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CHAPTER 1

Introduction

1.1. Introduction

Quantum Field Theory arose from the need to unify Quantum Mechanics with
special relativity. It is usually formulated on the flat Minkowski spacetime, on which
classical field equations, such as the Klein-Gordon, Dirac or Maxwell equations are
easily defined. Their quantization rests on the so-called Minkowski vacuum, which
describes a state of the quantum field containing no particles. The Minkowski
vacuum is also fundamental for the perturbative or non-perturbative construction
of interacting theories, corresponding to the quantization of non-linear classical field
equations.

Quantum Field Theory on Minkowski spacetime relies heavily on its symmetry
under the Poincaré group. This is apparent in the ubiquitous role of plane waves in
the analysis of classical field equations, but more importantly in the characterization
of the Minkowski vacuum as the unique state which is invariant under the Poincaré
group and has some energy positivity property.

Quantum Field Theory on curved spacetimes describes quantum fields in an
external gravitational field, represented by the Lorentzian metric of the ambient
spacetime. It is used in situations when both the quantum nature of the fields and
the effect of gravitation are important, but the quantum nature of gravity can be
neglected in a first approximation. Its non-relativistic analog would be for example
ordinary Quantum Mechanics, i.e. the Schrodinger equation, in a classical exterior
electromagnetic field.

Its most important areas of application are the study of phenomena occurring
in the early universe and in the vicinity of black holes, and its most celebrated result
is the discovery by Hawking that quantum particles are created near the horizon of
a black hole.

The symmetries of the Minkowski spacetime, which play such a fundamental
role, are absent in curved spacetimes, except in some simple situations, like sta-
tionary or static spacetimes. Therefore, the traditional approach to quantum field
theory has to be modified: one has first to perform an algebraic quantization, which
for free theories amounts to introducing an appropriate phase space, which is ei-
ther a symplectic or an Fuclidean space, in the bosonic or fermionic case. From
such a phase space one can construct CCR or CAR x*-algebras, and actually nets of
x-algebras, each associated to a region of spacetime.

The second step consists in singling out, among the many states on these *-
algebras, the physically meaningful ones, which should resemble the Minkowski
vacuum, at least in the vicinity of any point of the spacetime. This leads to the
notion of Hadamard states, which were originally defined by requiring that their
two-point functions have a specific asymptotic expansion near the diagonal, called
the Hadamard expansion.

A very important progress was made by Radzikowski, [R1, [R2], who intro-
duced the characterization of Hadamard states by the wavefront set of their two-
point functions. The wavefront set of a distribution is the natural way to describe
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its singularities in the cotangent space, and lies at the basis of microlocal analysis,
a fundamental tool in the analysis of linear and non-linear partial differential equa-
tions. Among its avatars in the physics literature are, for example, the geometrical
optics in wave propagation and the semi-classical limit in Quantum Mechanics.

The introduction of microlocal analysis in quantum field theory on curved
spacetimes started a period of rapid progress, non only for free (i.e. linear) quantum
fields, but also for the perturbative construction of interacting fields by Brunetti
and Fredenhagen [BF]. For free fields it allowed to use several fundamental results
of microlocal analysis, like Hormander’s propagation of singularities theorem and
the classification of parametrices for Klein-Gordon operators by Duistermaat and
Hormander.

1.2. Content

The goal of these lecture notes is to give an exposition of microlocal analysis
methods in the study of Quantum Field Theory on curved spacetimes. We will
focus on free fields and the corresponding quasi-free states and more precisely on
Klein-Gordon fields, obtained by quantization of linear Klein-Gordon equations on
Lorentzian manifolds, although the case of Dirac fields will be described in Chapter
!

There exist already several good textbooks or lecture notes on quantum field
theory in curved spacetimes. Among them let us mention the book by Bér, Ginoux
and Pfaeffle [BGP], the lecture notes [BFr| and [BDEY], the more recent book
by Rejzner |[Re|, and the survey by Benini, Dappiagi and Hack [BDH|. There
exist also more physics oriented books, like the books by Wald [W2], Fulling |F|
and Birrell and Davies [BD]. Several of these texts contain important developments
which are not described here, like the perturbative approach to interacting theories,
or the use of category theory.

In this lecture notes we focus on advanced methods from microlocal analysis,
like for example pseudodifferential calculus, which turn out to be very useful in the
study and construction of Hadamard states.

Pure mathematicians working in partial differential equations are often deterred
by the traditional formalism of quantum field theory found in physics textbooks,
and by the fact that the construction of interacting theories is, at least for the time
being, restricted to perturbative methods.

We hope that these lecture notes will convince them that quantum field theory
on curved spacetimes is full of interesting and physically important problems, with
a nice interplay between algebraic methods, Lorentzian geometry and microlocal
methods in partial differential equations. On the other hand, mathematical physi-
cists with a traditional education, which may lack familiarity with more advanced
tools of microlocal analysis, can use this text as an introduction and motivation to
the use of these methods.

Let us now give a more detailed description of these lecture notes. The reader
may also consult the introduction of each chapter for more information.

For pedagogical reasons, we have chosen to devote Chapters [2] and [3] to a
brief outline of the traditional approach to quantization of Klein-Gordon fields
on Minkowski spacetime, but the impatient reader can skip them without trouble.

Chapter [4 deals with CCR *-algebras and quasi-free states. A reader with a
PDE background may find the reading of this chapter a bit tedious. Nevertheless,
we think it is worth the effort to get familiar with the notions introduced there.

In Chapter[5|we describe well-known concepts and results concerning Lorentzian
manifolds and Klein-Gordon equations on them. The most important are the notion
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of global hyperbolicity, a property of a Lorentzian manifold implying global solvabil-
ity of the Cauchy problem, and the causal propagator and the various symplectic
spaces associated to it.

In Chapter [6] we discuss quasi-free states for Klein-Gordon fields on curved
spacetimes, which is a concrete application of the abstract formalism in Chapter
Of interest are the two possible descriptions of a quasi-free state, either by it space-
time covariances, or by its Cauchy surface covariances, which are both important
in practice. Another useful point is the discussion of conformal transformations.

Chapter[7]is devoted to the microlocal analysis of Klein-Gordon equations. We
collect here various well-known results about wavefront sets, Hérmander’s propaga-
tion of singularities theorem and its related study with Duistermaat of distinguished
parametrices for Klein-Gordon operators, which play a fundamental role in quan-
tized Klein-Gordon fields.

In Chapter [§] we introduce the modern definition of Hadamard states due to
Radzikowski and discuss some of its consequences. We explain the equivalence with
the older definition based on Hadamard expansions and the well-known existence
result by Fulling, Narcowich and Wald.

In Chapter [9] we discuss ground states and thermal states, first in an abstract
setting, then for Klein-Gordon operators on stationary spacetimes. Ground states
share the symmetries of the background stationary spacetime and are the natural
analogs of the Minkowski vacuum. In particular, they are the simplest examples of
Hadamard states.

Chapter[I0]is devoted to an exposition of a global pseudodifferential calculus on
non compact manifolds, the Shubin calculus. This calculus is based on the notion
of manifolds of bounded geometry and is a natural generalization of the standard
uniform calculus on R™. Its most important properties are the Seeley and Egorov
theorems.

In Chapter [11] we explain the construction of Hadamard states using the pseu-
dodifferential calculus in Chapter The construction is done, after choosing a
Cauchy surface, by a microlocal splitting of the space of Cauchy data obtained from
a global construction of parametrices for the Cauchy problem. It can be applied
to many spacetimes of physical interest, like the Kerr-Kruskal and Kerr-de Sitter
spacetimes.

In Chapter [12] we construct analytic Hadamard states by Wick rotation, a well-
known procedure in Minkowski spacetime. Analytic Hadamard states are defined
on analytic spacetimes, by replacing the usual C*>° wavefront set by the analytic
wavefront set, which describes the analytic singularities of distributions. Like the
Minkowski vacuum, they have the important Reeh-Schlieder property. After Wick
rotation, the hyperbolic Klein-Gordon operator becomes an elliptic Laplace oper-
ator, and analytic Hadamard states are constructed using a well-known tool from
elliptic boundary value problems, namely the Calderdn projector.

In Chapter [I3] we describe the construction of Hadamard states by the charac-
teristic Cauchy problem. This amounts to replacing the space-like Cauchy surface
in Chapter by a past or future lightcone, choosing its interior as the ambient
spacetime. From the trace of solutions on this cone one can introduce a boundary
symplectic space, and it turns out that it is quite easy to characterize states on
this symplectic space which generate a Hadamard state in the interior. Its main
application is the conformal wave equation on spacetimes which are asymptotically
flat at past or future null infinity. We also describe in this chapter the BMS group
of asymptotic symmetries of these spacetimes, and its relationship with Hadamard
states.
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In Chapter [14] we discuss Klein-Gordon fields on spacetimes with Killing hori-
zons. Our aim is to explain a phenomenon loosely related with the Hawking ra-
diation, namely the existence of the Hartle-Hawking-Israel vacuum, on spacetimes
having a stationary Killing horizon. The construction and properties of this state
follow from the Wick rotation method already used in Chapter the Calderon
projectors playing also an important role.

Chapter is devoted to the construction of Hadamard states by scattering
theory methods. We consider spacetimes which are asymptotically static at past or
future time infinity. In this case one can define the in and out vacuum states, which
are states asymptotic to the vacuum state at past or future time infinity. Using the
tools from Chapters we prove that these states are Hadamard states.

In Chapter [16| we discuss the notion of Feynman inverses. It is known that a
Klein-Gordon operator on a globally hyperbolic spacetime admits Feynman para-
metrices, which are unique modulo smoothing operators and characterized by the
wavefront set of its distributional kernels. One can ask if one can also define a
unique, canonical true inverse, having the correct wavefront set. We give a positive
answer to this question on spacetimes which are asymptotically Minkowsks.

Chapter is devoted to the quantization of the Dirac equation and to the
definition of Hadamard states for Dirac quantum fields. The Dirac equation on
a curved spacetime describes an electron-positron field which is a fermionic field,
and the CCR x-algebra for the Klein-Gordon field has to be replaced by a CAR
x-algebra. Apart from this difference, the theory for fermionic fields is quite parallel
to the bosonic case. We also describe the quantization of the Weyl equation, which
originally was thought to describe massless neutrinos.

1.2.1. Acknowledgments. The results described in Chapters[I1} [I2] [I5] and
part of those in Chapters and originate from common work with Michal
Wrochna, over a period of several years.

I learned a lot of what I know about quantum field theory from my long collab-
oration with Jan Derezinski, and several parts of these lecture notes, like Chapters
and || borrow a lot from our common book [DG]. I take the occasion here to
express my gratitude to him.

Finally, I also greatly profited from discussions with members of the AQFT
community. Among them I would like to especially thank Claudio Dappiagi, Valter
Moretti, Nicola Pinamonti, Igor Khavkine, Klaus Fredenhagen, Detlev Bucholz,
Wojciech Dybalski, Kasia Rejzner, Dorothea Bahns, Rainer Verch, Stefan Hollands
and Ko Sanders.

1.3. Notation

We now collect some notation that we will use.

We set (A) = (14 A?)2 for A € R.

We write A € B if A is relatively compact in B.

If X,Y are sets and f: X — Y we write f : X = Y if f is bijective. If X, Y
are equipped with topologies, we write f : X — Y if the map is continuous, and
f: X 5 Y if it is a homeomorphism.

1.3.1. Scale of abstract Sobolev spaces. Let H a real or complex Hilbert
space and A a selfadjoint operator on #. We write A > 0 if A > 0 and Ker A = {0}.

If A> 0 and s € R, we equip Dom A~ with the scalar product (u|v)_s =
(A~*u|A™%v) and the norm || A~ %u||. We denote by A*# the completion of Dom A~*
for this norm, which is a (real or complex) Hilbert space.



CHAPTER 2

Free Klein-Gordon fields on Minkowski spacetime

Almost all textbooks on quantum field theory start with the quantization of
the free (i.e. linear) Klein-Gordon and Dirac equations on Minkowski spacetime.
The traditional exposition rests on the so-called frequency splitting, which amounts
to splitting the space of solutions of, say, the Klein-Gordon equation into two sub-
spaces, corresponding to solutions having positive/negative energy, or equivalently
whose Fourier transforms are supported in the upper/lower mass hyperboloid.

One then proceeds with the introduction of Fock spaces and the definition of
quantized Klein-Gordon or Dirac fields using creation/annihilation operators.

Since it relies on the use of the Fourier transformation, this method does not
carry over to Klein-Gordon fields on curved spacetimes. More fundamentally, it has
the drawback of mixing two different steps in the quantization of the Klein-Gordon
equation.

The first, purely algebraic step consists in using the symplectic nature of the
Klein-Gordon equation to introduce an appropriate CCR *-algebra. The second
step comnsists in choosing a state on this algebra, which on the Minkowski spacetime
is the vacuum state.

Nevertheless it is useful to keep in mind the Minkowski spacetime as an impor-
tant example. This chapter is devoted to the classical theory of the Klein-Gordon
equation on Minkowski spacetime, i.e. to its symplectic structure. Its Fock quan-
tization will be described in Chapter [3]

2.1. Minkowski spacetime

In the sequel we will use notation introduced later in Section
The elements of R" = R; x R¢ will be denoted by 2 = (¢,x), those of the dual
(R™) by & = (1, k).

2.1.1. The Minkowski spacetime.

DEFINITION 2.1.1. The Minkowski spacetime RY? is R'*% equipped with the
bilinear form n € Ly(R*4 (RF)) given by

(2.1) znr = —t* +x%

DEFINITION 2.1.2. (1) A wector x € RY? is time-like if x-nx < 0, null if
z-nr =0, causal if x-nz <0, and space-like if x-nz > 0.

(2) Cy i={x e RM: z.pz <0, £t > 0}, resp. Cy == {z € RV : z.qz <
0, £t > 0} are called the open, resp. closed future/past (solid) lightcones.

(3) N:={x € RM : 2 .nz =0}, resp. Ny = NN {Et >0} are called the null
cone resp. future/past null cones.

There is a similar classification of vector subspaces of R?.

DEFINITION 2.1.3. A linear subspace V of RM® is time-like if it contains both
space-like and time-like vectors, null if it is tangent to the null cone N and space-like
if it contains only space-like vectors.
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DEFINITION 2.1.4. (1) If K C RY, I (K) = K + Cq, resp. Ju(K) :=
K + Cy, is called the time-like, resp. causal future/past of K, and J(K) =
J+(K)U J_(K) the causal shadow of K.

(2) Two sets K1, K are called causally disjoint if K1NJ(K>3) = () or, equivalently,
if J(K1)N Ky =0.

(3) A function f on R™ is called space-compact, resp. future/past space-compact,
if supp f C J(K), resp. supp f C Jx(K) for some compact set K € R™. The
spaces of smooth such functions will be denoted by Cgo(R™), resp. Cg2 L (R™).

2.1.2. The Lorentz and Poincaré groups.

DEFINITION 2.1.5. (1) The pseudo-Euclidean group O(R'*% n) is denoted by
0(1,d) and is called the Lorentz group.

(2) SO(1,d) is the subgroup of L € O(1,d) with det L = 1.

(3) If L € O(1,d) one has L(Jy) = Jy or L(J;) = J—. In the first case L is
called orthochronous and in the second anti-orthochronous.

(4) The subgroup of orthochronous elements of SO(1,d) is denoted by SOT(1,d)
and called the restricted Lorentz group.

DEFINITION 2.1.6. The (restricted) Poincaré group is the set P(1,d) := R™ X
SOT(1,d) equipped with the product

(ag, L2) x (a1, L1) = (az + Laa, LaLy).
The Poincaré group acts on R™ by Ax := Lx + a for A = (a,L) € P(1,d).

2.2. The Klein-Gordon equation
We recall that the differential operator

d
P=—-0+4m? ::af—zaii +m?,
i=1

for m > 0 is called the Klein-Gordon operator.

We set e(k) = (k* + m2?)2 and denote by € = ¢(Dy) the Fourier multiplier
defined by F(eu)(k) = e(k)u(k), where Fu(k) = (2m)"%92 [e"**u(x)dx is the
(unitary) Fourier transform. Note that —0 + m? = §? + €2.

The Klein-Gordon equation

(2.2) —0¢+m?¢p =0

is the simplest relativistic field equation. Its quantization describes a scalar bosonic
field of mass m. The wave equation (m = 0) is a particular case of the Klein-Gordon
equation. Note that since —0O + m? preserves real functions, the Klein-Gordon
equation has real solutions, which are associated to neutral fields, corresponding
to neutral particles, while the complex solutions are associated to charged fields,
corresponding to charged particles.

It will be more convenient later to consider complex solutions, but in this
chapter we will, as is usual in the physics literature, consider mainly real solutions.
The case of complex solutions will be briefly discussed in Section [2.4]

We refer the reader to Chapter [ for a general discussion of the real vs complex
formalism in a more abstract framework.

We are interested in the space of its smooth, space-compact, real solutions de-
noted by Solse (KG). Solse r(KG) is invariant under the Poincaré group if we
set

(2.3) ard(z) == (A 'x), A€ P(1,d).
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2.2.1. The Cauchy problem. If ¢ € C°(R") and ¢t € R we set ¢(t)(x) :=
B(t,x) € C°°(R?). Any solution ¢ € Sols. g(KG) is determined by its Cauchy data
on the Cauchy surface ¥, = {t = s} ~ R?, defined by the map

(;5(5) 00 d. 2
2.4 s = = CS° (R R?).
(2.4 0= ( gty ) =1 € CERER)
The unique solution in Solsc g(KG) of the Cauchy problem
(7D + m2)¢ = 07
2.5
( ) { 059 = f,

is denoted by ¢ = Usf and given by

(2.6) B(t) = cos(e(t — s)) fo + ¢ sin(e(t —s)f1, f= < ;0 ) .
1

The map U is called the Cauchy evolution operator. The following proposition
expresses the important causality property of Us.

PROPOSITION 2.2.1. One has

supp Us f C J({s} x supp f).

2.2.2. Advanced and retarded inverses. Let us now consider the inhomo-
geneous Klein-Gordon equation
(2.7 (=0 +m?)u = v,

where for simplicity v € C§°(R™). Since there are plenty of homogeneous solutions,
it is necessary to supplement (2.7) by support conditions to obtain unique solutions,
by requiring that ¢ vanishes for large negative or positive times.

THEOREM 2.2.2. (1) there exist unique solutions Uset /ady = Gret/adv € CF (R™)

of (2.7). Setting

(2.8) Ghretjady (t) i= £0(£t)e " sin(et),
where 0(t) = N 4oo[(t) is the Heaviside function, one has
(29) Gret/advv(tv ) = / Gret/adv(t - S)U(Sa )dsa
R

(2) one has supp Gret/advv C J+(Suppv).
The operators Gret/adv are called the retarded/advanced inverses of P. Let us
equip C§°(R™) with the scalar product
(2.10) (u|v)gn = / wvde,

and C§°(R?; C?) with the scalar product

(211) (ows = | | (Fuan + Fom)ex.

It follows from that
ret/adv = Gadv/rets
where A* denotes the formal adjoint of A with respect to the scalar product (-|-)gn.
The operator
(2.12) G = Gret — Gaav
is called in the physics literature the Pauli-Jordan or commutator function, or also

the causal propagator. Note that
(2.13) G =-G*, suppGuv C J(suppv),
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and
(2.14) Gu(t,) = / e sin(e(t — s))v(s,-)ds.
R
There is an important relationship between G and Us;. Namely, if we denote by
of : D'(R4R?) — D'(R™) the formal adjoint of g, : C§°(R") — C5°(R4; R?) with
respect to the scalar products (2.10) and (2.11)), then:
(2.15) 05 f(t,x) = 0u(t) ® fo(x) — 0(t) @ fi(x),  f € CF(RGR?).
The following lemma follows from (2.6)), (2.8) by a direct computation.
LEMMA 2.2.3. One has
Uf =G ogioaf, [eCFR,RY,

foroz(?l _011>

2.2.3. Symplectic structure. It is well-known that the Klein-Gordon equa-
tion is a Hamiltonian equation. Indeed let us equip C§°(R%; R?) with the symplectic
form:

(2.16) fog:= /Rd (f190 — fog1)dx.

If we identify bilinear forms on C§°(R%;R?) with linear operators using the scalar
product (-|-)ga, we have

fro9=(flog)gs,

where the operator o is defined in Lemma [2.2.33] If we introduce the classical
Hamiltonian

FEF=g [+ fot o)
and define A € L(C5°(R?;R?)) by
(2.17) f-0Ag:=f-Eg, f,g€C5°(R:R?),

0 1
A= ( o, )
Setting f(t) = 0:Upf for f € C5°(R%; C?) we have, by an easy computation
(2.18) F(t) = e,

which shows that f +— f(¢) is the symplectic flow generated by the classical Hamil-
tonian E and the symplectic form o. In particular, if fi(t) = e f;, i = 1,2,
f1(t)-o f2(t) is independent on t.

Equivalently, we can equip Sols. g(KG) with the symplectic form

(2.19) P1-0P2 = 0:1-00tP2,

where the right-hand side is independent on ¢. Fixing the reference Cauchy surface
Yo ~ R, we obtain the following proposition:

we obtain that

PROPOSITION 2.2.4. The Cauchy data map on ¥g
00 : (Solee g(KG),0) — (C5°(R%R?), 0),

is symplectic, with gal = Uy, where the Cauchy evolution operator Us was intro-
duced in Subsection 221
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This leads to another interpretation of ([2.18): the space Sols g (KG) is invari-
ant under the group of time translations
Ts¢<'7x) = ¢( - 57X)7
and 75 is symplectic on (Solse g (KG), o). Then (2.18)) can be rewritten as

womogl =" seR

2.3. Pre-symplectic space of test functions

By Proposition 4 (Solse (K G),0) is a symplectic space. It is easy to see
that ap defined in 1-) is symplectic if A is orthochronous, for example using The-

orem [2.3.2) below. If A is anti-orthochronous, ay is anti-symplectic, i.e. transforms
o into —o.

Identifying (Solser(KG), o) with (C§°(R%;R?),0) using o is convenient for
concrete computations, but destroys Poincaré invariance, since one fixes the Cauchy
surface Y. It would be useful to have another isomorphic symplectic space which
is Poincaré invariant and at the same time easier to understand than Solsc r (K G).
It turns out that one can use the space of test functions C§°(R™;R), which is a
fundamental step in formulating the notion of locality for quantum fields.

PROPOSITION 2.3.1. Consider the map G : C§°(R™;R) — C(R™). Then:
(1) RanG = Solyc r(KG),
(2) Ker G = PC§°(R™;R).
Moreover, we have
(3) (0G)" 000 (00G) = G.

Proof. (1) By PoG =0 and Theoremm (2), we see that RanG C Solsc (K G).
Conversely let ¢ € Solse r(KG). If fs = 05¢, then by Lemma we obtain that
¢ =—Googioofs for s € R. Hence, if x € C§°(R) with [ x(s)ds = 1 we obtain
that

¢ = / s)pdx = G,

for v = — [; 0% o o feds € C3°(R™).

(2) Since G o P = 0 we have PCJ°(R™";R) C KerG. Conversely let v €
Ce°(R™; R) with Gv = 0. Then for Ut /aqv = Gret/advt We have Urey = Uady = U,
u € C§°(R™) by Theorem m (2) and v = Pu since P o Gyeg/ady = 1.

(3) We have, using
y [ e tsin(es)u(s)ds
00Gu = ( J cos( es)u(s)ds ) ’
. S fcose Yu(s)ds
== LTt )
(00G)" f =—-Goif

= — [ e 'sin(e(t - 5))(do(s) @ fo — Gy(s) @ f1)ds
= —e Lsin(et) fo + cos(et) fi,

hence

and

which yields
(00G)"0 00 (20G)u
= [ 1 sin(et) cos(es)u(s)ds + [ €' cos(et) sin(es)u(s)ds
= [ e sin(e(t — s))u(s)ds = Gu.
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This completes the proof of the proposition. O
One can summarize Propositions and in the following theorem:

THEOREM 2.3.2. (1) The following spaces are symplectic spaces:

( Ci°(R™;R)
PC§°(R™;R)
(2) The following maps are symplectomorphisms:
( C5°(R™;R)
PC§(R™; R)
The first and last of these equivalent symplectic spaces are the most useful for

the quantization of the Klein-Gordon equation.

('IG'>R")7 (SOIsc,R(KG)70)7 (Cgo(Rd;RZ)ﬂO—)‘

L (1G)rn) -E5 (S0l r(KG), o) 22(C5° (R%; R?), o).

2.4. The complex case

Let us now discuss the space Sols. c(KG) of complex space-compact solutions.
We refer to Section [£:2] for notation and terminology.
It is more natural to use the map

(2.20) 05 = ( i—lq;iz(S) >

as Cauchy data map and to equip the space C§°(R?; C?) of Cauchy data with the
Hermitian form

(2.21) Foqq = /d (f190 + fog1)dx.
R
The space Sols. c(KG) is similarly equipped with the form
1-qP2 = 0191 -q01P2,

which is independent on ¢. The Cauchy evolution operator becomes
(2.22) Uof(t) = cos(et) fo +ie ' sin(et) fi.

We have then the following analog of Theorem [2.3.2}

THEOREM 2.4.1. (1) The following spaces are Hermitian spaces:
(R C)

PCE (R C)

(2) The following maps are unitary:
( Ci°(R™;C)

PCEF(R™C)’

y (|1G)R”)v (SOISC,C(KG)vq)v (C(()X)(Rd;(CQ)vq)'

([iG)rn) =5 (Soke,c(KG), ) 2% (C5° (RE; C2), q).



CHAPTER 3

Fock quantization on Minkowski space

We describe in this chapter the Fock quantization of the Klein-Gordon equation
on Minkowski spacetime. We recall the definition of the bosonic Fock space over a
one-particle space and of the creation/annihilation operators, which are ubiquitous
notions in quantum field theory.

For example, it is common in the physics oriented literature to specify a state
for the Klein-Gordon field by defining first some creation/annihilation operators.
We will see in Chapter [4] that this is nothing else than choosing a particular Kahler
structure on a certain symplectic space.

In this approach the quantum Klein-Gordon fields are defined as linear oper-
ators on the Fock space, so one has to pay attention to domain questions. These
technical problems disappear if one uses a more abstract point of view and intro-
duces the appropriate CCR #-algebra, as will be done in Chapter [d] Fock spaces
will reappear as the (Gelfand-Naimark-Segal) GNS Hilbert spaces associated to a
pure quasi-free state on this algebra. Apart from this fact, they can be forgotten.

3.1. Bosonic Fock space

3.1.1. Bosonic Fock space. Let h be a complex Hilbert space whose unit
vectors describe the states of a quantum particle. If this particle is bosonic, then the
states of a system of n such particles are described by unit vectors in the symmetric
tensor power @1h, where we take the tensor products in the Hilbert space sense,
i.e. complete the algebraic tensor products for the natural Hilbert norm.

A system of an arbitrary number of particles is described by the bosonic Fock
space

(3.1) Ts(h) == P el
n=0

where the direct sum is again taken in the Hilbert space sense and ®@2h = C by
definition. We recall that the symmetrized tensor product is defined by

\Ijl (208 \:[12 = @s(\Ill & \:[12))
where )
Os(u1 @+ Qup) = ] Z Ug(1) @ -+ @ Ug(n)-
oeS,
The vector e = (1,0,...) is called the vacuum and describe a state with no

particles at all. A useful observable on T's(h) is the number operator N, which
counts the number of particles, defined by

The operator N is an example of a second quantized operator, namely N = dI'(1),

where
n

@z = 319 @ a 1577,

j=1

11
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for @ a linear operator on h.

3.1.2. Creation/annihilation operators. Since I's(h) describes an arbitrary
number of particles, it is useful to have operators that create or annihilate particles.
One defines the creation/annihilation operators by

a*(h)¥, = vn+ 1h®s ¥,
a(h)¥,, = /n(h| @ 1°" 1, ¥, € @(h), h €Y,
where one sets (hlu = (h|u) for u € b. Tt is easy to see that a(*)(h) are well defined

on Dom Nz and that (¥ |a*(h)Ws) = (a(h)¥;|¥s), i.e. a(h)* C a*(h) on Dom Nz,
Moreover
(3.2) h > h+ a*(h), resp. a(h) is C-linear, resp. anti-linear,
and as quadratic forms on Dom NV 2 one has
(3.3) [a(h1), a(h2)] = [a™(h1),a” (h2)] = 0,
[a(h1),a*(h2)] = (h1]h2)L, hq,he €8,

where [A, B] = AB — BA, which a version of the canonical commutation relations,
abbreviated CCR in the sequel.

3.1.3. Field and Weyl operators. One then introduces the field operators
in the Fock representation
1

(3.4) Ge(h) i= s (alh) +a’ (), heb,

which can be easily shown to be essentially selfadjoint on Dom N 2. One has
(3.5) ¢p(h1 + Mh2) = dp(h1) + Adp(ha), A€ R, h; € b, on Dom N,

i.e. h — ¢p(h) is R-linear, and the Heisenberg form of the CCR are satisfied as
quadratic forms on Dom N 3

(3.6) [¢r(h1), ¢r(h2)] = ihi-ohsll.
for
(37) hl 'O’hg = Im(h1|h2)

Denoting again by ¢r(h) the selfadjoint closure of ¢r(h), one can then define the
Weyl operators

(3.8) We(h) = ei¢r(W)
which are unitary and satisfy the Weyl form of the CCR
W (h1)Wrg(hy) = e o2 Wa(hy 4 hy).

If br denotes the real form of b, i.e. b as a real vector space, then (hgr,o) is a
real symplectic space. Moreover i, considered as an element of L(bgr), belongs to
Sp(hr, o) and one has

v:=o00i=Re(:|") > 0.
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3.1.4. Kihler structures. In general, a triple (X, 0,j), where (X, o) is a real
symplectic space and j € L(X) satisfies j2> = —1 and o oj € Ly(X,&x’), is called
a pseudo-Kdihler structure on X. If 0 0oj > 0, it is called a Kdhler structure. The
anti-involution j is called a Kdhler anti-involution. We will come back to this notion
in Section Given a Kéhler structure on X, one can turn X into a complex pre-
Hilbert space by equipping it with the complex structure j and the scalar product:
(3.9) (z1]22)F = 21 -0jas + i1 -022.

If we choose as one-particle Hilbert space the completion of X' for (-|-)g, we can
construct the Fock representation by the map

X3z — ¢r(x)

which satisfies (3.5]), (3.6]).

3.2. Fock quantization of the Klein-Gordon equation

From the above discussion we see that the first step in the construction of quan-
tum Klein-Gordon fields is to fix a K&hler anti-involution on one of the equivalent
symplectic spaces in Theorem the most convenient one being (C5°(R%; R?), 7).

3.2.1. The Ki&hler structure. There are plenty of choices of Kéhler anti-
involutions. The most natural one is obtained as follows: let us denote by b the
completion of C§°(R?; C) with respect to the scalar product

(h1 |h2)F = (hl |6_1h2)Rd.

If m > 0, this space is the (complex) Sobolev space H~2(R%) and if m = 0 the
complex homogeneous Sobolev space H~2 (R?), except when d = 1, since the in-
tegral fR k| ~tdk diverges at k = 0. This is an example of the so-called infrared
problem for massless fields in two spacetime dimensions.

To avoid a somewhat lengthy digression, we will assume that m > 0 if d = 1.
Let us introduce the map

(3.10) V:CPRER?) S f e efo—ifi1 €1,
An easy computation shows that:

Im(VfIVg)gr = f-og,

. . . 0 !

ioV =V oj, fOTJ—(_e 0 )7

eite oV = VoetA.
In other words, j is a Kihler anti-involution on C§°(R¢; R?) and the associated one-
particle Hilbert space is unitarily equivalent to . Moreover, after identification by
V, the symplectic group {e*4};cg becomes the unitary group {el**};cg with positive
generator €. This positivity is the distinctive feature of the Fock representation.

3.3. Quantum spacetime fields

Let us set
(3.11) Op(u) = / or(e u(t,))dt, u € CJ°(R™;R),
R

the integral being for example norm convergent in B(Dom N %,Fs(h)). We obtain
from (2.14) and (3.7) that
(3.12) [P (u), Pr(v)] = i(u|Gv)r- 1,
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and ®p(Pu) = 0. Setting formally

Op(u) =: / Op(z)u(z)de,
we obtain the spacetime fields ®r(x), which satisfy
[Pp(z), Pp(2))] =iG(x — 2")1, z,2’ € R™,

(3.13) (=0 + m?)®p(z) = 0.

3.3.1. The vacuum state. Let us denote by CCRPO](KG) the x-algebra gen-
erated by the ®p(u), u € C§°(R";R), see Subsections and below for
a precise definition. The vacuum vector Qy,c € Ts(h) induces a state wyae on
CCRPY(KG), called the Fock vacuum state, by

N N

wvac(H @F(ul)) = (QVaC| H (I)F(ui)QVaC)Fs(b)

i=1 i=1
Clearly, wy,c induces linear maps

N
©"C*(R™R) 3wy ® -+ ® uy — weao [ ®r(w)) € C,
=1

which are continuous for the topology of C§°(R™;R), and hence one can write

N N
wvac(H Pp(u;)) = /RN wN($17--~7$N)HUi($i)d931--~d33N,
i=1 " i=1

where the distributions wy € D'(RY"™) are called in physics the N-point functions.
Among them the most important one is the 2-point function ws, which equals

1 . ,
3.14 N — (97)~™ i(t—t")e(k)+ik-(x—x )dk
(3.14) anlea’) = 0" [ e
If we write similarly the distributional kernel of G, we obtain by (2.14))
]. : !’
(3.15) G(z,z') = (2n)™" / —— sin((t — t')e(k))e™ D gk,
ra €(k)

The fact that wo(x,2’) and G(z — 2’) depend only on = — 2’ reflects the invariance
of the vacuum state wy,. under space and time translations.

3.4. Local algebras
We recall that a double cone is a subset
O=I {z})NI_({x2}), =1,22 € R™ with zo € J4(21).
We denote by 2(0) the norm closure of Vect({e!®F) : suppu € O}) in B(T's(h)).
From ([2.13)) and (3.12) it follows that
[A(O1),4(02)] = {0}, if O1, 04 are causally disjoint.
We obtain a representation of the Poincaré group P(1,d) by *-automorphisms of
CCRP(KG) by setting ap®p(z) = p(A~'z) for A € P(1,d). From the invariance
of the vacuum state under translations, we obtain that c(, 1y(A) = U(a)AU(a)™!

for A € CCRPOI(KG), where R™ 3 a +— U(a) is a strongly continuous unitary group

on T's(h).
We have ay (A(0)) = A(LO + a), for A = (a, L) € P(1,d).
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3.4.1. The Reeh-Schlieder property. One might expect that the closed
subspace generated by the vectors AQy,. for A € 2A(O) depends on O, since it
describes excitations of the vacuum €. localized in O. This is not the case, and
actually the following Reeh-Schlieder property holds:

PROPOSITION 3.4.1. For any double cone O the space {AQyac : A € A(0)} is
dense in Ts(h).

Proof. Let u € T's(h) such that (u|A,e) = 0 for all A € A(0). f O; € O is a
smaller double cone and A € 2(0y), the function f: R™ 3 x +— (u|U(x)AQyac) has
a holomorphic extension F' to R” +iCy, i.e. f(z) = F(x +1C0), as distributional
boundary values, see Section [12.1

Since U(x)AU*(z) € A(O), we have f(x) = 0 for = close to 0, hence by the
edge of the wedge theorem, see Subsection [12.1.2) F' =0 and f = 0 on R". Vectors
of the form U(x)AQy,. for € R™, A € 2A(0) are dense in I's(h), hence u=0. O






CHAPTER 4

CCR algebras and quasi-free states

In this chapter we collect various well-known results on the CCR x-algebras
associated to a symplectic space and on quasi-free states. We will often work with
complex symplectic spaces, which will be convenient later on when one considers
Klein-Gordon fields. We follow the presentation in [DGJ Section 17.1] and [GW1],
Section 2].

4.1. Vector spaces

In this subsection we collect some useful notation, following [DGl Section 1.2].

4.1.1. Real vector spaces. Real vector spaces will be usually denoted by X.
The complexification of a real vector space X will be denoted by CX = {1 +izs :
Z1,x9 € X}

4.1.2. Complex vector spaces. Complex vector spaces will be usually de-
noted by V. If YV is a complex vector space, its real form, i.e. ), regarded as a
vector space over R, will be denoted by Vg.

Conversely, a real vector space X equipped with an anti-involution j (also called
a complex structure), i.e. j € L(X) with j> = —1 can be equipped with the structure
of a complex space by setting

A +ip)z =z + pjz, ze€ X, A+ipeC.

If Y is a complex vector space, we denote by ) the conjugate vector space of Y, i.e.
Y = Y as a real vector space, equipped with the complex structure —j, if j € L(Jr)
is the complex structure of J. The identity map 1 : Y — Y will be denoted by
y — T, i.e. T equals y, but considered as an element of . The map 1: Y — Y is
anti-linear.

4.1.3. Duals and antiduals. Let X be a real vector space. Its dual will be
denoted by X”.

Let Y be a complex vector space. Its dual will be denoted by ), and its anti-
dual, i.e. the space of C-anti-linear forms on ), by V*. By definition, Y* = 7.
Note that we have a C-linear identification )’ ~ 7 defined as follows: if y € ) and
w €)', then

Wy =Wy

This identifies W € )’ with an element of ?’. Similarly, we have a C-linear identi-
fication T ~ V¥,

4.1.4. Linear operators. If X;, i = 1,2, are real or complex vector spaces
and a € L(X;, Xs), we denote by a’ € L(X}, X]) or 'a its transpose. If V;, i = 1,2
are complex vector spaces we denote by a* € L()3,Yy) its adjoint, and by @ €
L(Y1,Ys) its conjugate, defined by a7, = ay;. With the above identifications we
have a* = @ = a’. If X;, i = 1,2 are real vector spaces and a € L(&X;,Xs), we
denote by ac € L(CX}, CAX3) its complexification.

17
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4.2. Bilinear and sesquilinear forms

If X is a real or complex vector space, a bilinear form on X is given by an
operator a € L(X,X’), its action on a couple (x1,xs) is denoted by x;-azxy. We
denote by Lg/,(X,X’) the symmetric/antisymmetric forms on X. A form a is
non-degenerate if Kera = {0}.

Similarly, if ) is a complex vector space, a sesquilinear form on ) is given by
an operator a € L(Y, Y*), and its action on a couple (y1,y2) will be denoted by

(4.1) (y1laya) or 7y-ays,

the last notation being a reminder that Y* ~ 7. We denote by Ly, (Y, V") the
Hermitian/anti-Hermitian forms on ). Non-degenerate forms are defined as in the
real case.

If X is a real vector space and a € L(X,X’), we denote by ac € L(CX,CX*)

its sesquilinear extension.

4.2.1. Real symplectic spaces. An antisymmetric form o € L(X,X’) is
called a pre-symplectic form. A non-degenerate pre-symplectic form is called sym-
plectic and a couple (X,0) where o is (pre) symplectic a (real) (pre) symplectic
space.

If (X, 0) is symplectic, the symplectic group Sp(X, o) is the set of invertible r €
L(X) such that r’or = o equipped with the usual product. The Lie algebra sp(X, o)
is the set of a € L(X) such that a'c = —ca, equipped with the commutator.

4.2.2. Pseudo-Euclidean spaces. A pair (X,v) with v € L(X,X’) non-
degenerate and symmetric is called a pseudo-Fuclidean space. If v > 0, it is called
an Fuclidean space. The orthogonal group O(X,v) is the set of invertible r € L(X)
such that »'vr = v, equipped with the usual product. The Lie algebra o(X,v) is
the set of a € L(X) such that a'v = —va, equipped with the commutator.

4.2.3. Hermitian spaces. A space (Y, q) with ¢ Hermitian is called a pre-
Hermitian space. If ¢ is non-degenerate, (), q) is called a Hermitian space. If ¢ > 0
it is called a pre-Hilbert space.

The (pseudo)-unitary group U(), q) is the set of invertible u € L(Y) such that
u*qu = q equipped with the usual product.

4.2.4. Complex symplectic spaces. An anti-Hermitian form o on ) is
called a (complex) pre-symplectic form. One sets then ¢ := ioc € Ly (), Y*) called
the charge. One identifies in this way complex (pre-)symplectic spaces with (pre-
)Hermitian spaces. The complex structure on ) is sometimes called the charge
complex structure and will often be denoted by j to avoid confusion with the imag-
inary unit i € C.

4.2.5. Charge reversal.

DEFINITION 4.2.1. Let (), q) a pre-Hermitian space. A map x € L(Vr) is
called a charge reversal if x> =1 or x> = —1 and

XY1:9XY2 = —Ya'qy1  Y1,Y2 € V.

