirac equation

Dψ = 0.
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17.10.1. Retarded/advanced inverses. Since (M, g) is globally hyperbolic,
D admits unique retarded/advanced inverses Gret/adv : C∞0 (M ;S) → C∞sc (M ;S)
such that {

DGret/adv = Gret/advD = 1l,

suppGret/advu ⊂ J±(suppu), u ∈ C∞0 (M ;S),

see eg [DG, Theorem 19.61]. Using the fact that D is formally selfadjoint with
respect to (·|·)M and the uniqueness of Gret/adv we obtain that

G∗ret/adv = Gadv/ret,

where the adjoint is computed with respect to (·|·)M . Therefore, the causal
propagator

G ··= Gret −Gadv

satisfies

(17.26)


DG = GD = 0,

suppGu ⊂ J(suppu), u ∈ C∞0 (M ;S),

G∗ = −G.

17.10.2. The Cauchy problem. Let Σ ⊂M be a smooth, space-like Cauchy
surface and denote by n its future directed unit normal and by SΣ the restriction
of the spinor bundle S to Σ, so that

ρΣ : C∞(M ;S) 3 ψ 7−→ ψ�Σ∈ C∞(Σ;SΣ)

is surjective. The Cauchy problem{
Dψ = 0,
ρΣψ = f, f ∈ C∞0 (Σ;SΣ),

is globally well-posed, the solution being denoted by ψ = UΣf . From [DG, Theorem
19.63], we obtain that

(17.27) UΣf(x) = −
ˆ

Σ

G(x, y)γ(n(y))f(y)dVolh,

where h is the Riemannian metric induced by g on Σ.
We equip C∞0 (Σ;SΣ) with the Hermitian form

(17.28) (f1|f2)Σ ··=
ˆ

Σ

f1 ·βf2 dVolh.

For g ∈ E ′(Σ;SΣ), we define ρ∗Σg ∈ D′(M ;S) by
ˆ
M

ρ∗Σg ·βu dVolg ··=
ˆ

Σ

g ·βρΣudVolh, u ∈ C∞(Σ;SΣ),

i.e. ρ∗Σ is the adjoint of ρΣ with respect to the scalar products (·|·)M and (·|·)Σ. We
can rewrite (17.27) as

(17.29) UΣf = (ρΣG)∗γ(n)f, f ∈ C∞0 (Σ;SΣ).
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17.11. Quantization of the Dirac equation

For ψ1, ψ2 ∈ Solsc(D) we set

(17.30) ψ1 ·νψ2 ··=
ˆ

Σ

iJµ(ψ1, ψ2)nµdVolh = (ρΣψ1|iγ(n)ρΣψ2)Σ.

Since ∇µJµ(ψ1, ψ2) = 0, the right-hand side of (17.28) is independent on the choice
of Σ, and ν is a positive definite scalar product on Solsc(D). Setting

f1 ·νΣf2 ··= i

ˆ
Σ

f1 ·βγ(n)f2dVolh,

we obtain that
ρΣ : (Solsc(D), ν)→ (C∞0 (Σ;SΣ), νΣ)

is unitary, with inverse UΣ. We also get that G : C∞0 (M ;S)→ Solsc(D) is surjective
with kernel DC∞0 (M ;S) and, see e.g. [DG, Theorem 19.65], that

G : (
C∞0 (M ;S)

DC∞0 (M ;S)
, i(·|G·)M )→ (Solsc(D), ν)

is unitary. Summarizing, the maps

(17.31) (
C∞0 (M ;S)
DC∞0 (M ;S) , i(·|G·)M )

G−→ (Solsc(D), ν)
ρΣ−→ (C∞0 (Σ;SΣ), νΣ)

are unitary.

17.12. Hadamard states for the Dirac equation

We denote by CAR(D) the ∗-algebra CAR(Y, ν) for (Y, ν) one of the equivalent
pre-Hilbert spaces in (17.31). We use the Hermitian form (·|·)M in (17.22) to
pair C∞0 (M ;S) with D′(M ;S) and to identify continuous sesquilinear forms on
C∞0 (M ;S) with continuous linear maps from C∞0 (M ;S) to D′(M ;S).