Note that a charge reversal is anti-linear.
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4.2.6. Pseudo-Kihler structures. Let (), q) be a Hermitian space whose
complex structure is denoted by j € L(Jr). Note that (Vg,Img) is a real symplectic
space with j € Sp(Vr,Imgq) and j2 = —1. The converse construction is as follows:
a real symplectic space (X, o) with a map j € L(X) such that

j2 = _]17 J € Sp(Xa0>7

is called a pseudo-Kdhler space. If in addition v := ¢j is positive definite, it is called
a Kdhler space. We set now

y= (X,‘]),

which is a complex vector space, whose elements are logically denoted by y. If
(X,0,j) is a pseudo-Kéhler space we can set

Y1qy2 == Y1 - 0jy2 +iy1 - 0y2, Y1,Y2 €V,
and check that ¢ € Ly, (Y, Y*) is non-degenerate.

4.3. Algebras

A unital algebra over C equipped with an anti-linear involution A +— A* such
that (AB)* = B*A* is called a *-algebra. A x-algebra which is complete for a
norm such that ||A|| = [|A*| and ||AB|| < ||A||||B|| is called a Banach *-algebra. If
moreover ||A* Al = ||A||?, it is called a C*-algebra.

4.3.1. Algebras defined by generators and relations. In physics many
algebras are defined by specifying a set of generators and the relations they satisfy.
Let us recall the corresponding rigorous definition.

Let A be a set, called the set of generators, and C.(A; K) be the vector space
of functions A — K with finite support (usually K = C). Denoting the indicator
function 1y, simply by a, we see that every element of C¢(A; K) can be written as
> aeB Aat, With B C A finite, A, € K.

Thus C,(A;K) can be seen as the vector space of finite linear combinations of
elements of A. We set

A(A,K) := @Ce(A4; K),

where ®F is the tensor algebra over the K-vector space E. Usually one writes
ay ---ay instead of a1 ® - - - ® a,, for a; € A.

Let now R C A(A, K) (the set of 'relations’). We denote by J(R) the two-sided
ideal of A(A; K) generated by 9. Then the quotient

A(A,K)/I(R)

is called the unital algebra with generators A and relations R =0, R € fR.

4.3.2. x-algebras defined by generators and relations. Assume that K =
Cand let i : A — A some fixed involution. A typical example is obtained as follows:
denote by A another copy of A and by A > a + @ € A the identity. Then AU A
has a canonical involution ¢ mapping a to @ (and hence @ to a).

One then defines the anti-linear involution * on (A, K) by

(a1 an)* = ian---ia;, 1% =1

If R is invariant under *, then J(9R) is also a *-ideal, and A(A,K)/JT(R) is called
the unital x-algebra with generators A and relations R = 0, R € fR. In this case
one usually defines the involution * by adding to R the elements a* —ia, for a € A,
i.e. by adding the definition of * on the generators to the set of relations.
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4.4. States

A state on a *-algebra 2[ is a linear map w : A — C which is normalized, i.e.
w(l) =1, and positive, i.e. w(A*A) >0 for A € 2.

The set of states on 2 is a convex set. Its extreme points are called pure
states. Note that if A C B(H) for some Hilbert space H, a state w on 2 given by
w(A) = (QAQ) for some unit vector 2 may not be pure.

4.4.1. The GNS (Gelfand-Naimark-Segal) construction. If w is a state on
2A, one can perform the so-called GNS construction, which we now recall. Let us
equip 2 with the scalar product

(A|B),, = w(A*B).

From the Cauchy-Schwarz inequality one obtains that 7 = {A € 2 : w(A*A) = 0}
is a *-ideal of A. We denote by H,, the completion of A/J for ||-||,, and by [A] € H,,
the image of A € . The fact that J is a *-ideal implies that for A € 2 the map

Tw(A) : Hy 3 [B] — [AB] € .,

is well defined and defines a linear operator with D, = {[B] : B € 2} as invariant
domain. If Q,, := [1], then

(4.2) w(A) = (Qu|mu(A)Q) w-

The triple (H., T, Qw) is called the GNS triple associated to w. It provides a
Hilbert space H,,, a representation 7, of 2 by densely defined operators on H,, and
a unit vector €, such that holds. Vectors in H,, are physically interpreted as
local excitations of the ground state €.

If 2 is a C*-algebra, then one can show that m,(A) € B(H,,) with |7, (A)] <
Al

4.5. CCR algebras

In this subsection we recall the definition of various %-algebras related to the
canonical commutation relations.

4.5.1. Polynomial CCR x*-algebra.

DEFINITION 4.5.1. Let (X,0) be a real pre-symplectic space. The polynomial
CCR x-algebra over (X,0), denoted by CCRP°(X,0), is the unital complex -
algebra generated by elements ¢(x), x € X, with relations

(4.3) Ao+ Az2) = 6(m1) +20(w2), ¢7(x) = (), T1,72,7 € X,\ € R.

P(x1)P(w2) — P(2)P(21) = iw1 0221,
The elements ¢(z) are called real or selfadjoint fields.

4.5.2. Weyl CCR algebra. One problem with CCRPOI(X, o) is that its ele-
ments cannot be faithfully represented as bounded operators on a Hilbert space. To
cure this problem one uses Weyl operators, which lead to the Weyl CCR, *-algebra.

DEFINITION 4.5.2. The algebraic Weyl CCR *-algebra over (X,0), denoted
CCRWYY(X,0), is the x-algebra generated by the elements W (z), x € X, with
relations

W()=1, W) =W(-z),

(4.4) i
W(Z‘l)W(.’,Eg) ES eiizliaxQW(l‘l + 1'2)7

T, xr1,x2 € X.



4.6. QUASI-FREE STATES 21

The elements W (z) are called Weyl operators. An advantage of CCRV™!(X, o)
is that it can be equipped with a unique C*-norm see e.g. [DGI Definition 8.60].
Its completion for this norm is called the Weyl CCR C*-algebra over (X, o), and is
still denoted by CCRVY! (X, o).

We will mostly work with CCRP®'(X, o), but it is sometimes important to work
with the C*-algebra CCRweyl(/Y ,0), for example in the discussion of pure states,
see Section [£.9) below. Of course, the formal relation between the two approaches
is

W(z)=e¢® zex,
which does not make sense a priori, but from which mathematically correct state-
ments can be deduced.

4.5.3. Charged CCR algebra. Let (),q) a pre-Hermitian space. As ex-
plained above, we denote the complex structure on ) by j. The CCR algebra
CCRP°!(Jr,Imq) can be generated instead of the selfadjoint fields ¢(y) by the
charged fields:

1
4.5 = — +ip(y)), *(y) :=
(4.5)  ¥() \/i(qﬁ(y) o(y)), ¥ (v)

From we see that they satisfy the relations

(Y1 + Ay2) = (Y1) + M (ya),

Y (yr + Ay2) = () + A" (y2), y1,2 €V, A€,
(4.6) [ (y1), ¥(y2)] = [ (1), ¥* (y2)] =0,

(1), " ()] =71 - qy2ll, Y192 €,

Py =4*(y), yel

Note the similarity with the CCR in (3.3 expressed in terms of creation/annihilation
operators, the difference being the fact that ¢ is not necessarily positive. The CCR
algebra CCRP®' (g, Im ¢) will be denoted by CCRP°!(Y, q).

(o(y) —id(jy), ye .

Sl

4.6. Quasi-free states

In this subsection we discuss states on CCRP®' (X, &) or (equivalently) on CCRV¥! (X, o)
which are natural for free theories, the so-called quasi-free states. We start by dis-
cussing general states on CCRWEYI(X, o).

4.6.1. States on CCRweyl(X,U). Let (X,0) be a real pre-symplectic space
and w a state on CCRW¥!(X, o). The function:

(4.7 X3z r+— w(W(z)) =: G(x)

is called the characteristic function of the state w, and is an analog of the Fourier
transform of a probability measure.
There is also an analog of Bochner’s theorem:

PRrROPOSITION 4.6.1. A map G : X — C is the characteristic function of a state
on CCRYYN(X, o) iff for any n € N and any x; € X, the n x n matriz

T
[G(xj — x;)e2®i T
1<i,j<n

18 positive.
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Proof. = For z1,...,2, € X, A,..., A, € Cset A := 2?21 AjW(z;). Such A
are dense in CCRY®!'(X, o). One computes A*A using the CCR and obtains

(48) A*A = Z Xz)\jW@?j — .’lﬁi)e%x""a%,
ij=1
from which = follows.
<= One defines w using (4.7), and (4.8)) shows that w is positive. m|

4.6.2. Quasi-free states on CCRYY!'(X,0).

DEFINITION 4.6.2. Let (X,0) be a real pre-symplectic space.
(1) A state w on CCRYY (X, 0) is a quasi-free state if there exists n € Ly(X, X")
such that
(4.9) w(W(z)) = eI pe X
(2) The form n is called the covariance of the quasi-free state w.
Quasi-free states are generalizations of Gaussian measures. In fact, let us as-
sume that X = R™ and ¢ = 0. CCRPOI(R",O) is simply the algebra of complex

polynomials on (R™)" if we identify ¢(z) with the function & — z-£. If we consider
the Gaussian measure on (R™)" with covariance 7

dpiy = (27)™/?(det n)*%e*%&n‘lfd&
then
[ d i) = oo,
which is . Note also that if z; € R™, then
2n+1

/ [T @ - €& = 0,
1
2n n

/Hﬂﬁz Ldpy(© = Y [T %e@i-1) 7o),
1

o€Pairg, j=1

which should be compared with Definition below. We recall that Pairy,,
denotes the set of pairings, i.e. the set of partitions of {1,...,2m} into pairs. Any
pairing can be written as {i1,j1},-++ , {im,jm} for ix < jr and i < ig41, hence
can be uniquely identified with a permutation o € S, such that o(2k — 1) = iy,

It will be useful later on to collect some properties of the GNS triple associated
to a quasi-free state w on CCRVY! (X, o), see Subsection For ease of notation,
we omit the subscript w.

LEMMA 4.6.3. Let us set Wy (x) := 7(W(x)) € U(H) for x € X. Then:

(1) the one-parameter group {Wy(tx)}icr is a strongly continuous unitary group
on H;

(2) let ¢r(x) be its selfadjoint generator. Then @ € Dom([[;—, ¢x(z;)) forn € N,
x; € X.

Proof. (1) It suffices to prove the continuity of ¢ — Wy (tx)u for uw € H at t = 0.
By density and linearity, we can assume that u = W;(y)Q2, y € X'. Then

[ = W (tz)ul]> = (W (—y) (1 = Wi (—tx)) (1 = We(t2)) Wa (y)Q),
and using the CCR (4.4)) we have
W (=y) (1 = Wr(—tx)) (1 — Wr(tz)) W (y)
= 21 — W(—tx)el'® oY — W (tx)e =7V,
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Therefore
lu — We(tz)u|? = w2l — W (—tx)elt® oy — W (tz)e 1t=7Y)

142 B 1,2 .
— —stx-nrtitx-o —st“x-nr—itx-o
2 e 2 n Y _e 2 n y’

which tends to 0 when ¢ — 0.

(2) By [DG| Theorem 8.29], it suffices to check that if Xz, C X is a finite-
dimensional subspace, then Xg, 3> x — (Q|W,(2)Q) belongs to the Schwartz class
S(Xjn) of rapidly decaying smooth functions. This is obvious by (4.9)). |

PROPOSITION 4.6.4. (1) One has

Dom ¢w(‘r1) N Dom ¢w(‘r2) C Dom d)'n'(xl + xZ)a

On(z1 + 32) = r(x1) + P (x2) 0on Dom ¢ (x1) N Dom ¢ (z2),

[Dr(21), dr(x2)] = ix1 0221 as quadratic forms on Dom ¢ (x1) N Dom ¢y (z2).
(2) One has

(4.10) (Qr (1) Pr(22)2) = 21 N2 + %xl-amg, T1,To € X.

(3) One has

(4.11) (Qor(z1) - dr(z2m-1)2) = 0,

(412)  (Qdx(x1) - dr(z2m)) = D [[(QUér(@oizi—1)dx(To@)Q).

o€Paira,, j=1

Proof. (1) follows from [DGl Theorem 8.25].

(2) We have (Q|W,(tx)Q) = e~ 52 which when differentiated twice with
respect to t at t = 0 gives (Q|¢2(2)Q) = z-nz. We then apply (1), i.e. linearity and
the CCR to obtain (£.10).

(3) 1"(Qdx(z1) - - - Pr(x,)Q) is the coefficient of 1 ---t, in the power series
expansion of w(W (t1x1) - - - W (tnp)). One then uses the CCR and to compute
this function. Details can be found e.g. in [DGI Proposition 17.8]. 0

4.6.3. Quasi-free states on CCRP°/(X, ). From Proposition one sees
that a quasi-free state w on CCRVY™! (X, o) induces a state @ on CCRP® (X, o) by
setting

O~J(H P(z:)) = (Y H%(%)Q)-

Indeed, @ is well defined on CCRP®! (X, o) since it vanishes on elements of the ideal
J(MR) for R introduced in (4.3, by Proposition (1).
This leads to the following definition of quasi-free states on CCRP!(X, o).

DEFINITION 4.6.5. (1) A state w on CCRP° (X, o) is quasi-free if for any m €
N and z; € X one has

(4.13) w(¢(x1)-~-¢(x2m,1)) = 0,
(4.14) W(¢($1)"'¢($2m)) = Z HW(¢($U(2J‘71))¢($0(2;‘))-

o€Pairg,, j=1

(2) The symmetric form n € Ly(X,X') defined by

(4.15) w(p(x1)p(x2)) = T1-NT2 + %xl.m

is called the covariance of the state w.
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4.7. Covariances of quasi-free states

PROPOSITION 4.7.1. Letn € Ly(X,X"). Then the following are equivalent:

(1) there exists a quasi-free state w on CCRVYYPU (X o) with covariance n.

(2) nc + 50c > 0 on CX, where nc,oc € L(CX,(CX)*) are the sesquilinear
extensions of n, 0.

(3) 7> 0 and |z1-02s| < 2(x1nz1)2 (22 n22)2, 1,29 € X.

Proof. (1) = (2) If 7 is the covariance of a state w on CCRVY¥'(X, o) one
introduces complex fields ¢r(w) = ¢r(x1) + iz (22), w = 21 + ixg € CX with
domain Dom ¢ (1) NDom ¢, (x2). By Proposition [1.6.4] (¢ (w)Q|¢r(w)Q) is well
defined, positive, and equals W- (nc + 50c)w. The same argument, with ¢ (-)
replaced by ¢(-), gives the proof for CCRP!(X, o).

(2) = (1) Let us fix x1,...,2, € X and set b;; = z; - nz; + %a:, -ox;. Then,
for Ay,..., A\, €C,

Z Xb”AJ =wncw + %E'W(C'LU, w = Z Nix; € CX.
ij=1 i=1

By (2), the matrix [bij} is positive. The pointwise product of two positive matrices
is positive, see e.g. [DG], Proposition 17.6], which implies that [eb”] is positive, and
hence [e_%xi'”xieb” e_%‘”f'"’”j] is positive. This matrix equals [G(.Tj — mi)e%”i"mﬂ']
with G(z) = e 3TN, By Proposition m 7 is the covariance of a quasi-free
state on CCRVY®! (X, ). By the discussion following Subsection it is also the
covariance of a quasi-free state on CCRP°'(X, 7).

The proof of (2) <= (3) is an exercise in linear algebra. |

We will identify in the sequel the two states on CCRV¥!(X, ) and CCRP°! (X, o)
having the same covariance 7.

4.7.1. Quasi-free states on CCRpOl(y,q). Let now (), q) a pre-Hermitian
space. Recall that if X = Jg and 0 = Img, then (X,0) is a real pre-symplectic
space, and by definition CCRP°/(), ¢) = CCRP°/(X, ).

The complex structure j of Y belongs to Sp(X, o) and also to sp(X, o) since
j2 = —1. It follows that {e/}ycs: is a one-parameter group of symplectic transfor-
mations.

Therefore, one can define a group {ag }gest of automorphisms of CCRPY(X,0)

by
(4.16) () == ¢(’x).

The gauge transformations g are global gauge transformations, which should not
be confused with the local gauge transformations arising for example in electro-
magnetism.

DEFINITION 4.7.2. A quasi-free state w on CCRPOI(QC'7 0) is called gauge invari-
ant if

w(ag(A)) =w(4), AeCCRP(X,0), S
The following lemma follows immediately from Definition

LEMMA 4.7.3. A quasi-free state w on CCRPOI(X, o) with covariance 1 is gauge
invariant iff j € O(X,n) iff j € o(X,n). One can then define j € Ly, (Y, Y*) by

(4.17) Y1 NY2 = y1-NY2 — iy1-Njy2, ¥Y1,y2 € V.
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It is then natural to consider the action of w on products of the charged fields

U(y),¥*(y) introduced in (4.5). Note that by the CCR (4.6), w is completely
determined by its action on elements

n

(4.18) A=Tv ) ] vw)-

i=1

PROPOSITION 4.7.4. A quasi-free state w on CCRPOI(JAq) is gauge invariant

ilf

(4.19) w( v @) [[vw)) =0, if n#m,
i=1 j=1
(4.20) W[ w) [Tew)) = > [ew @)W,

i=1 i=1 c€S, i=1

J
Proof. Using that ag(¢*(y)) = e/%)* (y), we obtain that if A is as in (4.18) ag(A) =
el(m=m)0 A which implies (#.19). The proof of ([#.20)) is a routine computation, using
(4.5) and Definition m a
DEFINITION 4.7.5. The sesquilinear forms A\* € Ly(YV,Y*) defined by
w(th(y)v* (y2)) = Y- ATy2,

w@ (Y)Y (y1)) = Ti-A"y2, Yy, y2 €Y,
are called the complex covariances of the quasi-free state w.

(4.21)

Note that since [(y1),¥*(y2)] = ¥, -qy21, we have AT — A\~ = ¢q. Therefore w
is completely determined by either A™ or A~. Nevertheless, it is more convenient
to consider the pair A* when discussing properties of w. A\~ is usually called the
charge density associated to w.

Introducing the selfadjoint fields ¢(y), we obtain that

(122)  w(ply)é(s2) = Remr- (A" — Ja)ua) + S Im(F ave).

It follows that the real and complex covariances of a gauge invariant quasi-free state
are connected by the relations

1 1
(4.23) n=Re(A\EF-q), A\ =0+=q,

2 2
where 7 is defined in (4.17)).
In this situation we will call 1 the real covariance of the state w, to distinguish

it from the complex covariances \*.
It is easy to characterize the complex covariances of a gauge invariant quasi-free
state.

PROPOSITION 4.7.6. Let AT € L,(),Y*). Then the following are equivalent:

(1) AE are the covariances of a gauge invariant quasi-free state on CCRP* (Y, q);
(2) A >0 and A\t =\~ =q.

Proof. The implication (1) = (2) is immediate using the CCR and the fact that
Y(y)Y*(y) and ¥*(y)(y) are positive. Let us now prove that (2) = (1). We recall
that X = Vr. Let 1 be the real covariance of a gauge invariant quasi-free state. For
r € Xletz= %(m —ijz),z = %(x +ijz). We know that j € O(X,n) No(X,n),
which after a standard computation yields

(ZIncz) = z-nx — ix-Njr = TNz,
(4.24)
(z|ncz) = z-nx — ix-njr = T-Hx.
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Similarly, using that j € Sp(X,0) N sp(X, o) we obtain

(Zlocz) = z-ox — ix-ojx = —iT-qx,
(4.25)
(zlocZ) = z-0x + ix-ojr = iT-qz.

By Proposition (2) we have nc+ %O'(C > 0, which implies that 7+ %q =\t >0.
The fact that AT — A\~ = ¢ follows from (4.23). O

4.7.2. Complexification of a quasi-free state. Let (X,0) be a real pre-
symplectic space. We equip CX with ¢ = ioc, obtaining a pre-Hermitian space.
The canonical complex conjugation on CX is a charge reversal on (CX, q).

Clearly ((CX)g,Imgq) is isomorphic to (X & X, @ o) as real pre-symplectic
spaces. If w is a quasi-free state on CCRP®'(X, o) with covariance 7, then we can
consider the quasi-free state @ on CCRP®(CX)g,Im ¢) with covariance Re .

It is easy to see that @ is gauge invariant with covariances A* equal to

1
(4.26) M =nc+ 20

Moreover, @ is invariant under charge reversal.

Therefore, by complexifying a quasi-free state w on a real pre-symplectic space
(X, 0), we obtain a gauge invariant quasi-free state @ on A(CX, o¢). It follows that,
possibly after complexifying the real pre-symplectic space (X, o), one can always
restrict the discussion to gauge invariant quasi-free states.

REMARK 4.7.7. Let (Y, q) pre-Hermitian andw a quasi-free state on CCRP°(Y, q).
Assume that w is not gauge invariant. This means that the complex structure j of
Y is irrelevant for the analysis of w and hence can be forgotten.

Therefore, we consider w simply as a quasi-free state on the real pre-symplectic
space (X,0) = (Vr,Imq). If we want to recover a gauge invariant quasi-free state,
we consider the state & on CCRP?(CX,ioc).

4.8. The GNS representation of quasi-free states

Let us now discuss the GNS representation of a quasi-free state on CCRP?!(X, o).
We will assume for simplicity that its real covariance 7 is non degenerate, i.e.
Kern = {0}. From Proposition [£.7.] (3) we see that Kern C Kero, hence in
particular Kern = {0} if o is symplectic.

Let X°P! the completion of X for (x'nx)%, which is a real Hilbert space. The
extension P! is bounded on X°P', but may be degenerate on X°P!. Moreover, w
induces a unique quasi-free state w' on CCRWVY!(xep! gepl),

To simplify notation, we forget the superscripts cpl in this subsection and as-
sume that X is complete for (z-nz)z.

The GNS representation was first constructed by Manuceau and Verbeure [MV]
in the case where ¢ is non-degenerate. Its extension to the general case was given
by Kay and Wald [KWJ, Appendix A], where it was called a one-particle Hilbert
space structure. Another equivalent representation if o is non-degenerate is called
the Araki-Woods representation, see [AW].

An important fact in this context is the following result, due to Leyland,
Roberts and Testard [LRT, Theorem 1.3.2], about dense subspaces of a Fock space
Ts(h). Another proof can be deduced from the results in [DGJ Section 17.3].

THEOREM 4.8.1. Let h a complex Hilbert space and X C b a real vector
subspace. Then the space Vect{Wp(2)Qve : € X} is dense in Ts(h) iff CX
15 dense in b.
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Note that if we denote by X, resp. AP the space orthogonal to X with
respect to the scalar product (-|-)y, resp. Re(:]-)p, we have (1X)Pe'P = jXPeP
XL = XPeP N {XPOP and iAP'P is also the space orthogonal to X with respect to
the symplectic form ¢ = Im (-|-)p. Therefore, an equivalent condition in Theorem

is that XPeP NiXPeP = {0}.

4.8.1. Kahler structures.

PROPOSITION 4.8.2. Let 1 be the real covariance of a quasi-free state on CCRP°/(X, o)
such that n is non-degenerate and X is complete for (x-nx)%. Then if dim Ker o is
even or infinite, there exists an anti-involution j on X such that (n,j) is Kdhler.

Proof. By Proposition m (3), there exists a bounded anti-symmetric operator
¢ € Ly(X) with ||c|| <1 such that
(4.27) o = 2nc.

_ — L :
We have of course Kerc = Kero and we set Xging 1= Kerc, X 1= Xsing. Since ¢

is anti-symmetric, it preserves &g and Xiing. If creg is the restriction of ¢ to Xyeg
then one can perform its polar decomposition creg = —j]reg|c|reg7 and using the anti-
symmetry of ¢,e, one obtain that j?eg = —1, jreg € O(Xreg,n) and [|creg)s jreg] = 0,
see e.g. [DGl Proposition 2.84].

Since dim A, is even or infinite, we can choose an arbitrary anti-involution
jsing € O(Xsing,n). Then j = jreg @ jsing has the required properties. O

4.8.2. The GNS representation. Let us equip X with a complex structure
j as in Proposition [£:.8:2] and with the scalar product

(4.28) (z1|z2)kw = 21-n22 — i1 -Nj22.
The completion of X for this scalar product is denoted by Axw in the sequel. We
set

brw = Xcw & Iy (13 (Je]) Xew,
where c is as in and
(4.29) dxw(@) = or((1+|c) 2z @ (1 - d)2T), = € X.
acting on T's(hxw).
PROPOSITION 4.8.3. The triple (Hxw, Tkw, Qxw), defined by
Hiw =Ls(hxw),  mxwo(z) = dxw(z), z€ X, Qrw = Qvac,
is the GNS triple of the quasi-free state w.
Proof. Using we check by standard computations that
[prw (1), dxw (22)] = ilm (21]22)hyyy = 11072,
(Quac|prcw (21)prw (22)Qvac) = T1-0T2 + S21-020.
Using the CCR on T's(hxw), we then check that w(A) = (Qvac|m(A)Qvac) for all
A € CCRPY(X, o).
It remains to prove that WKW(CCRweyl(X,J))QKW is dense in Hkw, i.e. by

Theorem that CRX is dense in hgw for Rz = (1+ |¢|)2z @ (1 —|¢[)2Z. This
follows easily from the fact that the complex structure on hxw is j & —j. |

If o is non-degenerate, another equivalent version of the GNS representation is
given by the Araki- Woods representation: one equips X with the complex structure
j = —cle|™! given in Proposition and with the scalar product

(430) (.’1?1|.’1?2)AW = x1-0jre + ix1-0T3.



28 4. CCR ALGEBRAS AND QUASI-FREE STATES

The completion of X for this scalar product is denoted by Xaw and equals to
|¢| =2 Xkw, w ith the notation introduced in Subsectio One sets then

1]

]
as a (possibly unbounded) operator on Xaw. From (4.27)), (4.30) we obtain that

(z|ox)aw = z-nz, hence X C Dom 0%. The Araki-Woods representation is then
obtained by setting

baw = Xaw @ g 13 (Je]) Xaw,
and defining the left Araki-Woods representation
(4.31) daw,i(x) == or((1+ 0)3z ®02T), =z € X.
Setting
Haw =Ts(baw), maw,0(x) = dawi(z), =€ X, Qaw = Qvac,
one can show by the same arguments that (Haw, Taw 1, 2aw) is an equivalent GNS

representation for w.

4.8.3. Doubling procedure. Let us assume that 1, ([c]) = 0, i.e. baw =
Xaw @ X aw. One defines the right Araki- Woods representation
Saw.(z) == ¢r(ota® (1+70)27), =€ X,
which satisfies
[Daw r(21), Paw r(22)] = —iz1-022, [Ppawi(z1), dawr(x2)] =0, z1,22 € X.
One can now combine the left and right Araki-Woods representations by doubling
the phase space. This doubling procedure is due to Kay [Ky2]. One sets
(Xa,04q) :=(X,0)®(X,—0),
ba(xa) == paw,1(®) + Paw ('), Ta = (2,2) € Aq,
and the vacuum vector (.. induces a quasi-free state wq on CCRPOI(Xd, o4) by

wa((r1,a)P(w2,0)) = (Qvaclda(21,0)Pd(T2,0) Qvac) Haw -

This state is a pure state, see Section If we embed CCRP°!(X,0) into
CCRPN(Xy,04) by the map X 3 2 — (,0) € Xy, then the restriction of wq to
CCRPN(X,0) equals w.

4.8.4. Charged versions. Let us now describe the complex versions of the
above constructions.

Let A* be the complex covariances of a quasi-free state on CCRP"I()/, q). As-
sume that AT 4+ A\~ is non-degenerate, which is the case if ¢ is non-degenerate, and
that ) is complete for the scalar product A* 4+ A~. Then there exists d € Ly ()
with ||d|| < 1 such that

(4.32) g=AT+A7)d

Setting X = g, we have = iRe(A\t + A7) and ¢ = Imgq which implies that
the operator ¢ in Proposition equals —id and hence that j..; = isgn(d). Since
Kero = Kerg, its (real) dimension is even or infinite.

Assuming for simplicity that Kerd = {0} we can rewrite (-|-)xw as

(4.33) 2(y1ly2)kw =1 (AT + A7)+ (d)y2 + G- (AT + A7) Ig- (d)y1.
Similarly, we can rewrite (-|-)aw as

(y1ly2) aw = U1 -qlg+ (d)y2 — Ty qllr- (d)y:.
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Finally, let us discuss the doubling procedure in the charged case. We start from a
Hermitian space (), ¢) and consider

(Va,qa) = (V& V,¢® —q).

Let us denote by )\di the complex covariances of the doubled state wgq. One can
show, see e.g. [G2] Subsection 5.4| that

/\f = 4qq 0 céc,

where
ot = < (0+1)lp+(d) — ola-(d)  —0%(0+1)*sgn(d) ) 7
(4.34) 02 (¢ +1)2sgn(d) —ollg+ Ed) + (91+ 1)1lg- (d)
e = ( —olg+(d) + (e Dlp-(d)  ¢*(o+1)7sgn(d) ) ,
—0%(0+1)2sgn(d) (¢ + 1)1g+ (d) — olg- (d)
where d is defined above and p = %Iﬁl. One can check that c(jf are a pair of

complementary projections, which is related to the fact that wq is a pure state.

4.9. Pure quasi-free states

Let us now discuss pure quasi-free states, which are often called vacuum states
in physics. We will always assume that (X, o) is pre-symplectic, and the covariance
7 is non-degenerate.

A basic result, see e.g. [BRI| Theorem 2.3.19], says that a state w on a C*-
algebra 2 is pure iff its GNS representation (H,,, 7, ) is irreducible, i.e. iff H,, does
not contain non-trivial closed subspaces, invariant under 7, ().

To be able to apply this result, we will say that a quasi-free state w on
CCRP°!(X, o) is pure if it is pure as a state on CCRVY(X, 7).

4.9.1. Pure quasi-free states on CCRP® (X, ). We use the notation X°P!, 5Pl (P!
introduced in Section

PROPOSITION 4.9.1. A quasi-free state on CCRPY(X, o) with covariance 1 is
pure iff (2n°P', 0°PY) is Kdhler, i.e. there exists an anti-involution j°P' € Sp(X°P!, P!
such that o°PjeP! = 2pcpl,

Note that this implies that o°P' is non-degenerate on X°P!. Equivalent char-

acterizations of pure quasi-free states are given in [MV] Proposition 12] or [KW|
Lemma A.2].
Proof. Let us set A(P) = CCRVY! (x () 5Dy and let (H(PD, 7(Ph) PD) he
the GNS triple for w(°P), Using that X is dense in X°P! for 7, we first obtain that
H =HP, Q=Q%P and 7Py = 7.

We then claim that 7(21) is strongly dense in 7°P!(2(°P!). Indeed, if

N
A=) 7P W (25) € nPl (AP
1

and x;, € X with z; — wf-pl for n, we obtain that A, = Zf] XNim(W (24,,)) is
bounded by Ziv |A;| and that A, — A strongly on the dense subspace m(2()2, and
hence on H.

From this fact we see that a closed subspace K C H is invariant under () iff
it is invariant under 7°P!(2A°P!), hence w is pure iff w°P! is pure. The statement of
the proposition is now proved for example in [DG] Theorem 17.13]. O

There is an alternative characterization of pure quasi-free states, due to Kay
and Wald [KW|, eq. (3.34) | which is sometimes very useful.
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PROPOSITION 4.9.2. A quasi-free state on CCRP® (X, o) with covariance 1 is
pure iff
2
(4.35) x-Nr = sup EM, reX.
o204 T1NT
Proof. It is easy to see that on X is equivalent to on X°Pl so we can
assume that X’ is complete for 1. Note also that from Proposition (3) znx is
an upper bound of the rhs in .

If w is pure we have 2 = gj by Proposition hence z-njx = %mmj, which
implies . Let us now prove the converse implication.

Let ¢ € Lo(X) with ||c|| < 1 and o = 27¢, as in the beginning of Section
Note that Kere = {0} by . Performing the polar decomposition of ¢, see
e.g. [DGL Proposition 2.84], we can write ¢ = u|c| = |c|u, where u € O(Y,n) and
u? = —1. Let us check that |c| = 1, which will prove that w is pure. If |c| # 1, then
there exist § € [0, 1] and  # 0 with x = Ty 5(|c[)=, and hence, by Cauchy-Schwarz

|x~ax1‘ = 2||c|x-77ux1| < 2(|c\x-n|c\x)%(ux1~nu$1)% = 2(5(3:-773:)%(,@1-77901)%,

which contradicts (4.35]). m|

4.9.2. Pure quasi-free states on CCRpOl(y,q). Let us now translate the
above results in the case of Hermitian spaces.

Note that Propositionm (2) implies that Ker(AT+X7) = {0}, hence ||y||? :=
7Aty+7A "y is a Hilbert norm on ). Denoting by VP! the completion of Y for ||,
the Hermitian forms ¢, \* extend uniquely to ¢!, \*:°P! on VP! and w extends
uniquely to a state w® on CCRP? (VP! ¢Pl). As in the real case, ¢°°' may be
degenerate on VP!,

If V1 € Y°°! with Y C V) densely for I llw, then we also obtain unique objects
q, Ali,wl that extend g, A\*, w.

The next proposition is the version of Proposition [1.9.1]in the charged case.

PROPOSITION 4.9.3. A gauge invariant quasi-free state w is pure on CCRI’OI(J)7 q)
iff there exists Y1 C VP! with Y C Yy densely for ||-||., and projections ¢i& € L())
such that

(4.36) F ey =1, X =+qoct.
Moreover ([&.36) implies that ¢t*qicf = 0.

Note that implies that ¢; is non-degenerate on Y.

Proof. Since A\ = A\{*, we obtain from that
gt = =t ne = taled + o),

which proves the second claim of the proposition.

(1) Let us now prove the first claim of the proposition if ) is complete for
I - llws in which case Y1 = Y. Recall that j is the complex structure on ). The real
pre-symplectic space (X,0) for X = Vg, 0 = Im ¢ is then complete for the norm
(z-nz)z and n = Re(A\* F 3q) = Re(AT + A7),

By Proposition w is pure iff there exists an anti-involution j; with 2n =
(Im q)j; or equivalently 2nj; = —(Img). Since w is gauge invariant, we have j €

sp(X,Imq) No(X,n) (see Lemma [4.7.3), hence

2nj1j = —(Imq)j = jImq = —2jnj1 = 2njj1,
so [j,j1] = 0, i.e. j; is C-linear on Y. Since we know that j; € Sp(X,Imgq) this
implies that j; € U(Y, q). Moreover, since 7 = Re(AT — 1¢), we have Re(2AT —¢) =
(Im q)j1, which using that j; is C- linear and A, g are sesquilinear yields 2\T — ¢ =
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—qjj1. We now set k = —jj; so that kK = 1 and k € U(Y,q), AT = $(q(1+ k).
Setting now ¢t = %(]1 + k), we see that ¢t are projections with ¢t 4+ ¢ = 1,
At = +gct. From k*gr = g we obtain that ¢**¢cF = 0, which completes the proof
of =

To prove the implication <=, assume that (4.36]) holds for )y = ) and set
j1 =j(c¢™ —¢7) so that j; € U(Y,q) C Sp(X,Imgq) is an anti-involution. We have
20T — g =ql(ct — ¢7) = —qjj1 = —igj; hence 2 = 2Re(AT — ¢) = (Im q)j;.

(2) Let us now prove the proposition in the general case. We use the notation
in the proof of Proposition and set additionally 20; = CCRweyl(yl,R, Req),
and (H1,m,€;) the associated GNS triple. The same argument as in the proof of
Proposition shows then that w is pure iff w; is pure iff wP! is pure. Now the
proof of = follows from (1) by taking J; = Y°PL.

Conversely, if holds for some space )1, then an easy computation shows
that as identities on L()4,)5), one has

cENEeE =2, AT =0,
+

hence ¢ are bounded for |- ||,. Therefore, they extend to projections on Y°P!
satisfying (4.36)). This implies that wP! is pure, hence w is pure. |

Finally let us prove the analog of Proposition [£.9.2] in the charged case.

PROPOSITION 4.9.4. A gauge invariant quasi-free state w with complex covari-
ances AT is pure iff
7. 2
(4.37) g-AT+ A )y= sup 7 |

—, Yye).
neVan#0 U1 - (AT + A7)y

Proof. Let us set as before (X,0) = (Vr,Imgq) and let n be the real covariance of
w. By Proposition [£.9:2 w is pure iff

1 y - Imqy |2
y~ny1:fsup7| 1|, yel.
4y 20 Y1-MN
Since n = %Re()\“‘ + A7) and q is sesquilinear, this is equivalent to (4.37]). a

4.9.3. The GNS representation of pure quasi-free states. The GNS rep-
resentation of a pure quasi-free state is particularly simple, being a Fock represen-
tation. In fact with the notations in Section we have |c| = 1 and 0 = —27j.

Set

i
(4.38) (@1|22)p := 21-n22 + Sa1 023,
and X := (X,], (:|")r) as a complex Hilbert space. Then the GNS representation
of wis (HF, F, QF), with
HF = FS(XF)ﬂ 7TF(]5($) = QSF(:I:)a QF = Qvauc~

Let us rephrase this in the complex case, where (), ¢) is a Hermitian space and w a
gauge invariant quasi-free state with complex covariances A*. We have, by (4.23),

(4.39) 2n=Re(AT + A7), o =Im (AT — A7) = —Re((AT — A7)ji).

which yields by an easy computation as in

(4.40) 2(11y2)r = 1 A Y2 + T Ay

Recall that the Hilbert space VP! was introduced in Subsection We set

j1 = j(ct —¢7), and Yp := (Y°PL,j1, (-|-)r), which is a complex Hilbert space. The
GNS representation of w is (Hp, g, QF) with

HF - Fs(yF); WFw* (y) = a}(c"'y) + GF(C_?J)’ QF = Qvac-
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Note that the sesquilinear forms A\* extend continuously to Vr (as R-bilinear forms).

4.9.4. The Reeh-Schlieder property for quasi-free states. Let w be a
pure quasi-free state on CCRP/(X, ¢). If X; C X is a (real) vector subspace, then
by Theorem we know that Vect{Wp(z)Qr : x € X1} is dense in the GNS
Hilbert space Hp iff CX] is dense in the Hilbert space X introduced above.

It is convenient to have a version of this result in the complex case. We fix a
space (Y,q) and a pure gauge invariant quasi-free state w on CCRPOl(y,q), with
complex covariances A*. Let us denote by j the charge complex structure of ).

PROPOSITION 4.9.5. Let Y1 C Y be a complex vector subspace of V. Then
Vect{Wr(y)Q2r : y € Y1} is dense in the GNS Hilbert space Hr iff

(4.41) AN Y =T Ay =0V y1 € V1 = y=0, forye YP.
Proof. By (4.38) and Theorem Vect{Wr(y)Qr : y € Y1} is dense in Hy iff
(4.42) ynyr =y-oy1 =0V y €Yy = y=0.

Next we use (4.39) and the fact that jJy = )1 to obtain that (4.42)) is equivalent
to (@.4T)). 0

4.10. Examples
4.10.1. The vacuum state for real Klein-Gordon fields. We can take
as real symplectic space (X', ) either the space (C5°(R% R?), o) with o defined in

C° (R™;R
[B.16), or the space (Fa= iy (1G-)rn)-
If we take the first version we obtain from (3.10) that

1 1 _ 0
(4.43)  fmg= §(f0|690)L2(]Rd) + §(f1|6 '91) 2wy, frg € (CP(RER?),0).
In the second version, we obtain from (3.14) and (3.15) that
u-nu = / w(x)n(z, 2" v(z')drdx', u,v € C§°(R™;R)
R™ xR™

where

(4.44) n(z,a') = (2m) " /]R d ﬁ cos((t — t')e(l))e =) di.

4.10.2. The vacuum state for complex Klein-Gordon fields. It is more
convenient to consider complex solutions of the Klein-Gordon equation. We take as
i : oo (Tod. (2 : : C° (R™C)
Hermitian space (), ¢) either (C5°(R%; C?), q) with ¢ defined in (2.21)), or (cho Tl
see Theorem 2.4.11

In the first case the complex covariances AT of the vacuum state wy,e are given
by
1 e =1
+_ -
(4.45) AT = 3 ( TR ) ,

where we identify sesquilinear forms with operators using the scalar product on
L?(R4;C?). The projections ¢* in Proposition equal

1/ 1 el
+_ 1
(4.46) c Q(ie 1 )

Note that

Up(t)e™ f = e (fo e fu),
so ¢t are the projections on the spaces of Cauchy data of solutions with posi-
tive /negative energy.

([(G-)rn),
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If we take the second version and denote by
A* = (000 G)* A (g0 0 G)

the corresponding complex covariances, their distributional kernels are given by

1

4.47 At (z,2') = (2m)™"
(447 @) =en™" [ 5o

4.10.3. Vacuum and kms states for abstract Klein-Gordon equations.
Let us fix a complex Hilbert space h and €2 > 0 a selfadjoint operator on h. Let us
consider the following abstract Klein-Gordon equation:
(4.48) D2o(t) + 2p(t) =0, ¢:R —bh.
The main example is the Klein-Gordon equation on an ultra-static spacetime M =
R x S, where (S,h) is a complete Riemannian manifold and M is equipped with
the Lorentzian metric g = —dt* + h;;(x)dx‘dx’. We take then h = L?(%, dVolj,) and
€2 = —Aj, +m?, where —A}, is the Laplace-Beltrami operator on (3, h).

We take as Hermitian space

Y=ethoerh, Jaf = (filfo)s + (fol )y
The vacuum state wyae is now defined by the complex covariances AE in ,
where we again identify sesquilinear forms and operators using the scalar product
on hdbh.
Another natural quasi-free state is the kms state wg at temperature 371, given
by the covariances

1 [ eth(Be/2) +1
(4.49) \g = 5 ( +1 e th(Be/2) ) ’

which is not a pure state. wyac resp. wg, is a ground state, resp. a S-KMS state
for the dynamics {rs}scr defined by rs¢(-) = ¢(- + s), for ¢ solution of (4.48). We
refer the reader to Section for a general discussion of KMS states.

e:l:i(tft')e(k)qLik- (x—x") dk.






CHAPTER 5

Free Klein-Gordon fields on curved spacetimes

In this chapter we describe some well-known results about Klein-Gordon equa-
tions on Lorentzian manifolds. An important notion is the causal structure obtained
from a Lorentzian metric, which leads to the notion of globally hyperbolic spacetimes,
originally introduced by Leray [Le].

Globally hyperbolic spacetimes are Lorentzian manifolds which admit a Cauchy
surface, i.e. a hypersurface intersected only once by each inextensible causal curve.

On a globally hyperbolic spacetime M, one can pose and globally solve the
Cauchy problem for the Klein-Gordon operators P associated to the metric g.
Equivalently one can uniquely solve the inhomogeneous Klein-Gordon equation with
support conditions, i.e. introduce the retarded/advanced inverses Gieq/aay for P.

The causal propagator G = Gret — Gaqy is anti-symmetric and hence can be used
to equip the space of test functions on the spacetime M with the structure of a pre-
symplectic space, see Lichnerowicz [Lil] and Dimock [Dil]. If one fixes a Cauchy
surface Y, one can equivalently use the symplectic space of Cauchy data on X, i.e. of
pairs of compactly supported smooth functions on . This is particularly important
for the construction of states for quantized Klein-Gordon fields, see Chapter [0}

5.1. Background

We now collect some background material on vector bundles and connections
on them. Most of it will be used only in Chapter [I7] and can be skipped in first
reading.

5.1.1. Fiber bundles. Let E, M be two smooth manifolds and 7 : £ — M
surjective with D7 surjective for each e € E. The set E, = 7~ 1({x}) is called the
fiber over x € M. Let F be another smooth manifold. E = M is a fiber bundle
with typical fiber F if there exists an open covering {U; };cs of M such that for each
U; there exists ¢; : 71 (U;) = U; x F such that

Ty og; =7 onw H(Up).

The maps ¢; are called local trivializations of the bundle E =+ M. The collection
{(Us, ¢:) Yier is called a bundle atlas for the bundle E =+ M. For U;,U; with
Uij = Ul N Uj 7& (Z), we have

i 0 95 (x, f) = (x,ti; () (),
where the maps ¢;; : U;; — Aut(F) are called transition maps. One has
(51) t“(l‘) = Id, tik(.li) = t,'j(l‘) o tjk(l‘), zelU;N Uj NUg.

A fiber bundle E 55 M can be reconstructed from a covering {Ui}ier of M and
from a set of transition maps satisfying ([5.1)).

35
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5.1.2. Morphisms of bundles. If £ = M and E' i> M are two fiber
bundles with typical fibers F' and F’, a smooth map x : E — E’ is a bundle
morphism if 7’ o x = m. If ¢;;, resp. tgj are the transition maps of E, resp E’, then
there exists x; : U; — Hom(F, F') such that
(5.2) t;j oXj = Xi oty on Us;.

A fiber bundle E 55 M is trivial if there exists a bundle isomorphism y : F —
M x F. By (5.2)), this is the case iff there exists x; : U; — Aut(F') such that

(5.3) tij = x; o x; on Uy

5.1.3. Sections of a bundle. A (smooth) section of a bundle E = M is a
smooth map f : M — F such that w o f = Id. The space of smooth sections of
E T+ M will be denoted (somewhat improperly) by C*(M; E).

5.1.4. Fiber bundles with structure group G. Let E = M a fiber bundle
and G a group with an injective morphism p : G — Aut(F), where F is the
typical fiber of E. One says that £ = M has G as structure group and one writes
G — E 5 M if for all compatible 7, j one has

tij((I}) = p(gij(fli)), with Gij - Ui]‘ — G,

The maps g;; satisfy of course (5.1]).

5.1.5. Principal bundles. There is a canonical injective morphism p : G —
Aut(G) given by left multiplication. A bundle P = M with G as fiber and structure
group for the above action is called a G-principal bundle. Its transition maps are
given by maps

9ij  Usyj — G C Aut(Q).

Equivalently, a bundle P = M is a G-principal bundle if there is a right action of
G on P, which preserves the fibers and acts freely and transitively on the fibers. It
is known that a principal bundle is trivial iff it has a global section.

5.1.6. Vector bundles. Let K = R or C. A bundle E 55 M with typical
fiber K" is called a wvector bundle of rank n if E, is an n-dimensional vector space
over K for each z € M and the maps

bip=TFodyp, B = K", z€eU;

are K-linear. If ¢;; are the transition functions of E one has ¢;; : U;; — GL,(K). If
each fiber F, is oriented and the maps ¢; , : £, — K" are orientation preserving,
the vector bundle E = M is said to be oriented, and in this case the transition
maps t;;(z) take values in GL;} (K).

If E = M is a vector bundle, we denote by C*(M; E), resp. C$°(M; E), the
space of smooth resp. smooth compactly supported, sections of F.

Similarly, one denotes by D'(M; E), £'(M; E) the space of distributional, resp.,
compactly supported distributional sections of F.

If (M, g) is a spacetime, one denotes by C(M; E) the space of smooth space-
compact sections of E, see Subsection for terminology.
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5.1.7. Tangent and cotangent bundles. If M is a smooth manifold of di-
mension n, its tangent bundle TM = M is the vector bundle with fiber R™ and
transition maps

Uij ST Dinj € GLn(R),
where {(U;, x:)}ier is an atlas of M and x;; = x; © Xj_l. Likewise its cotangent
bundle T*M =5 M is the vector bundle with fiber R” and transition maps

Uij ST (tDinj)_l S GLn<R)
We denote by AP(M) the bundle of p-forms on M and set

NM) = EP AP(M).
p=0

M is orientable if A™(M) admits a non-zero global section. If this is the case the
transition maps t;; of T'M can be chosen so that dett;; > 0 on Uy;.

5.1.8. Metric vector bundles. A vector bundle E =5 M is a metric vector
bundle (of signature (g, p)) if each fiber E, is equipped with a non-degenerate scalar
product h; and

Giw : (Eg,hy) — RPP is orthogonal for x € Uj,

q x%"‘ pt+q 2

where R?P is R9"? with the canonical scalar product — > "7 ; imqt1 L3 -

5.1.9. Dual vector bundle. Let E = M a vector bundle of rank n. The

dual bundle E' — M is defined by the fibers E/, = (E,)" and the transition maps
(t5')"

5.1.10. Bundle of frames. Let £ =5 M a vector bundle of rank n. We can
associate to it the bundle of frames of E, denoted by Fr(FE) = M and defined as
follows: one sets

Fr(E)= | | Fr(E,),
reM
where F'r(V) is the set of ordered bases (i.e. frames) of the vector space V, i.e. of
linear isomorphisms F : K® =+ E,. The transition functions of Fr(E) are

Tij(a:) : GLn(K) € Ar— tij(.’L') ocAe€e GLn(]K), x € Uij7

where t;; : U;j; = GL,(K) are the transition functions of E. The bundle F'r(E) N
M is a GL, (K)-principal bundle.

5.1.11. The bundle End(E). Let E =+ M a vector bundle of rank n. One
defines the vector bundle End(E) = M with fibers End(E), = End(E,) and
transition maps A — ¢;;(x) o Ao ti_jl (x), z € M, A€ End(K").

5.1.12. The bundle E; X Es. Let E; = M; be vector bundles of rank n;,
i = 1,2. One can form the vector bundle E; K Fy = M; x M, with fibers
Ei 4, ® Es 4, over (xq,x2). If {U;;,}j,er, and t; ;, 1, are coverings and transition
maps for E; =+ M;, then one takes {Uy j, xUs j, }(;,
and £y j, k, ® t2j, k., 88 transition maps.

Jja)el. x I, as covering of My x My

5.1.13. The bundle End(E,E*). If E = M is a complex vector bundle
of rank n, the bundle End(E, E*) =+ M is the bundle with fibers End(E, E*), =
End(E;, E}) and transition maps A — t;;(z)*0Aot;;(z), v € M, A € End(C™,C™).

A vector bundle E equipped with a smooth section A of End(E, E*) such that

A(z) is a non-degenerate Hermitian form on E, for all x € M is called a Hermitian
vector bundle.
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5.1.14. Connections on vector bundles. Let E a complex vector bundle
over M. Note that C*°(M; E) is a C*°(M) module. A connection V on E is a
bilinear map

V:C®M;TM)x C°(M;E) — C*(M; E)
such that
Vx(fe) =X(fle+ fVxe,
Vixp=fVxp, feC®M), X €CM;TM), o€ C*(M;E).

If g is a metric on M, there exists a unique connection on 7'M, called the Levi-Civita
connection, denoted by V9 or often simply by V, such that

X(X1-9X2) =VxX1-9Xo+ X1-9gVxXo, X, X1,Xoe€C®(M;TM),

5.4
( ) VXIXQ_VXZX]_:[X:L,XQ], Xl,XQECOO(M;TM).

5.1.15. Stokes formula. Let M be a smooth n-dimensional manifold, ¥ C M
a smooth hypersurface, i : ¥ — M the canonical injection, and i* : A(M) — A(X)
the pullback by 1.

A vector field X over X, i.e. a smooth section of Ty, M is said to be transverse
to X if T,M =RX, T, for each x € ¥. One still denotes by X any of its smooth
extensions as a section of T'M, supported in a neighborhood of ¥ in M.

If w e C°(M;AP(M)), then X sw € C°°(M;AP~1(M)), where 4 denotes the
interior product, and one sets:

iw =" (Xow) € C®(3,APH()).

One uses the same procedure to pullback densities on M to densities on >: if
= |w| for w € C®°(M;A"(M)) is a smooth density on M, we set %y = |i%w|
which is a smooth density on X.

In local coordinates (z?,...,2™"), in which ¥ = {z! = 0}, X is transverse to &
iff X1(0,22%,...,2") #0, and if u = fdz'---da™, then

i = f0,22 ... 2™)|X0,2%,..., 2")|dz? - - - da".

We will always assume that M is orientable, see Subsection[5.1.7} and fix a smooth,
nowhere vanishing n-form w,, on M.

If U € M is an open set such that QU is a finite union of smooth hypersurfaces,
then one orients OU by the (n — 1)-form % wo,, where X is an outwards pointing,
transverse vector field to OU and i : OU — M is the canonical injection. We recall
Stokes’ formula:

= w, w (M AL )
(5.5) /wa—/aU , € C®(M;\N""(M))

5.2. Lorentzian manifolds

A Lorentzian manifold is a pair (M, g), where M is a smooth n-dimensional
manifold and g is a Lorentzian metric on M, i.e. a smooth map M > z — g(z),
where g(z) € Ls(T, M, T, M) has signature (1,n —1). It is customary to write g as
g (z)dxtdz” or g(x)dz? and to denote the inverse metric g~ (z) € Ls(T, M', T, M)
as g" (z)dg,d¢, or g1 (z)dE?.

DEFINITION 5.2.1. (1) A wvector v € T, M is time-like if v - g(z)v < 0, null if
v-g(xz)v =0, causal if v-g(z)v <0, and space-like if v-g(z)v > 0.

(2) Similarly, a vector field v on M is time-like, etc., if v(x) is time-like, etc., for
each x € M.
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(3) The cone of time-like, resp. null vectors in T,M is denoted by C(z), resp.
N(z).

DEFINITION 5.2.2. A wvector subspace V- C T, M is time-like if it contains both
space-like and time-like vectors, null if it is tangent to the lightcone N(z), and
space-like if it contains only space-like vectors.

LEMMA 5.2.3. If V C T, M is a vector subspace, one denotes by V* its orthog-
onal for g(z). Then V is time-like, resp. null, space-like iff V= is space-like, resp.
null, time-like.

We refer to [Frl Lemma 3.1.1] for the proof.
There is a similar terminology for submanifolds N C M.

DEFINITION 5.2.4. A submanifold N C M is time-like resp. space-like, null if
T.N is time-like resp. space-like, null for each x € N.

Null submanifolds are also called characteristic.

5.2.1. Volume forms and volume densities. The metric g induces a scalar
product (-|-), on the fibers A2(M) = APT, M, defined by
(5.6) (ur A ANuplog A Avp) gzy = det(ufg*l(:c)vj) 1<p<n.

Assuming that M is orientable, one obtains a unique n-form Q, € C*°(M;A"M),
called the volume form, such that (Qy|€2)z) = 1 for all z € M and Q, is positively
oriented. The volume density is the 1-density

dVoly = [Qy].
If (z!,...,2™) are local coordinates on M such that dz! A --- A da™ is positively
oriented, then one has:
(5.7) Q, = |g(z)|7da* A+ Ada™,  dVol, = |g(x)|2da’ - - da",

where |g(z)[ = det(gi;(z)).

5.2.2. Distributions on M. We denote by D'(M), resp. £ (M), the space
of distributions on M, resp. compactly supported distributions, see e.g. [HIl
Section 6.3] for definitions. The topological dual of C§° (M), resp. C°°(M), is the
space of distribution densities, resp. distribution densities of compact support. One
identifies each distribution « with the distribution density udVol,. Setting

(5.8) (ufv)ar 1= / w dVel,,
M
leads to the following natural notation
(5.9) (u|lv)p = (@dVoly|v), forue D' (M),ve C(M),

where (-|-) is the duality bracket.

5.2.3. Normal vector field. If ¥ C M is a smooth hypersurface which is
not null, there is a unique (up to sign) transverse vector field n, which is normal
and normalized, i.e.

n(z)-glx)v =0, |n(x)-g(z)n(x)=1, YveT,X zecX.
The induced metric on X, h := i*g, is non-degenerate and one has
(510) Qh = i:Lan Z*XQQ =X -nth,

if X is a vector field on X. This can be easily checked in local coordinates, using

6D
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5.2.4. Gauss formula. If X is a vector field on M, then
(5.11) VaoXQg = d(X1Qy),

where V is the Levi-Civita connection associated to g, hence Stokes’ formula can
be rewritten as

(5.12) / VX, dVol, = / i dVoly.
U oU

To express the right-hand side of (5.12)), we fix a vector field [ that is transverse
to OU and outwards pointing. Let v be a 1-form on M such that Kerv = TOU,
normalized such that v-l = 1. It follows that if X is a vector field on M we have

X =(w-X)l+ R, where R is tangent to oU.
Since R is tangent to OU, we have i*(R1dVWl,) = 0, hence
P dVol, = (v-X)i; (dVol,).

Thus, we obtain the Gauss formula
(5.13) / V. X%dWl, = / ve X%y dVol,.
U U

Let X be one of the connected components of OU.

If ¥ is given by {f = 0} for some function f with df # 0 on X, and if we can
complete f near ¥ with coordinates y',...,y" ! such that df Ady' A--- Ady" !
is direct, with 0y pointing outwards, then we take [ = Jy, v = df and obtain

(5.14) 5 (dVoly) = XV, flgl2dy" - - dy™ " on X

5.2.5. Non-characteristic boundaries. If 3 is non-characteristic, we can
take | = n, the outwards pointing normal vector field to . Since i} dVol, = dVolj,
we obtain

(5.15) 5 dVoly = nga X“dVol, on .

5.2.6. Causal structures. We now recall some notions related to the causal
structure on M induced by the metric g. All the objects below are of course un-
changed under a conformal transformation g — ¢2g of the metric, where ¢ € C>°(M)
is a strictly positive function.

DEFINITION 5.2.5. (1) A Lorentzian manifold is time orientable if it carries
a continuous time-like vector field v. Given such a vector field, one denotes by
C4(x) the connected component of C(x) such that +v(z) € Cx(x).

(2) The vectors in Cy(x) are called future/past directed, and one uses the same
terminology for time-like vector fields. Such a continuous choice of CL(x) is
called a time orientation.

(3) A time oriented Lorentzian manifold is called a spacetime.

In the sequel, we will always assume that the Lorentzian manifold M is ori-
entable, see Subsection [5.1.6] and by spacetime we will always mean an orientable
spacetime.

DEFINITION 5.2.6. Let (M,g) be a spacetime and v : I > s — x(s) € M a

piecewise Ct curve.

(1) ~ is time-like, resp. null, space-like, future/past directed if all its tangent
vectors x'(s),s € I are so.

(2) 7 is inextensible if no piecewise C' reparametrization of v can be continuously
extended beyond its endpoints.
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DEFINITION 5.2.7. (1) The time-like resp. causal future/past of x € M,
denoted by Iy (x), resp. Ji(x), is the set of points belonging to time-like, resp.
causal future/past directed curves v starting at x.

For K C M one sets I+(K) = U, cx [+(7), J&(K) = U, cx J=(7)

The time-like, resp. causal shadow of K C M is I(K) = I (K)UI_(K), resp.
J(K)=J (K)UJ_(K).

Two sets K1, Ky are causally disjoint if J(K1) N Ko = 0, or, equivalently if
J(KQ) NK;, =0.

A closed set A C M is space-compact, resp. future/past space-compact if
A C J(K), resp. AC Jy(K) for some compact set K € M.

A closed set A C M s time-compact, resp. future/past time compact if
ANJ(K), resp. AN Jx(K) is compact for each compact set K € M.

a space-compact set a time-compact set

Fig. 1

Note that if U C M is an open subset of the spacetime (M, g), then (U, g) is a

spacetime as well. In this case if K C U, we use the notation JY (K), resp. JM (K)
for the future/past causal shadows of K in U resp. in M.

One says that U C M is causally compatible if JY(x) = JM(x) N U for each

x € U. This is equivalent to the property that a causal curve in M between
two points z,x’ € U is entirely contained in U. The same terminology is used
for an isometric embedding i : (M’,¢') — (M, g). An example of a non-causally
compatible domain U in Minkowski spacetime is given in Fig. 2 below.

4

5.3. Stationary and static spacetimes

Fig. 2

5.3.1. Killing vector fields. Let X a smooth vector field on M whose flow

s +— ¢x(s) is complete. X is called a Killing vector field for (M, g) if ¢x(s) are
isometries of (M, g), i.e. ¢x(s)*(g) = g for s € R. Equivalently, X should satisfy
Killing’s equation

VuoXp + VX, =0,

where V is the Levi-Civita connection for g.
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5.3.2. Stationary spacetimes.

DEFINITION 5.3.1. The spacetime (M, g) is stationary if it admits a complete,
time-like future directed Killing vector field X .

The standard model of a stationary spacetime is as follows: let (S,h) be a
Riemannian manifold , N € C*°(S) with N > 0, and w;dz’ be a smooth 1-form on
S. Let M =R; x S; and

g =—N*)dt* + (dz' + w'(x)dt)h;;(x)(dz? + w? (z)dt).

Then (M, g) is stationary with Killing vector field 9; if N?(x) > w;(z)h" (z)w,(z),
rel.

It is known, see e.g. [S2l Proposition 3.1|, that a stationary spacetime which
is also globally hyperbolic (see Section is isometric to such a model.

5.3.3. Static spacetimes. A stationary spacetime (M, g) with Killing vector
field X is called static if there exists a smooth hypersurface S which is everywhere
g-orthogonal to X. The standard model of a static spacetime is the one above for
widz® = 0. A static, globally hyperbolic spacetime is isometric to the standard
model iff one can choose S to be a Cauchy surface, see [S2, Proposition 3.2].

An ultra-static space time is a spacetime M = R x S with the Lorentzian metric
g = —dt?+h(x)dx?, where (S, h) is a Riemannian manifold. It is known that (M, g)
is globally hyperbolic iff (S, k) is complete, see [S, Theorem 3.1], [Ky1], Proposition
5.2].

5.4. Globally hyperbolic spacetimes

DEFINITION 5.4.1. A Cauchy surface S is a closed set S C M which is inter-
sected exactly once by each inextensible time-like curve.

DEFINITION 5.4.2. A spacetime (M, g) is globally hyperbolic if the following
conditions hold:
(1) Ji(zx)NJ_(z') is compact for all z, 2" € M,
(2) M is causal, i.e. there are no closed causal curves in M.

The original definition of global hyperbolicity required the stronger condition
of strong causality, see e.g. [BGP), Definition 1.3.8], [W1l Section 8.3]. The fact
that the two definitions are equivalent is due to Bernal and Sanchez [BS3|.

Here are three elementary examples of non-globally hyperbolic spacetimes:

(1) M =RY"\{z0}: Jy(x) N J_(z') may not be compact;
(2) M =R;x]0,1[x: J(z) N J_(2") may not be compact;
(3) M =S} xRy: Jy(z) =M.

(1) RU\{a} @) Rox]0,1[x  (3) S} x R,
Fig. 3

Later on we will need the following result, which is proved in [BGP, Lemma A.5.7].
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LEMMA 5.4.3. Let (M, g) be globally hyperbolic and K1, Ky € M be compact.
Then J. (K1) N J_(K3) is compact.

The following theorem is also due to Bernal and Sanchez [BS1l, BS2|. Tt
extends an earlier result of Geroch [Ge].

THEOREM 5.4.4. The following conditions are equivalent:
(1) (M, g) is globally hyperbolic.
(2) M admits a Cauchy surface S.
(3) There exists an isometric diffeomorphism:

x: (M, g) — (R x %, —B(t,x)dt* + hy(x)dx?),

where ¥ is a smooth (n — 1)-dimensional manifold, 8 > 0 is a smooth function
on R x ¥, t + hy(x)dx? is a smooth family of Riemannian metrics on ¥, and
{T} x X is a smooth space-like Cauchy surface in R x 3 for each T € R.

5.4.1. Orthogonal decompositions of the metric. An isometry x: M —
R x ¥ such that g = x*(—Bdt? + hydx?) as in Theorem is called an orthogonal
decomposition. Orthogonal decompositions are very useful to analyze Klein-Gordon
equations on (M, g). The decomposition in Theorem is related to the notion
of temporal functions.

DEFINITION 5.4.5. A smooth functiont: M — R is called a temporal function
if its gradient Vt = g~'dt is everywhere time-like and past directed. It is called a
Cauchy temporal function if, in addition, its level sets t—1(T) are Cauchy surfaces
for all T € t(M).

Clearly, if x : M — R x X is the diffeomorphism in Theorem [5.4.4] (3), then
t = m o x is a Cauchy temporal function.

Now let ¢ be a Cauchy temporal function. Without loss of generality we can
assume that (M) = R and set © := ¢t~1({0}), which is a smooth, space-like Cauchy
surface. We equip M with an auxiliary complete Riemannian metric h and set

v=||Vt] Ve,

which is a complete, time-like vector field. Since ¥ is a Cauchy surface, its integral
curve through « € M intersects ¥ at a unique point ¢ (z) € 3, and we set

X:M>z— (tx),¥(z)) e R XX,

which is a smooth diffeomorphism. If we set ¥y = t~1({s}), then T,,%, is orthogonal
to Ru(x), hence is space-like by Lemma The image of T, X, resp. Ro(z),
under D,y is {0} x Ty¥, resp. R x {0}. Therefore, the metric (y~')*g is of the
form —pBdt? + hy, with 3 and t — h, as in Theorem

It is known, see [BS4, Theorem 1.2], that for any smooth, space-like Cauchy
surface X, there exists a Cauchy temporal function ¢ : M — R such that ¥ =
t=1({0}).

Therefore, any smooth space-like Cauchy surface 3 can be chosen in Theorem
5.4.4] (3), and the isometry x is completely determined by fixing ¥ and a Cauchy
temporal function ¢ with ¥ = ¢t=1({0}).

5.4.2. Neighborhoods of a space-like Cauchy surface.

LEMMA 5.4.6. Let ¥ C M be a smooth, space-like Cauchy surface. Then the
open neighborhoods V' of ¥ such that V- C M is causally compatible form a basis of
neighborhoods of ¥ in M.
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Proof. We can assume that M = R x ¥ with metric —Adt?> + h;dx? and identify
Y with {0} x X. We can also assume that 5 = 1 by a conformal transformation. If
U is a neighborhood of 3, we can find a strictly positive function r € C*°(X) such
that for V := {(¢,x) : [t| < r(x)} one has

(i) Vcru,
(5.16) (i)  Tho(x) < hi(x) < 4ho(x), Y (t,x) €V,
(ili) Vr(x)-ho(x)Vr(x) < £, Vx € %

In fact, it suffices to fix an open covering {U;};en of ¥ and intervals {I;};en such
that ey [i X Ui C U and choose r =}, €:xi, where {x;}ien is a partition of
unity of ¥ subordinate to {U, };en and the €; are chosen small enough.

Let now v : [-1,1] 2 s — x(s) be a future directed causal curve in (M, g)
with x(0),2(1) € V. Since ¥ is a Cauchy surface, we can assume, modulo a
reparametrization of -, that +t(s) > 0 for +s € [0,1]. By (ii), we have

t'(s) > %(x’(s)ho(x(s))x’(s))% for s € [-1,1].

If f(s) = t(s) — r(x(s)) for s € [0,1], then we deduce from (iii) and the
Cauchy-Schwarz inequality that f’(s) > 0 as long as s € [0,1] and f(s) < 0. Since
z(1) € V, we have f(1) < 0, hence f(s) < 0for s € [0,1], i.e. z(s) € V for s € [0,1].
For s € [—1,0] we use the same argument for f(s) = t(s) + r(x(s)). O

5.4.3. Gaussian normal coordinates. If ¥ C M is a smooth space-like
Cauchy surface, there is another orthogonal decomposition of the metric using
Gaussian normal coordinates to 3. It does not depend on the choice of a Cauchy
temporal function having ¥ as one of its level sets, but Gaussian normal coordinates
exist only in a neighborhood of ¥ in M. Let n € Tx M be the future directed unit
normal vector field to X, so that n, is g-orthogonal to Ty X, future directed, and
satisfies ny-g(y)n, = —1. We denote by exp? for x € M the exponential map at x
for the metric g.

PROPOSITION 5.4.7. Let > C M be a smooth space-like Cauchy surface. Then
(1) there exist neighborhoods U of {0} X ¥ in R X ¥ and V' of ¥ in M such that
V C M is causally compatible and

X : U3 (t,x) — expi(tng) € V is a diffeomorphism;
(2) one has x*g = —dt? + hy(x)dx?, where hy is a t-dependent Riemannian metric

on X over U.

Proof. The map y is clearly a local diffeomorphism. The existence of U,V as in
(1) is shown in [Ol Proposition 26, Chap. 7] , and V can be chosen to be causally
compatible in M by Lemma[5.4.6]

Let us explain the proof of (2), following [W1l Section 3.3]. Using local co-
ordinates 2z, 1 < i < n — 1 on ¥ near a point y € ¥ we obtain by means of x
local coordinates t, 2’ near a point © € V. Let T = 0;, X; = 0, be the associated
coordinate vector fields. Recall that if V is the Levi-Civita connection, then

(5.17) T'VT* =0,
(5.18) TV X{ — X)VT* = [T, X;]* = 0.

(5.17) is the geodesic equation, and the Lie bracket [T, X;] vanishes since T, X;
are coordinate vector fields. Denoting by X = X® one of the vector fields X;, we
compute:

T°Vy(T,X) = X°T*V, T, + T,T°V, X = T,T*V, X,
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using (5.17) and V,gs. = 0. Next,
1
T,T°V, X = X*T,V,T* = 5X"Vb(TaTa),

by (5.18) and the Leibniz rule for V. Finally, since T7%T, = —1 on ¥ and T°V,(T*T,)
0, we have T%T, = —1 everywhere, which implies that T°V,(7,X?%) = 0. Since
T,X* =0 on X, we obtain T,X® = 0, T*T, = —1 everywhere. This implies (2). O

5.4.4. Spaces of distributions on globally hyperbolic spacetimes. We
now recall some useful spaces of distributions on M, characterized by their support
properties. We refer the reader to [S1l, Section 4] for a complete discussion.

DEFINITION 5.4.8. A distribution u € D' (M) is space, (time), future/past com-
pact if its support is space, (time), future/past compact. The spaces of such dis-
tributions are denoted by Di.(M), D{.(M), Di. (M), Di. . (M). Similarly, one
defines the space, of smooth functions CsS (M), Ci2 (M), CF L (M), Cg2 4 (M).

The most useful space is C2(M); the other spaces appear naturally when
discussing properties of the retarded/advanced inverses for Klein-Gordon operators,
see Section below.

It is proved in [S1 Theorem 3.1] that a closed set A C M is future/past time
compact iff there exists a Cauchy surface ¥ in M such that A C J.(X).

Now let us describe the topologies of these spaces. If B C M is closed, we
denote by C*°(B), resp. D’'(B), the smooth functions, resp. distributions with
support in B, equipped with the C°° (M), resp. D'(M) topology. The topologies
of the above spaces are defined as the following inductive limits:

(5.19)

() C&(M)=Ugen C*(J(K)), Di(M) =Ugen P'(J(K)),

(ii) Cff,Jr(M) = UK@M COO(J— (K)), D;c,+(M) = UK@M D’(J_(K)),
(iif)  CZ-(M) =Ugen C*(J+(K)), Dic (M) =Ugen P'(J+(K)),
(iv) CE+(M) =Uscy C(J-(%)), Die (M) =Uscny P'(J-(%)),

(v) CE-(M) =Uscn C*(J4(X),  Dic (M) =Uscu P'(J+(X)),
(vi) O (M) =Us, s,cm OF (4 (X1) N J-(32)),
(vii)  Die(M) = Us, s, P'(J4+(21) N J-(32))

In (i), (ii), and (iii) the set of compact subsets K € M is equipped with the order
relation K7 < Ky if K1 C Kb; in (iv), resp. (v) the set of Cauchy surfaces ¥ C M is
equipped with the order relation ¥ < ¥ if J_(X) C J_(¥'), resp. J4+(X) C JL(&');
and finally, in (vi) and (vii) the set of pairs of Cauchy surfaces (X1, 33) is equipped
with the order relation (21, 35) < (X1, 25) if J(21)NJ_(B2) C JL (X)) NJ_(Xh).

The various duality relations between these spaces are as follows, see [S1, The-
orem 4.3].

PROPOSITION 5.4.9. One has
D (M) = C (M), Dy (M) =Cg (M),
bo, £ (M) =C5 (M), Di, (M) =C5 (M),

and all the spaces above are reflexive.
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5.5. Klein-Gordon equations on Lorentzian manifolds

5.5.1. Klein-Gordon operator. Let us fix a smooth real 1-form A = A, (z)dz"
on M and a real function V'€ C*°(M;R). A Klein-Gordon operator on (M, g) is a
differential operator

(5.20) P =— (V" —igA"(2))(V, —igAu(x)) + V (@),

where V# = |g| =2 (2)V, |g|2 (x)g" (x), A*(z) = g"(x)A,(z), and ¢ € R.

The quantization of the Klein-Gordon equation P¢ = 0 for ¢ € C°°(M;C)
describes a charged bosonic field of charge ¢ in the external electro-magnetic po-
tential A, (z)dz*. If A, (z)dz? =0, then P = —Oy + V(z), where O, = V#V, is
the d’Alembertian. A typical example of V is V = £Scal, + m?, where Scal, is the
scalar curvature on (M, g), which for £ = 4(’;7’_21), m = 0 yields the conformal wave
operator.

Recall that we defined the scalar product

(u|v)M:/ uvdVoly,
M

on C§°(M). Clearly, P is formally selfadjoint with respect to (-|-)as.
Actually, every differential operator of the form

P =-0,+ R(z,0,),

where R(z,0;) is a first-order differential operator on M such that P is formally
selfadjoint with respect to (:|-)ar, is of the form (5.20]).
We are interested in the Klein-Gordon equation

P¢ =0,

and we will always consider its complez solutions in D'(M) or C*°(M).

5.5.2. Conserved currents. Let us set

VA=V, —igd,, V™ :=V*_—igA®

a

and introduce on M the 1-form

(521) Ja(ul, 'LLQ) = Vfﬂluz — 61Vqu7 Uy, Uy € COO(M)
We have
(522) VaAJa (ul, UQ) = —u1 Pus + Pujus.

It follows that if u; € C°°(M) with Pu; € C§°(M) and U C M is an open set with
OU a finite union of non-characteristic hypersurfaces, we obtain from Subsection

(-2 the Green formula

(5.23) / (1 Pua — Puyus)dVoly = / (n*V {uuy — wn®Viug)dVoly,
U au
where h is the induced metric on OU.
To have a satisfactory global theory of Klein-Gordon equations on M, we need
to make some assumptions on its causal structure. It turns out that if (M, g) is
globally hyperbolic the theory is particularly nice and complete.
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5.5.3. Advanced and retarded inverses. The following extension of Theo-
rem is originally due to Leray [Le]. A proof can be found in [BGP), Theorem
3.3.1].

THEOREM 5.5.1. Let (M, g) be globally hyperbolic and let P be a Klein-Gordon
operator on M. Then for v € &' (M) there exist unique solutions e ady €
e+ (M) of the equation

Puret/adv =v.

One has Uretjadv = Gret/advV; where
(5.24)
(i) Gretjaay : E'(M) = D'(M), Gretjaay : C5(M) — C°(M) continuously;

(11) Po Gret/adv = Gret/adv oP =1
(iii) supp Gret/adv? C J+(suppv).

Using the continuity and support properties of Get/aqv and the topologies of
the spaces introduced in Definition [5.4.8] one easily obtains the following corollary.

COROLLARY 5.5.2. The maps Get/adv €xtend continuously as follows

Gret/adv : Cocci:t(M) — soco:i:(M)v é‘.c,:l:(M) - Déc,:l:(M)?

S

Gret/adv : O?';i(M) — {.co,i(M% éc,i(M) — Déc,i(M)

The operator
(525) G = Gret - Gadv

is called in physics the Pauli-Jordan function or causal propagator. Using that
P = P* and the uniqueness of Gct/adv, We obtain that Giet/adv = GZdv/rct on
C§°(M), hence
(5.26) G =-G*, suppGuv C J(suppv).

5.5.4. The Cauchy problem. We now discuss the Cauchy problem for P.
Let ¥ be a smooth, space-like Cauchy surface in M, n the future unit normal to

3, see Subsection and 92 = n2V2A. As in Section we define the Cauchy
data map gx; by:

dls
5.27 = . , e C(M).
6:27) o= (g, ) G000
The proof of the following result can be found in [BGP] Theorem 3.2.11].

THEOREM 5.5.3. The Cauchy problem

Pé =0,
(52) o

has a unique solution ¢ = Usf € C°(M) for each f = < jio > € C&°(%;C?).
1

Moreover the map Us, : C§°(X; C?) — C°(M) is continuous and
supp Us f C J(supp fo N supp f1)-

Let us recall a well-known relation between the Cauchy evolution operator Us,
and G. We first introduce some notation. Since gx : C§°(M) — C§°(3; C?) we
obtain by duality the map

(5.29) 0% : D'(%;C?) — D'(M),



48 5. FREE KLEIN-GORDON FIELDS ON CURVED SPACETIMES

where in (5.29) we identify the space C§°(M) (resp. C§°(X)’), of distribution
densities on M (resp. on X), with D'(M) (resp. D'(X)) using the density dVol,
(resp. dVoly). A concrete expression of g%, is

(5.30) onf = fo® s +i""f1 @n-Viy,

where the distribution Jy is defined by

<5ngblg,u>=/UdV01m u € Cg° (M).
b))

We also set
0 1 . 9
(5.31) ={ 7 o )€ L(CE (%, C%)).
PROPOSITION 5.5.4. Set Gs, =i"Y¢s. Then

UE = (QEG)*GE, on C’g°(2;(C2).

Proof. We apply Green’s formula (5.23) to us = u = Usf, u1 = Gadav/ret?,
v € CF(M) and U = J4(X). This yields

/ vudWoly = / ( — Gagvon®Viu + n“V;;‘Gadvvu)dVolh,
T4 (D) b
/ vudVoly = / (Gretvnavglu — Gretvnanu) dVoly,.
J_(2) b
Adding the two equations above, we get, since J(X) = M,

/ vudVoly = —/ n®Jo (Gv, uw)dVoly,.
M b
By the definition of o3, and the fact that G = —G* we obtain the proposition. O

From Proposition and Corrollary we obtain the following continuous
extensions of Us:

(5.32) Us : £(%;C? — D.L(M), D(%;C* — D'(M).

5.6. Symplectic spaces

5.6.1. Symplectic space of Cauchy data. We equip C5°(%;C?) with the
Hermitian form

(533) gasf = [ (@ufo+gofy)diol.
b
Abusing the notation, we have

g-q=f = (glasf)s,

for

(5.34) (glf)s = /E (Fofo + T1 /1) dVoly,

and the operator gs is defined in (5.31)). Clearly, (C§°(X;C?),¢x) is a Hermitian
space, see Subsection
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5.6.2. Symplectic space of solutions. Let us denote by Sols.(P) the space
of smooth complex space-compact solutions of the Klein-Gordon equation P¢ = 0.

PROPOSITION 5.6.1. (1) The Hermitian form q on Sols.(P) defined by:
(53) Braa =1 [ 1T 01,62,
b

is independent on the choice of the space-like Cauchy surface ¥ and (Solsc(P), q)
1s a Hermitian space.
(2) If ¥ is a space-like Cauchy surface, the map

os 1 (C5° (3 C?, gss) — (Solse(P), q)
s unitary with inverse Usy.

Proof. If ¢1,¢2 € Soly.(P), then by (5.22) we have V1 J%(¢1,¢2) = 0. If X,
are two space-like Cauchy surfaces with ' C J4(X), we apply the Gauss formula
to U = Int(J4(X) N J_(X')) and obtain that

/nan(%,f/)z)dVOlh =/ n® I 1, d2)dVoly.
> oY

In the general case we pick another Cauchy surface ¥ C J(X)NJ4(¥') and apply
the same argument to obtain (1). Statement (2) follows immediately. O

5.6.3. Pre-symplectic space of test functions.

THEOREM 5.6.2. (1) The sequence
0 — C(M) 55 cgo (M) - o2 (M) 25 02 (M) — 0

is an exact comples.
(2) Let X be a space-like Cauchy surface. Then one has

(02G)*Gx(0sG) = G on C5°(M).

(3) The map
Cg° (M)

“rezany

(-[iG )ar) — (Solse(P), q)
18 unitary.

Proof. (1) The above sequence is clearly a complex since GoP =0 and PoG =0
on C§°(M). Let us check that it is exact.

Let uw € C§°(M) with Pu = 0. Since u € C2(M) we have u = G0 = 0 by
Theorem which proves exactness at the first C§°(M).

Let uw € C§°(M) with Gu = 0. We have v := Gyttt = Gaqvu € C§°(M) since
suppv C Jy (suppu) N J_(suppu) is compact by Lemma m Then v = Pv, and
so u € PC§° (M), which proves exactness at the second C§°(M).

Let ¢ € C2(M) with P¢ =0, i.e. ¢ € Solsc(P). We can find cutoff functions
X+ € O (M) such that x4 + x— = 1 on supp ¢, see Fig. 4 below. We have
supp ¢ C J(K) and supp x+ C J+ (K1) for K, K1 compact. Since Vx4 = —Vx_
on supp ¢ we have supp ¢Nsupp Vx+ C J(K)NJ4 (K )NJ_(K_) which is compact
by Lemma We set ¢+ = x+¢ and v = Pp, = —P¢_, which belongs to
Cg°(M), by the compactness of supp ¢ Nsupp V. Since ¢+ € C (M) we have
¢+ = £G et /aavt hence ¢ = Gu, which proves exactness at the first Cg5(M).

Let v € C2 (M) and x+ € Cgg 4 (M) such that x4y +x— =1 on suppv. From
Theorem (iii) we see that Gt aav can be extended as a map from CgS (M)
to :é’i(M . We set then u = Gret XV + GadgvX+v and Pu = v, u € C (M) which
proves exactness at the second CS(M).
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(2) From Us;ps: = T on Sols.(P), Us, = (0xG)*Gx on C§°(%; C?) and Soly.(P) =
GC§° (M) we obtain (2).
(3) The map G and the Hermitian form (- [iG -) s are well defined on ISCOOT(éVII\/})

since GoP = PoG = 0. By (1), the map G : % — Solsc(P) is bijective, and

by (2) and the definition of ¢ in ((5.35)), it is unitary. O

Supp X+

Supp X —

Fig. 4

Let us summarize the above discussion.
THEOREM 5.6.3. The maps
( e (M)
PO (M)

are isomorphisms of Hermitian spaces.

(- [IG ) ar) - (Solue(P), q) 22 (C5° (5 C?), g5)

As in the Minkowski case, the first and last Hermitian spaces are the most
useful.

5.6.4. Time-slice property. We end this subsection with a remark which is
related to the time-slice aziom see e.g. [BGP), Theorem 4.5.1].