Thus, a quasi-free state ω on CAR(D) is defined by its spacetime covariances
Λ± which satisfy

(17.32)

(i) Λ± : C∞0 (M ;S)→ D′(M ;S) are linear continuous,

(ii) Λ± ≥ 0 with respect to (·|·)M ,

(iii) Λ+ + Λ− = iG,

(iv) D ◦ Λ± = Λ± ◦D = 0.

Alternatively, one can define ω by its Cauchy surface covariances λ±Σ , which satisfy

(17.33)

(i) λ±Σ : C∞0 (Σ;SΣ)→ D′(Σ;SΣ) are linear continuous,

(ii) λ±Σ ≥ 0 for (·|·)Σ,

(iii) λ+
Σ + λ−Σ = iγ(n).

Using (17.29) one can show as in Proposition 6.1.6 that

(17.34)
Λ± = (ρΣG)∗λ±Σ(ρΣG),

λ±Σ = (ρ∗Σγ(n))∗Λ±(ρ∗Σγ(n)).

By the Schwartz kernel theorem, we can identify Λ± with distributional sections in
D′(M ×M ;S � S), still denoted by Λ±.

The wavefront set of such sections is defined in the natural way: choosing a
local trivialization of S � S, one can assume that S � S is trivial with fiber Mp(C)
for p = rankS, and the wavefront set of a matrix valued distribution is simply the
union of the wavefront sets of its entries.

We recall that N± are the two connected components of N , see 17.9.1.
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Definition 17.12.1. ω is a Hadamard state if

WF(Λ±) ⊂ N± ×N±.

The following version of Proposition 11.1.1 gives a sufficient condition for the
Cauchy surface covariances λ±Σ to generate a Hadamard state. Its proof is analogous,
using (17.34).

Proposition 17.12.2. Let λ±Σ =·· iγ(n)c±, where c± are linear continuous from
C∞0 (Σ;SΣ) to C∞(Σ;SΣ) and from E ′(Σ;SΣ) to D′(Σ;SΣ). Assume that

WF(UΣ ◦ c±)′ ⊂ N± × (T ∗Σ \o), over U × Σ,

for some neighborhood U of Σ in M . Then ω is a Hadamard state.

The existence of Hadamard states for Dirac equations on globally hyperbolic
spacetimes can be shown by the same deformation argument as in the Klein-Gordon
case, see e.g. [Ho1].

17.13. Conformal transformations

Let c ∈ C∞(M) with c(x) > 0 and g̃ = c2g. If γ̃(X) are the generators of
Cliff(M, g̃), we have γ̃(X) = cγ(X).

To define the spinor connection ∇̃S on S for the metric g̃ we need to fix a
Hermitian form β̃ and a charge conjugation κ̃. It is natural to choose κ̃ = κ, but
several choices of β̃ are possible. The choice that we will adopt is

β̃ = c−1β

which has the advantage that if n = 4 the isomorphism T in Proposition 17.5.1 is
unchanged. From Theorem 17.8.1 we deduce that

∇̃SX = ∇SX +
1

2
c−1γ(X)γ(∇c)− c−1X ·dc 1l.

If /̃D is the associated Dirac operator, we have

(17.35) /̃D = c−n/2 /Dcn/2−1.

Equivalently, if we introduce the map

W : C∞0 (M ;S) 3 ψ̃ 7−→ cn/2−1ψ̃ ∈ C∞0 (M ;S),

and denote by (·|·)M̃ the Hermitian form (17.22) with β and dVolg replaced by β̃
and dVolg̃, respectively, we have

(17.36) (ψ1|Wψ̃2)M = (W ∗ψ1|ψ̃2)M̃ , W ∗ψ = c−n/2ψ,

and (17.35) can be rewritten as:

D̃ ··= W ∗DW = c−n/2Dcn/2−1 = /̃D + c−1m.