PROPOSITION 5.6.4. Let 3 a space-like Cauchy surface and V. C M a neigh-
borhood of ¥ such that V- C M s causally compatible. Then the maps
( G (V)
PCse(V)’

are isomorphisms of Hermitian spaces.

(- iG Y1) S5 (Sole(P), @) 22 (C5°(5:C2), g5)

Proof. The space (V,g) is globally hyperbolic. Let P|y be the restriction of P to
V. Since V C M is causally compatible, the causal propagator for P|y equals G|y .
If [u] € %, then Glyu = (Gu)|y. Applying this remark and Theorem [5.6.3
for V' we obtain the proposition. O




CHAPTER 6

Quasi-free states on curved spacetimes

We saw in Chapter [5] that to a Klein-Gordon operator P on a globally hyper-
bolic spacetime (M, g) one can associate the Hermitian space (%, (-iG *)m)-
Following Chapter [ one can then consider the associated CCR x-algebra and
quasi-free states on it.

The complex covariances of a quasi-free state induce sesquilinear forms on
C§°(M) and it is natural to assume their continuity for the topology of C§°(M),
which allows to introduce their distributional kernels.

By Propositionone can equivalently use the Hermitian space (C§° (%, C?), ¢x)
if ¥ is a space-like Cauchy surface. The associated covariances are called Cauchy
surface covariances and are very useful for the concrete construction of states.

6.1. Quasi-free states on curved spacetimes

DEFINITION 6.1.1. We denote by CCR(P) the %-algebra CCRP°Y(Y, q), see Sub-

section for

9:0) = Gy (G )

6.1.1. Space-time covariances. We will identify distribution densities on
M, resp. M x M with distributions using the density dVol,, resp. dVol, x dVol,.
Let w be a gauge invariant quasi-free state on CCR(P). Its complex covariances

o (M)

9 Ceo (M
are sesquilinear forms on

o= OF equivalently sesquilinear forms A* on C§° (M)
0
such that

- A*Pv=Pu-A*v =0, wu,ve CZ(M),
or in more compact notation A* o P = P* o A*, where P* is the formal adjoint of

P defined in Subsection T4

It is natural to require that A* : C$°(M) — D'(M) are continuous, which
we will always assume in the sequel. By the Schwartz kernel theorem, A* have
distributional kernels, still denoted by A* € D’'(M x M), defined by

(6.1) Ao = (A @ @) pxn,  u,v € C(M).

DEFINITION 6.1.2. The maps A* : C$°(M) — D'(M) are called the spacetime
covariances of w.

By Proposition [£.7.6] we have:

PROPOSITION 6.1.3. Two maps AT : C§°(M) — D'(M) are the spacetime
covariances of a gauge invariant quasi-free state w iff

(i) A*:C(M) — D'(M) are linear and continuous,
(i)  (u[AFu)pr >0, u e C (M),

(iii) AT — A~ =iG,

PoA*=A*oP=0.

)
)
)
(iv)

51
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6.1.2. Cauchy surface covariances. Let ¥ C M a space-like Cauchy sur-
face. We again identify distributions on ¥ with distribution densities using the
volume form dVol;,, where h is the induced Riemannian metric on X.

By Theorem we can use equivalently the symplectic space (C§°(3; C?), gx)
to describe CCR(P). Therefore a quasi-free state w as above can equivalently be
defined by a pair A; of sesquilinear forms on C§°(X;C?), or equivalently linear
maps \f 1 C5°(3; C?) — D'(X;C?). We will see later that AT : C§°(M) — D' (M)
is linear and continuous iff \* : C§°(%; C?) — D'(X; C?) is linear and continuous.

DEFINITION 6.1.4. The maps )\;E are called the Cauchy surface covariances of
the state w.

We recall that the scalar product (+|-)s; on C§°(3; C?) was defined in (5.34)).

PROPOSITION 6.1.5. Two maps N : C§°(2;C?) — D'(X;C?) are the Cauchy
surface covariances of a gauge invariant quasi-free state w iff

(1) A CgR(%;C?) — D/(B;C?) are linear and continuous,
(i) (fAsf)= =0, feC5(5:C?),
(i) A —AS =gz

We recall that gs is defined in (5.31)) and that Gz = i"!gg. Let us now look
at the relationship between A* and AS-

PROPOSITION 6.1.6. (1) Let A% be Cauchy surface covariances of a quasi-free
state w. Then

AT = (05G)" A5 (0G)

are the spacetime covariances of w.
(2) let AT be the spacetime covariances of a quasi-free state w. Then

Ay = (05.Gs)" A* (0%Gr).
are the Cauchy surface covariances of w.

Proof. (1) Since o5 \E0sG : C°(M) — Dj.(M) and A : 0 (%;C?) — D'(%;C?)
are continuous, we see that AT : C§°(M) — D'(M) is continuous, by Corollary
(.52 The rest of the conditions in Proposition [6.1.3 follow from the equalities
PoG =Go P =0 and the fact that

Cg (M)

¢ peg

(- iG)ar) — (C5°(35C?), gx)
is unitary.

(2) The fact that A% : C5°(3; C?) — D’'(X; C?) is continuous uses properties of
the wavefront set of A* deduced from the equalities P o A* = A* o P = 0 and will
be explained later on in Chapter [7] see Subsection [7.2.9]

Item (ii) in Proposition llows from item (ii) in Proposition To

check item (iii) in Proposition [6.1.5] we write
AL = A5 = (05Gx)"iG(05Gx) = ~GroxiGot Gy = gx,

since g5 (0xG)*Gy, = 1, by Proposition m Therefore )\% are the Cauchy surface
covariances of a quasi-free state wy. To check that w; = w, we use (1) and the fact
that ox(0xG)*Gs = 1 to conclude that A* are the spacetime covariances of w,
and hence w; = w. O
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6.1.3. The case of real fields. For comparison with the literature, let us
briefly explain the framework for real Klein-Gordon fields. Let P be a real Klein-
Gordon operator, i.e. such that Pu = P7. Clearly, G /adv and hence G are also
real operators.

Consider the real symplectic space

Cg°(M;R)

(X,0) = (W»HG')M),

and denote by CCRg(P) the *-algebra CCRP®(X, o). The real covariance of a
quasi-free state w is a (continuous) bilinear form H on C§°(M;R), i.e. a continuous
map H : C§°(M;R) — D'(M;R). It satisfies H o P = Po H = 0. The two-point
function wy of w, defined by

/ ws ' Yu()o(a!)dVol, x dVol, = w($(w)é(v)
M x M

is equal by (4.15)) to
i
Wo = H + §G7
and we denote by
wae = He + 5Ge : C5°(M) — D'(M)

its sesquilinear extension.
Let us formulate the version of Proposition [6.1.3]in the real case, which follows
from Proposition [4.7.1]

PROPOSITION 6.1.7. A map ws : C(M;R) — D' (M;R) is the two-point func-
tion of a quasi-free state for the real Klein-Gordon operator P iff

(i) woc : C°(M) — D'(M) is continuous,
(i) (u|wacu)ar >0, we CPFR(M),

(iii) War —twgc = iG(c.

6.2. Consequences of unique continuation

Next let us examine some consequences on CCR(P) of unique continuation
results for the Klein-Gordon operator P. We first introduce some terminology
taken from [K'W| Section 2].

DEFINITION 6.2.1. Let O C M be an open set. The domain of determinacy
2(0) is the largest open set U C M such that P¢ = 0, ¢|o = 0 implies |y = 0
for all ¢ € D'(M).

From the existence and uniqueness for the Cauchy problem, see Theorem [5.5.
one sees that if ¥ is a Cauchy surface in M, the interior of the domain of dependence
D(XN0), defined as the set {x € M : J(x)NX C O}, is included in Z(0). Also, if
O+ :={x € M :2xnJ(0O) =0} is the causal complement of O, then 2(0)NO+ = .
From uniqueness results for the Cauchy problem, see e.g. [H4, Section 28.4], one
can get some geometric information on 2(0). In particular, it was shown by
Strohmaier in [St] that the envelope of O, see [Stl Subsection 2.4] for the precise
definition, is always included in 2(0O), provided the operator P is locally analytic
in time. This condition means that near any point xy € M, there exists local
coordinates (t,x) such that 9; is time-like and the coefficients of P (and hence the
metric g) are locally analytic in ¢.



54 6. QUASI-FREE STATES ON CURVED SPACETIMES
Following Definition we set

$(0) = -CE(O)

————~— for O C M open.
(¢6°(0))

PROPOSITION 6.2.2. Let w be a quasi-free state on CCR(P) with spacetime
covariances A* and O C M be open. Then Y(O) is dense in Y(Z(0)) for the
scalar product AT + A~.

Proof. Let Y°P! be the completion of Y for AT + A~ and A+ the orthogonal
complement of A C VPl For u € VP! we set

wi(f) =u-AEf, feCF(M).

Since A* > 0, the Cauchy-Schwarz inequality yields

Wi (£)] < (@ A*u)* (FA=)%,
which implies that w € D’(M). Moreover since A*P = 0 we have Pw} = 0. If
u € Y(0)* we have wE = 0 in O hence w¥ = 0 in 2(0) hence u € Y(2(0))*. O

Note that the density result in Proposition [6.2.2]is valid for any quasi-free state
w. It is hence different from the Reeh-Schlieder property, see Section [12.4] which is
a property of a given state w and asserts that Y(O) is dense in Y(O’) for any open
sets O,0" C M.

6.3. Conformal transformations

If (M, g) is globally hyperbolic and ¢ € C*°(M) with ¢(z) > 0, then (M, g) for
G = c?g is also globally hyperbolic, with the same CauCNhy surfaces as (M, g). It is
easy to see from (5.4) that the Levi-Civita connection V for § is given by:

(6.2) VxY = VxY +c¢ (X do)Y + (Y-de)X — X-gY V).
If P is a Klein-Gordon operator on (M, g) and
W : L2(M,dVely) 3 i — /> Ya e L2(M,dVel,)
then
P :=W*PW = ¢ /2?71 pe/2-1

is a Klein-Gordon operator on (M, §). In particular, if P = -0, + %Scalg is

the conformal wave operator for g, then P is the conformal wave operator for g,
see e.g. [W1l App. D|.
Denoting with tildas the objects associated with g, P, we have:

(63) Gret/adv = Wéret/advW*a G = WGW*

6.3.1. Conformal transformations of phase spaces. Let us denote by
M the manifold M equipped with the density dWlz = c*dWly. 1If ¥ C M is a
space-like Cauchy surface, then 7 = ¢~ 'n, h = ¢2h. From we obtain that
VA = W-IVAW. Let us set

Cl—n/2f0

U:Cg°(55C2) 5 fro Uf = ( 2

) € 0 (D C2).

The next proposition follows by easy computations.
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PROPOSITION 6.3.1. The following diagram is commutative, with all arrows
unitary:

(Se D G ) a) —S (Sole(P),q) —Z— (C8°(T;C2), gs)

PC§e(M)?
[w [ I
SRy L= G -~ B - o B
(LU (G )y) — (Sole(P), D) —2 (C3(55C2), )

6.3.2. Conformal transformations of quasi-free states. Let AT be the
spacetime covariances of a quasi-free state w for P. From (6.3) and Proposition
[6.1.3] we obtain that

(6.4) At — (l-n/2pE—1-n/2
are the spacetime covariances of a quasi-free state & for P.

Let us denote by ¥ the manifold ¥ equipped with the volume element dVolj,.
Then 12
. F "= fo 7 S (2
U*f= =~ ), felC(s;C
F=( gty ). FecrEen
and R
5 = (U gu,

if A%, resp. A% are the Cauchy surface covariances of w, resp. @.






CHAPTER 7

Microlocal analysis of Klein-Gordon equations

The use of microlocal analysis in quantum field theory on curved spacetimes
started with the fundamental papers of Radzikowski [R1, [R2], who gave a def-
inition of the Hadamard states by means of the wavefront set of their two-point
functions, instead of their singularity structure, see e.g. Section [8:2] The work of
Radzikowski relied on the analysis by Duistermaat and Hérmander [DH] of distin-
guished parametrices for Klein-Gordon operators, which was actually motivated by
the desire to understand the notion of ‘Feynman propagators’ on curved spacetimes.

On Minkowski spacetime the interplay of microlocal analysis and quantum field
theory is much older, see for example the proceedings [P].

In this chapter we first recall basic facts on wavefront sets of distributions on
manifolds. We then describe the result of [DH] on distinguished parametrices and
some related results due to Junker [J1].

7.1. Wavefront set of distributions

We recall the well-known definition of the wavefront set of a distribution u €
D'(M) for M a smooth manifold. We equip M with a smooth density, for which
one usually takes dVol, if (M, g) is a spacetime. We use the notation (-|-)as in
for the duality bracket between D’'(M) and C§°(M).

Let o C T*M be the zero section. The points in T*M \ o will be denoted by
X = (1,€), v € M, £ € TIM\ {0}.

We recall that I' C T*M \o is conic if (x,€) € T = (x,A) € T for all A > 0.
The cosphere bundle S* M is the quotient of T*M \ o by the relation X; ~ X if
x1 = x9 and & = A& for some A > 0. A conic set I' can be seen as a set in S*M
and it is called closed if it is closed in S*M in the quotient topology.

DEFINITION 7.1.1. Let & C R™ an open set. A point (x9,&o) € T*Q \ o does
not belong to the wavefront set WFu of u € D'(Q) if there exist x € C§°(2) with
X(x0) =1 and a conic neighborhood T of &y, such that

|IF(xu) (&) < CnNN, VN eEN, £cT.

One can show that the wavefront set transforms covariantly under diffeomor-
phisms, i.e. if 1 : Q1 = Qo is a diffeomorphism, then

(7.1) WF(¢*ug) = " (WF(u2)), Yug € D'(Qa).
Another useful equivalent definition of WFu is as follows. We set

(7.2) v () = ANETIN Y = (y) € THQ, 2z €R", A> 1.

LEMMA 7.1.2. Let  C R™ be an open set, (x9,&) € T*Q\o and u € D'(Q).
Then (xo,&0) € WFu iff there exist x € C§°(2) with x(xo) # 0 and a neighborhood
W of (zg,&0) in T*Q such that

(v lu)el <CNvA™Y, Y EW, A>1, NeN.
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From (7.1)) we see that Definition immediately extends to distributions on
manifolds.

DEFINITION 7.1.3. A point Xo = (x0,&) € T*M \ o does not belong to the
wavefront set WFu of u € D' (M) if there exist a neighborhood U of x¢ and a chart
diffeomorphism x : U = B(0,1) such that (x1)*Xo & WF(x~1)*u|q.

The wavefront set WFu is a closed conic subset of T*M \ o with my WFu =
singsupp u, the singular support of u.

From Definition [7.1.3] we obtain immediately the covariance property of the
wavefront set under diffeomorphisms.

PROPOSITION 7.1.4. Let My, My be two smooth manifolds and x : My — My a
diffeomorphism. Then

WF (x*uz) = x*(WF(u2)) V us € D'(My).

The following well-known result, see e.g. [SVW, Theorem 2.8], [H1, Theorem
8.4.8] allows to estimate the wavefront set of distributions defined as partial limits
of holomorphic functions. It is usually expressed in terms of the analytic wavefront
set, see Section [12.2

PROPOSITION 7.1.5. Let I C R be an open interval, S a smooth manifold and
let F:1+1]0,0[3 z — F(z) € D'(S) be a holomorphic function with values in
D'(S). Assume that f(t, ) = lim_,o+ F(t +1ie,-) exists in D'(I x S). Then

WE(f) Cc {(¢t,7):t eI, £7 >0} x T*S.
Proof. We only prove the + case, and we can assume that S = Q C R™. We write
t=2a2% 2= (2%2") fora’ € Sand Y = (Y°,Y’) for YO € T*I, Y’ € T*S. With

the notation in (7.2) we have v (z) = v, (2°)v3, (2’). By Lemma we need
to show that

(7.3) (03 |xf)rxs € O((N)™>°), uniformly for Y € W,
where X € C§°(I), X' € C5°(5), x(z) = x°(@°)x/(2') and W € {Y € T*I x S :
n° < 0} is relatively compact.

Arguing as in the proof of [H1, Theorem 3.1.14], we first obtain that if K € S,
there exist Ny € N and a semi-norm || - || of C§°(K), such that

|(v|F(z,-))s| < C|Tmz| ™ ||v||x, Yv € C§°(K), 2z € T +1]0,4[.

For v = x'v$, we obtain:
(7.4)
|(xX'v3:|F(2,-))s| < ClImz| =M (\)k, k€ N, uniformly for Y’ € W’ € T*S.

Let x1 € C§°(] —6,6[) with x; =1 1in |s|] < §/2 and
o o (i8)?
Lt +is) = 30O s).

Jj=0

We have
X’ € CP(C), X'lr=x", and 8:x° € O(|Imz|"),

and YV is called an (N-th order) almost analytic extension of x°. Let us set

@?/0 (2) = e_%(Z—xo)z—i)\(Z_xO){07

which is holomorphic in C and equals @ on R. We apply Stokes formula

(7.5) ., 0z9(2)dz Ndz = éﬂ g(z)dz
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to gy (2) = P30 (2)X°(2) (X' v |F(2,7))s, @ = {Imz > 0}. The right-hand side in
(7.5) equals

lim [ (03 |F(t+ i€, ) sPya(t + 10X (¢ +ie)dt = (03| f)rxs.
€ R

Since dzg9(2) = Pyo(2) (X v |F (2, -))Saa—g(z), we obtain using also that the
integrand in the lhs is bounded by C[Imz|N—Noe=eAlmzl(\}k yniformly for Y €
W e {n° <0}, z € supp X°. Therefore the integral in the left-hand side is bounded
by C(\)FTNo=N_ Since N was arbitrary, we obtain (7.3). O

7.2. Operations on distributions
We refer the reader to [H1, Chap. §|.
7.2.1. Operations on conic sets. We first introduce some notation.
If T' C T*M \o is conic, we set
—I'i=A{(z,-¢): (x,§) €T},
and if ', Ty C T* M \ o are conic, we set
Iy + Ty = {(2,& + &)« (2,&) € T4}

Let M;, i = 1,2 be two manifolds, o; the zero section of T*M;, M = M; x Ms,
and let I' C T*M \ o be a conic set. The elements of T*M \ o will be denoted by
(z1,&1,T2,&2), which allows to consider I' as a relation between T* My and T*M;,
still denoted by I'. Clearly I" maps conic sets into conic sets. We set

I i= {(21,81, 72, —82) © (21,81,72,82) € '} C T (My x My) \o,

Exch(T') :=T"! C (T*My x T*M;) \o,

aml = {(x1,&1) : 3 a2 such that (z1,&1,22,0) € T} =T(02) C T*M; \ox,
Tus, == {(72,&2) : 3 21 such that (z1,0,22,&) €T} =T"1(o1) C T* M \oa.

7.2.2. Distribution kernels. If M;,i = 1,2, are smooth manifolds equipped
with smooth densities du; and K : C§°(Msy) — D’ (M) is continuous, we will still
denote by K € D'(M; x Ms) its distribution kernel. Such a kernel is properly
supported if the projection o : supp K — My is proper. If this is the case, then
K: CSO(MQ) — g,(Ml)

7.2.3. Complex conjugation and adjoints. If u € D'(M), then
(7.6) WF(u) = —WF(u).
Similarly, if K : C§°(Mz) — D’(Mj) is continuous and K* : C§°(M;) — D'(Ms) is
its adjoint with respect to some smooth densities dyu;, dpus then:
(7.7) WF(K*)" = Exch(WF(K)").
7.2.4. Pullback and restriction to submanifolds. Under a condition on

WFu it is possible to extend the pullback x*u to general smooth maps x : M; —
Ms. Indeed, let us set x*u = u o x for u € C°(M;) and

N = {(x(21), &) € T" Mz \ oz : Dx(z1)é = 0}.

Then there is a unique extension of the pullback x* to distributions v € D'(Ms)
such that

(7.8) N; N WEF(u) = 0,
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and one has
(7.9) WF(x*u) C x*WF(u).

In particular, if S C M is a smooth submanifold and i : S — M is the canonical
injection, the set IV is denoted by N*S and called the conormal bundle to S. One
has:

N*S ={(z,) € T*M : z € S,¢|r,s = 0}.
The restriction u[g= i*u of uw € D'(M) is then well defined if
(7.10) WFEuNN*S =0,
and one has

(7.11) WF(uls) C i*WFu.

7.2.5. Tensor products. If u; € D'(M;) then
WF(u; ® usg)
C(WF(u1) x WF(u3)) U (suppuj x {0}) x WF(u) UWF (uy1) x (suppus x {0})
C(WF(u1) x WF(ug))Uoy x WF(uz) UWF(uy) Xo0a.
7.2.6. Products. The map C§°(M)? > (ug,u2) — ujuz uniquely extends to
distributions ui, us € D'(M) such that:
(7.12) (WFu; + WFus) No = 0,

and one has

WF(ujug) C WFu; U WFuy U (WFu; + WFus).

7.2.7. Kernels. If K € D'(M; x Ms), then the map K : C§°(Msz) — D'(M;)
uniquely extends to distributions such that

(7.13) u e &' (My), WF(u)N WF(K)J’\42 =0,
and one has:
(7.14) WF(Ku) C p»,WF(K) U (WF(K) (WFu)),

where we interpret WF(K)' as a relation in T*M; x T*M,. Quite often one has
mWF(K) =, and (7.14) simplifies to

(7.15) WF(Ku) € WF(K) (WFu),

which justifies the use of WF(K)' instead of WF(K). Note for example that
WEF(Id)' is equal to the diagonal

(7.16) A={(X,X): X €eT"M\o}

which is the relation associated to Id : T*M — T*M. Similarly, if P is a (properly
supported) pseudodifferential operator (see Chapter one has:

(7.17) WF(P) C A, hence WF(Pu) C WF(u), u € D'(M).
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7.2.8. Composition of kernels. Finally, let K; € D'(M; x M), Ko €
D'(My x Ms), where Ky is properly supported. Then K; o Ky is well defined
if

(7.18) WEF(K1)'v, N, WEF(K2) =0,

and then
(7.19)
WF(Kl OKQ)/ C (WF(Kl)IOWF(Kz)/) U( JV[1WF(K1)/ X03) @] (01 X WF(KQ)IM3)

Again, it often happens that 5, WF(K;)" and WF(K;)'sr,,, are empty. Then (7.18)
is automatic and ([7.19)) simplifies to the beautiful formula:

(7.20) WF(K; o Ky)' € WF(K;) o WF(K>)'.

7.2.9. Proof of Proposition We end this subsection by completing the
proof of (2) in Proposition Consider the map p:Gy : C5°(X;C?) — D'(M).
It is clearly continuous and introducing local coordinates (t,x) near xg € ¥ such
that ¥ = {t = 0} we see that

WF(05Gx) C{(X,Y) e T*M x T*S : X =i*Y},

where i : ¥ — M is the canonical embedding. From PoA* = A*o P = ( we obtain
(see the proof of Lemma that WF(A*)" € & x N. Since X is space-like
and hence non-null, we have N’ N N*Y¥ = (), which using Subsection [7.2.8| shows
that AT 0 o5 Gy : C5°(%;C?) — D'(M) is well defined and continuous. The same
argument shows that (05Gx)* 0o AT 0L Gy : C§°(%; C?) — D/ (X; C?) is well defined
and continuous. |

7.3. Hormander’s theorem

We now state the famous result of Hérmander on propagation of singularities,
see e.g. |[H3| Theorem 26.1.1] or [H4, Theorem 3.2.1]. To this end we need some
notions from pseudodifferential calculus, which will be recalled later on in Chapter
B

The space of (classical) pseudodifferential operators of order m on a manifold X
is denoted by U™ (X). If P € ¥™(X), its principal symbol p = op,,(P) is a smooth
function on 7% X, homogeneous of degree m in &. Its characteristic manifold is

Char(P) = p~'({0}) \o,

where o is the zero section in T*X. P is said of real principal type if p is real
valued with dp # 0 on Char(P), which is then a smooth, conic hypersurface in
T*M, invariant under the flow of the Hamiltonian vector field H,. The integral
curves of H, in Char(P) are traditionally called bicharacteristic curves for P.
Note also that a Klein-Gordon operator P on a Lorentzian manifold (M, g) is of
real principal type with principal symbol p(z,&) = &-g71(z)¢.

A submanifold S C M is non-characteristic for P iff Char(P) N N*S = 0.

THEOREM 7.3.1. Let X be a smooth manifold and P € V™(X) a properly
supported pseudodifferential operator. Then for w € D'(X) one has:
(1) WF(u) \WF(Pu) C Char(P) (microlocal ellipticity).
(2) If P is of real principal type, then WF(u) \ WF(Pu) is invariant under the
flow of H, (propagation of singularities).
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7.4. The distinguished parametrices of a Klein-Gordon operator

We will recall some deep results of Duistermaat and Hormander [DH] on dis-
tinguished parametrices of P. These results played a very important role in the
work of Radzikowski [R1]. Let us first introduce some notation.

Recall that Cy(z) C T, M are the cones of future/past time-like vectors. We
denote by Cy(z)* C TXM the dual cones

Ci(z) ={£&€T;M: £&-v>0, YveCx(x), v#0}.

We write £ > 0 if £ € Cy(z)*.

In this subsection P will be a Klein-Gordon operator on (M, g). We recall that
its principal symbol is

opr(P)(2,€) = p(z,€) = &-g7H (2)¢

Duistermaat and Hormander introduce in [DH| the pseudo-convezity condition of
M with respect to P, which says that for any compact set K € M there exists
a compact K’ € M such that the projection on M of any bicharacteristic curve
for P with endpoints in K is entirely contained in K’. Since projections on M
of bicharacteristic curves are null geodesics, and hence causal curves, the pseudo-
convexity of M follows easily from global hyperbolicity, using Lemma [5.4.3

The characteristic manifold Char(P) will be denoted by A/; it splits into the
upper/lower energy shells
(7.21) N=NTUN™, Nt =NnN{+£0}.

Recall that X = (z,£) denote the points in 7* M \o. We write X; ~ Xy if X1, X5 €
N and X, X, lie on the same integral curve of H,.

For X7 ~ Xo, we write X7 > Xo, resp. X; < Xo if 21 € Jy(x2), resp.
x1 € J_(z2) and x; # x2 and we write X7 > Xo, resp. X7 < Xy if X; comes
strictly after, resp. before X5 with respect to the natural parameter on the integral
curve of H), through X; and X,. Finally, we set

C={(X1,X2) e N XN : X; ~ X5},
and we introduce the following subsets of C:
Ct:=CNNEt x N,
Cret = {(X1,X2) €C: X1 > Xo},
(7.22) Cadv i={(X1,X2) €C: X1 < Xo},
Cr:i={(X1,X2)eC: X; < Xo},
Cri={(X1,X2) €C: X1 > Xo}.

Note that
Cret UC'adv :CFUCf:C\A

Using an orthogonal decomposition of the metric g, one easily obtains that
Cr = (Cret NCT) U (Caav NCT),

(7.23) '
Ci = (Cret NC7) U (Caav NCT).

7.4.1. Parametrices.

DEFINITION 7.4.1. A continuous map G : C5°(M) — D'(M) is a left, resp.
right parametrix of P if
GoP=1+R, resp. PoG=1+ R/,

where R, resp. R’ has a smooth kernel. If@ is both a left and a right parametriz,
it is called a parametrix of P.
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Parametrices play in microlocal analysis the role played by pseudo-inverses in
Fredholm theory.

7.4.2. Distinguished parametrices. We now state a theorem of Duister-
maat and Hérmander [DH| Theorem 6.5.3].

THEOREM 7.4.2. For § = ret,adv,F,F there exists a parametriz éﬁ of P such
that

(7.24) WF(Gy) = AUC.

Any other left or right parametriz G with WF(G) C A UCy equals Gy modulo a
smooth kernel.

The parametrices in Theorem[7.4.2|are called distinguished parametrices. Those
with WF(G’) C AUC,et/aav are called retarded/advanced parametrices, while those
with WF(G') € AUCp /7 are called Feynman,/anti-Feynman parametrices.

Note that the closed conic subsets I' of 7(M x M) \o that can be equal to

WF(G)' for some parametrix G of P were also completely characterized in [DH,
Theorems 6.5.6, 6.5.8]. They can be very different from the sets in Theorem

LEMMA 7.4.3. The retarded/advanced inverses Giet/ady introduced in Subsec-
tionm are advanced/retarded parametrices.

Proof. We note first that since P is a differential operator, P ® 1 and 1 ® P are
pseudodifferential operators on M x M. Let now G be a parametrix of P. We
apply and Theorem (1) to P® 1 or 1® P, using the fact that Po G-1
and G o P — 1 have smooth kernels, and obtain that

A CWF(G) c (N xN)UA.

Let us assume now that there exists (X1, X3) € WF(Gret)’ with (X7, Xo) € AUCres.
If X; ~ X5, then necessarily ©1 ¢ J;(z2), hence (z1,22) € supp Gret, which is a
contradiction. If X7 «# X,, then necessarily X1, Xo € N. If B(X) denotes the
bicharacteristic curve through X, then B(X;) x {X3} N A = (). We can apply then
Theorem m (2) to P ® 1, using that P o G, — 1 has a smooth kernel, to obtain
that B(X1) x {X2} C WF(Gyet)'. In particular, WF(G,et) contains (X3, X5) with
x3 & J4(22), which is a contradiction. The proof for G,qy is similar. ]

By Lemma there are canonical advanced/retarded parametrices, namely
the advanced /retarded inverses. No such canonical choice exists of Feynman/anti-
Feynman inverses, at least on general spacetimes (M,g), a fact already noted by
Duistermaat and Hémander. This fact is related to the absence of a canonical
choice of Hadamard states for P, see Chapter [§ below. We will come back to this
question in Chapter [T6]

We end this subsection with a proposition about the wavefront set of differences
of distinguished parametrices, due to Junker, see [J1 Theorem 2.29].

PROPOSITION 7.4.4. One has:
(1) WF(Gret — Gaav)' =C,
(2)
(3) WF
(4)
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Proof. We will apply the following observation: let S be any of the differences in
Proposition Since PS,SP € C*(M x M), applying Theorem to P®1
and 1® P we obtain that

(i) WFS' CN xWN,

(11) (Xl,XQ) S (NXN)\WFS’@B(X]) XB(XQ)QWFS/:(Z),
where we recall that B(X) is the bicharacteristic curve through X. In the sequel
we set Ay = (N xN)NA. ) )

Let us prove assertion (1). Since WF(Gret)' \ Ax and WF(Gaav)' \ An are

disjoint, we obtain that
(7.26)

WF(Gre = Gaar) \ Ax = (WF(Gret) \ Ax ) U (WF(Gaae)' \ Ax) = C\ Ay
Next, (7.25) (i) implies that WF (Gt — éad),)’ CN x N, and (7.25) (ii) combined

with (7.26)) implies that Ayx- € WF(Ghre; — Gaay)’- This completes the proof of (1).
The proof of (2) is similar.
Now let us prove (3). Since WF(Gret)' N {(X1,X2) e N XN 1 X1 < X0} =10,

we have:

(7.25)

WF(GF — éret)/ n {(X1,X2) EN XN : X < X2}
WFEGH N {(X1,X5) e N x N : X; < Xy}
= CFmCadv:CadvﬁC_a

where in the last step we used (7.23)). Applying then (7.25) we obtain (3). The
proof of (4) is similar. |

(7.27)



CHAPTER 8

Hadamard states

The main problem one encounters when considering quantum Klein-Gordon
fields on a curved spacetime is that there is no notion of a vacuum state. Unless the
spacetime is stationary, see Chapter [9] there is no one-parameter group of Killing
isometries that can be used to define a vacuum state.

One is forced to find a more general class of physically acceptable states, which
should be those for which the renormalized stress-energy tensor Top(¢)(z), see Sec-
tion [8.1] can be rigorously defined. Alternatively one can require that the short
distance behavior of their two-point functions, expressed for example in normal
coordinates at any point x € M, should mimic the one of the vacuum state on
Minkowski spacetime.

These states are called Hadamard states and play a fundamental role in quan-
tum field theory on curved spacetimes. In this chapter we describe the characteri-
zation of Hadamard states due to Radzikowski, [R1}, [R2], relying on the wavefront
set of their two-point functions and various existence and uniqueness theorems for
Hadamard states. The microlocal definition of Hadamard states is very convenient
and natural for applications.

8.1. The need for renormalization
Let us now consider a non-linear Klein-Gordon equation like

(8.1) — Ogo(x) + m*¢(x) + ¢"(x) = 0,

or a Klein-Gordon equation coupled to another classical field equation, like the
Einstein Klein-Gordon system:

1 _
(8.2) { Fusls) = SR =Toul0),
_Dg¢ +m (i) =0.

Here T, (¢) is the stress-energy tensor of ¢, defined as

1
(8.3) Top(¢) = Vap Vo — igab(vcd)chs +m?¢?),
for a real solution ¢. For complex solutions the stress-energy tensor is defined as
(8.4) Tab(¢) = VadVs¢ + VsdVat — gab(VehVep + m’¢g).

Note that if ¢ € C°(M) solves the Klein-Gordon equation
then one has the identity
(8.5) VTap(9) = (V = m?)(¢Veé + Vid9),

(this vanishes if V' = m?), which is the basic ingredient of energy estimates for
Klein-Gordon equations.

To quantize such classical equations, one would like to define expressions like
@™ (x), or Top(@)(x) as operator-valued distributions.

65
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It is hopeless to define [, ¢™(x)u(x)dVoly or [,, Tap(®)(x)u(x)dVol, for u e
C§°(M) as elements of an abstract x-algebra.

Instead one can hope that given a state w for the free Klein-Gordon field, those
expressions may have a meaning as unbounded operators on the GNS Hilbert space
H.,- More precisely one can try to proceed as follows:

Let ¢y, (u) for u € C§°(M), be the image of the abstract field ¢(u) under
the map 7, of the GNS triple (M., 7w, ), and let ¢, (z) be the operator-valued
distribution on M defined by ¢, (u) =: [, du(z)u(x)dVol,. Then one can try to
define

F(x) = lim o (@)6u(x)
i.e. ¢2(x) will be the trace on the diagonal A = {z = 2’} of the operator valued
distribution ¢, (x)¢, (') on M x M. If this is possible, then one would expect
that (Q,|¢2 ()% )2, will be a well-defined (scalar) distribution on M. In the

Minkowski case this means that the two-point function ws(x, 2’) has a well-defined
trace on A. This is clearly impossible, since by ((3.14)

wo(x,x) = / (k) tdk = oo,
Rd
an example of ultraviolet divergence. Note also that one has

(8.6) WF(w2> = {((.’E,f), (x/7§/)) : (:L‘7f) € N+7 (x/7£/) eENT, (l‘,f) ~ (xla _f/)},
so trying to define wo|a by the arguments of Section does not work either.

8.1.1. The Wick ordering. The solution to this problem for the vacuum
state on Minkowski is well-known, and called the Wick ordering: it consists in
setting

(8.7) 19(2)(2'):= d()d(z) — wa(x,2") 1.

If w is any quasi-free state, then : ¢, ()@, (') : is clearly well defined as an operator-
valued distribution on M x M. If w = wyac, let us try to define the operator-valued
distribution: ¢2_ (z) : as the trace on A of : ¢y, (@)¢w,,.(z') ;. To this end, we
consider the distribution

1P (2)Bu (') X 1B (Y)Pw (Y') 1= () P (2) b (y) P (V')
= Gu()du (w2 (Y, ¥') — du(Y) P (y w2 (2, 2') + wa(z, 2")wa(y, y') 1.
Using the fact that w is quasi-free, see Proposition we obtain that
w(:6u(2)60 (@) X Du®)6u(y)) = walw, Pwa(a’sy) +ws (w5 Jwn (&, y).

The right-hand side above has a well-defined trace on {x = 2/, y = y'}, which equals
2wo(x,y)?. Note that wy(x,y)? is well defined as an element of D'(M x M), since
if T is the right-hand side in we have (I' +T') No = 0.

Summarizing we have shown that the vector
/ 1% () u(z)dVolyQy,, u € Cg°(M)
M

is well defined as an element of H, for u € C§°(M) (since its norm in H, is
finite). Using the same argument one can show that the (unbounded) operator
Jos 10 (2): u(z)dVoly is well defined with domain

D = Vect{ [ [ ¢u(ui)Qu : us € C3°(M),n € N}.

i=1
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8.2. 0Old definition of Hadamard states

The Wick ordering is well understood for the Klein-Gordon field on Minkowski
spacetime. The search for a natural class of vacuum states for Klein-Gordon fields on
more general globally hyperbolic spacetimes led physicists to introduce the notion
of Hadamard states.

Originally, Hadamard states were defined by specifying the singularity of their
two-point functions ws(x, ") = w(p(x)@(x’)) for pair of points (z,2') € M x M
near the diagonal, see e.g. [KW/ Section 3.3].

We will follow here the exposition of Radzikowski in [R1] Section 5|, see also
the PhD thesis of Viet Dang [D), Sections 5.2, 5.3].

Let us first consider the Minkowski case and set Q(z) = x-nz for z € R". We
first claim that

(8.8) Q(x +iy) € C\] —00,0], zeR" yeC,

where we recall from Section [2.I] that C'= C. UC_ C R™ is the cone of time-like
vectors. Indeed we have

Q(z +iy) = z-nx — y-ny + 2iz-ny.

IfImQ(z+iy) = 0and y € C, then z is space-like by Lemma hence Re Q(z+
iy) > 0, which proves our claim. Moreover, if I' € C. is a closed cone and K € R"
is compact, then there exist § > 0 and R > 0 such that

(8.9) Q(z +iy)| > dlyl>, ¥z e K.yeln{lyl <R}
Writing
Q(a +iy)[* = (z-na —y-ny)® + 4(a-ny)*,
we see that is clearly satisfied for x € K,z -nx > 0 and y € T, since —y - ny >

cly? fory € T. If x-nz < 0, x € K, then from Lemma we obtain that

|- ny| > cly| for y € T'. This implies (8.9).
In the sequel we take the determination of logz which is defined in C\]| —

00,0]. It follows from (8.8), that Q71(2),log Q(z) are holomorphic functions
of moderate growth in R™ +iC. , see Section hence the boundary values

(810) (@ Vi(@) = Q e +1C:0), (logQ)+(x) = log Q(a +iC.0)

are well defined as distributions on R™.

The limit in can be taken in particular along any vector y € C., see
Subsection which implies that the distributions (Q~!); and (log Q). are
invariant under the action of the restricted Lorentz group SOT(1,d).

Now let (M,g) be a spacetime. There exists a neighborhood U of the zero
section in T'M such that the map:

exp: U 3 (z,v) — (x,expl(v)) € M x M

is a diffeomorphism onto its range, with V' = exp(U) being a neighborhood of the
diagonal A in M x M. Clearly, such sets V form a basis of neighborhoods of A.
Let us also fix a smooth map

R:M >z~ R(x) € L(T,M,R")

such that R(x) : (T, M, g(z)) — (R™,n) is pseudo-orthogonal and maps the future
lightcone C't(x) into C, i.e. preserves the time orientation. One can then define
the map

(8.11) F:V 3 (x,2") — R(2') o (exp’,) ' (z) € R",
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which has a surjective differential. Note that Qo F(x,2’) equals the (signed) square
geodesic distance o(x,z’) between z and z’. Since Nj: = ), we can by Subsection

define the pullbacks of (Q~')4 and (log Q)4 by F
(6™ Ht = F((Q)4), and (loga)s = F*((logQ)+) € D'(V).

From the invariance of (Q71); and (log@); under SOT(1,d), we deduce that
(671); and (log o), are independent of the choice of R(x).
One defines also the van Vieck-Morette determinant

Az, ') := —det(~VoVgo(z,2')|gl "% (z)]g] = (a').

DEFINITION 8.2.1. Let P be a real Klein-Gordon operator. A quasi-free state w
on CCRg(P) is a Hadamard state if there exist a neighborhood V' of the diagonal
in M x M as above and functions v,w € C*®(V), such that
wac(a, @) = e Ab(e,a!) (o) (2,0!)

(8.12)
+o(z,2")(logo)+(z,2") + w(z,z") on V.

Note that the function v(z,z’) is not arbitrary, since Pyws = Pyws = 0. One
has

o0
v(z,z’) ~ Z vi(z, 2" Yo (z, '),
i=0

where v;(x,2’) are the so-called Hadamard coefficients and the ~ symbol means
that

v=Y vio' € O(lo|"*), Vn €N
=0

together with all derivatives.

8.3. The microlocal definition of Hadamard states

The situation was radically simplified by Radzikowski, who in [R1] introduced
the definition of a Hadamard state via the wavefront set of its two-point function.
Let us first introduce the original definition, which deals with real fields, see Sub-
section

8.3.1. Hadamard condition for real fields. We use the notation for real
Klein-Gordon fields recalled in Subsection [6.1.3]

DEFINITION 8.3.1. Letw be a quasi-free state on CCRg(P), with real covariance
H. Then w is a Hadamard state if

(8.13) WF(wae) = {(X, X)) eT*M xT*M : X, X' e NT, X ~ X'}.

8.3.2. The Hadamard condition for complex fields. As already explained
in Chapter [4 it is much more convenient to work with complex fields and gauge
invariant states, i.e. in the framework of Chapter [f} In this case the following
definition was introduced in [GW1].

DEFINITION 8.3.2. Let w be a (gauge invariant) quasi-free state, with spacetime
covariances A* : C°(M) — D'(M). Then w is a Hadamard state if

WFE(AY) = {(X, X)) e T"M xT*M : X, X' e N*, X ~ X'}
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8.4. The theorems of Radzikowski

We now prove the theorems of Radzikowski [R1l, IR2| on the microlocal char-
acterization of Hadamard states. We will use the formalism of complex fields, in
which case Theorem is due to Wrochna [W1J.

Let us first introduce a list of conditions.

DEFINITION 8.4.1. A pair of continuous maps AT : O (M) — D' (M) satisfy
(Herm) if A* — A** =0 modulo C°°;
) if AT > 0 modulo C>;
) if At — A =iG modulo C*;
) if PA*Y = AT P =0 modulo C>;
(Had) if WF(A®)Y = {(X,X") e T*M xT*M : X, X' e N*, X ~ X'};
) i WE(AT) C{X : £6> 0} x {X : £61> 0};
) f WE(AT) NAC{(X,X): £ 0}
) if iTAY + Gaay, iTYAT + Gret are Feynman parametrices of P.

THEOREM 8.4.2. The following conditions are equivalent:
(1) A* satisfy (Had), (KG), (CCR);
(2) A* satisfy (genHad), (KG), (CCR);
(3) AT satisfy (Feynm).
Proof. (1)= (2) is obvious. Let us prove the implication (2)==-(3). Let Gr be
a Feynman parametrix of P. If S* = i(Gy — Gadv/ret) We have WF(S*) c C*,
by Proposition and WF(A*) ¢ Nt x N'* by (genHad) and Theorem
Hence, WF(A* — S*) ¢ N+ x N'* and
WF(AT — ST NWF(A™ —S7) =0.
On the other hand, by (CCR) we obtain
(AT =S — (A~ =87 )=(AT—=A")— (ST - 57) =iG —iG = 0.
Therefore, S* — AT has a smooth kernel, which implies (3).

Finally we prove that (3)=(1). (KG) and (CCR) are immediate and (Had)
follows from Proposition [7.4.4] O

Since the spacetime covariances A* of a Hadamard state satisfy (CCR), (KG)
and (Had), we immediately obtain the following corollary, which says that these
covariances are unique, modulo smooth kernels.

COROLLARY 8.4.3. Let Aii, i = 1,2 be the spacetime covariances of two Hadamard
states w;. Then A¥ — AT have smooth kernels.

Another important result is the following theorem, due to Duistermaat and
Hormander [DH, Theorem 6.6.2] in a more general context. The proof we give
follows from the ezistence of Hadamard states, see Section [8.7]

THEOREM 8.4.4. (Feynm) implies (Pos).

Proof. We know from Thmthat Hadamard states for P exist. Let AT be the
spacetime covariances of a Hadamard state for P, which satisfy (Had), (KG) and
(CCR), hence (Feynm). If A* satisfy also (Feynm), then A* — AT have smooth
kernels. Since AT > 0, A* satisfy (Pos). O

Finally we prove a variant of a result of Radzikowski [R2] called there a ‘local-
to-global theorem’.
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PROPOSITION 8.4.5. (Pos) and (genHadloc) imply (genHad).
The proof follows immediately from Lemma [8:4.6] below.

LEMMA 8.4.6. Let K € D'(M x M) such that K > 0 modulo a smooth kernel.
Then for X € T*M \ o we have

(X, X) & WF(K) = (X1,X),(X,X,) ¢ WR(K)', VX; € T*M \o.

Proof. We may assume that K > 0 and that M = Q C R™. Let vy be defined in
(7.2). We see that (X1, X2) € WF(K)' iff there exists x; € C§° (M) with x;(z;) # 0
and neighborhoods W; € T*M of X; such that

(x1v3, | K x20%, )i € O((A)™°°), uniformly for ¥; € W.
Note also that since K : C§°(M) — D’'(M) is continuous, we have
| (v | K xvy ) ar| < G uniformly for Y € W e T*M,
for some Ny depending on y, W. By the Cauchy-Schwarz inequality, we obtain
1 1
|Oavg, K x2v3, )| < (aaoy, EXxaw,) 3 (v KOs, ) iy

which yields the lemma. O

8.5. The Feynman inverse associated to a Hadamard state
Let w a Hadamard state with spacetime covariances A*. Then
(8.14) Gr =1 AT 4 Gaqv =17 A7 + Gret
is a Feynman inverse of P, i.e. one has
PGy =GpP =1, WF(Gr) = AUCF.

The operator G will be called the Feynman inverse associated to w.

8.6. Conformal transformations

We use the notation in Section @ Let w be a quasi-free state for P and
@ the associated quasi-free state for P obtained from (6.4), where we recall that
P = ¢ /271pe/2=1 and § = 2.

Clearly, w is Hadamard iff w is Hadamard.

8.7. Equivalence of the two definitions

In this subsection we prove the equivalence of Definition and Definition

following [R1].

THEOREM 8.7.1. A quasi-free state w for a real Klein-Gordon operator P

satisfies Definition [8:2.] iff it satisfies Definition [8.3.1]

Proof. Let AT the complex covariances of the complexification of the state ws,
see Subsection By (4.26]) we have

_ . t
AT =woc, AT =woc —iGe ='wac,

since wac —fwac = iGe, see Proposition Note that if K : C5°(M) — D'(M)
we have WF(*K) = —WF(K)’. Assume that wac satisfies (8.12). By Proposition
woc satisfies (genHadloc), hence (genHad) by Proposit By the above
remark, AT satisfy (genHad), and of course (CCR) and (KG). By Theorem
we obtain that i 'wac + Gadv is @ Feynman parametrix for P, hence woc satisfies

(8-13)), again by Theorem
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Conversely, if woc satisfies (8.13), then by the same argument i~ lwoc + Gaqy
is a Feynman parametrix for P, hence satisfies (8.12]) by the above discussion and
the uniqueness of Feynman parametrices modulo smooth kernels. O

PROPOSITION 8.7.2. Let wac € D'(V) a distribution as in Definition [8.2.1]
Then
(8.15) WF(wae) € NT x N

The proof below shows that actually WF(wac)’ C CT, where C* is defined in
722).

Proof. We first estimate the wavefront set of (Q~1); and (log Q).

If xg-nxo # 0, then near xy we have (Q7 1), (z) = Q7 1(x) and (log Q) (z) =
log |Q(x)| + 10, where 8 = 0 if xg-nzo > 0, and § = £ if g € Cx. In particular,
(Q7 1)+ and (log Q)4 are smooth in {x-nx # 0}.

If ©g-nzo = 0 and xg # 0, then Q(xo +iy) = —y-ny + 2ize-ny. It follows that
Q~(x +1iy) and log Q(z + iy) are holomorphic in U,, + iy, where U,, C R" is a
small neighborhood of g and T';, = {y € R"™ : +x-ny > 0} for 2y € Ny.

Finally, we saw in Sectionthat Q! (z+iy) and log Q(x+iy) are holomorphic
in Up+il'y, where Uy C R™ is a small neighborhood of 0 and I'y = C, and that Q!
and log () are of moderate growth in U, + iK, where Uy, is a small neighborhood
of xp and K € I'y, is any relatively compact cone. Note that the cone I'y always
contains C .

From Section we obtain the estimate

WE(Q")4), WF((log Q)+) € | wo x T,
roEN
where the polar cone I'° of a cone I' C R”™ is the set

(8.16) re:={¢e®") \o:z-£>0, Vr € T}
It follows that
WE(Q1)+), WF((log Q) +)

C{(z, £ \z) 2 € Ny,x #0,A >0} U {(0,&): £-n71¢ =0,& > 0},
where & = £-e%, e® = (1,...,0).
Let now u = (Q~ 1)+ or (log Q)+ € D'(R"), and let F : V — R" be the map in
(8.11). By Subsection we have
(8.18) WE(F*u) C {((z,/D,F¢€), (2, —'Dy F¢)) : (F(z,2"),€) € WFu}.

Note that we can forget the isometry R(z') in the definition of F' if we introduce
1

the orthonormal frame e’(x) = R™!(z)e?, where (el,...,e") is the canonical basis
. RL.et us first estimate WF(F*u) away from the diagonal z = z/. We obtain
from that the right-hand side in is included in
{((#,N'Dy Fn), (&', =A'Dy Frv)) v = F(z,2') € N, Av € N. }.

Since o(z,2’) = F(x,2')-nF(z,z"), we have

Dyo(x,2') = 2D, F(z,2') nF(x,2"), Dyo(z,2') = 2Dy F(x,2')-nF(x,z'),
hence the set above equals
(8.19) {((z,A\Dy0),(2',—ADy0)) :v=F(z,2') € N, v € N}.

By the Gauss lemma, the radial geodesic between z’ and z is normal to the hyper-
surface o(-, ') = Cst, which implies that the vectors AV o (z,2'), —AVyo(z,z)
are tangent to the (null) geodesic between z’ and x, and future pointing. This

(8.17)
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implies that the set in is included in Nt x N (actually in CT). Let us now
estimate WF(F*u)" above the diagonal = 2’. If we work in normal coordinates
at x, we have D, F = 1, D,,F = —1 at (z,x) hence above the diagonal we have
also WF(F*u)' c {(X,X): X e Nt}

In conclusion we have shown that WF((o~1) ) and WF((log o))’ are included
in the right-hand side of (8.15). This implies the same estimate for WF(wz)’. O

8.8. Examples of Hadamard states

Let us consider one of the simplest examples of globally hyperbolic spacetimes,
namely ultra-static spacetimes, see Section We assume that (S, k) is complete.
More examples will be given in Chapter [0

The associated Klein-Gordon operator P = —0, +m? for m > 0 is

07 + €%,
where €2 = — Ay, +m? is essentially selfadjoint on C§°(S). By Subsection [4.10.3} we

can construct the vacuum state wy,. for P, whose spacetime covariances are given

by the analog of (4.47):
1 .
(ulAE v) = /(u(t, eyt )gdt, v e CP(R x S),
R

vac 26
where (ulv)s = [4 v dVoly, and u(-) = u(t,-).
One can similarly express the Feynman inverse associated to wy,., which equals

Gru(t, ) = /RGp(t —tu(t',-)dt,

with
(8.20) Gr(t) = (2ie) " (e"“0(t) + e~ "0(—1)) .

THEOREM 8.8.1. The vacuum state wyac 1S a pure Hadamard state.

Proof. We saw in Subsection that wyae is a pure state. It suffices then
to verify (genHad). Since m > 0, we see that AL : L2(R x S) — L} x 9)
have distributional kernels. We have AL (¢,t,x,x') = F*(t — t/,x,x') for Ffu =
(2¢)~teFitey, u € C5°(S). By Subsection it suffices to show that WF(F*)"
{£7 > 0} x T*S x T*S. But this follows from Proposition since if we set
G*(2)u = (2¢)"tet*u, u € C§°(S), functional calculus shows that G*(z,-) is
holomorphic in {#Im z > 0} with values in D'(S x S) with F*(¢,.) = G* (¢t £1i0, ).
a

8.9. Existence of Hadamard states

In this subsection we prove the important result of Fulling, Narcowich and
Wald [FN'W], about existence of Hadamard states.

THEOREM 8.9.1. Let P be a Klein-Gordon operator on a globally hyperbolic
spacetime (M, g). Then there exists a pure Hadamard state for P.

Proof. By Theorem we can assume that M =R x X and g = —3(t,x)dt? +
hi(x)dx?, where ¥ is a Cauchy surface of (M,g). We fix an ultra-static metric
Gus = —dt? + h(x)dx? and an interpolating metric gine = X (t)gus + x4 (t)g, with
cutoff functions x4+ such that gt = gus in {t < T+ 1}, gy =g in {t > T —1}.

We set Pys = —0Og +m?2, m > 0, and fix a Klein-Gordon operator P, for gint
such that Py = Pys in {t < —T+ 1}, Py =P in {t > T — 1}.



8.9. EXISTENCE OF HADAMARD STATES 73

For Y17 = {£T} x X, we denote by )\fT’VaC the Cauchy surface covariances
on Y _7 of the vacuum state wys for Pys. By Proposition )\fT,vac are also the
Cauchy surface covariances of a pure state wiy for Piyg.

Since P,s = Pyt on a causally compatible neighborhood V of ¥_1, we have
Gyac = Ging on V x V. Therefore, the spacetime covariances of wiy; and wyg, given in
Proposition coincide on V' x V. Since ws is a Hadamard state, the spacetime
covariances A, of win satisty (Had) over V x V', hence everywhere by propagation
of singularities, see e.g. (7.25)).

Let now /\% it De the Cauchy surface covariances of wi,y on Y. Again by
Proposition they are the Cauchy surface covariances of a pure state w for P.
By the same argument as above w is a Hadamard state. a






CHAPTER 9

Vacuum and thermal states on stationary
spacetimes

In this chapter we introduce the notions of wvacuum and thermal states for
Klein-Gordon fields on stationary spacetimes, see [Ky1], [S2]. These states are
important examples of Hadamard states, the vacuum state giving in particular a
preferred pure Hadamard state on a stationary spacetime.

9.1. Ground states and KMS states

It is convenient to introduce these notions first in an abstract framework. We
work in the complex framework (to which the real one can be reduced).

Thus, let (Y, ¢) be a Hermitian space and {r,}scr be a unitary group on (), q),
i.e. such that r¥grs = ¢ for s € R. It follows that {rs}scr induces a group {7s}scr
of s-automorphisms of CCRP°!(, q) defined by (¥ ™) (3)) = ¥ (r4y).

We recall the definitions, see e.g. [S2] Definitions 2.3, 2.4], of ground states
and KMS states for {7;}ser. We set Dg = R+1]0, [ for § > 0, Do, = R+1]0, +00].

Let w be a state on CCRP® (Y, ¢) which is invariant under {7,}scr i.c. w(A) =
w(7s(A)) for s € R, A € CCRPY(Y, ¢). Assume moreover that the function

(9.1 R 3 s+ w(A*7,B) € C is continuous for all A, B € CCRP?/(Y,q).

It follows that if (H., 7w, ) is the GNS triple for w, see Subsection there
exists a selfadjoint operator H on H,, such that

ﬂ—w(Ts(A)) = eiSHT(-w(A)e_iSH7 HQQ} =0.

DEFINITION 9.1.1. A state w is a non-degenerate ground state for {rs}ser if
w is invariant under {Ts}ser, (9.1) holds, and moreover

(9.2) H >0, KerH=CQ,.

Let us assume in addition that w is gauge-invariant and quasi-free and let A\*
be its complex covariances. Since w(¥*)(y)) = 0, we know that 7, ()™ (y))Q, is
orthogonal to §2,.

It follows then from (9.2]) and the spectral theorem that for all 1,y € Y there
exists a function Fyf’y,z holomorphic in D, bounded and continuous in D, such
that
0.3) Ff () =00 M rsye, Fy o (8) =75y Ay,

limy s o0 SUPseg | Fy- ,, (s +10)] = 0.

DEFINITION 9.1.2. A state w is a KMS state at temperature T = =1 if for
all Ay, Ay € CCR(Y, q) there exists a function Fa, a, holomorphic in Dg, bounded
and continuous in Dg, such that

FA17A2 (S) = W(AlTS(AQ))7
Fa, a,(s+i8) = w(15(A2) A1), seR.

75
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If w is gauge-invariant and quasi-free, taking A; = ¥(y1), A2 = ¥*(y2), we
obtain as above that for all y;,y2 € Y there exists a function F};, ,, holomorphic in
Dg, bounded and continuous in Dg, such that

(9'4) Fyl,yz (8) =1 ')‘+rsy2» Fyl’y2 (S + 15) =1 ATTsYe.

9.1.1. Positivity of the energy. We now prove an important result, due to
Kay and Wald [KW,, Section 6.2], which relates the existence of ground or KMS
states to the positivity of the classical energy associated to {rs}scr.

THEOREM 9.1.3. Let (V,q,{rs}ser) be as above and w be a quasi-free non-
degenerate ground state or a quasi-free KMS state. Assume moreover that Y is
equipped with a vector space topology for which \*,q are continuous and such that
Osrsy = 1brsy, for ally € Y for some b € L(Y). Then the classical energy associated
to {rs}ser E = qb is positive.

Proof. Since ¢ = A* — A\~ is non-degenerate, (:|-), = At + A~ is a Hilbertian
scalar product on ) and we denote by VP! the completion of ) with respect to
(-] ). We still denote by AT, ¢ the bounded extensions of A\*, ¢ to J°P.

The state w is 7, invariant, which implies that r*\*r, = A*. Moreover by
Definitions and the map R > s ~ 7, -Atryys € C is continuous for
y1,y2 € V. It follows that {rs}scr extends to a weakly, hence strongly continuous
unitary group {eiSbcpl}seR on VPl with 6! selfadjoint on Y°Pl. We have b°P!|y, = b
and ) is a core for b°P! by Nelson’s invariant domain theorem.

We first check that , extend to y; € VP! with r, replaced by eist™™,
Let y1,y2 € VP, y; n € Y with y; , = y; in VP!, and let F,, = F,, , ., .. Note that
Fo(t) = 7, -Ae®™ gy and F, (t +18) — 7, - A~ e gy uniformly on R. Tt follows
from the three lines theorem that

SUP.eDg |Fn(2) — Fm(2)] < SUPseRUR+iB [Fn(s) = Fin(s)], B <o
SUP.epD. |Fn(2) — Fin(2)] < SUPger |[Fn(s) — Fn(s)]-

Therefore, F,, converges uniformly in Dg to Fy, .y, which is holomorphic in Dg,
bounded and continuous in Dg for B €]0, +oc] and satisfies (9.3), resp. (9.4)).

Let us first assume that 8 < oco. If we choose y;,y2 € VP! with y, an entire
vector for b, we have Fy, ,,(z) = gr)\*e”bcplyg, which using (9.4) implies that

p— — Cl p— —
G ATe Py =51\ e,

and hence, using that AT — A\~ = ¢,
AT(L—e P = A= (P —1) = .

This implies that (AT + A7) tanh(86P!/2) = q. Let us set B = b°P! tanh(8bP!/2).
By functional calculus Dom B = Dom b°P!. If y € ) € Dom B, we have

(y1By)w =5 (X" + A7) By = 5-qbP'y = §-qby = - By,
where E = ¢b is the classical energy associated to {rs}ser. Since B > 0 for (+|-),

this proves the proposition for 8 < co.
Now assume that 3 = co. For y an entire vector for b°P!, we have

. _rcpl _ Tienl \ —
szy(z) = y'/\Jrele Y, Fy,y(z) = el#b ply'/\ Y.
Let AT € B(Y°) be such that 7, -Ays = (y1]ATys),. We have AT > 0 and
s ohepl . . 3
[A*,e'**™] = 0 by the invariance of w under 7,. From (9.3)) we obtain that
lim (ylAte """y), = lim (yle”" A7y), =0,

o—r+00 o——+00
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ie. limy_yioo HejF”bcpl/Q(Ai)%yH = 0. This implies that
Ig- (bP)(A%) 2y = g+ (6P) (A7) 5y = 0, R* = £[0, o],
hence A Tz (b°P') = 0 by density. For y € ) we then have
gaby =7 ATby — G-ATby =GN Igs (BP)6Py — 7oA T (0P)bPly
= (y[(A* + A7) B y)o, = (y][bP!]3 (AT + A7)|pP!|2y),, > 0,
which completes the proof if § = cc. O

9.1.2. Existence of ground and KMS states. We saw in Theorem [9.1.3
that the positivity of the classical energy is a necessary condition for the existence
of a ground or KMS state. Let us now describe the converse result.

Let (), q) be a Hermitian space and E € Ly, (), Y*) with E > 0, the function
Y 3> y — y-Ey being the classical energy. The energy space Ve, is the completion
of Y for the scalar product (y1|y2)en = ¥1-Ey2 and is a complex Hilbert space. Let
rs = e be a strongly continuous unitary group on V., with selfadjoint generator
b. We assume that r; : ) — ), ¥ C Domb, Kerb = {0}, and

(9.5) U1-Ey2 =71 -qby2,  y1,y2 € V.

The meaning of (9.5)) is that {rs}scr is the symplectic evolution group associated

to the classical energy 3-Fy and the symplectic form o =i~ lq.

One introduces then the dynamical Hilbert space
ydyn = ‘b|%ycna

see [DGl Subsection 18.2.1], with the scalar product (y1|y2)ayn = (y1]/b| ™ y2)en-
The group {rs}scr extends obviously as a unitary group on Yiyn whose generator
will be still denoted by b.

From ({9.5)) we obtain that
(9.6) Y1-qy2 = (y1[sgn(b)y2)yay.
so ¢q is a bounded sesquilinear form on Y4yn, but in general not on Y.,, unless
0¢&o(b).

DEFINITION 9.1.4. The ground state wo, is defined by the covariances
(9.7) T ALz = (y1/1ps (B)y2)ayn-

DEFINITION 9.1.5. The 5-KMS state wg is defined by the covariances

(9.8) y1'>‘§y2 =7,-q(1 —e )" lys,
' Ui Azy2 = U1-q(e”’ — 1)ty

9.1.3. Infrared problem. The covariances A% and )\g are a priori not de-

fined on Y if 0 € o(b). This is usually called an infrared problem.
However, if

(99) y C ydyn N |b|%ydyn
then using that (1 — e*)™! behaves like A= near A = 0, we see that AL and )\ét
are well defined on Y, and hence wo, and wg are well defined quasi-free states on
CCRP(Y, q).

Note that is equivalent to

y'E‘b|71y< 00, y'Eb72y< 00, Vyeya

which follows from
(9.10) 7-Eb 2y < oo, Yy €Y,
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since Y C YVen-

9.1.4. Pure invariant states. Let (), ¢) be a Hermitian space with a unitary
group {r,}ser. Assume that r, = ¢'*® on ) and that the classical energy FE = ¢b
is positive definite on ). Then any pure state invariant under the induced group
{Ts}ser is actually equal to the ground state weo.

As in Theorem by rs = €'*® on )V we mean that ) is equipped with a
vector space topology for which ¢ is continuous and such that d,r,y = ibr,y, for
all y € Y for some b € L(Y). The classical energy E = ¢gb € L,(Y,Y*) is thus well
defined.

PROPOSITION 9.1.6. Let w a quasi-free state on CCR(Y,q) such that its co-
variances A\t are continuous in the topology of Y. Assume that w is pure and
invariant under the induced group {7s}scr, and that E is positive definite on Y.
Then w = Weo-

Proof. As in the proof of Theorem we obtain that {rs}scr extends as a
strongly continuous unitary group on the completion P! of ) for (-|-),,, whose
generator bePl has ) as a core.

Since w is pure, we deduce from Proposition that there exist projections
ct € B(Y), selfadjoint for (-|-),, with ¢t + ¢~ = 1, A* = +qc*. From the
invariance of w we see that [c*,bP!] = 0. Next we compute for y € :

(yl(ct = )Ply)e, = 7-qby = J-By.
Since Y is a core for b°P!, this implies, by the uniqueness of the polar decomposition
of bl that ¢ — ¢ = sgn(bP!), i.e. ¢ = T+ (bPY).
From this fact we deduce that Y°P! is the dynamical Hilbert space Y™ intro-
duced in[0.1.2] and hence w = we. m|

9.2. Klein-Gordon operators

Let us now go back to a concrete situation and consider a globally hyperbolic
spacetime (M, g) with a complete Killing vector field X. For the moment we do not
assume X to be time-like. Assume that there exists a space-like Cauchy surface X
transverse to X. If n is the future directed normal vector field to 3, we have

(9.11) X=Nn+w on,

where N € C°(%;R) is called the lapse function and w® is a smooth vector field
on X called the shift vector field.
We can identify M with R; x X, by the map

X:RXxX3 (t,y) — u(y) € M,
where 1; is the flow of X. We have
0

(9.12) x*g=—N*()dt> + hi;(y)(dy’ + w'(y)dt)(dy’ + v’ (y)dy’), x*X = 5

It follows that X is time-like at y iff

(9.13) N*(y) > w' (y)hij (y)uw’ (),
and space-like at y iff
(9.14) N2(y) < w'(y)hij(y)w’ (y),

where h is the induced metric on X.
We fix a Klein-Gordon operator on (M, g) of the form

(9.15) P=—-0,+V, VeC®M;R)with X-V =0.
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The flow {1)s}scr of X induces then a unitary group {rs}secr on the Hermitian

spaces (%, (-G *)ar), (Solsc(P), q), defined as:

TS[U]Z[UOdJS], uEOSO(ML rs¢ = ¢ o, ¢ESOISC(P)'

9.2.1. A non-existence result. The next proposition, due to Kay and Wald
[KW|, Subsection 6.2], shows that the fact that X is everywhere time-like on 3, i.e.
that (M, g) is stationary, is a necessary condition for the existence of a ground or
KMS state for X.

PROPOSITION 9.2.1. Let (M, g) a globally hyperbolic spacetime with a complete
Killing vector field X and let P = -0, +V, where V € C*°(M;R) with X-V = 0.
Let {15}ser be the group of x-automorphisms of CCR(P) induced by X.

Assume that there exists a Cauchy surface X such that X is transverse to X
and space-like at some yy € X. Then there exists no KMS state nor non-degenerate
ground state on CCR(P) for {7s}ser.

Proof. We identify M with R x ¥, the metric g being then as in ((9.12). We choose

(V,q) = (Sols(P), q) with g defined in and rs¢(t,y) = ¢(t + s,y).

We identify (Sols.(P),q) with (C§°(%); C?,¢x) for gs defined in using
os and denote still by {rs}scr the image of ry on (C§°(X);C?,¢gsx). A standard
computation shows that for f € C§°(3;C?), dsrsf = iNHr,f, where H is defined

in (9.20). The associated energy E = gH is given by (9.21]) below.
For yo € ¥ we introduce local coordinates on ¥ near yo, fix x € C§°(U) for U

a small neighborhood of 7o in ¥, and set f3\(y) = e Yx(y), fi = iN“twfy for
A>1and ny € T, ¥. Then we have

(9.16) fAEf* =2 /E X2) (o™ ()0 — N=2(y) (no-w(y))?) |l 2dy + O(N).

If X = gt is space-like at yo, then N?(yo) < w'(yo)hij(yo)w’(yo), and so there
exists a neighborhood U of yg in ¥ such that
no-h~ (y)no — N~ 2(y)(no-w(y))* <0, y €U, forng = h(yo)w(yo)-

By (9.16) we obtain that fAEf* < 0 for A > 1. This is a contradiction by Theorem
9. 1.0l O

9.3. The Klein-Gordon equation on stationary spacetimes

We assume now that the Killing vector field is everywhere time-like and consider
a Klein-Gordon operator P = —0O, + V. We will assume that V' is preserved by the
Killing field X and is strictly positive:

XV=0 V>0
REMARK 9.3.1. Of course, the condition X -V = 0 is necessary for P to be
invariant under the flow of X. The condition V. > 0 is used in Section [9.5t0
ensure that the covariances of the vacuum and thermal state are well defined on
Cg°(%;C?), ie. to avoid a possible infrared problem. If V takes large negative

values the conserved energy E defined in (9.21) may not be positive. In this case it
seems impossible to construct vacuum or KMS states.

The Klein-Gordon operator P takes the form
(9.17) P = (0; + w*)N?(9; +w) + h,
with
(9.18) ho=V*h 'V +V, w=uwd,,
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where in (9.17) and (9.18)) the adjoints are computed with respect to the scalar
product

(ulv) :/ TuN|h|: dtdy.
RxX
We denote by # the Hilbert space L2(3, N|h|2dy). Let us point out a useful
operator inequality which follows from ({9.13).
LEMMA 9.3.2. One has
ho > w*N 2w+ V on C(X), for the scalar product of H.

Proof. Let X be a real vector space, k € Ls(X, X’) be strictly positive, and ¢ € X.
Then for v = kc € X’ and £ € CX’ we have

(€ = (Eleyy) k=1 (E = (Ele))
= &k716—2Re((Ele)ykT1E) + [(Ele)PyhT 1y
= &k (2 cha)l(Ele)?,
whence
(9.19) E~Y—e)e] > (1 = c-ke)|e)c].
For u € C§°(X) we write

(ul(ho = w* N~ *w)u) = / [0, T(hY — w'N~2w)yu + V]uf*] N|h|Zdy.
b))

Applying (9.19) under the integral sign for k& = h(y) and ¢ = N~ (y)wi(y), we
obtain the lemma. |

If o; : Solse(P) — C5°(X; C?) is the Cauchy data map on Xy = {t} x X we have,
by (9.11)) that

orp = ( i—lN—l((bO(tt’—.)wW(tw) )

and if we identify Sols.(P) with C§°(3;C?) using the map gg, we obtain that
rs 1 O§°(2;C?) — C§°(X; C?) is given by

rsf = QSUOfa f € Cgo(za(c2)7
where ¢ = Uy f is the solution of the Cauchy problem

{ Pé =0,
009 = f.

An easy computation shows that:

_iN-1
(9.20) N‘lasrsf:iHrsf,H:< ”}VLO w iw*}l\f”)’ feCE(s:C).

The classical energy

(9.21) FEf=fi —iN"wfol% + (folhofo)z — (whol N"*wfo)g,
and the charge
(9.22) Faf = (AIN" fo)g + (fol N7V f) 4,

are both conserved by the evolution e'*# on C§°(%;C?).
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9.4. Reduction

It is useful to reduce (9.20)) to a simpler evolution equation. To this end one
introduces

P =NPN = (0, + 0*)(0 — ©) + ho,

for
(9.23) ho = NhoN, @ =N"'wN, & =Nw'N"'
Setting
. 7 t,- ~ —iw 1
(9.24) 019 = ( i—l(a:b—( ;I;;é(t,) ) H= ( he o )
we have
otN = Zg; on C™(M),
(9.25) N
N=19, —iH = Z'(8, —iH)Z~' on C°(%;C?),
where
(9.26) Zz:(zg ?1)*2/::<2)1 N0_1>’
Setting
fEf=|f— iUNJfOH,Q,; + (fo\?lofo)g — (@ folw fo)n,
f-af = (filfo)g + (folfi)g
we have
(9.27) Z*EZ =E, Z*qZ = §on CF(%;C?).

9.5. Ground and KMS states for P

From Lemma [9.3.2] we obtain that
(9.28) ho — w*w > VN?,
which using that V' > 0 implies that £ > 0 on Cs°(%;C%). We can apply the
abstract constructions in Subsection provided we check (9.10). To check this
condition we note that bg = f is equivalent to

(ho — w*id)go = f1 — " fo, g1 — ithgo = fo.

By Lemma ho — w*w > NV N on Cy°(2). Let h be the Friedrichs extension
Qf ho — w*w, acting on the Hilbert space H. By the Kato-Heinz theorem, we have
h=' < (NVN)~!, hence C5°(2) € Dom(NVN)~2 C Domh™2.

For f € C§°(%;C?), we can express g = b~ 1 f as

go=h"1(fr =i fo), g1 =go+iwh T (fr —id* fo),
noting that f; — iw* fo € C§°(X). We have
(1672 en = (glg)en = HfO”?."L +(fi— iw*folﬁfl(ﬁ — " fo))g; < 00,

since fy — i* fo € C3°(X) € Domh~2. Therefore, is satisfied and one can
define ground and thermal states wg, 8 €0, 00] for P, whose covariances, denoted
by 5% are introduced in Definitions m and

It is now easy to define the vacuum and thermal states for P, since by
Z: (C§°(2;C?),q) — (C§°(%;C?), q) is unitary.

DEFINITION 9.5.1. The ground state w., associated to the Killing vector field
X is the quasi-free state on CCRPOI(C{)’O (2;C?),q) defined by the covariances

(9.29) M = (Z7 Y A2t
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The state wo is a pure state.

DEFINITION 9.5.2. The $-KMS state wg associated to the Killing vector field
X is the quasi-free state on CCRP?(|b|CS°(2; C2), q) defined by the covariances

(9.30) A= (27N X Z 7
The state wg is not a pure state.

REMARK 9.5.3. If the shift vector field w vanishes, then the spacetime (M, g) is
static and the reduction in Section [9.4) produces an abstract Klein-Gordon operator
P of the form considered in Subsection 4,10,3, The formulas giving \X and )‘ZE

simplify greatly using (4.46)), (4.49).

9.6. Hadamard property

In this subsection we prove that wg, 8 €]0, +oo] are Hadamard states, a result
due to Sahlmann and Verch [SV1].

THEOREM 9.6.1. The states wg with 5 €10, +00] are Hadamard states.

Proof. Let A? € D'(M x M) be the spacetime covariances of wg for 0 < § < oc.
In the Killing time coordinates (¢, y) we have Ag(tl, to,Y1,Y2) = Tﬂi(tl —t2,Y1,Y2),
with 7 € D'(R x  x %), since wp is 7 invariant.

From the ground state or KMS condition, it follows that there exist Fﬂ:t :
R+1]0, 8= D'(X x ¥) holomorphic such that TEE(L‘7 Y1,Y2) = Fét(t:tio, y1,Y2). By
Proposition [7.1.5] we obtain that

WEF(T5) C {7 > 0}.
Applying then the results on the pullback of distributions in [7.2.4] we see that
WF(A3) C {#m > 0} x {£7, > 0}.
Since WF(A;)’ C N x N, this implies that WF(A;)’ C N x N, using that
X = % is future directed time-like. a



CHAPTER 10

Pseudodifferential calculus on manifolds

In this chapter we describe various versions of pseudodifferential calculus on
manifolds. The pseudodifferential calculus is a standard tool in microlocal analysis,
but it is also useful for the global analysis of partial differential equations on smooth
manifolds. Of particular interest to us is the Shubin calculus, which is a global
calculus on non compact manifolds relying on the notion of bounded geometry. Its
two important properties are the Seeley and Egorov theorems.

In applications to quantum field theory the manifold is taken to be a Cauchy
surface X in a spacetime (M, g). It turns out that the Cauchy surface covariances
of pure Hadamard states can be constructed as pseudodifferential operators on 3.
This will be treated in detail in Chapter [T}

10.1. Pseudodifferential calculus on R"

We now recall standard facts about the uniform pseudodifferential calculus on
R™. We refer the reader to [H3|, Section 18.1] or [Shll, Chap. 4| for details.

10.1.1. Symbol classes. Let U C R™ an open set. We denote by S™(T*U),
m € R the symbol class defined by:
(10.1)
a € S™TU) if 10207 a(x,&)| < Cap((©)™ 1), Va,B €N, (2,6) € T*U.

We denote by S"(T*U) the subspace of S™(T*U) of symbols homogeneous of
degree m in the £ variable (outside a neighborhood of the origin)

(10.2) a € S{*(T*U) if a € S™(T*U) and a(xz, &) = A\"a(z,§), A>1, |¢| > 1.
If ayr € S™F(T*U) for k € N and a € S™(T*U) we write

[
a ~ E m—k
k=0
if

(10.3) Pm-n-1(a) =a =Y tm_t € """ HT*U), YneN,

k=0
If Gy € S™F(T*U) for k € N, then there exists a € S™(T*U), unique modulo
S=°°(T*U), such that a ~ Y27 Gm—k.

We say that a symbol a € S™(T*U) is poly-homogeneous if a ~ Y 7o o Gm—k
for apm_r € S{l'“k(T*U). The symbols a,,_j are then clearly unique modulo
S™2°(T*U). The subspace of poly-homogeneous symbols of degree m will be de-
noted by ST} (T™U).

We equip S™(T*U) with the Fréchet space topology given by the semi-norms

lallm,n = sup |<§>fm+|ﬂ|3§ca?a‘.
lal+[BI<N,(z,£)eT*U

83
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The topology of SI}(T*U) is a bit different: we equip Spj (7*U) with the semi-
norms of a,,_j in S™~¥(T*U) and of r,,_,,_1(a) in S?~"~YT*U), for 0 < k <n &
N, where a,,—x and r,,,_,—_1(a) are defined in ((10.3)).

We set

Sen(T7U) == U Sem(T7U), S7=(T"U) = ﬂ S™(T*U).
meR meR

equipped with the inductive, resp. projective limit topology.

10.1.2. Principal part and characteristic set. The principal part of a €
S™(T*R™), denoted by o, (a), is the equivalence class of a in S™/S™~!. Ifa € S,
then a+S™~! has a unique representative in S/, namely the function a,, in .
Therefore, in this case the principal part of @ is a function on T*R"™, homogeneous
of degree m in &.

The characteristic set of a € ST is defined as

(10.4) Char(a) := {(z,&) € T"R" \o: ap(z,&) =0}

it is clearly conic in the ¢ variable.
A symbol a € S™(T*R"™) is elliptic if there exist C, R > 0 such that

la(z, &) = C(E)™,  [¢] = R.
Clearly, a € ST} (T*R™) is elliptic iff Char(a) = 0.

10.1.3. Pseudodifferential operators on R". For a € S7} (T*R"), we de-
note by Op(a) the Kohn-Nirenberg quantization of a, defined by

Op(a)u(z) = a(z, D)u(x) := (277)_”//ei(x_y)ga(x,ﬁ)u(y)dydg, u € C3°(R™).

10.1.4. Mapping properties. Denote by H*(R™) the Sobolev space of order
s and put

H*@R"):= (| H*(R"), H *@®R"):= ] H®R")
seR seR
Then if a € S} (T*R") we have the continuous mapping
Op(a) : H*(R") — H*™(R"),
hence Op(a) : H®(R") — H*>(R") and Op(a) : H=>°(R%) — H~>(R%).
We denote by ¥ (R"™) the space Op(Spy (T*R™)) and set

UR") = | v™RY), TR =[] TR
meR meR

We will often write U™ instead of ¥ (R"™). We equip ¥ (R"™) with the Fréchet
space topology obtained from the topology of Sy (T*R"™).

10.1.5. Principal symbol. If A = a(z, D,) € U™ (R"™), then the m-homogeneous
function o, (A4) =: am(x,§) is called the principal symbol of A.
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10.1.6. Composition and adjoint. If we equip ¥*°(R") with the product
and #* involution of L(H*(R"™)), then ¥>°(R™) is a graded *-algebra with

A* € U(R™), AjAy € U™MFTT2(R™)) for A € U(R™), A; € U™ (R™).

One has
opr(A%) = 0 (A),  opr(A1d2) = ope(Ar)op(A2),

opr([A1; A2]) = {ope (A1), opr(A2)},
where {a,b} = O¢a - 0;b — Oa - O¢b is the Poisson bracket of a and b.
Let s,m € R. Then the map

(10.5) gfl(T*]R”) > a+— Op(a) € B(H*(R™), H*~™(R"))
is continuous.

10.1.7. Ellipticity. An operator A € U™ is elliptic if its principal symbol
opr(A) is elliptic. If A € U™ is elliptic, then there exists B € ¥~ unique modulo
WU~ such that AB—1, BA—1 € U~°°. Such an operator B is a parametrix of A
in the sense of Definition We denote it by A1,

10.1.8. Seeley’s theorem. The uniform pseudodifferential calculus on R"™
enjoys plenty of nice properties. For example, if A € U™ (R"™), m > 0 is elliptic,
then A with domain Dom A = H™(R") is closed as an unbounded operator on
L2(R™).

If z € res(A), where res(A) C C is the resolvent set of A, the resolvent (A—z)~!
belongs to ¥~™(R™) and its principal symbol equals o, (A)~!. If moreover A is
symmetric on S(R™), then it is selfadjoint on H™(R™). If 0 € res(A) then A® for
s € R belongs to U™*(R™) with principal symbol op,(A)°. This last result is an
example of Seeley’s theorem.

10.2. Pseudodifferential operators on a manifold

The uniform pseudodifferential calculus transforms covariantly under local dif-
feomorphisms. This means that if U; C V; are precompact open sets, ¥ = V3 — V;
is a diffeomorphism and x; € C5°(V;) with x; = 1 on U;, for A € ¥ (R™) one has

X1AY" (xau) = Bu, Vu € D'(R"),
where B € ¥ (R"™) and
(10.6) opr(B)(2,€) = ope (A) (Y (@), DY (2) 7€), (,€) € TV

This allows to extend the pseudodifferential calculus to smooth manifolds. We
follow the exposition in [Shll, Chap. 1|, [H3l Section 18.1].

10.2.1. Pseudodifferential calculus on a manifold. Let M be a smooth,
n-dimensional manifold. Let U C M be a precompact chart open set and ¢ : U —
U a chart diffeomorphism, where U cR"is precompact, open. We denote by
V* : Co(U) — C3°(U) the map defined by o*u(z) := u o 1h(z).

DEFINITION 10.2.1. A linear continuous map A : C§°(M) — C°°(M) belongs
to U™ (M) if the following condition holds:

Let U C M be precompact open, 1 : U — U a chart diffeomorphism, x1,x2 €
C°(U) and X; = xi o ~'. Then there exists A € U™ (R™) such that

(10.7) (V") Ax2y® = X1 Axe.
The elements of ¥ (M) are called (classical) pseudodifferential operators of order
m on M.