We have then G = WG̃W ∗.

Remark 17.13.1. The choice β̃ = β is often used in the mathematics literature.
It leads to

∇̃SX = ∇SX + 1
2c
−1γ(X)γ(∇c)− 1

2c
−1X ·dc 1l,

/̃D = c−(n+1)/2 /Dc(n−1)/2.
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17.13.1. Conformal transformations of phase spaces. Setting

U : C∞0 (Σ;SΣ) 3 f 7−→ Uf = c1−n/2f 3 C∞0 (Σ;SΣ),

we obtain the following analog of Proposition 6.3.1.

Proposition 17.13.2. The following diagram is commutative, with all arrows
unitary:

(
C∞0 (M ;S)
DC∞0 (M ;S) , (· |iG ·)M )

G−−−−→ (Solsc(D), ν)
%Σ−−−−→ (C∞0 (Σ;SΣ), νΣ)yW∗ yW−1

yU
(
C∞0 (M̃ ;S)

D̃C∞0 (M̃ ;S)
, (· |iG̃ ·)M̃ )

G̃−−−−→ (Solsc(D̃), ν̃)
%̃Σ−−−−→ (C∞0 (Σ;SΣ), ν̃Σ)

17.13.2. Conformal transformations of quasi-free states. Let Λ± be the
spacetime covariances of a quasi-free state ω for D. Then

(17.37) Λ̃± = c1−n/2Λ±cn/2

are the spacetime covariances of a quasi-free state ω̃ for D̃, and

λ̃±Σ = (U∗)−1λ±ΣU
−1 = c1−n/2λ±Σc

n/2−1,

if λ±Σ , resp. λ̃
±
Σ are the Cauchy surface covariances of ω, resp. ω̃.

17.14. The Weyl equation

We consider now the massless Dirac equation /Dψ = 0 and assume n = 4. Ac-
cording to 17.9.4, the Dirac equation decouples as two independent Weyl equations

(17.38)

{
β /Dχ = 0,

κ′β /Dκφ = 0.

Let us set
D ··= β /D : C∞(M ;S∗) −→ C∞(M ;S).

Note that D = D∗ by Proposition 17.9.2.

17.14.1. Characteristic manifold. The characteristic manifold of D is

Char(D) = {(x, ξ) ∈ T ∗M \o : σpr(D)(x, ξ) not invertible}.
It is easy to see that

(17.39) Char(D) = N .
Indeed, fix x ∈ M and choose a basis (w1, w2) of Wex. By (17.23), the matrix of

d(x, ξ) in the basis (w1, w2, κw1, κw2) of Sx equals
(

0 de(x, ξ)
de(x, ξ) 0

)
, where

de(x, ξ) ∈ M2(R). From (17.21) we obtain that de(x, ξ)2 = ξ ·g−1(x)ξ1l2, which
implies (17.39).

17.14.2. Retarded/advanced inverses. D has the retarded/advanced in-
verses

Gret/adv = Gret/advβ
−1 : C∞0 (M ;S) −→ C∞sc (M ;S∗),

and the causal propagator

G ··= Gret −Gadv = Gβ−1.

Let us denote by rΣ : C∞(M ;S∗) → C∞(Σ; S∗Σ) the trace on Σ, and by r∗Σ :
C∞(Σ;SΣ)→ C∞(M ;S) its adjoint, so that r∗Σ = βρ∗Σβ

−1. We also set

Γ(X) = βγ(X) : C∞(Σ,S∗Σ) −→ C∞(Σ;SΣ).
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The Cauchy problem {
Dφ = 0,

rΣφ = f ∈ C∞0 (Σ;S∗Σ),

has the unique solution

φ = UΣf = −
ˆ

Σ

G(x, y)Γ(n(y))f(y)dVolh,

or equivalently
UΣ = (rΣG)∗Γ(n).