The subspace of U™ (M) of pseudodifferential operators with properly supported
kernels is denoted by UI*(M).
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We set

o) = i)
meR

We also denote by
R™*(M) := L(E'(M),C>(M))

the space of smoothing operators, or equivalently of operators with kernels in
C>®(M x M).
If A € U™ (M) there exists (many) A, € U (M) such that A— A, € R™°°(M).

10.2.2. Mapping properties. If A € U™ (M), then
A:H}(M) — H ™M), &'(M) — D'(M), C§°(M) — C*(M) continuously,

loc

while if A € U™ (M)
HE(M) — HZ™™(M),  &'"(M) — &'"(M), C§°(M) — C5°(M),
H: (M) — H> ™(M), D'(M)— D'(M), C>°M)— C®(M),

loc loc

where H (M), resp. HZ(M) are the local, resp. compactly supported Sobolev

spaces on M.

10.2.3. Principal symbol. From and it follows that to A €
U™ (M) one can associate its principal symbol op(A) € C°°(T*M \ o), which is
homogeneous of degree m in the fiber variable & in T M, in {|¢| > 1}. The operator
A is called elliptic in U™ (M) at Xo € T*M \o if o, (4)(Xo) # 0.

10.2.4. Composition and adjoint. Note that if U2, (M) := Unmer W (M),
then W° (M) is an algebra, but ¥>° (M) is not, since without the proper support
condition, pseudodifferential operators cannot in general be composed. Of course,
if M is compact, then (M) = U*(M), so this problem disappears.

If we fix a smooth density du on M, then we can define the adjoint A* of
A€ UXP(M). Then ¥ (M) is a graded x-algebra with

A" € U(M), AjAy € UMM (M), for A€ W (M), A; € U™ (M).

One has
Upr(A*) = Upr(A)a Jpr(AlA2) = Upr(Al)Upr(A2)7

Gpr([Ala Az]) = {Upr(Al)»Upr(AQ)}v

where {a, b} is again the Poisson bracket of a and b.

10.2.5. Ellipticity. For A € ¥ (M) we set
Char(A) :={X e T"M \o: o, (A)(X) =0},

which is a closed, conic subset of T*M \ o, called the characteristic set of A. If
Xo & Char(A) one says that A is elliptic at Xo. If Char(A) = (), we say that A is
elliptic in ™ (M).

An elliptic operator A € ¥™ (M) has properly supported parametrices B €
U™ (M), unique modulo R~°°(M) such that AB—1,1— AB € R~°>°(M). Again
such a parametrix will be denoted by A(—1).

The essential support essupp(A) of A € (M) is the closed conic subset of
T*X \o defined by X, ¢ essupp(A) if there exists B € W (M) elliptic at Xo such
that A o B is smoothing.
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10.2.6. The wavefront set. It is well known that the wavefront set of distri-
butions on M can be characterized by means of pseudodifferential operators. We
summarize this type of results in the next proposition.

PROPOSITION 10.2.2. (1) Letu € D'(M), Xo € T*M \o. Then Xo & WFu iff
there exists A € WO(M), elliptic at Xq such that Au € C>°(M).
(2) Let A€ U>°(M). Then

WF(A) = {(X,X) : X € essupp(4)}.

(3) Let K : C°(My) — D'(Ma). Then (X1, X2) € WF(K)' for X; € T*M; \o; iff
there exists A; € WO(M;), elliptic at X; such that A1 K Ay is smoothing.

The above pseudodifferential calculus is sufficient for a large part of microlocal
analysis, as long as we study distributions only microlocally, i.e. if near Xy € T*M\o
we identify two distributions w; and ug if Xg € WF (u; — us).

However, it is not sufficient for more advanced topics. For example, if M is
equipped with a complete Riemannian metric h, the Laplace-Beltrami operator
—Ay, is elliptic in W2(M), with principal symbol & - h=1(x)€. Tt is also essentially
selfadjoint on C§°(M). One can show that its resolvent (—Aj,+i)~! does not belong
to WZ2(M), but only to ¥2(M).

So if M is not compact, one needs an intermediate calculus, lying between
U (M) and (M), which is large enough to be stable under taking resolvents,
and small enough to remain a x-algebra. There are many possible choices, essen-
tially determined by the behavior of symbols near infinity in M. One of them is
Shubin’s calculus, [Sh2], which relies on the notion of bounded geometry.

This calculus turns out to be sufficient for constructing Hadamard states on
many physically relevant spacetimes, like cosmological spacetimes, Kerr, Kerr-de
Sitter, Kerr-Kruskal spacetimes, or cones, double cones and wedges in Minkowski
spacetime, see Section [11.

10.3. Riemannian manifolds of bounded geometry

The notion of a Riemannian manifold (M, g) of bounded geometry was intro-
duced by Gromov, see e.g. [CGI, [Ro]. For our purposes the only use of the metric
g is to provide local coordinates near any x € M, namely the normal coordinates
at x, and to equip the spaces of sections of tensors on M with Euclidean norms.
Therefore we will use an alternative definition of bounded geometry, which is easier
to check in practice.

We denote by 0 the flat metric on R™ and by B, (y,r) C R™ the open ball of
center y and radius r. If U C R" is open, we denote by BT%(U, ) the space of
smooth (g,p) tensors on U, bounded together with all their derivatives on U. We
equip BTf;(U, 0) with its Fréchet space topology. For ¢ = p = 0 we obtain the space
C(U) of smooth functions bounded together with all their derivatives.

DEFINITION 10.3.1. A Riemannian manifold (M, g) is of bounded geometry if
for each x € M, there exist an open neighborhood U, of x and a smooth diffeomor-
phism

qu.r : Ur L) Bn(oa 1)

with 1, (x) = 0, such that if g, == (Y7 1)*g, then

(1) the family {g }zenm is bounded in BTS(B,(0,1),6),

(2) there exists ¢ > 0 such that ¢™16 < g, <6, * € M.

A family {Uy }zenr mesp. {Wz tzens as above will be called a family of bounded chart
neighborhoods, resp. bounded chart diffeomorphisms.
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One can show, see e.g. [GOW| Theorem 2.4] that Definition is equiva-
lent to the usual definition, which requires that the injectivity radius r = inf,cps 75
is strictly positive and that (V9)¥R, is a bounded tensor for all k € N, where R,
and VY are the Riemann curvature tensor and Levi-Civita connection associated
to g. Here the norm on (g, p)-tensors is the norm inherited from the metric g. The

canonical choice of U, 1, is as follows: one fixes for all x € M a linear isometry
ez : (R™,8) = (T M, g(x)) and sets

Uy = B (z,7/2), ¥, (v) =expl((r/2)esv), v € By(0,1),
where BY,(z, ) is the geodesic ball of center x and radius r and exp? : B%%}(O, re) —
M the exponential map at x.

10.3.1. Atlases and partitions of unity. It is known (see [Sh2, Lemma
1.2]) that if (M, g) is of bounded geometry, there exist coverings by bounded chart
neighborhoods

M=|JU, Ui=U,, mz¢€M,
ieN
which in addition are uniformly finite, i.e. there exists N € N such that ()., U; = 0
if f1 > N. Setting v¢; = 9,,, we will call {U;, ¥; }ien a bounded atlas of M. One
can associate (see [Sh2l Lemma 1.3]) to a bounded atlas a partition of unity

1= "7, xi € C°(Uy)
iEN
such that {(¢;1)*Xi}ieN is a bounded sequence in Cp°(B,,(0,1)). Such a partition
of unity will be called a bounded partition of unity.

10.3.2. Bounded tensors. We now recall the definition of bounded tensors
on a manifold (M, g) of bounded geometry, see [Sh2].

DEFINITION 10.3.2. Let (M, g) be of bounded geometry. We denote by BT? (M, g)

the spaces of smooth (q,p) tensors T on M such that if T, = (¢Y;1)*T, then the
family {T } e is bounded in BT} (B, (0,1)). We equip BTP (M, g) with its natural
Fréchet space topology.

The Fréchet space topology on BTY (M, g) is independent on the choice of the
family of bounded chart diffeomorphisms {9 }.cn-

10.3.3. Bounded differential operators. For m € N we denote by Diffy' (B,,(0,1))
the Fréchet space of m-th order differential operators on B,,(0, 1) with Cp°(B,,(0,1))
coefficients. We denote by Diff},(M) the space of m-th order differential opera-
tors on M such that if P, = (y;1)*P, then the family {P,},car is bounded in
Diffy" (B, (0, 1)).

10.3.4. Sobolev spaces. Let —A, be the Laplace-Beltrami operator on (M, g),
defined as the closure of its restriction to C§°(M).
DEFINITION 10.3.3. For s € R we define the Sobolev space H*(M,g) as
H (M, g) = (=) ~/2L2(M, dVol,),

with its natural Hilbert space topology.
One sets
H®(M,g):= (| H(M;g), H >™(M,g):= | J H(M,qg),
meR meR

equipped with the inductive, resp. projective limit topology.
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It is known (see e.g. [Krl Section 3.3]) that if {U;,4;}ien is a bounded atlas
and 1 = Y, x? is a subordinate bounded partition of unity, then an equivalent
norm on H*(M,g) is given by

(10.8) lullZ =D 1) xaullre s, 0,0))-
€N

10.3.5. Equivalence classes of Riemannian metrics. If ¢’ is another Rie-
mannian metric on M, we write ¢’ ~ g if ¢/ € BT5(M, g) and (¢')~" € BT:(M, g).
One can show, see [GOW]| Section 2.5|, that then (M, g’) is also of bounded ge-
ometry, that BT%(M,g) = BTH(M,g') and H*(M,g) = H*(M,g") as topological
vector spaces, and that ~ is an equivalence relation.

10.3.6. Examples. Compact Riemannian manifolds are clearly of bounded
geometry, as are compact perturbations of Riemannian manifolds of bounded ge-
ometry.

Gluing two Riemannian manifolds of bounded geometry along a compact region
or taking their cartesian product produces again a Riemannian manifold of bounded
geometry.

If (K,h) is of bounded geometry, then the warped product (Rs x K, g) for
g = ds®> + F%(s)h is of bounded geometry if

F(s) > ¢y >0, Vs € R for some ¢y > 0,
[F®)(s)| < cxF(s), Vs €R, k> 1,
see [GOW! Proposition 2.13].

10.4. The Shubin calculus

We now define the Shubin pseudodifferential calculus, see [Sh2]|, [Kr], which is
a version of the uniform calculus of Section adapted to manifolds of bounded
geometry. We fix a manifold (M, g) of bounded geometry.

10.4.1. Symbol classes. Let us first define the symbol classes of Shubin’s
calculus. Recall that the topology of ST} (1% B, (0,1)) was defined in Subsection
1011

DEFINITION 10.4.1. We denote by BSp, (T* M) the space of all a € C*(T*M)
such that for each x € M, a, = (¢Y;1)*a € SPh(T*Bn(0,1)) and the family
{az}tzenm is bounded in ST} (T* B, (0,1)). We equip BS[} (T*M) with the semi-
norms

lallm.ip.a8 = SUp llazllmip.a6:
zeEM
where || - |lim,i,p,a,6 are the semi-norms defining the topology of Sp} (1" By, (0,1)).

The definition of BS} (T*M) and its Fréchet space topology is independent of
the choice of the atlas {Uy, ¥, }zear with the above properties. As usual, we set

BSR(T*M) = | | BSH(T*M).
meR
A symbol a € BS;’}I(T*M) has a principal part a,, € BS]*(T*M) which is homo-
geneous of degree m in the fiber variables.
A symbol a € BS;’}L](T*M) is elliptic if there exists C, R > 0 such that

laz(y,n)| > Cln|™, Yo e M, (y,n) € T*B,(0,1),

m

hence ellipticity in BST}

(T* M) means uniform ellipticity.
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10.4.2. Pseudodifferential operators. Let {U;,¢;}icn be a bounded atlas

of M and

S

ieN
a subordinate bounded partition of unity, see Subsection [10.3.1] Let

(p; 1) dVel, =: m;dz,
so that {m;};en is bounded in C2°(B,(0,1)). We set also
T;: L2*(U;dVol,) — L*(B,(0,1),dx),
w— m? (),
so that T; : L*(U;,dVol,) — L*(B,(0,1),dz) is unitary.
DEFINITION 10.4.2. Let a € BS™(T*M). We set
Op(a) := Z xiT; o Op(Ea;) o Tixi,
ieN

where a; = ag, (see Definition (10.4.1), and E : S5} (T*B(0,1)) — Spi (T*R™) is an
extension map.

Such a map Op constructed by means of a bounded atlas and a bounded par-
tition of unity will be called a bounded quantization map.
Note that if a € BS3; (T M), then the distributional kernel of Op(a) is sup-
ported in
{(z,y) e M x M : d(x,y) < C},

for some C' > 0, where d is the geodesic distance on M. In particular, Op(a) €
W (M), hence such operators can be composed. However, because of the above
support property, Op(S°(T*M)) is not stable under composition.

To obtain an algebra of operators, it is necessary to add to Op(BS5; (T M)) an
ideal of smoothing operators, which we introduce below. In the sequel the Sobolev
spaces H®(M, g) will be simply denoted by H*(M).

DEFINITION 10.4.3. We set

W= (M) = () B(H ™ (M), H™(M)),
meN
equipped with its natural topology given by the semi-norms
HAHm = ”(_Ag + 1)m/2A(_Ag + 1)m/2||B(L2(M))~
Note that W~ (M) is strictly included in the ideal R™°°(M) of smoothing
operators.

The next result shows the independence modulo W= (M) of Op(BS*>(T*M))
on the above choices of {U;,¥;, E, x;}.

PROPOSITION 10.4.4. Let Op’ be another bounded quantization map. Then
Op — Op’ : BSR(T*M) — W™>(M).
s continuous.
DEFINITION 10.4.5. We set for m € RU {co}:
W' (M) :== Op(BSpL(T*M)) + W™ (M).
Clearly, U7*(M) C U(M) C 9™ (M).
One can show that

U (M) : H* (M) — H*"™(M), continuously for s € RU {£o0}.
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10.4.3. Composition and adjoint. To A € ¥J"(M) one can associate its

principal symbol o (A) € C°(T*M \o), which is homogeneous of degree m on the
fibers.
Again, A is elliptic in U'(M) if op(A) is elliptic in the sense of Subsection
10.4.1} An elliptic operator A € UJ*(M) has parametrices B € ¥ ™ (M), unique
modulo W~>°(M) such that AB — 1,1 — AB € W~>°(M). As before, such a
parametrix will be denoted by A=Y, If we equip M with the density dVolg, then
we can define the adjoint A* of A € Up°(M). Then U°(M) is a graded *-algebra
with

A* € UM(M), A1As € U™ (M), for A€ UPH(M), A; € UV (M).

We have
Upr(A*) = Upr(A)a Jpr(AlA2) = Upr(Al)Upr(A2)7

Gpr([Ala Az]) = {Upr(Al)»Upr(AQ)}v

where {a,b} is the Poisson bracket of a and b. The results on adjoints are still true
if dVol, is replaced by an arbitrary smooth, bounded density dp on M.

10.5. Time-dependent pseudodifferential operators

We also need a time-dependent version of the calculus in Section [I0.4] which
we will briefly outline, referring to [GOW], Section 5] for details.

If I C R is an open interval and F is a Fréchet space whose topology is defined
by the semi-norms || - ||, n € N, then the space C2°(I; F) is also a Fréchet space,
with semi-norms sup,c; [|0F f(t)||n, k,n € N.

One can define in this way the spaces Cp°(1; BS[} (T M), C5o(I; W= (M)
and

Cp®(1; Ui (M) = Op(Cy° (1; BSp, (T M) + Cp° (I W™ (M),

where Op refers of course to quantization in the (z,&) variables. An element A
of Co(1; U (M)) will be usually denoted by A(t). All the results in Section m
extend naturally to the time-dependent situation.

10.6. Seeley’s theorem

The most important property of the Shubin calculus is its invariance under
complex powers, which was shown in [ALNYV] and is an extension of a classical
result of Seeley [Se]. We consider here the simpler case of real powers, see [GOW],
Theorem 5.12|. The Hilbert space L?(M, dVol,) is denoted simply by L?(M).

THEOREM 10.6.1. Let a = a(t) € Cp°(I; U7 (M)), be elliptic and symmetric
on C§°(I; H*(M)). Then a is selfadjoint with domain L*(I; H™(M)). If a(t) > cl
for some ¢ > 0 then a®(t) € C°(I; ¥ (M)) for all s € R and

opr(a®)(t) = (ope(a))*(t), t € 1.

10.7. Egorov’s theorem

We now state another important property of the Shubin calculus, namely
Egorov’s theorem, see [GOW] Section 5.4]. Let us consider an operator €(t) =
€1(t) + eo(t), such that

&(1) € O (I W (M)), i=0,1,

10.9
(10.9) €1(t) is elliptic, symmetric and bounded from below on H>(M).
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By Theorem [10.6.1] €1(t) with domain Dome(t) = H'(M) is selfadjoint, hence
€(t) with the same domain is closed, with non-empty resolvent set. We denote by

Texp (i f: e(o)do) the associated propagator, defined by

%Texp (i / t e(a)da) — ie(t) Texp (i / t e(a)do) Ctsel
(10.10) %Texp (1 / t e(a)da) — _iTexp (i / t e(U)dU) e(s), tisel,

Texp (1/ 6(0)d0> =1, sel.

The notation Texp comes from the time-ordered exponential, which is the standard
tool to solve (|10.10)) when €(¢) is bounded. The existence of Texp (i fst e(a)da) is

a classic result of Kato, see [SG] for a recent summary.

THEOREM 10.7.1. Let a € V™ (M) and €(t) satisfying (10.9). Then

a(t, s) := Texp <1 / t e(a)do) aTexp (i /t ) 6(0)d0> € Ce (17, 9™(M)).

Moreover,

Jpr(a')(t7 8) = Upr(a) 0 (I)(S’ t)?
where ®(t,s) : T*M \o — T*M \o is the flow of the time-dependent Hamiltonian
apr(€)(1)-
One can show, see [GOW], Lemma 5.14], that Texp (i f: e(a)da) € B(H™(M))
for m € RU {£o0}, hence a(t, s) above is well defined.



CHAPTER 11

Construction of Hadamard states by
pseudodifferential calculus

In this chapter we explain the construction in [GW1,[GOW] of pure Hadamard
states using the global pseudodifferential calculus described in Chapter These
Hadamard states are constructed via their Cauchy surface covariances with respect
to some fixed Cauchy surface X. It is important to assume that the normal geodesic
flow, see Subsection [5.4.3] exists for some uniform time interval. This apparently
strong condition can actually be considerably relaxed, since one can perform confor-
mal transformations on the metric. For example the Kerr or Kerr-de Sitter exterior
spacetimes and the Kerr-Kruskal spacetime can be treated by this method.

An interesting pair of notions that appears in this context is the one of Lorentzian
metrics and Cauchy surfaces of bounded geometry , with respect to some reference
Riemannian metric. If ¥ and (M, g) are of bounded geometry, Klein-Gordon opera-
tors on (M, g) can be reduced to a simple model form, which fits into the framework
of Chapter [I0]

It is rather clear that the construction of Hadamard states is intimately related
to parametrices for the Cauchy problem on Y. Traditionally those parametrices
are constructed as Fourier integral operators, using solutions of the eikonal and
transport equations.

Since we need to control the conditions in Proposition on Cauchy surface
covariances, like for example positivity, we need a global construction of paramet-
rices, and it turns out that an approach via time-ordered exponentials is more
convenient and, we think, more elegant, see Section [11.3

Our construction is also equivalent to a factorization of the Klein-Gordon oper-
ator as a product of two first-order pseudodifferential operators, which was already
used by Junker [J1, J2|, who gave the first construction of the Cauchy covari-
ances of Hadamard states using pseudodifferential calculus. His constructions were
however restricted to the case when ¥ is compact.

11.1. Hadamard condition on Cauchy surface covariances

The Hadamard condition in Section [8:3]is formulated in terms of the spacetime
covariances A*. We need a condition in term of the Cauchy surface covariances )\g
for a space-like Cauchy surface ¥. We recall that Uy, : £'(X;C?) — D/ (M) is the
Cauchy evolution operator for P, see Theorem [5.5.3

PROPOSITION 11.1.1. Let ¢* be linear maps that are continuous from C§°(%; C?)
to C>(3;C?) and from E'(X; C?) to D'(X;C?), such that for some neighborhood U
of ¥ in M we have

WEF(Us; o ) € NE x (T*E\o), over U.

Let

AF = £(0xG) gt (02G).
Then
(11.1) WF(A%) € NE x (T*M \o).

93
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Proof. Clearly AT : C5°(M) — D'(M) are continuous. By Proposition m
we have Us = i~ (oxG)*qs, and so AT = i~ 'Usc*(o=G). We apply Subsection
[1.2.8 for My = U, My = £, M3 = M, K; = Usct, K> = oxG and obtain (I1.1),
first over U x M, and then over M x M by propagation of singularities, using that
PA* =0. i

11.2. Model Klein-Gordon operators

We now describe a rather simple class of Klein-Gordon operators to which more
complicated ones can be reduced.

We fix an (n — 1)-dimensional Riemannian manifold (X, kq) of bounded ge-
ometry and an open interval I C R with 0 € I. Let I 3 t — h; a time-
dependent Riemannian metric on ¥ such that h, € Cg°(I; BTY(X, ko)) and h; ' €
Ceo(I; BTZ(S, ko).

We equip M = I x ¥ with the Lorentzian metric g = —dt? + hy(z)dz? and
consider a Klein-Gordon operator P on (M, g) such that moreover P € Diff} (M, k)
for k = dt? + kodx>.

It is easy to see that P is then of the form

(11.2) P =0} +r(t,2)0; + a(t,r,0,),
where a(t, z,0;) € Cg°(I; Diffy, (3; ko)) such that

(1) Upr(a)(tvxag) = ght(x)gv
(i) a(t,z,0;) = a*(t,x,0y),

where the adjoint is defined with respect to the time-dependent scalar product
(11.3) (ulv)s = / uv dVoly,
b

and r; = |hy *%6‘t\ht\%. The two energy shells for P are

N*={(t,e,7,6) : 7= £(E-hu(2)€), € #0}.
We set ¥y = {t} x ¥ in M equipped with the density dVol}, .

11.2.1. Cauchy problem. It is usual to rewrite the Klein-Gordon equation
(07 + ()0 + a(t))e(t) = 0
as a first-order system

(11.4) 0 (t) = H(t)y(t), where H(t) = ( a?t) ir](lt) ) ’

by setting

v = (11%(3@)) oo

We denote by

(11.5) Uy (t, s) := Texp <i /: H(a)da) . sitel,

the evolution operator associated to H(t). We equip L?(3; C?) with the time-
dependent scalar product obtained from ([L1.3)), by setting

(flg)e = / (Frg1 + Togo) dVoly,.



11.3. PARAMETRICES FOR THE CAUCHY PROBLEM 95

We will use it to define adjoints of linear operators and to identify sesquilinear
forms on L?(X;C?) with linear operators. For

(0 1
=\1 0
we have

(11.6) qg=Uj(s,t)qUpn(s,t), s,tel,

i.e. the evolution operator Uy (t, s) is symplectic.

11.3. Parametrices for the Cauchy problem
Let Up : &'(3;C?) — D..(M) be the Cauchy evolution operator for P, which

solves

PUy =0
11.7 !
(11.7) { ooUp = 1.
We will construct a parametrix Uy for (11.7) such that
{ PU~U =0, modulo smoothing errors.
00U =1,

The theory of Fourier integral operators, one of the important topics in microlocal
analysis, originated from the construction of parametrices by Lax [La| and Ludwig
[Lu| for the Cauchy problem for wave equations (or, more generally, strictly hyper-
bolic systems). It amounts to looking for Up as a sum of two oscillatory integrals

2 [0t 0, e
The phase functions p* (¢, z,£) are solutions of the eikonal equation
{ (87590:‘: (ta €T, f))2 - a(tv xz, 8x¢i(t7 €L, 5)) = 07

(pi(oa 3776) = x'§7

and the amplitudes a®(t,z,&) solve a first-order differential equation along the
bicharacteristics of P.

It is actually simpler and more convenient to use a more operator theoretical ap-
proach. Instead, we will try to find time-dependent operators b* (t) € C2°(I; U} (%))
such that

UE () = Texp (i /0 t bi(a)da)

solve the equation

(11.8) PU*(t) = 0, modulo smoothing errors.

If we try to solve exactly, we see that b(t) should satisfy the Riccati equation
(11.9) 10,6 — (b%)? 4+ a + irb* = 0.

A straightforward computation shows that is equivalent to a factorization
(11.10) P = (9, +ib* +7)(9; — ib*).

Such a factorization was already used by Junker [J1}, [J2] to construct Hadamard
states by pseudodifferential calculus, in the case where the Cauchy surface X is
compact.
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11.3.1. Solving the Riccati equation. We now explain how to solve ,
modulo smoothing errors. The first step consists in reducing the task to the case
when a(t) := a(t,z,d,) is strictly positive, as an operator on L2(X, |h|2 dz).

One can find, see [GOW], Proposition 5.11], an operator c_oo(t) € Coo(I; W~>(X))
and a constant ¢ > 0 such that a(t) + c_o(t) > cl, for all t € I. One sets then
e(t) := (a(t) + c—o(t))?, Wthh by Theorem [10.6.1| belongs to C£°(I; ¥l (X)), with
principal symbol (&-hy(z)€)z.

PROPOSITION 11.3.1. There exists an operator b(t) € Co(I; VL (X)), unique
modulo C°(I; W=2°(X)), such that

(1) b(t) =e(t) + CF(L; TR(X)),

(i) (b)) + b7 (8) 71 = (26(8) 72 (L r-1)(2e(1)) 72, roy € C(L T (D)),
(iii)  (b(t) + b*(t))" > ce(t)™L, for some ¢ > 0,
(iv)  i0b%(t) — (B%)%() + a(t) +ir()bF(t) = r= (1) € O (I;W™2(X)),

for b (t) :=b(t), b~ := —b*(1).

Proof. We follow the proof in [GOW], Theorem 6.1]. Discarding error terms in
CP(I; W™>=(%)), we can assume that €(t) = Op(é)(t), é(t) € Cp°(I; BS,, (T*Y)).
We look for b(t) of the form b(t) = e(t) + d(¢) for

d(t) = Op(d)(t), d(t) € Cy°(I; BSp, (T"%)).
Since €(t) is elliptic, it admits a parametrix
V(1) = Op(&)(1), &(t) € (1 BS,, ().
The equation (11.9)) becomes, modulo error terms in C°(I; W~ (%)),

(11.11) d(t) = %(e“l)(t)ate(t) + e(*”(t)r(t)e(t)) + F(d)(t),
with .
Fd)(t) = 5D 0) (10d() + [e(0), (1)) + ir()d(t) — (1) ).
By means of symbolic calculus, we obtain that
F(d)(t) = Op(F(d))(t) + C* (I W™ (%)),
with
P(d)(1) = Set)s(10,d(r) + e(e)p(e) — d)3er) + in(Dd(r) — (o) (1)),
where the operation f (sometimes called the Moyal product) is defined by
Op(a)Op(b) = Op(afb) modulo BS~>(X%).
The equation becomes
(11.12) d(t) = do(t) + F(d)(1),
for
dolt) = 5 (e(0ue(t) + e(Wr(De(t) ) € O (15 B, (T°D)).
The map F has the following property:
(11.13)
dy (), da(t) € CP(I; BSY,(T*Y)),  di(t) — da(t) € C°(1; BS, [/ (T*X))

= F(dy)(t) — F(d2)(t) € CF(I; BS,]H(T"%)).
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This allows to solve (11.13)) symbolically by setting
d_1(t) =0, dn(t) == do(t) + F(dn_1)(t),

(t) ~ D dult) = du-1(t),
neN

which is an asymptotic series, since, by , U?n(t)—cin_l(t) e O (I, BSp_h”(T*Z)).
It follows that e(t) 4 d(t) solves modulo Cg°(I; W™°(X)), hence satisfies (i)
and (iv) in the proposition.

In the rest of the proof €(t) will again denote the square root €(t) = (a(t) +
¢—oo(t))2, which differs from Op(é)(¢) by an error in C°(I;W~°(X)), so that
e(t) + d(t) still solves modulo C°(I; W= (%)).

To satisfy (ii), (111) we need to further modify €(¢) + d(¢) by an error term in
C(I; W=*°(X)), which will not invalidate (i) and (iv). We set
(

s(t) = e(t) +d(t) + € (t) + d* (1),

which is selfadjoint, with principal symbol equal to 2(&-
Proposition 5.11], there exist an r_ € C°(I; W~>(X)
such that

(11.14) cle(t) < s(t) +r_oo(t) <ce(t), tel.

and

Bl (@)6)h. By [GOW,
) and a constant ¢ > 0

Now set
1
b(t) :=€(t) +d(t) + 57’—00(15)
Property (iii) follows from ([11.14)) and the Kato-Heinz theorem. To prove property
(ii), we write
b(t) + b7 () = (2€)7 (£) (1 + 71 (1)) (26)% (¢),
where 7_1(t) € C2°(I; ¥, *()), by Theorem [10.6.1} Since (1+7_;)(t) is boundedly
that

invertible, we have, again by Theorem |1
(L+7-1)7H(t) = D+ roa(t), roa(t) € O (101 (R),
which implies (ii).
We observe then that if b(t) € CP°(I; ¥5°(X)) we have
(0:0)(t) = 9, (b")(t) + r(8)b* () — b* ()r ().

Note that the adjoint is computed with respect to the time-dependent scalar product

(11.3), so (9b)* # 0:(b*). This implies that —b*(¢) is also a solution of -
modulo C°(I; W~>°(X)). The proof of the proposition is complete.

11.3.2. Parametrices for the Cauchy problem. We can now construct
parametrices for the Cauchy problem ([11.7). In fact, if

(11.15) utf =" =) THO)FTO) o £ fi),  feHX(D),
we obtain by an easy computation that

(11.16) Uof(t) =UTW)ut f+U (t)u" f

solves

{ PUy € CF(I;W==(%)),
QOUO = ]11
hence is a parametrix for the Cauchy problem ((11.7)).
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11.3.3. Microlocal splitting of Cauchy data. It is easy to see that if
u € H®(X), then WF(U*(-)u) € N*. Therefore, if f € KeruT, one has also
WF(Upf) C N'*E.

It turns out that Ker uT are complementary spaces, for example in H>(X; C?),
which are moreover orthogonal with respect to ¢q. This is summarized in the next
proposition.

PROPOSITION 11.3.2. Let

1 —1 1
T:= ( bt(0) —b=(0) >(b+b )72(0).

Then:
(1)
_ 1 -b=(0) 1
1_ g+ 1
= o -vyto () 1)
(2)
w1 0
T = ( ! ]1)
(3) Let
. (10 (00
"~ oo) " "{on1
and
o1 _ [ FOP-bT)TOT £ b)) :
=TT = ( FHH(bT —b7)" b EbE(T — b)) ! (0);
then
ct+ec =1, (c)?=c*, KeruT = Ranct,
(cF)rget =0, £(cF)*qc* >0,
on H®(X;C?).

(4)
WF(Upet) € NE x (T*%\o).

(5) The map T : L*(X) & L2(X) — H2(X) & H-2(X) is an isomorphism.

Proof. The proof of (1) and (2) is a routine computation, and (3) follows from
(2). Note that c* are bounded on H>(X;C2?) and H~°°(%;C?), since their entries
belong to ¥R (X).

We have Uyt = Upet modulo C®(M x M) and Upct = UE(-)eE by (3),
so WF(Upc®) = WFUT(-)c*). By (L1.10), we have PU*(-)c* € C°(M x M)
hence WF (U™ (-)ct) € N x (T*¥ \o). Furthermore, (9; — ib* (t)UT(-)ct = 0, but
0y — ib* (t) is not a classical pseudodifferential operator on M. However, one can
find xy* € WO(M), elliptic near N'F, such that x* o (9; — ib*(¢)) belongs to W' (M).
We have x* o (9; — ib™ (t))UT(-)c* = 0 and xF o (9, — ib*(t)) is elliptic near N'F.
Now applying Theorem we conclude that WE(U™T(-)c) € NE x (T*E\o),
which proves (4).

It remains to prove (5). Using the expression of 77! in (2), we see that
the norm || 77" | r2(sc2) is equivalent to the norm ||(b™ — b7)3 foll z2(sy + [|(bT —
b_)_%flan(g;(y). By , we have

¢ 'e(0) < b1 (0) — b (0) < ce(0),
which by the Kato-Heinz theorem implies that ||T71f||L2(z;;(c2) is equivalent to
||e(0)%f0||L2(2) +[le(0)"2 1 | 2(s). By the ellipticity of €(0), this norm is equivalent
to the norm of Hz (%) & H™z(X). O
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REMARK 11.3.3. ¢t are complementary projections, with Ranct = KeruT.
Moreover, Ranc* are orthogonal for q, with WEUpct f € N'*& for f € H-=(X%).
Therefore the pair of projections ¢* will be called a microlocal splitting of Cauchy
data.

The space Hz (%) ®H z (X) is the charge space, which appears in the quantiza-
tion of Klein-Gordon equations. It is more natural in this context than the energy
space HY(X) @ L2(X), which is usually considered in the PDE literature.

11.4. The pure Hadamard state associated to a microlocal splitting

It is now straightforward to associate a pure Hadamard state to the pair of
projections ¢* in Proposition [11.3.2

THEOREM 11.4.1. Let ¢t be a microlocal splitting and
(11.17) AT = +qct
Then )\Oi are the ¥y covariances of a pure Hadamard state wy, for P.

Proof. We first check the conditions in Proposition (i) is obvious and (iii)
follows from ¢ + ¢~ = 1. To check (ii), we note that ¢ : C§°(X; C?) — L?(%;C?)
since ¢ : H®(X;C?) — H>°(X;C?). We have then

(f|)‘0if)0 ==+ ((C+ + c_)f\qcif)o =+ (cif|qcif)0 >0,

by Proposition (3). Therefore )\S—L are the ¥y covariances of a quasi-free state
wy for P.

If A* are the spacetime covariances of w;,, we deduce from Proposition
and Proposition (4) that WF(A*) C N'F x N. Since (AT)* = A* we have
WF(A*)" € N* x N, hence by Theorem wp is a Hadamard state.

It remains to prove that wy is pure. To that end, let us first examine the norm

I - Il associated to wp, see Subsection By Proposition [11.3.2] we have
M AN =¢TrT —a )T = (T Yzt - 2T = (T )y 17
Therefore, || f||2 = (fIAT+A7)f)r2(zc2) = ||T‘1f||2Lz(E;(CQ). By Proposition|11.3.2
(5), the completion Y°P! of Y = C§°(%; C2) with respect to the norm || - ||, equals
H>(Z)® H 3 (D).
Again by Proposition [11.3.2] (5), we obtain that ¢t = T7*T~! extend by

density to projections on Y°P! that satisfy (4.36)) in Proposition m Therefore,
wyp is a pure state. O

11.5. Spacetime covariances and Feynman inverses

We now give more explicit formulas expressing the spacetime covariances A*
of wp and the Feynman inverse associated to wy, see Section [8.5

It is convenient to formulate these results using the ‘time kernel’ notation:
namely, if A : C°(M;CP) — C*°(M;C?) we denote by A(t,s) : C5°(%;CP) —
C>(X%; CY) its operator-valued kernel, defined by

Au(t) = /RA(t, s)u(s)ds, ue C5°(M;CP).

If Uy (t, s) is the propagator introduced in (|11.5), we set
UE(t, s) == Un(t,0)c UL (0, 5).
The following theorem is shown in [GOW| Theorems 6.8, 7.10].
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THEOREM 11.5.1. Let A* and Gy be the spacetime covariances and the Feyn-
man inverse, respectively, of the state wy constructed in Theorem [11.4.1). Then

AE(t,8) = +molUE(t, s)mt,

(11.18) _
Gr(t,s) =i"tmo (U (L, s)0(t — s) — Uy (L, 5)0(s — t)) 77,

where T; ( ;0 ) = f; and 0(t) is the Heaviside function.
1

Let us conclude this subsection by stating without proofs some more results
taken from [GOW| Section 7].

11.5.1. Regular states. Recall that X, = {s} x X for s € I and let AT be
the Cauchy surface covariances of wy on 4. Then one can show that

M = +gct(s),

where ¢*(s) = T(s)m*T~1(s) and T(s) is defined as in Proposition with
b*(0) replaced by b*(s).

A quasi-free state w for P is called regular if its Cauchy surface covariances A
on X belong to Wp°(X; M2(C)) for some s € I. One can show that if w is regular,
then AT on 5 € U3°(X; My (C)) for all s € I.

11.5.2. Bogoliubov transformations. It is well known, see e.g. [DGl The-
orem 11.20] that if (), q) is a Hermitian space and if w, & are two pure quasi-free
states on CCRP°/(), ¢), then there exists u € U(Y,¢) such that

AE = u  Fu.

Such a map u corresponds to a Bogoliubov transformation.
One can show that if w is a pure, regular Hadamard state for P, with covariances
A on X, then there exists a € W~°°(2) such that

_ _ . 1+ aa*)? a
A=+ Y0 U rUT Y0 th U = ( .
0 (0) T (0), wi a* (Il—l—a*a)%

11.6. Klein-Gordon operators on Lorentzian manifolds of bounded
geometry

We now introduce a class of spacetimes and associated Klein-Gordon equations
whose analysis can be reduced to the model situation in Section The results in
this subsection are taken from [GOW| Section 3]. We start with some definitions.

11.6.1. Lorentzian manifolds of bounded geometry. Let M a smooth
manifold equipped with a reference Riemannian metric h such that (M,h) is of
bounded geometry.

DEFINITION 11.6.1. If g is a Lorentzian metric on M, we say that (M, g) is of
bounded geometry if g € BT (M, h) and g=' € BTZ(M,h).

DEFINITION 11.6.2. Let ¥ an (n — 1)-dimensional submanifold. An embedding
i: X — M is called of bounded geometry if there exists a family {Uy, ¥z toem of
bounded chart diffeomorphisms for h such that if X, := 1, (i(X) N U,) we have

Y. ={(v,v,) € Bp(0,1) : v, = F,(v")},
where {Fy}genm is a bounded family in C2°(B,—1(0,1)).
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The typical example of an embedding of bounded geometry is as follows: let
M =1 x S, where I is an open interval and (S, h) is of bounded geometry, and let
h = dt® + h(z)dz2. Then the submanifolds {t = F(x)} for ' € BTY(S,h) are of
bounded geometry in (M, iL)

DEFINITION 11.6.3. A space-like Cauchy surface ¥ C M is of bounded geom-
etry if:
(1) the injection i : ¥ — M is of bounded geometry for h;
(2) if n(y) fory € X is the future directed unit normal to ¥ for g, then

supn(y) - h(y)n(y) < oo.
yeED

Clearly, the above definitions depend only on the equivalence class of h for the
equivalence relation ~ in Subsection

11.6.2. Gaussian normal coordinates. The following result is proved in
[GOW| Theorem 3.5|. It says that the bounded geometry property of g and ¥
carries over to the Gaussian normal coordinates to X.

THEOREM 11.6.4. Let (M,g) a Lorentzian manifold of bounded geometry and
3 a Cauchy surface of bounded geometry. Then the following holds:
(1) there exists § > 0 such that the normal geodesic flow to X.:

] —6,0[xX — M
(t,y) — expf(tn(y))
1s well defined and is a smooth diffeomorphism onto its range;

(2) x*g = —dt*+hy, where {ht}ie)-s.5] is a smooth family of Riemannian metrics
on ¥ such that

(i) (%, ho) is of bounded geometry,
(i)t by € C2(] = 6,6[, BTY(Z, ho)),
(i) ¢~ byt € (] = 6,0[, BTG(Z, ho)).

11.6.3. Klein-Gordon operators on Lorentzian manifolds of bounded
geometry. Let (M, g) a globally hyperbohc spacetime of bounded geometry, with
respect to a reference Riemannian metric h. We fix a 1-form A, dz" € BT (M, h)
and a real function V € BT M h), and consider the assomated Klein-Gordon
operator P as in Subsection Note that P € Diff? (M, h).

Let x :]—=6,0[xX = M the dlffeomorphlsm in Theorem and let us still
denote by A, dxz#, V and P their respective pullbacks by x. T hen P equals

= [he| ™% (00 — iqA) |he|* (D1 — iqAo) — [he| 7 (9; — iqAy) el * " Ok — g Ay) + V.
Setting F(t,z) = qfot Ao(s, z)dz, we have e (9, — igAg)e't” = 9, hence
Pred = e_iFPeiF

is a model Klein-Gordon operator of the form .

If A]ried are the spacetime covariances of the pure Hadamard state for P.eq
constructed in Theorem then AT = &iF Arede IF are the covariances of a
pure Hadamard state for P on | — 6,6 [ x¥. Pushing A* to M by x, we obtain a
pure Hadamard state for the original Klein-Gordon operator on M.
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11.7. Conformal transformations

The conditions in Section are rather strong, since they imply in particular
that (M, g) has a Cauchy surface ¥ such that the normal geodesic flow to ¥ exists
for some uniform time interval. However it is possible to greatly enlarge the class
of Klein-Gordon equations which can reduced to the model case in Section [11.2

Thus, let

P =—(V'—igA"(2))(V, —igAu(x)) + V(x)
be a Klein-Gordon operator on (M, g), ¥ be a space-like Cauchy surface for (M, g)
and h be a reference Riemannian metric on M such that (M,h) is of bounded
geometry.

As in Section we consider § = ¢2¢g and P = ¢ "/2-1pen/2-1,

One can check that if

(i) (M, 3) is of bounded geometry for h,

(ii) X is of bounded geometry in (M, g),
(ili) ¢ 2V € BT)(M,h), A,dzt, ¢ 'V cdzt € BTY(M,h),

then P is Klein-Gordon operator on (M, j) belonging to Diff,(M, h). Therefore,
P can be reduced to the model case, over a causally compatible neighborhood of

3 in M. The pure Hadamard state for P constructed as in Section |11.4] yields by
Section [8:6] a pure Hadamard state for P.

11.7.1. Examples. As mentioned in the introduction, the above reduction
can be applied for example to the Kerr or Kerr-de Sitter exterior spacetimes and
the Kerr-Kruskal spacetime for A, =0, V = m?2. Other examples are cones, double
cones and wedges in Minkowski spacetime. We refer the reader to [GOW/ Section
4] for details.

11.8. Hadamard states on general spacetimes

Let us now go back to the general situation, where (M, g) is a globally hyper-
bolic spacetime and P a Klein-Gordon operator on (M, g). Let us fix a space-like
Cauchy surface ¥ in (M,g). We will prove the following theorem, which follows
from a construction in [GWI| Section 8.2]. The classes U7 (X) were introduced
in Section

THEOREM 11.8.1. Let P a Klein-Gordon operator on the globally hyperbolic

spacetime (M, g) and ¥ a space-like Cauchy surface X in (M, g). Then:

(1) there exists a Hadamard state w for P whose Cauchy surface covariances )\jzt
belong to ¥ (3; Ma(C));

(2) the Cauchy surface covariances A% of any Hadamard state w for P belong to
oo (35 Ma(C)).

Proof. Let us first note that (2) follows from (1). Indeed, let wy be the Hadamard
state in (1) and let w be another Hadamard state. By Corollary A — AT
have smooth kernels, hence A\ — /\i1 have smooth kernels by Proposition (2).
Since A, € U(; My(C)), we see that A € T*°(5; My(C)).

It remains to prove (1). By Proposition we can assume that M is a
neighborhood U of {0} x ¥ in R x ¥ and g = —dt? + hy(z)dz?. Let us fix an atlas
{Vi, ¥ }ien of 3 with V; relatively compact and relatively compact open intervals
Ii;ieNwithOel,and [; x V; € U.

The metrics (wfl)*ht can be extended to metrics h;; on R? such that h; €
C°(R; BTY(RY)) and h;' € O°(R; BT3(R?)), where we equip R? with the flat
metric §. This means that for each i € N the derivatives in (t,x) of hy and hy,*
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are uniformly bounded on R x R%. The Klein-Gordon operators t; o P ot~ ! can
similarly be extended as Klein-Gordon operators P; on R x R% which belong to
Diffy, (R1+4).

We fix a partition of unity 1 =3, X7 subordinate to the cover {V;};en. Note

that if g = < (])1 (])1 >, then in view of the expression (5.31)) of g5 we have

(11.19) gz = _ xiti (Q)xi-
i€EN
Let S\f be the Cauchy surface covariances in Theorem [11.4.1| for P; and the
Cauchy surface {t = 0} in R x R?. We set

A=) v (W)
ieN

By , we have )\42' — A5, = ¢x. Moreover, A% > 0, since S\li > 0. Let wy be the
associated quasi-free state for P on (U, g). By Proposition and the covariance
of the wavefront set under diffeomorphisms, we obtain that wy; is a Hadamard state
for P on (U, g).

Now we apply the time-slice property Proposition [5.6.4] and the propagation
of singularity theorem to extend wy to a Hadamard state w for P on (M,g).
Its Cauchy surface covariances on X are of course equal to AE. Since A& €
T (R My (C)), we obtain that AL € W2°(3; My(C)), by the definition of ¥°(3).
This completes the proof of (1). m|






CHAPTER 12

Analytic Hadamard states and Wick rotation

In Minkowski spacetime the Wick rotation consists in the substitution ¢ — is.
The Minkowski space R"¢ becomes the Euclidean space R'*¢ and the wave operator
—0O becomes the Laplacian —A.

Being elliptic, the operator —A 4 m? has a unique inverse Gg, given by

Ggu(s, ) = /RGE(S — (s, -)ds’,

with
Gr(s) = (2¢) (e (s) + e*0(—s)),
where we recall that € = (—Ay +m?2)2. A remarkable fact is that
i_lGE(it) = GF(t),

where, see , Gr(t) is the kernel of the Feynman inverse associated to the
vacuum state for —O+m?. The Wick rotation or Euclidean approach is particularly
important when one tries to construct interacting field theories. It is the basis of
the constructive field theory, whose most celebrated achievements are the rigorous
constructions of the P(¢)s and ¢3 theories. We refer the reader to the books
of Glimm and Jaffe [GJ| and Simon [Si], or to [DG], Chap. 21], for a detailed
exposition.

In the Euclidean approach the main goal is the construction of an ‘interacting’
probability measure on a path space, or the construction of its moments, which
are called Schwinger functions. The return to the Lorentzian world can be done
by ’reconstruction theorems’, like the Osterwalder-Schrader theorem. This step is
actually often forgotten, to such an extent that physicists speaking of quantum field
theories often have in mind their Euclidean versions.

It is clear that the Wick rotation can be defined if we replace R by an ultra-
static spacetime, see Section if we set € = (—Ap + mZ)%. Static spacetimes
are reduced to ultra-static ones by the procedure explained in Section [0.4 and with
some more effort stationary spacetimes can be treated as well, see [G2].

For general spacetimes, its not clear what the Wick rotation should mean, since
there is no canonical time coordinate. In this chapter we will explain a result of
[GWS5], where the Wick rotation is performed in the Gaussian time coordinate near
a Cauchy surface of (M, g). To the elliptic operator obtained by Wick rotation one
can associate the so-called Calderdn projectors, which are a standard tool in elliptic
boundary value problems.

It turns out that it is possible to use the Calderén projectors to define a pure
quasi-free state for a Klein-Gordon operator on (M, g). This state has the important
property of being an analytic Hadamard state. As a consequence, it satisfies the
Reeh-Schlieder property.

12.1. Boundary values of holomorphic functions

Let us recall the well-known definition of distributions as boundary values of
holomorphic functions.

105
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12.1.1. Notation. We first introduce some notation.

- A cone of vertex 0 in R™, which is convex open and proper, will be simply
called a convex open cone. If ', " are two cones of vertex 0 in R we write IV € I’
if (I"NsS* 1) e Tnst1).

- We recall that I'° denotes the polar of I', see (8.16). I'° is a closed convex
cone.

- Let Q C R™ be open and let I' C R™ be a convex open cone. Then a domain
D C C” is called a tuboid of profile Q2 +il" if

(1) DC Q+il,
(2) for any z € Q and any subcone IV € T' there exists a neighborhood Q' of xq
in Q and r > 0 such that

A +i{yel:0< |y <r}cD.

- If D c C" is open, we denote by (D) the space of holomorphic functions in
D.

- We write F' € Oemp(2 4 1I'0) and say that F' is temperate, if F' € 0(D) for
some tuboid D of profile Q + il" and if for any K € 2, any subcone I € T', there
exist C,r > 0 and N € Nsuch that K +i{y € I":0< |y| <r} C D and

(12.1) |F(z+iy)| <Cly|™, 2eK, yel’, 0< |yl <

12.1.2. Boundary values of holomorphic functions. If F' € Cemp(2 +
il'0) the limit
(12.2) lim F(z +iy) = f(x) exists in D'(Q),

I">y—0

for any I € I and is denoted by F(z + iI'0), (see e.g. |[Kol, Theorem 3.6]).

IfI'y, ..., 'y are convex open cones such that Uf’ I'? = R™, then any u € D'(2)
can be written as

N

(12.3) u(z) = Fj(z +il;0),
j=1

for some F; € Opemp(2 +1I';0). This fact comes from the construction of a so-
called decomposition of §, see e.g. [HIL, Theorem 8.4.11]. If n = 1 this is simply
the identity §(x) = (2ir) =} ((z +i0)~t — (z —i0)71).

The non-uniqueness of the decomposition is described by Martineau’s
edge of the wedge theorem, which states that

N

> Fi(x+iT;0) =0 in D'(Q)

j=1
for Fj S ﬁtemp(Q + IFJO) iff there exist ij S ﬁtemp(Q + iijO), with ij =
(T + ) (A°™ denotes the convex hull of A) such that

F; = Zij in Q+il'y, Hjp = —Hy; in Tjg,
k

see for example [Ko, Theorem 3.9].

12.1.3. Partial boundary values. One can also obtain distributions as bound-
ary values of partially holomorphic distributions in one variable, as in Proposition
Let us assume that 2 = I xY, where I C R is an open interval and Y ¢ R*~!
is open, writing x € Q as (t,y).

We denote by Oiemp(I £10; D' (Y)) the space of temperate D’(Y)-valued holo-
morphic functions on some tuboid D of profile I £+ i0. This means that for each
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K & I there exist » > 0 and N € N, such that for each bounded set B C D(Y)
there exist C'g > 0 such that

sup [{(u(z,), o(Ny| < C’B|Imz\7N, Reze K, £Imz >0, |Imz| <,
peB

where (-, )y is the duality bracket between D’(Y) and D(Y').
Let us set p.(s) = (s —2)7! for z € C\ R. If u € D'(R x R"!) has compact

support, then

1

F = 5. _\¥Pz aF X
(z:9) = 5 (0= (), F( y)w
belongs to Giemp (R £i0; D'(R"™1)) and
U(S,y) = F(S + IO,y) - F(S - loay)a

where F(s £i0,y) = lim._,g+ F(s +ie,y) in D'(R x R*~1),

12.2. The analytic wavefront set

We now recall the definition of the analytic wavefront set of a distribution on
R™ originally due to Bros and Iagolnitzer [BI|, following [Sj]. We set

oM (x) = e 20 e peRY, AL

DEFINITION 12.2.1. Let Q C R™ be an open set. A point (xg,&p) € T*Q\o does
not belong to the analytic wavefront set WF,u of u € D'(Q) if there exist a cutoff
function x € C§°(Q) with x =1 near xg, a neighborhood W of xg — iy in C", and
constants C,e > 0 such that

(12.4) [(u]xed)| < Ce2(m=9) ey, A>1,
where (-|-) is the duality bracket between D'(R™) and C§°(R™).

Note that in Definition one identifies R™ with (R™)’ using the quadratic
form -z appearing in the definition of ).

If u € &(R™), the holomorphic function C" 3 z — Thu(z) = (u|¢?) is called
the F.B.1. transform of u.

The C*° wavefront set WFu can also be characterized by the F.B.I. transform,
if one requires instead of that

(12.5) (ulxed)| < Cne2 ™ A"N 2 c W, A>1, NeN,

see e.g. [Del, Corollary 1.4]. The projection of WF,u on R™ is equal to the analytic
singular support singsupp, u.

The analytic wavefront set is covariant under analytic diffeomorphisms, which
allows to extend its definition to distributions on a real analytic manifold M in the
usual way.

There is an equivalent definition of WF,u based on the representation of a
distribution as sum of boundary values of temperate holomorphic functions. The
equivalence of the two definitions was shown by Bony [Bo], who also showed the
equivalence with a third definition due to Hérmander, see [H1, Definition 8.4.3].

DEFINITION 12.2.2. Let u € D'(Q) for Q C R™ open and (2°,£%) € @ xR™\{0}.
Then (2°,£°) does not belong to WFu if there exist N € N, a neighborhood Q' of
20 in Q, and convex open cones I, 1<j <N, such that

N
u(x) = ZFj(x +1T,0) over €V,
j=1

for Fj € Oiemp(Y +1i0';0), 1 < j < N, and F; holomorphic near z° if £ € 5.
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Theorem|[7.3.1]extends to the analytic wavefront set, at least when one considers
differential operators. For completeness let us state this extension, see (see [Kwi,
Theorem 3.3’ or [H5l Theorems 5.1, 7.1]).

THEOREM 12.2.3. Let X be a real analytic manifold and P € Diff " (X) be an
analytic differential operator of order m. Then for u € D'(X) we have
(1) WF4(u) \ WF,(Pu) C Char(P) (microlocal ellipticity),

(2) If P is of real principal type with Ocpm(x,&) # 0 on Char(P), then WFq(u) \
WEF,(Pu) is invariant under the flow of H, (propagation of singularities).

The analytic wavefront set of a distribution has deep relations with its support.
An example of such a relation is the Kashiwara-Kawai theorem, which we now
explain.

If F C M is a closed set, the normal set N(F) C T*M \o is the set of (2°,¢°)
such that z° € F, €Y # 0, and there exists a real function f € C?(M) such
that df (z°) = €% or df(2%) = —¢% and F C {z : f(z) < f(z")}. Note that
N(F) C T3pM and N(F) = N*(OF) if OF is a smooth hypersurface.

The Kashiwara-Kawai theorem (see e.g. [H2l, Theorem 8.5.6']) states that

(12.6) N(suppu) C WF,(u), VueD(M).

We end this subsection by stating the analog of Proposition [7.1.5] for the ana-
lytic wavefront set, which is proved in [K| Theorem 4.3.10].

PROPOSITION 12.2.4. Let F € Oyerp(I £10;D'(Y)). Then
WF,(F(t +i0,y)) C {7 > 0}.

12.3. Analytic Hadamard states

A spacetime (M, g) is called analytic if M is a real analytic manifold and g is
an analytic Lorentzian metric on M. Similarly, a Klein-Gordon operator P as in
Subsection is analytic if (M, g) and A,dz",V are analytic.

In [SVW]| Strohmaier, Verch and Wollenberg introduced the notion of analytic
Hadamard states, obtained from Definition [8.3:2] by replacing the C°> wavefront set
WF by the analytic wavefront set WF,.

DEFINITION 12.3.1. A quasi-free state for P is an analytic Hadamard state if
its spacetime covariances A* satisfy

(12.7) WF,(A%) Cc NE x NE

Note that in [SVW] the analytic Hadamard condition is defined also for more
general states for P by extending the microlocal spectrum condition of Brunetti,
Fredenhagen and Koéhler [BFK] on the n-point functions to the analytic case.

It is quite likely that the results of Section [7.4]on distinguished parametrices for
Klein-Gordon operators extend to the analytic setting, although we do not know a
published reference. We content ourselves with stating the extension of Corollary

see [GW5| Proposition 2.8]

PROPOSITION 12.3.2. Let Aii, i = 1,2 be the spacetime covariances of two

analytic Hadamard states w;. Then AT — A¥ have analytic kernels.

Proof. Let R* = Af — AF. Since AT — A7 = AJ — A; = iG, we have RT =
—R~. On the other hand, from we have WF,(R*) ¢ N* x N'*, hence
WF,(RT) NWF,(R™) = 0. Since R~ = —R™*, this implies that WF,(R*)" = 0,
and so R* have analytic kernels. O
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12.4. The Reeh-Schlieder property of analytic Hadamard states

An important property of analytic Hadamard states, proved in [SVW], is that
they satisfy the Reeh-Schlieder property. The Reeh-Schlieder property of a state has
important consequences. For example, it allows us to apply the Tomita-Takesaki
modular theory to the local von Neumann algebras associated to a bounded region
OCM.

We start with a lemma, related to a result of Strohmaier, Verch and Wollenberg,
see [SVW| Propositions 2.2, 2.6]. Note that the notion of Hilbert space valued
distributions, used in [SV'W], is not necessary. We first recall some notation.

If A* are the spacetime covariances of a Hadamard state for P, we denote by
VP! the completion of Y = C§°(M) with respect to the scalar product (f|g)., =
(fIN*g)ar + (fIA~g)a- Note that AT extend as bounded, positive sesquilinear
forms on Y°P! still denoted by A*.

As in Section we set for u € Y°P!

wi () =wA*f,  f €5 (M),
and we recall that wt € D'(M) and
(128) wir (D] < (@ AFu)= (A% )%
LEMMA 12.4.1. Let Xo = (z0,&) € T*R™ \o. Then for any u € YP! one has
Xo € WF(,y(w) = (Xo, Xo) € WF(,)(AF)".
Proof. We can assume that M = R". Let Xo = (x0,&) € T*R™\o with (X, Xo) &
WF,(A*)". By (12.8), we have for x € C§°(R"™)
(12.9) [ (xed)| < C(x@ A=xed)?,
X@2 A xpl = (AT Xz ® x02).
Note that gog\l ® @2‘2 = ¢ ) with the obvious notation. Since (Xo, Xo) ¢

(21,22
WF,(A*) we can, by Definition [12.2.1], find ¥ equal to 1 near z(, a neighborhood
W of & in C", and C,e > 0 such that

(A X2 @ xpd) < O3 ((Im2)*+(1m=)°—¢)

By (12.9), this implies that Xo ¢ WF,(w}). Using (12.5) one obtains the same
result for the C'>° wavefront set. a

THEOREM 12.4.2. Let P an analytic Klein-Gordon operator on (M, g) andw a
pure, analytic Hadamard state for P. Then w satisfies the Reeh-Schlieder property,
i.e. if (Hy,mw, Q) is the GNS triple of w and O C M is an open set, the space
Vect{W,,(u)Qq, : u € C§°(0)} is dense in H,,.

[ee) o0
CEO Ly GE0)
PCg (M) PC§e(0)
Let u € Y°P! such that w-Atf =w-A~f = 0, Vf € C°(0), i.e. suppwr C
M\ O. By ([12.6), N(suppwi) C WF,(w), hence N(suppwi) x N(suppwy) C
WF,(A*)". This contradicts the fact that w is an analytic Hadamard state, since
it is impossible that both (z,€) and (z, —£) belong to N or to N~. Therefore,
dsuppwr =0, i.e. wt = 0. This implies that u is orthogonal to C§°(M) for (-|-).,
hence u = 0. |

Proof. We will apply Proposition |4.9.5| for Y =

REMARK 12.4.3. Note that much weaker conditions than the Hadamard property
of w are sufficient to ensure that the Reeh-Schlieder property holds: it suffices that
if (X,X) € WFL(AT), then (=X, —X) & WF,(AT), where —X = (z,—&) if
X = (2,6).
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12.5. Existence of analytic Hadamard states

The question of the existence of analytic Hadamard states cannot be settled as
easily as in the C* case. In fact, the deformation argument of Fulling, Narcowich
and Wald presented in Section [B.9] relies on cutoff functions, and hence does not
apply in the analytic case.

Strohmaier, Verch and Wollenberg [SVW| Theorem 6.3] proved that if (M, g)
is stationary, then the vacuum and thermal states associated to the group of Killing
isometries are analytic Hadamard states.

The following theorem, which essentially settles the existence question, is proved
in [GW5| using a general Wick rotation argument.

THEOREM 12.5.1. Let (M, g) be an analytic, globally hyperbolic spacetime hav-
ing an analytic Cauchy surface. Let P be an analytic Klein-Gordon operator on
(M, g). Then there exists a pure analytic Hadamard state for P.

12.6. Wick rotation on analytic spacetimes

Let (M,g) be an analytic, globally hyperbolic spacetime and assume that ¥
admits an analytic, space-like Cauchy surface. Let P an analytic Klein-Gordon
operator on M.

Clearly the diffeomorphism x : U — V in Proposition [5.4.7] given by Gaussian
normal coordinates to ¥ is analytic. We have x*g = —dt?> + h(t,z)dz?, where
h(t,z)dz? is a t-dependent Riemannian metric on ¥, analytic in (¢,2) on U.

One can moreover ensure, after an analytic conformal transformation, that the
Riemannian manifold (X, (0, z)dz?) is complete, see [GWSH], Subsection 3.1].

After conjugation by an analytic function of the form e'¥’, see Subsection
the pullback of P to U can be reduced to a model Klein-Gordon operator

P =0 +r(t,2)0; + a(t,z,d,),
as in Section [11.2)

12.6.1. The Wick rotated operator. The function ¢t — r(¢,-) and the dif-
ferential operator ¢t — a(t, x, 0,) extend holomorphically in ¢ in a neighborhood W
of {0} x ¥ in C x X. Therefore, there exists a neighborhood V of {0} x ¥ in R x X
on which the Wick rotated operator

(12.10) K = —0? —ir(is, 2)0s + a(is, r, 0,)

obtained from P by the substitution ¢ = is is well defined and analytic in (s, z) on V.
Shrinking V' we can assume that V' is invariant under the reflection (s, z) — (—s, z).
We have oy, (K) = 02 + £-h(is, 2)€, hence after further shrinking V, we can also
assume that K is elliptic on V.

Note that for the moment K has no realization as an unbounded operator. To
fix such a realization, one introduces Dirichlet boundary conditions on the boundary
of some open set 0 C V. The natural way to do this is by sesquilinear form
arguments. Namely, we set (s, z) = (h(is, z)*h(is, )2, which is positive definite,
and denote by L2(Q) the space L2(Q,|h(s,z)|2dxzds). Similarly, we denote by
L2(%;C?) the space L2(%, |h(0, )|z dx; C?).

Let H}(Q) be the closure of C§°(£2) with respect to the norm

||u||§{1(9):/Q(|8su|2—i-ajﬂh%kaku—i-|u|2)|h(0,x)|éd:cds7

and let
QQ(’U,U) = (U|K’U,)L2(Q), Dom QQ = CgO(Q)
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One can show, see [GW5| Proposition 3.2|, that one can choose 2 close enough
to {0} x ¥ so that Qq is closeable on C§°(Q) and its closure Q, is sectorial with
domain H{(€2), see [Kal, Chapter 6] for terminology.

One denotes by K the closed operator associated to Q. One can show that
0 & o(Kq) if Q is close enough to {0} x X. This is deduced from the one-dimensional
Poincaré inequality [, [dsul*ds > (55)* [, |ul®ds.

12.7. The Calderén projectors

The Calderon projectors are a well-known tool in the theory of elliptic boundary
value problems. Let us first explain this in an informal way.

Let X a smooth manifold and 2 C X an open set with smooth boundary. If
F(X) C D'(X) is a space of distributions, we denote by F(Q) C D’'() the space
of restrictions to Q of elements in F(X). So, for example, D’(f2) is the space of
extendable distributions on 2 and any u € D’(f2) has an extension eu with eu = 0
in X\ QL

Now let K be an elliptic, second-order differential operator on X. Let us assume
that K has some realization as an unbounded operator, still denoted by K with
0¢o(K). Set QF =Q and Q- = X \ QL If u € D/(QF) satisfies Ku = 0 in QF,
then its trace

vy = ( 6%‘;9 ) € D' (99; C?)

is well defined, where 9, is some fixed transverse vector field to 0f2. Let
ZF = {f e D'(09%;C?) : f = vFu, for some u € D'(QF), Ku = 0}.

Then Z*,Z~ are complementary subspaces in D'(9). The Calderén projectors
C’g are the projectors on Z* along Z¥.

Let us assume for example that X = R, x S, where (S,h) is a compact Rie-
mannian manifold, K = —9? — A, + m? and QF = R* x S. Then if u € D'(QF)
satisfies Ku = 0 in QF we have u(s,-) = eT*¢v(-) for v € D'(S) and €2 = —Aj, +m?.

Further, we have y*u = and an easy computation shows that

v
+ev
1 1 et
+ —_ —

Co = 2 < +e 1 ) ’

which are exactly the projections ¢t in (4.46) associated to the vacuum state for
the ultra-static spacetime (R; x S,g), g = —dt?> + h(x)dz? and the Klein-Gordon
operator —Og 4+ m?.

We now define the Calderén projectors in our concrete situation. We take
OF = QN {£s > 0}, set

yu = ( _gjirz ) uweC®(Q),

and denote by 4* the analogous trace operators defined on C>°(Q%). Let also

V=006 fo+d(s)® f1, = < ;? > € C5o(%)?,

which is the formal adjoint of v : L2(2) — L?(X;C?), and

s (30D 1),

where d(t,y) = |h(t,z)|Y/*|h(0, )|~/
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DEFINITION 12.7.1. The Calderon projectors for Kq are the operators
C% = xyiKglfy*S.

Note that it is not a priori clear that C’é are well defined, even as maps from
C§°(%)? to D'(X)?. Despite their name, it is even less clear whether C’g are projec-
tors on suitable spaces. The first issue is fixed by the following result from [GW35],
which is well known if ¥ = 9QF is compact.

PROPOSITION 12.7.2. The maps C& belong to W>°(3; My(C)). In particular,
they are well defined from C§°(%;C?) to C>°(%;C?).

12.8. The Hadamard state associated to Calderén projectors

We recall that ¢ = < (])1 (])1 >

THEOREM 12.8.1. Let )\\iNick ==+qo ijz:- Then A$Vick are the Cauchy surface
covariances on X of a pure analytic Hadamard state wwick for P.

The proof that )\ﬁ,ick are the covariances of a quasi-free state is rather technical.
It relies on various integration by parts formulas and also on the fact that Ko+K¢ >
0. This positivity is a version of reflection positivity in this context.

The proof of the purity of wwick is also quite delicate, since to show that C’fjt2
are projections, one has to give a meaning to C’g o C’g, which seems difficult in this
very general situation. One has to use the characterization of quasi-free states in
Proposition and an approximation argument, see [GWS5| Section 4].

The essential ingredient for establishing the analytic Hadamard property of
wwick 18 the following proposition, whose proof is sketched below.

PROPOSITION 12.8.2.
WF,(UsCEf) C NE, Vfe&'(D)>
Proof. We prove the result for the + case. Let us set
vi=—Ko'y*Sf, gi=7Tv=Chf, u:=UsCSf,

where Usy; is the Cauchy evolution operator for P. Let us assume for simplicity that
P is defined and analytic in I x 3 for I 5 0 an open interval, and that it extends
holomorphically in ¢ to (I x iI) x 3. This can easily be ensured by a localization
argument. Writing z = ¢ + is, we denote the holomorphic extension of P by P,,
and hence P by P; and K by P,;. We set also

' =1n{+t>0}, I* =1n{+s>0},
D=1Ixil, Dt =IxiIt, D'/'=T1/"xil

Step 1.
we can write v as:

U(S, y) = Ur(iS + 07 y) - ’Ul(iS - an)7
with v'/! € Giemp (D! D'(2)). We have
Pv=105(s) @ ho(z) + 8 (s) @ hi(x) on I x .

1/ 1 1
Using that (5(3) = (S +1i0 o s — 10

= 9 ), this implies that P,v™/! = w in D*/! x %,
i
where

W(z,y) = o ® ho(z) + sy ® ha () + (2, 2),

21z 2imz2
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and r(z,z) € 0(D;D'(X)). Note that w € Oiemp(DT;D'(X)). We now define
distributions u"/!(t,z) on I'/' x ¥ by

ur/l(t, x) = vr/l(t +1i0,y),

so that Pu'/!(t,z) = P,u*/!(t 410, 2) = w(t 410, z). In Fig. 5 below we explain the
relation between v, v*/! and u'/!, the arrows corresponding to boundary values.

Fig. 5.

Since P, is hyperbolic with respect to dt, we can extend u'/! as @/! € D'(IxX)
with
PNt @) = w(t +10,z), a/\(t,z) = uw/'(t,z) in /L.

By Proposition WEF,(w(t +i0,2)) C {r > 0} and WFu*/' C {r > 0} over
I'/!' x 3, and so by Theoremwe know that WF, /! € {7 > 0} over I x .

One can then deduce from Martineau’s edge of the wedge theorem that there
exist 9"/1(2,2) € Cremp(DF; D'(X)) such that a/'(t, ) = o*/1(t +i0,z), P.o"/! = w
and */1(z,2) = v*/!(2,z) for z € D N D"/,

Now let 9(z,x) = ¥*(z,2) — 0'(2,2) € Oremp(DT;D'(X)) and @ = o(t + i0, x).
We have P,o = 0 hence P;i = 0 and WF, () C {7 > 0}, and so WF,(a) C N'* by
microlocal ellipticity.

It remains to check that @ = UsC[ f or, equivalently, that osu = v v, which
will complete the proof of the proposition.

Note that since 9(z,z) = 9*(z,2) — ¥'(2,2), we have v(s,z) = o(is,z) for
s > 0. If we were allowed to take directly the limit s — 0T, this would imply that
(0, ) = lim,_,o+ 0(is, ) = lim,_,o+ v(0, ), and similarly i~10,@(0, z) = lim,_,+-
psv(0,7) ie. onli=yTv=CF f.

To justify this computation we use the fact that @ € C°°(I;D'(X)), which in
turn follows from the fact that P,a = 0. If ¢ € C§°(X), then we have (u(t,-)|p) =
lim, o+ (0(t+ie, -)|) in D'(I). Since (u(t,-)|p) € C(I), we actually have (u(t, -)|p) =
lim, o+ (0(t + i€, -)|) in C*°(I), which justifies the above computation. O

12.9. Examples

We conclude this chapter by giving some explicit examples of Calderén pro-
jectors and of the quasi-free state they generate in the ultra-static case. We have
then

P=0?+¢, K=-0>+¢, fore=(—A,+m?)2.

One can realize K as a selfadjoint operators in various ways. Let us list a few
examples.
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12.9.1. Boundary conditions at infinity. Let K., the natural selfadjoint
realization of K on L?(R) ® L*(¥). We saw in Section that the associated
Calderén projectors for QT = RT x ¥ are

1 1 et
+ _ =
C°°2<ie 1 )’

and the associated state is the vacuum wy,. for P.

12.9.2. Dirichlet boundary conditions. Let now Kp be the selfadjoint
realization of K on L?(] — T,T[) ® L?(X) with Dirichlet boundary conditions on

s = £T. We can easily compute K;l, namely K7'v = u — r, where

u(s) = (2¢)7! /+OO (0(5 — e (57 L g(s' — 8)6(575/)6>1}(3/)d5/,

and
—1
T(S) — (26)_1 (e4Te _ 1) (e(QT—s)e,U+ — eyt — e %y + e(s—i—QT)e,U—)7
T ’
vt :/ et eu(s")ds'.
-T
Taking QT =]0,T [ xX, the Calderon projectors are
1 1 +e 1th(Te)
+_ -
(12.11) Cr = 2 ( +e coth(Te) 1 ’
The associated state is a pure Hadamard state for P. If m = 0 the infrared

singularity at e = 0 is smoothed out by the Dirichlet boundary condition. When
T — oo, C% converge to CL.

12.9.3. (-periodic boundary conditions. Let Sg =]—3/2, 3/2[ with end-
points identified be the circle of length 8 and K3* be the -periodic realization
of K on L*(Sg) ® L*(¥). The kernel of (K;*)~" has the following well-known

expression:

e—se+e(s—ﬁ)e

A 71— BN 0 e 07 )
se(i—opey 0 * €108l

extended to s € R by SB-periodicity. Let us take QT =]0,5/2[. Since 9QT =

{0} x T U{B/2} x ¥, we can identify C§°(9Q"; C?) with C§°(Z; C?) @ C§°(3; C?)

by writing f € Cg°(0Q1;C?) as f = f(O @ fB/2) for ) € C3°(Z;C?). We set
T(f(o) ® f(5/2)) — f(5/2) ® f(O)

and denote by €4 the operator € @ e.

(K5™)™H(s) =

Then an easy computation shows that the Calderén projectors are:

ot b ( 1 +e ' (coth(Beq)) + Tsh™((Zeq)) > .
A7 2\ +eq(coth(Beq)) — Tsh™((Zeq)) 1

Since 90T consists of two copies of X, the projections C’;E are associated to a
pure quasi-free state on the doubled phase space (g4, qq) obtained from (), q) =
(C§°(2;C2), q), see Subsection [£.8.4]

If we restrict this state to CCR(Y, q), we obtain the thermal state wg at tem-
perature 37! for P, see Subsection



CHAPTER 13

Hadamard states and characteristic Cauchy
problem

In this chapter we describe a different construction of Hadamard states which
relies on the use of characteristic cones and is due to Moretti [Moll, Mo2]. The
original motivation was to construct a canonical Hadamard state on spacetimes
with some asymptotic symmetries. The class of spacetimes considered are those
that are asymptotically flat at past (or future) null infinity. After a conformal
transformation, the original spacetime (M, g) can be regarded as the interior of a
future light cone .# ~, called the past null infinity in some larger space time (M, §),
where § = Q2%¢g in M.

Since .~ is a null hypersurface, any normal vector field to .# ~ is also tangent
to 7, so the trace on .# ~ of a solution ¢ € Sols.(P) of the Klein-Gordon equation
in M consists of a single scalar function. The symplectic form on Sols.(P) induces
a boundary symplectic form q s- on a space ‘H s- of scalar functions on .#~. One
can use this boundary symplectic space as a new phase space and a quasi-free state
wy— on CCRPY(H 4, q,-) induces a quasi-free state w on CCR(P).

The Hadamard condition for w is rather easy to characterize in terms of w 4,
since the covariances of w - are simply scalar distributions, and not 2 x 2 matrices
as in the case of a space-like Cauchy surface ¥ considered in Chapter [T1}

The past null infinity in an asymptotically flat spacetime (M, g) is traditionally
denoted by .# ~ and the metric § and conformal factor €2 induce on .~ a conformal
frame, consisting of a degenerate Riemannian metric i on .# ~ and a vector field n.
The group of diffeomorphisms of .# ~ leaving the set of conformal frames invariant
is called the (Bondi-Metzner-Sachs) BMS group, which is interpreted as the group
of asymptotic symmetries of M at past null infinity.

At the end of this chapter we give a short description of these objects. The BMS
group Gns acts on ‘H - by symplectic transformations, and a natural state on .% ~
should be invariant under the action of Ggms. We will describe the construction of
this state due to Moretti [Mol].

13.1. Klein-Gordon fields inside future lightcones

13.1.1. Future lightcones. Let (M, g) a globally hyperbolic spacetime and
p € M a base point. It is known, see [W1l Section 8.1], that on any spacetime M,
I (p) is open with I (p) = J, (p), 8L (p) = 0J4(p). Moreover, any causal curve
from p to ¢ € 914 (p) must be a null geodesic. Since (M, g) is globally hyperbolic,
Jy(p) is closed, see [BGPL Appendix A.5|, hence I, (p)<! = J, (p).

We set

(13.1) Mo :=1(p), C:=09l(p)\{r}

so C is the future lightcone from p, with its tip p removed and M is the interior of
C'. The following results on the causal structure of M, are due to Moretti [Moll,
Theorem 4.1] and [Mo2] Lemma 4.3].

115
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PROPOSITION 13.1.1. The spacetime (M, go) is globally hyperbolic. Moreover
(13.2) IRy = JM(K), JM(K)=JM(K)NM,, VK C M.

ProPOSITION 13.1.2. Let K € My. Then there exists a neighborhood U of p
in M such that no null geodesic starting from K intersects C' U U.

13.1.2. Klein-Gordon fields in M. Let P = P(x,0;) be a Klein-Gordon
operator in M, Giet/adv its retarded/advanced inverses and Py = Py(x,0;) the
restriction of P to My. From Proposition we obtain immediately that the
retarded /advanced inverses Giet/adv,0 Of Po are the restrictions of Giet/aqv to Mo
and hence

Go = Gl Myx Mo >

where G, G are the Pauli-Jordan functions for P, Py.

13.1.3. Null coordinates near C. Clearly, the cone C will in general not
be an embedded submanifold of M, due to the possible presence of caustics.

Let us introduce some assumptions from [GW2], which avoid this problem and
are a version of the notion of asymptotic flatness (with past time infinity). We will
come back to this notion in Section [13.5]

We assume that there exists a function f € C°°(M) such that
(13.3)

(1) CcC f_l({o})’ vaf 7é 0 on C: Vaf(p) = Oa vavbf(p) = _29ab(p)a

(2) the vector field V£ is complete on C.

It follows that C' is a smooth hypersurface, although C' is not. Moreover, since C
is a null hypersurface, V*f is tangent to C.

To construct null coordinates near C', one needs to fix a compact submanifold
S C C, of codimension 2 in M, such that V*f is transverse to S. Then S is
diffeomorphic to S*~2 and C to R x S*~2.

One can then, see e.g., [GW2| Lemmas 2.5, 2.6], prove the following standard
fact:

PrOPOSITION 13.1.3. There exist a neighborhood U of C in M and a diffeo-
morphism
x: U—RxRxS8"2

z— (f(z), s(z),0(z))
such that

(13.4) X (Vfle) = =05, ((x)9)lo= —2dfds + hi;(s,0)d6" o,

where h;j(s,0)d0'd? is a smooth s-dependent Riemannian metric on S"~2. More-
over, if h;j(0)d0'd07 is the standard metric on S"~? one has

(13.5) |hij(5,0)|7 = 0" =2)|h;(0)|7 fors €] —oo,R], R>0.

The above diffeomorphism depends only on f satisfying and on the choice
of the submanifold S.

Restricting x to C gives a diffeomorphism y[c: C — R x S*~2 that is rather
easy to describe: let us first fix normal coordinates (y",%) at p such that in a
neighborhood of p, C = {(y°)? — [y]*> =0, y° > 0}.

If {¢¢}ier is the flow of VO f on C, we define s = s(z) for z € C by © = ¢(z’)
for a unique ' € S. One sees that ¢;(z') — p when ¢ — —oo and one defines

0(x) = lim;—, oo %(qﬁt(m’)) € sn2.
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13.1.4. Change of gauge. One can view the choice of (f,S) as the choice of
a gauge. If w € C*°(M) is such that w > 0 on C and w(p) = 1, then ' = wf also
satisfies . Let also S’ be another submanifold transverse to V.

If Y : U' — R x R x S*2 is the corresponding diffeomorphism in Proposition
one can easily see that

= (Te) o (xle) ™t (5,0) — (5'(s,0),0),

for some function s'(s,8) on R x S*"~2. Explicitly, if S’ is given in the (s,6) coor-
dinates by {s = b(#)}, one has

(13.6) s'(s,0) = —b(0) + /OS w (o, 0)db.

The map v is quite similar to the so-called supertranslations, see Section [I3.5 If
h'(s',6")d0" is the corresponding metric in (13.4)), then h'd#’? = (1))*hd6?.

13.2. The boundary symplectic space

Let us consider the symplectic space (Sols.(FPp), q). Clearly, any solution ¢g €
Sols.(Py) extends to a solution ¢ € Sols.(P), hence its trace on C

(13.7) ocPo == dolc,

is well defined. Note that since C' is null, a vector field n normal to C is also tangent
to C, so O, ¢lc is determined by ¢gfc-

We would like to introduce a boundary symplectic space (He, go) of functions
on C which will play the role of (C§°(%;C?),q) for a Cauchy surface ¥ in My and
such that

oc (SOISC(PO)7Q) — (HCa QC)
is weakly symplectic, i.e. such that of,qcoc = ¢. Note that this implies that oc is
injective. The map g¢ is sometimes called a bulk-to-boundary correspondence.

The space H¢ should be small enough to admit interesting quasi-free states,
and depend only on C, not on a particular gauge (f,.5).

Let us denote by H 2% the set of g € D'(C) such that

/ |8§‘85g(s,0)|2|h(s,0)|%dsd0 < 00, Y(a,B) € N* L,
RxSn—2

equipped with its Fréchet space topology and
Hi% = {g€ Hp%g :suppg C]—o0,R], ReR}.
The space H}g depends on (f,S), but the inductive limit
Ho = U Hfs r

RER
does not. This can be verified quite easily using (13.6) and the estimates in [GW2,
Lemmas 2.7, 2.8].

ProrosITION 13.2.1. Set
. — — 1
(13.8)  G1°9c92 = 1/ (0s9192 — 910592) |h(s,0)|2dsdf, g1,92 € He.
RxSn—2

Then:

(1) go is well defined and independent on the choice of the gauge (f,S),
(2) (He,qc) is a Hermitian space,

(3) oc : (Soke(Po), q) = (o, qo) is unitary.
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Proof. q¢ is clearly well defined on H¢. Its independence on the choice of the
gauge follows from the discussion of changes of gauge in Subsection

Let us now prove (2). We denote by m(6)d6? the canonical metric on S"~2 and
set

(13.9) Ug(s,0) = |m|~*|n[Y4g o (xIc) 7 (s,0).
We have

gl’qCQZ = i71 / (85U91U92 - %135Ug2)|m|%(0)dsd9
RxSn—2

We can integrate by parts in s with no boundary terms since Ug — 0 when s — —o0
and suppUg C| — oo, R] and obtain that

(13.10) T1-qcgs = 2" / Ug10,U galml* (6)dsdb.
RxSn—2

Hence, if §;-qcg2 = 0 for all g1 € He, we have 9sUga = 0, and so Ugs = 0.
Now let us prove (3). We first show that oo maps Sols.(Pp) into He. Let us
verify that

(13.11) oc : C3°(M) — Hce continuously.