We see that (Solsc(D), ν) is a pre-Hilbert space, and from (17.31) we obtain the
unitary maps:

(17.40) (
C∞0 (M ;S)

DC∞0 (M ;S∗)
, iG)

G−→ (Solsc(D), ν)
rΣ−→ (C∞0 (Σ; S∗Σ), νΣ).

17.14.3. Quasi-free states. As before, we denote by CAR(D) the ∗-algebra
CAR(Y, ν) for (Y, ν) one of the equivalent pre-Hilbert spaces in (17.40). A quasi-
free state ω on CAR(Y, ν) is defined by its spacetime covariances L±, which satisfy

(17.41)

(i) L± : C∞0 (M ;S)→ D′(M ;S∗) are linear continuous,

(ii) L± ≥ 0,

(iii) L+ + L− = iG,

(iv) DL± = L±D = 0.

Alternatively, one can define ω by its Cauchy surface covariances l±Σ which satisfy:

(17.42)

(i) l±Σ : C∞0 (Σ;S∗Σ)→ D′(Σ;SΣ) are linear continuous,

(ii) l±Σ ≥ 0,

(iii) l+Σ + l−Σ = iΓ(n).

One has

(17.43)
L± = (rΣG)∗l±Σ (rΣG),

l±Σ = (r∗ΣΓ(n))∗L±(r∗ΣΓ(n)).

Here are the identities corresponding to those in Section 17.13, obtained by a con-
formal transformation g̃ = c2g:

(17.44)
D̃ = c−1−n/2Dcn/2−1, G̃ = c1−n/2Gcn/2+1,

L̃± = c1−n/2L±cn/2+1, l̃±Σ = c1−n/2l±Σc
n/2−1.

Definition 17.14.1. The state ω on CAR(D) is a Hadamard state if

WF(L±)′ ⊂ N± ×N±.

We have the following version of Proposition 17.12.2.

Proposition 17.14.2. Let l±Σ =·· iΓ(n)c±, where c± are linear continuous from
C∞0 (Σ;S∗Σ) to C∞(Σ;S∗Σ) and from E ′(Σ; S∗Σ) to D′(Σ;S∗Σ). Assume that

WF(UΣ ◦ c±)′ ⊂ N± × (T ∗Σ \o) over U × Σ,

for some neighborhood U of Σ in M . Then ω is a Hadamard state.
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17.15. Relationship between Dirac and Weyl Hadamard states

Finally, let us describe the relationship between Hadamard states for the Weyl
and Dirac equations.

Proposition 17.15.1. Let ωD be a quasi-free Hadamard state for D with space-
time covariances L±. Then

Λ± =

(
0 L±β

−κL∓βκ 0

)
are the spacetime covariances of a quasi-free Hadamard state ωD for /D.

Proof. We check (17.32). Condition (i) is obvious. We have (L+ +L−)β = iGβ =
iG on C∞0 (M ;Wo), hence κ(L+ + L−)βκ = −iκGκ = −iG on C∞0 (M ;We), since
κG = Gκ and κ is anti-linear, which proves condition (iii). Condition (iv) is also
immediate. To check the positivity condition (ii), we write using (17.13) and the
fact that β = β∗:

(ψ|βΛ±ψ) = (ψo|βL±βψo)− (ψe|βκL∓βκψe)

= (ψo|βL±βψo) + (κψe|βL∓βκψe)

= (ψo|βL±βψo) + (βκψe|L∓βκψe) ≥ 0,

as needed. It remains to prove the Hadamard condition. The fact that WF(L±β)′ ⊂
N±×N± follows from the Hadamard property of ωD. This implies that WF(κL±βκ) ⊂
N∓ ×N∓ since κ is anti-linear, and completes the proof that ω /D is Hadamard. 2

The converse of Proposition 17.15.1 is much easier.

Proposition 17.15.2. Let Λ± be the spacetime covariances of a Hadamard
state for /D. Then setting Λ±o = Λ±|C∞0 (M ;Wo), the maps

L± = Λ±o β
−1

are the covariances of a Hadamard state for D.
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