This can be easily deduced from [GW2|, Lemma 2.8]. Next, if ¢g € Sols.(Pp) with
supp ¢g C JMo(K) for some K € My, then we can extend ¢g as ¢ € Soly.(P) with
supp ¢ C J(K) and suppp N C C (Jo(K)NJy(p)) UJ_(K)NJy(p). The first set
is empty by Proposition the second is compact by Lemma [5.4.3] Therefore,
ocdo = ocu for some u € C§°(M) hence belongs to He.

We now fix a Cauchy surface ¥ in My and pick ¢1, ¢2 € Sols.(Po), 9i = 0c ;.
For J,(¢1,¢2) as in Subsection we have ¢, - qpo = fz Jo (@1, d2)n*dVolp,.
Applying the Gauss formula as in Subsection using the coordinates (f,s,6)
on C, we obtain that ¢, - g2 = G, -qcgo.

To justify the application of the Gauss formula to the non-smooth surface C!,
it suffices to replace C°' in an e-neighborhood of p by a piece of a smooth Cauchy
surface in M, the contribution of the integral on this part tends then to 0 when
e — 0. O

13.3. The Hadamard condition on the boundary

Let we a quasi-free state on CCRP® (H¢, qo), with covariances )\jé. We will
call we a boundary state. From Proposition [[3.2.1] we see that we induces a state
wo for CCR(Fy) , called the induced bulk state, by setting

(13.12) Aoi = (p¢ o Go))\(i;(gc o Gy).

We would like to give sufficient conditions on )\g which ensure that the induced
state wg is a Hadamard state.

Recall that we use the density dVol, to identify distributions with distributional
densities on Mp. Similarly, we use the density |h(s, 8)|2 dsdf to identify distributions
with distributional densities on C'. Changing the gauge (f,S) amounts to multiply-
ing distributions on C' by a smooth, non-zero function hence does not change their
wavefront set.

We will denote by X = (z,€) resp. Y = (y,n) the elements of T*X \ o resp.
T*C\o. If necessary, we introduce near C' the local coordinates (f, s,6) as in Propo-
sition which we will denote by (r, s, %), the dual variables being (o, 0, 7).

Let ¢* : T&:M — T*C be the pullback by the injection 7 : C' — M and recall that
N*C = (i*)71(0) is the conormal bundle of C' in M, see Subsection Recall
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also that N'* C T*M \ o are the two connected components of the characteristic
manifold A of p.

LEMMA 13.3.1. Consider the function F(y,n) =n-V*f(y) on T*C and denote
(13.13) T*C* :={Y e T*C: +F(Y) >0}, T*C°:={y eT*C:F(Y)=0}.
Then

(1) i : T M NNE — T*C* is bijective.

(2) (@) "YT*C°)NN = N*C,

(3) ForY € T*C, X € T*M let us writeY ~ X if Y € T*C* and (i*)"1(Y) ~ X.
Let x,v € C§°(M) with p & suppt. Then WF(ocvGx) C {(V,X) : Y ~
X, x e Mo}

The sets T*C*, T*CO are clearly independent on the choice of f.

Proof. Let us use the above coordinates, so that F(Y) = . By Proposition
we have
(13.14) p(X) = —200+ h(0,9,7), X €T:iM.

for h(s,y,m) = §-h~1(s,5)7 and N*C = {r = ¢ =7 = 0}. The proof of (1) and
(2) is then easy. Let us prove (3). Since p € supp ), the singularity of C' at p is
harmless. We check that WF (p¢) = {(YV, X) e T*C\ox T*M \o: Y =i*X} and
know that WF(yGy)' C {(X1,X2) : X1 ~ Xa,20 € My}, see Proposition [7.4.4]
Then we apply the composition rule in Subsection [7.2.8 |

Fig. 6

THEOREM 13.3.2. Let )\(‘I; be the covariances of a boundary state weo. Assume
that )\é : He — HE are continuous and let

Ay = (20 0 Go)*Aé(ec 0 Go).

Then

(1) AOjE € D'(My x My) are the spacetime covariances of a quasi-free state wg for
B.

(2) Assume that

(13.15) WEO\E) NT*CF x T*C = .

Then the bulk state wg is a Hadamard state for Py.
Proof. Assertion (1) follows from (13.11]).

The proof of assertion (2) relies on a idea due to Moretti [Mo2], which allows
to avoid the difficulties caused by the tip p of C. Note first that since )\g = )\g*

we deduce from ((13.15) that
(13.16) WEO\E)  (T*CruT*C%) x (T*CuT*CY).
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It clearly suffices to estimate WF(xAZx)’ for x € C5°(My).
Observe first that ocGox = 0cGx since Go = G [myxm,- By the support
property of G, we can pick ¢ € C§°(M) such that oo Gx = pcyGx. By Proposition

13.1.2] we can split ¥ as ¢y + Vs, Where ¢; € C§°(M), 1o = 1 near p, and no null
geodesics from supp x intersect C' in supp1g. Using that WF(G)' C C we obtain

that Y9Gy : D'(Mp) — C§°(M) continuously, hence
ohoGx : D' (M) — He

continuously, by . Since by assumption )\?j : He — HE is continuous, in the
definition of AOi we can replace pcGx by 00?0 Gx, modulo a smoothing operator
on Mo.

From Lemma [13.3.1] we know that

WF (00t GX) € {(V,X) 1Y ~ X,z € Mo},

WF((0c?0Gx)*) C{(X,Y): Y ~ X, 2 € My}.
We observe that if Y ~ X for € My, then Y & T*Y?. Indeed, if we assume that
Y € T*Y? and Y = i*X’ for X’ ~ X, then necessarily X’ € N*C, by Lemma
[3:3:1] Since C is null, N*C' is invariant under the Hamiltonian flow of p, hence
X € N*C and z € C, which is a contradiction.

This implies that we can find a pseudodifferential operator @ € ¥(C) with
essential support (see Subsection [10.2.5) disjoint from 7*C" such that

00V GX = QocVsGx modulo a smoothing operator,
and hence we can replace )\é by Q*/\gQ with
WF(Q*\5Q) c T*CT x T*C™,
by (13.16). We can then apply twice the rules for composition of kernels in Sub-
section and obtain by Lemma [13.3.1] that
WF(xAZx) € Nt x NE,

i.e. condition (genHad) in Definition is satisfied. By Thm wo is a
Hadamard state for Py. O

13.4. Construction of pure boundary Hadamard states

It is now rather easy to construct, for each given gauge (f, S), a boundary state
we which induces a Hadamard state wg in My. We denote L2(R x S™~2; |m|z dfds)
simply by L?(R x S"~2) and recall that the map U : He — L?*(R x S"~2) was
defined in .

THEOREM 13.4.1. Set
G1-AE92 = 2(Ugi |1+ (Dy)|Ds|Ug2) 12 (R xsn—2).-
Then the following holds:
(1) )\g are the covariances of a pure quasi-free state we on CCRP (Mo, qo).
(2) we depends on the choice of f but not of S.

(3) we induces a Hadamard state wy in Py.
(4) Assume that dimM > 4. Then the state wy is pure.

Proof. The fact that )\é are the covariances of a quasi-free state is obvious. To
prove that we is pure, we can apply Proposition [£.9.3] The completion of UH¢ for
the norm obtained from A% is equal to |Dy|? L*(R x S$"~2), on which 1 (D,) are
complementary projections. This completes the proof of (1).

Changing the surface S amounts to replacing s by s’ = s—b(#) for some function
b on S"72 so Dy = D, which proves (2). Statement (3) follows from Theorem
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[13.3.2]and the fact that in the coordinates (f,0) on C, T*C¥ is given by {£o > 0}.
We refer the reader to [GW2| for details.

It remains to explain the proof of (4). The fact that we is pure does not
automatically ensure that wg is pure. To prove this one has to show, again by
Proposition that UpcSolse(Pp) is dense in |D,|2 L2(R x §"~2).

This can be deduced from the solvability of the characteristic Cauchy problem

PQQZS =0in Mo,
(13.17) { ol g
in energy spaces, by adapting a method due to Hormander [H6]. We refer again
the reader to [GW2]. The restriction to n > 4 comes from the use of a Hardy-type
inequality on the cone C. |

13.5. Asymptotically flat spacetimes

The above method of constructing a bulk Hadamard state from a boundary
state was originally developed by Moretti [Moll, [IMo2| for spacetimes that are
asymptotically flat at past (or future) null infinity. In this case it is important
to consider only the conformal wave equation and to assume that the spacetime
dimension n is equal to 4 (the value of n is important when one takes the trace of
some identities between tensors). In this subsection we would like to explain this
notion and its relationship to the previous subsections. Our exposition below follows
[Mo2|, [DMP1] or [W1], Section 11], with some slight differences. For example,
the conformal factor Q already incorporates a change of gauge Q — Q' = w() such

that (13.18]) is satisfied.

DEFINITION 13.5.1. A spacetime (M, g) is asymptotically flat at past null in-
finity if there exists another spacetime (M,g) such that:
(1) M C M is open, I~ := OM is a smooth hypersurface homeomorphic to RxS?,
2) there exists ) € C‘X’(M) with Q>0 0on M, 2=0,dQ2#0 on .,
) Gl = Q% mg and I~ N JY(M) =0,
4) VOV, Q=0 on .7,
5) Ifi: I~ — M 'is the canonical injection, then

w

(
(
(
(

(i) n® = VQ is complete on I,
(i) i*(VaVpe2) = 0.
Let us denote by M the set of (g, 2) such that conditions (2), (3), (4), (5) hold.
From conditions (2), (3) we see that if (g,) and (§’,Q’) belong to M, then there

exists w € C°(M), w > 0 such that Q' = wQ, §’ = w?§. Moreover from conditions
(4) and (5) it follows that n®V,w = 0 on .# ~, see Lemma [13.5.3| below.

(13.18)

13.5.1. Conformal frames. Let (§,) € M. The manifold .#~ is null for g
and is naturally equipped with the vector field n, which is tangent to .#~ and with
h = gl -, which is a degenerate Riemannian metric with kernel spanned by n.

DEFINITION 13.5.2. The pair (h,n) is called the conformal frame on .#~ as-

sociated to (g,). The set of all conformal frames associated to elements of M is
denoted by C.

The above change of conformal factor 2 — Q= w2 is called a gauge transfor-
mation and induces the change (h,n) — (h',n’) = (w?h,w™1n) on the associated
conformal frames.
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LEmMA 13.5.3. (1) Let (g,Q2) € M. Then the associated conformal frame
(h,n) satisfies:

(13.19) Ker h(z) = Rn(x), z € 77, Lo,h =0, n is complete.

(2) Let (h,n),(h/,n') € C. Then there exists w € C°°(F~) with w > 0 and
Low =0 such that (W', n) = (wh,w 'n).
Proof. Let us complete 2° = Q with local coordinates z?, 1 < 4 < 3, and remove
the tildes to simplify notation. Then if b = i*(V;V;Q), we have bj; = —T7; =
—19%(0i9jk + 0jgir — Okgij) since g% = 0 on .# ~. We compute the Lie derivative
Lphij = nké‘kgij + ainkgkj + ¢iOin®. Using again that ¢°© = 0, we see that
9% gr; = 69 = 0. Taking derivatives of this identity we obtain that bj; = §Lnhij,
which proves (1).
Let us prove (2). The existence of w € C*°(#~) with w > 0 is obvious. To
show that £,w = 0 we compute

Ln(w?h) = W?Lyh + 2wL,, (w)h,
Ly-1n(h)=w Lyh+dw™ @ hn+ hn®dw™?!,
whence
Loy1p(wW?h) = wLl,h +2L,wh —dinw ® hn — hn @ dInw.
Using (1) for (h,n) and (A/,n’) this implies that £,w = 0. O

13.5.2. Bondi frames. Let now (h,n) be a conformal frame and S, S’ C .~
be two smooth surfaces transverse to n. Since n is complete, its flow defines a
diffeomorphism
Pgres: S — 5,
by identifying points in S and S’ which are on the same integral curve of n. This
diffeomorphism is independent on (h,n). Moreover, the flow of n defines a diffeo-
morphism

Yn,g 1 Ry X 8 — I 7, with
S =1ns({0} xS), n=(Yns)Z, (¥ns)h=nhs(y)dy

where hg(y)dy? is a Riemannian metric on S, independent on u. We have w;g(S’) =
{(u,y) : u= f(y))} for some f € C>*(S) and

(13.21) Unsr 0 Yns(w,y) = (u— f(y) dsres(y)), (u,y) € Ry x S.

Since .# ~ is diffeomorphic to R x S?, S is diffeomorphic to S2. Let mg denote
the unique Riemannian metric on S of constant Gaussian curvature equal to 1. By
uniqueness, we have mg = (¢g/g)*mgr.

(13.20)

DEFINITION 13.5.4. A conformal frame (h,n) is a Bondi frame if for some (and

hence for all) surface S transverse to n one has h{gs= mg.

_ LEMMA 13.5.5. The set C of conformal frames contains a unique Bondi frame
(hp,nB).

Proof. Let us fix (iz, n) € C and S transverse to n. After transportation by ¢, g,
all conformal frames are of the form (w%hg,wg'd,) for some wg € C(S), wg > 0.
It is well known that any Riemannian metric on S? is conformal to the standard
metric. This means that there is a unique such wg with w%hs =mg. O

If we fix a transverse surface S and identify S with S? we can introduce the
so-called Bondi coordinates on .#~, (u,0, ), such that ng = 9, and hg = df? +
sin? fdp?.
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The existence of a unique Bondi frame implies the following rigidity result: we
saw that there exists a diffeomorphism ¢ : .#~ — R, x S? such that the natural
image of C under v is the set of pairs (w?mgz,w™19,) for w > 0 an arbitrary
smooth function on S2.This implies that if (M;, g;) i = 1,2, are two asymptotically
flat spacetimes, there exists a diffeomorphism ¢ : & — ., such that ¢(C;) = Co.
Another illustration of this rigidity is the fact that the BMS group defined below
is independent of the asymptotically flat spacetime (M, g).

13.5.3. The BMS group. We now recall the definition of the Bondi-Metzner-
Sachs group, see e.g. [W1l Section 11] or [DMP1]. Its physical interpretation is the
group of asymptotic symmetries of (M, ¢g) near past null infinity. If y : &~ — &~
is a diffeomorphism, we let x act on (h,n) by

ay(hon) = ((X) "y xam).

DEFINITION 13.5.6. The BMS group Gpums is the group of diffeomorphisms
X: I~ = I such that ay (C) C C.

One can associate to x € Gems a conformal factor w, by the rule
(13.22) ay(hp,np) = (wWi(x ") hp,wy ' x:np),
where (hp,np) is the Bondi frame. From o, 0@y, = @y, 0y, We obtain the identity

(13.23) Wyroxs = (Wyy © X2)Wy, -

It is convenient to describe the action of the BMS group in Bondi coordinates
(u,0,p) on £~ associated to the Bondi frame.

Let us identify S? with C by stereographic projection: (6, ¢) — z = ei¥ co‘ch(g)7
so that df? + sin? 8dy? = 4(1 4 2z)~2dzdz.

Functions on C will be denoted by f(z,%), to emphasize the fact that they do
not need to be holomorphic (nor anti-holomorphic). One can prove that Ggys can
be identified with the semi-direct product of SOT(1,3) and C°°(S?) as follows, see
[DMP1]:

Let IT : SL(2,C) — SO'(1,3) be the covering map with II-!(1) = {+1}. For

AH< an ba ) one sets
can da

B 1+ |z)?
lapz + bal? + |eaz + dal?

KA(Z,f)

and one associates to (A, f) € SOT(1,3) x C°°(S?) the map: x : £~ — ¥~ given
in the Bondi coordinates fixed above by the rule

(u,2,z) — (W, 2, 7"),

where

_ _ + b
13.24 K r_ GAZT A
(13.24) U Az, Z)(u+ f(2,Z)) and =z st dn
We have
(13.25) wy(2,Z) = Ka(2,2) "1

The diffeomorphisms obtained for A = 1 are called supertranslations.
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13.6. The canonical symplectic space on .4~

Assume that (M, g) and (M, ) (and hence (M, §)) are globally hyperbolic and
the inclusion ¢ : (M, g) — (M, g) is causally compatible, see Subsection Let
P =-0;,+ %Scalg, resp. P, be the conformal wave operator on (M, g), resp.

(M, §). By Proposition [6.3.1] the map
(Solse(P),q) 2 ¢ — ¢ = Q"¢ € Sols(P, §)

is an injective homomorphism of pseudo-Hermitian spaces, and we can consider

vi= ¢l g€ C(IT).
Since an element x of the BMS group corresponds to a change Q — ' = w, Q, we
see that the natural action of y € Ggums on functions on &~ is
(13.26) Uy = (wyv) o x 71,

and by Gems 2 x — Uy, € L(C*™(# 7)) is a group homomorphism.

In analogy with Proposition [13.2.1] one can now equip suitable subspaces of
C>(#7), such as, for example, C§°(.# ), with a canonical Hermitian form. Let
(iLB, np) be the Bondi frame and S be transverse to np.

DEFINITION 13.6.1. We set for vy,vs € C§°(I )
Wl'q’UQ = 1/ (8u@1’LU2 - ﬁlauwg)du d%lms,
RxS

where
(13.27) W=0v0Yn, s

PROPOSITION 13.6.2. (1) the Hermitian form q is independent on the choice
of the transverse surface S,

(2) one has (Uy)*qU, = q for x € Geums, i.e. Geums acts as unitary transforma-
tions of (C(F1),q).

Proof. Let us first prove (1). If S’ is another tranverse surface and w’ = vo,,, s,

then from ([13.21)) it follows that
(13.28) wi(',y) = w;i(u' + f'(y), dses (),
and (¢scs/)*mg = mg, which implies (1). )
To prove (2), we work again with the Bondi frame (hp,ng), and identify .#~

with R x S using ¢, s and S with C as in Subsection [13.5.3] The charge ¢ takes
the form

v+ =i 0, W — w10 ————dudzdz.
V1-qU2 IAXC( w W1 W2 w1 uwg) (1—}—2’2)2 uazaz

We equip R x C with the density 4(1 + |2|?) "2dudzdz and denote by w — V,w the
action of x € Gems obtained from U, and the identification . The operator
D, = i719, is essentially selfadjoint on C§°(R x C), and integrating by parts we
obtain that

T1-qua = 2(w1|Dywa) 12 (R xC)-
From (|13.24)) it follows, by an easy computation, that
(13.29) ViV = Kpl, VD, Vy = Dy,
where we consider V) as an operator on L?(R x C) and K, is the operator of
multiplication by Ka(z,%). This implies (2). |

There is a considerable freedom in the choice of a symplectic space ) on which
q is defined.
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A natural canonical choice is the space H(.# ") defined as the completion of
C§°(# ) with respect to the norm

[0l = 1wl 72@xs) + [0uw]F2@xs):

where as above w =v o, s and R x S is equipped with the density du dVol,,.

The operator D, = i~19, acting on L?(R x S) is essentially selfadjoint on
C§°(R x S) and H'(.#7) is the inverse image of Dom D,, under the map v — w =
v o ¢7LB,S~

A change of transverse surface S does not change the space H'(.#7), but
simply equips it with an equivalent norm. The group Gpys acts on (H*(.#7),q)
by bounded unitary transformations and ¢ is non-degenerate on H'(.# ~), since D,,
is injective.

13.6.1. The canonical quasi-free state on .# . We now describe the con-
struction of a canonical quasi-free state w »— on CCRP°(H'(.# ), ¢), due to Moretti
[Moi].

ProPOSITION 13.6.3. Let us set
U1 A vy = 2(wi|Igs (Dy)| Dy|ws) r2rxsy, vi € HY(I ),

forw; =v; 0y, 5. Then
(1) A* are independent of the choice of the transverse surface S,
(2) AE are the covariances of a pure, quasi-free state w - on CCRP{(H (.7 7),q)
which is invariant under the action of Ggums.

Proof. If 5,5 are two transverse surfaces and w = v o ¢, .5, W = v o Yy, s,
then w’ = Ug/.gw, where Ug/_g is given in . We check that Ug/ g :
L*(R x S) — L*(R x S') is unitary with Us/«sD,U%,, ¢ = D,. This implies that
A* are independent of the choice of S.

To prove (2), we use the notation in the proof of Proposition Let Sy =

VK, ?, which is unitary by . Since K commutes with D,, we have Sk D,, S
= D,, hence Sillg+(D,)|Dy|Sa = Lg+(Dy)|Dy| by functional calculus. Using
again the fact that Ky commutes with D,,, this implies that V{ Ig+ (D,)|Dy|Va =
s (Dy)|Dyl, fee. that UZAZU, = A%, O

Moretti proved in [Mol] that w - is the unigue pure quasi-free state w on

CCRPY(H'(.#7), q) with the following two properties:

(1) w is invariant under Gpums,

(2) if {Ts}ser C Gpums is the one-parameter subgroup of translations in u and
as = Ur,, then w is a non-degenerate ground state for {a;}ser, see Definition
9.1.1]

13.6.2. Construction of a quasi-free state in M. To obtain quasi-free
states for P in M from states on CCRP°(H'(.#7),q), 0. Sols(P) should be
contained in HY(.#~) for g s— ¢ = (A1) »-.

If we introduce coordinates (u,y) on £~ asin Subsection then it follows
from Deﬁnition (3) that JM(K)N.#~ is included in w;g({u < Ck}) for any
K &€ M, so the support of ¢ s-¢ for ¢ € Sols.(P) only extends towards —oo in the
u variable.

If (M, g) is asymptotically flat with past time infinity, see [Mo2l, Appendix A]
for a precise definition, then u = —oo corresponds to an actual point i~ of M , and
the situation is essentially the same as the one in Section i.e. (M, g) is modulo
a conformal transformation the interior of a smooth, future lightcone.
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In more complicated situations, like the Schwarzschild spacetime, see [DMP3]
or cosmological spacetimes, see [DMP4], it is necessary to prove some decay esti-
mates of o - ¢ and its derivative in v when u — —oo to ensure that g - Sols.(P) C
H'(.#7). The discussion of these estimates is beyond the scope of this survey.



CHAPTER 14

Klein-Gordon fields on spacetimes with Killing
horizons

As recalled in the Introduction, one of the most spectacular results of QFT on
curved spacetimes is the Hawking effect, discovered by Hawking [Hal|. Hawking
considered a Klein-Gordon field in a spacetime describing the formation of a black
hole by gravitational collapse of a spherically symmetric star, the spacetime being
eventually equal to the Schwarzschild spacetime in the exterior of the black hole
horizon. Considering the state which in the past is the vacuum state for the region
outside of the star, he gave some heuristic arguments to show that in the far future
and far away from the horizon this state is a thermal state at Hawking temperature
Ta = k(27) L.

The first complete justification of the Hawking effect is due to Bachelot [B],
who considered the same situation as Hawking.

Another derivation of the Hawking effect is due to Fredenhagen and Haag [FHI.
They considered the same situation as Hawking and the more general case of a state
for the Klein-Gordon field whose two-point function is assumed to be asymptotic
to that of the vacuum at spatial infinity and of Hadamard form near the horizon.

We discuss in this chapter another phenomenon related to the Hawking radia-
tion, namely, the existence of a ‘vacuum state’ for a Klein-Gordon field on space-
times with a bifurcate Killing horizon, see Section for a precise definition. The
existence of such a state is related to the so-called Unruh effect, [U], which we now
briefly describe.

In the Minkowski spacetime (R'?, 1)) one considers a right wedge M+ = {(t,x) :
|t| < x1}, where x; is a space coordinate. The spacetime (M™,7) is invariant under
the Lorentz boosts with generator

X = G(Xlat + taxl)7

where a > 0 is an arbitrary constant. Although X is not globally time-like in R,
it is time-like in M™ and its integral curves in M™ are worldlines of uniformly
accelerated observers, with acceleration equal to a.

Since X is time-like in M™, one can construct, for any 8 > 0, the associ-
ated B-KMS state wg for the Klein-Gordon operator —0 + m? restricted to M,
see Chapter @ Unruh proved that if 3 = (27)a™!, then wg is the restriction to
M of the Minkowski vacuum wyac. This result is interpreted as the fact that the
Minkowski vacuum state is seen by uniformly accelerated observers with accelera-
tion a as a thermal state at temperature a(27)~".

Note that the Killing vector field X vanishes at B = {t = x; = 0}, which is
the intersection of the two null hyperplanes {¢t = £x; }, whose union is an example
of a bifurcate Killing horizon. In spacetimes with a bifurcate Killing horizon, the
existence of a state analogous to the Minkowski vacuum, called the Hartle-Hawking-
Israel state, was conjectured by Hartle and Hawking [HH| and Israel [Is|, using
formal Wick rotation arguments.

127
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We will explain the rigorous construction of the HHI state in [G2], which is
based on methods already used in Chapter namely the Calderon projectors from
the theory of elliptic boundary value problems.

For static Killing horizons, i.e. when X is orthogonal to some Cauchy surface
in the exterior region, the HHI state was already constructed by Sanders in [S3].

The condition that the Killing vector field X generating the horizon is time-like
in the exterior region excludes the physically important Kerr spacetime. In fact,
applying Proposition [0.2.1] to the exterior region of the Kerr spacetime, we know
that no KMS state for X exists in the exterior region.

Much more general non-existence results on the Kerr spacetime were shown by
Kay and Wald in [KW]. For example assuming the existence of some solutions
of the Klein-Gordon equation exhibiting superradiance, it is shown in [KW] that
there exist no X-invariant state which is Hadamard near the horizon. Therefore, it
is expected that no HHI state exists in the Kerr spacetime.

14.1. Spacetimes with bifurcate Killing horizons

Let (M, g) be a globally hyperbolic spacetime with a complete Killing vector
field X. We assume that B := {z € M : X(z) = 0} is a compact, connected
submanifold of codimension 2, called the bifurcation surface. If moreover there
exists a smooth, space-like Cauchy surface ¥ containing B, the triple (M, g, X) is
called a spacetime with a bifurcate Killing horizon, see [KW\ Section 2]. If N,w
are the lapse function and shift vector field associated to X, ¥ as in Section[9.2] the
Cauchy surface X splits as

Y=Y UBUXt, XF:={yeX:£N(y) >0},
i.e. X is future/past directed on ¥*. Accordingly one can split M as
M=MtUM UFUP,

where the future cone F := I (B), the past cone P := I~ (B), and the right/left
wedges M* := D(X%), are all globally hyperbolic when equipped with g.

The boundary of the future cone dF may be a black hole horizon, in which
case OP is the corresponding white hole horizon. The bifurcate Killing horizon is

H:=0FUOIP,

and the Killing vector field X is tangent to H. In Fig. 7 below the vector field X
is represented by arrows.




14.3. WICK ROTATION 129

14.1.1. The surface gravity. Animportant quantity associated to the Killing
horizon H is its surface gravity, defined by

1
K% = _i(vaava“”B’ x> 0.

It is a fundamental fact, see [KW) Section 2|, that the scalar k is constant on B
and actually on the whole horizon H.

14.1.2. Wedge reflection. In concrete situations, like the Schwarzschild or
Kerr spacetimes, the metric g is originally defined only on the right wedge M™ and
first extended to the future cone F by a new choice of coordinates. The regions
P, M~ are constructed as copies of F, M™, with reversed time orientation, glued
together along B. This motivates one to assume the existence of a wedge reflection,
i.e. an isometric involution R of M~ UU U M, where U is a neighborhood of B
in M, such that R reverses the time orientation, R = Id on B and R*X = X.

It can be shown, see [S3], that there exists a smooth, space-like Cauchy surface
¥ with B C ¥ such that R : ¥ = . The restriction r of R to ¥ is called a weak
wedge reflection. We have

(14.1) rlg=1Id, r:¥* = 5F,

In the sequel we will fix such a Cauchy surface.

14.1.3. Stationary Killing horizons. The bifurcate Killing horizon # is
called stationary, resp. static, if the Killing vector field X is time-like in M™, resp.
time-like and orthogonal to ¥ in M.

14.2. Klein-Gordon fields

Let us consider a Klein-Gordon operator
P = 7Dg + V,

where V' € C*°(M;R) has the same invariance properties as g, i.e. XV = 0,
V o R =V. We also strengthen the condition V' > 0 in Section [0.3] to

V(z) >m? x€M, m>0,

i.e. we restrict our attention to massive Klein-Gordon fields.

If X is time-like in M™, we can apply Sections Subsection to the
Klein-Gordon operator P , on the globally hyperbolic spacetime (M, g), with
Cauchy surface . We obtain, for each 8 > 0 the 3-KMS state wg acting on
CCRP (CE(S1;C?), q).

Following Section we can associate to wg the doubled state wq, which is
associated to the doubled Hermitian space

(14.2) (CE°(=H;C?) @ C3R(B1;C?), g @ —q).

14.3. Wick rotation

The key step in the construction of the Hartle-Hawking state is the inter-
pretation of the double 8-KMS state wp using the Wick rotation in Killing time
coordinates. We will now explain this important step.
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14.3.1. The Wick rotated metric. As in Section we can identify M
with R x ¥, the metric g taking the form

9= —N?(y)dt* + hi;(y)(dy' +w'(y)dt)(dy’ + w’ (y)dt),

see (9.12). As in Chapter we can perform the Wick rotation, replacing the
Killing time coordinate ¢ by is. In this way we obtain from g the complex metric

g% = N?(y)ds® + hy;(y) (dy’ + iw' (y)ds) (dy’ + iw’ (y)ds).
If ¢ = (r,n) € CT,M and y € &%, then
gy = (N?(y) — wly)-hy)w(y)Tr +7-h(y)n
+i(w(y)-h(y)nr + Tw(y)-h(y)n).

Since X = % is time-like in M, we know that N%(y) > w'(y)hs;(y)w’ (y), from

which we deduce that
(14.3) [Im(€-g°" ()€)| < c(y)Re(€- g (y)€), ye T,

for some c(y) > 0. It is convenient to have some uniformity in y in the inequality
(14.3]), which follows if we require that there exists § > 0 such that

(14.4) X (y) + dw(y) is time-like for y € X.

One can show that it suffices to assume that (14.4) holds away from a compact
neighborhood of B in X, i.e. near spatial infinity. From (14.4) we deduce the
uniform version of (14.3), namely, there exists ¢ > 0 such that
(14.5) Im (&g (y)€)| < cRe(€-g(y)€), yeT™.
Another useful fact is that |g®|(y) = |det g**!(y)| = N2(y)|h(y]) > 0 for all
y € 3, so the density dVoljeuer = |ge“d|%dsdy is positive.

14.3.2. The Wick rotated operator. The Klein-Gordon operator P takes
the form

P = (9 +w*)N"2(8; + w) + ho,
see (9.17)), and becomes after Wick rotation the differential operator
Pl = (—9, + iw* )N ~2(ds + iw) + hy.

One can define the Laplace-Beltrami operator Ageua associated to the complex

metric ¢°! as in the Riemannian case and one has P! = —Agena +V (y). It also

follows from that P! is an elliptic differential operator.

Let us now associate to P°"! some densely defined operator. It is a well-known
fact that to describe quantum fields at temperature 5~! by Euclidean methods, the
Euclidean time s should belong to the circle Sg of length £.

Therefore, we set M := S5 x =+ and consider the sesquilinear form

Qp(u,u) = /Me . TP dVolyewsr, Dom Qg = C§° (M.

It follows from (|14.5) that Qg is sectorial, i.e.,
Im Qs(u,u)| < cReQp(u,u), u € DomQsg,

and hence closeable. The domain of its closure Qcﬁl equals the Sobolev space
H' (M), defined as the completion of C§°(M®"“!) with respect to the norm

|ul|? = /M 1 (Va-Re(¢°") " (y) Vu + V (y)au) dVol joer.

By the Lax-Milgram theorem, one associates to Q%l a boundedly invertible operator

Pgucl . H1<Meuc1) AN Hl (Meucl)*
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which corresponds to imposing [-periodic boundary conditions for the operator
Peucl.

14.3.3. Calderén projectors. Consider the open set
Q:=]0,8/2[x2T c M.

Note that 9 has two connected components {0} x £t and {3/2} x £, both
identified with ¥*. We will use the notation introduced in Section for spaces
of distributions on 2.

One defines the outer unit normal to 9 for the complex metric g®"°! as the
unique complex vector field v such that

(i) v(z)-g®*Nz)v =0, Vv € T,09,
(i) v(z) g™ (x)v(z) =1,
(iii) Rewv(x) is outwards pointing.
We see that v equals —N (£ —iw) on {0} x £+ and its opposite on {3/2} x £+.

One can then define the trace

ulon
yu = < V'VFUF{)Q > € C™(09;C?)
for u € C>(Q) with P!y = 0 in 2 and the Calderén projectors cé[ associated
to (Pg“d, ) as in Section see [G2], Subsection 8.7] for the precise definitions.
The important observation now is that the doubled state wq constructed from wg
can be expressed in terms of the Calderén projectors c?. In fact one has, see [G2]
Proposition 8.8]:

PRrOPOSITION 14.3.1. The covariances of wq are equal to

A =3Qo(laeT) 'cg(1eT), Q=qoq,

1 0
whereT-(O _]1).
+

Two comments are in order at this point. First, the Calderén projectors 3
are defined on C§°(992; C?), or equivalently on C§°(X1;C?) & C5°(XT;C?), which
is exactly the doubled phase space on which the doubled state wq is defined.

Second the operator T takes care of the fact that wq is associated to the Her-

mitian form ¢ @ —gq, see ([14.2)), and not Q = ¢ & q.

14.4. The double 3-KMS state in M™ U M~
Recall that the wedge reflection R maps M™ to M~ and reverses the time

orientation. It is hence easy to obtain from wq a pure quasi-free state wp in M™*T U
M~ called the double B-KMS state. This provides a first extension of the thermal
state wg in M+ to a pure state in M UM . The Cauchy surface covariances A3
of wp are the sesquilinear forms on (C§°(X+;C2),q) @ (C§°(X7;C?),q) given by
M =+Qo(1a r*)flcg:(]l oY),
where 7* f(y) = f(r(y)). Note that
Ry =Tr" : (C(27;C?), q)(C5°(2F;C?), —q).

is exactly the unitary map on Cauchy data induced by the wedge reflection R :
Cge(MT) = Cg°(M™).
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14.5. The extended Euclidean metric and the Hawking temperature

The constructions carried out up to now are valid for any S > 0. The Euclidean
metric ¢°"°! usually degenerates at the bifurcation surface B. In fact, for w € B, let
n,, the unit normal to B for the induced metric h on ¥, pointing towards ©*. Using
n, one can introduce Gaussian normal coordinates (u,w) on a neighborhood of B
in 3, with ¥T corresponding to u > 0. One can then show that in the coordinates
(s,u,w), the Euclidean metric g°"“! near u = 0 takes the form

w2uPds® + du® + k(w)dw?,
modulo higher-order terms depending only on (u?, w), where the Riemannian metric
k(w)dw? is the restriction of h(y)dy? to B, see [G2, App. Al.

We recognize in the first two terms the expression of the flat Riemannian metric
dX? +dY? if X =ucos(ks), Y = usin(ks), i.e. if (u,s) are polar coordinates.

Since s € Sp, we see that if 3 = (27)s~!, ie. if 37! equals the Hawking
temperature k(27) !, then g®“! extends across B to a smooth complex metric geuic!,
living on a smooth manifold M2, which near B is diffeomorphic to R? x B. For
other values of 3, no such smooth extension exists, and ¢g°"! has a conical singularity
at B.

It is also important to understand the open set Qeyxy C MEY corresponding
to Q C M. Its boundary 0y is obtained by gluing together along B the
two connected components {0} x X7 and {8/2} x T of Q. Actually, 9Qcy; is
diffeomorphic to . The reason for this is that in coordinates (u,w), the weak wedge
reflection r becomes simply the reflection (u,w) — (—u,w), and 3T is identified
with X~ by r.

14.6. The Hartle-Hawking-Israel state

cucl 5 Laplace-Beltrami operator

<t for the open set Qext.

Since the boundary 0€Q. is diffeomorphic to ¥, it is tempting to use cict
to construct Cauchy surface covariances on Y, which, if the required positivity
properties are satisfied, will define a quasi-free state on the whole of M. It turns
out that this is indeed the case, the resulting state being the sought-for Hartle-

Hawking-Israel state. Let us thus summarize the main result of [G2].

One can associate to the extended metric g

Pl and consider its Calderén projectors c

THEOREM 14.6.1. There exists a state wynr for P in (M, g), called the Hartle-
Hawking-Israel state, such that:

(1) wymnr is a pure Hadamard state in M ;

(2) the restriction of wgnr to MTUM™ is the double B-KMS state wp at Hawking
temperature Ty = k(27) "1, where k is the surface gravity of the horizon;

(3) wnmnr s the unique extension of wp such that its spacetime covariances AT map
C§° (M) into C*°(M) continuously. In particular, it is the unique Hadamard
extension of wp.

Proof. Let us now explain some ingredients of the proof of Theorem [I4.6.1] which
essentially relies on known results on Calderén projectors and Sobolev spaces. We
recall that H{ (N), resp. HZ(N) denote the local, resp. compactly supported
Sobolev spaces on the manifold N.

Let us first check that wyyr is indeed an extension of wp, i.e., that /\ﬁHI equal
A on C5°(X\ B; C?).

The Calderén projectors céf(t are constructed using the inverse of PS¢l which
as for P°"! is constructed from a sesquilinear form Qeyt. Clearly, Qex¢ and Qs
coincide on C§° (Mt \ B). Near B the topology of the domain of the closure of

ext

Qext is the topology of HL (M), Since B is of codimension 2 in MU, this

ext ext
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implies that Cgc(ngtCl \ B) is a form core for Qext. This immediately implies that
Ay and AS coincide on Cg° (2 \ B; C?).
From this fact one can also easily deduce that )\ﬁHI are indeed the Cauchy

surface covariances of a state, i.e., that

(14.6) )‘I:EHI >0, M — A = ¢-

Let us explain this argument: it is known that Calderén projectors for second-order

elliptic operators, hence in particular ¢*, are continuous from HC% (X)®He 5 (%) to
1

Hl?)c

HZ (X))@ He 2(%).

Since B is of codimension 1 in ¥, we know that the space C5°(X \ B;C?) is
dense in HZ (2) @ HJ%(E). The restrictions of Ay, to C5°(X \ B; C?) equal A3,
and so satisfy (14.6)), since they are the Cauchy surface covariances of the state
wp. By the above density result, this implies that holds on C§°(X;C?), as
claimed. The purity of wygyr follows similarly from the purity of wp.

Further, let us explain how to prove that wgy is a Hadamard state. The
restriction of wyyr to M™T is a Hadamard state for P, since it is a (QW)K_l-KMS
state for a time-like, complete Killing vector field. The restriction of wgyr to M~
is also a Hadamard state for P.

This implies that the restriction of wymr to M+ U M™ is a Hadamard state.
The same is true of the restriction of a reference Hadamard state wyer in M (see
T heorem to MTUM™. Passing to Cauchy surface covariances on T UX ™,
this implies that if y € C§°(X%), then x o ()\EHI — )\ricf) o x is a smoothing operator
on Y. This implies that >‘§H1 — )\if is smoothing, which shows that wppyr is a
Hadamard state.

If fact let a be one of the entries of )\ﬁHI — )\;Ef7 which is a scalar pseudodif-
ferential operator belonging to ¥ (%) for some m € R. We know that x oa oy
is smoothing for any y € C§°(X\B). Then its principal symbol o}, (a) vanishes on
T*(X\B) hence on T*Y by continuity, so a € ¥™~1(3). Iterating this argument,
we obtain that a is smoothing.

For the proof of the uniqueness statement (3) we refer the reader to [G2]. O

_1
(X))@ H,2(X). From this we deduce immediately that )\ﬁHI are continuous on
1






CHAPTER 15

Hadamard states and scattering theory

In this chapter we study the construction of Hadamard states from scattering
data, i.e., from data at future or past time infinity. This construction is related to
the construction of Hadamard states from past or future null infinity on asymptot-
ically flat spacetimes, which we reviewed in Chapter The geometric assumption
on the spacetime (M, g) is that it should be asymptotically static, at past or future
time infinity, see Section Roughly speaking, this means that M should be of
the form R x X and g should tend to a standard static metric goy/in, sSee Subsections
when ¢t — Foo0.

The existence of the out and in vacuum states Woyy/in for a Klein-Gordon opera-
tor P on (M, g), i.e., of states looking like the Fock vacua for the static Klein-Gordon
operators Py in 00 (M, gout/in) at large positive or negative times, is often taken
for granted in the physics literature.

We will explain the result of [GW3], which provides a proof of the existence
of Wout/in and more importantly of their Hadamard property.

15.1. Klein-Gordon operators on asymptotically static spacetimes

Let us now introduce a class of spacetimes that are asymptotically static at
future and past time infinity and corresponding Klein-Gordon operators We fix an
(n — 1)-dimensional manifold ¥ and set M =R, x Xy, y = (¢,y). We equip M with
the Lorentzian metric

(15.1) g=—c*(y)dt* + (dy' + b (y)dt) hi;(y) (dy’ + b (y)dt),

where ¢ € C*°(M), h(t,y)dy?, resp. b(t,y) is a smooth t-dependent Riemannian
metric, resp. vector field on X.

If there exist a reference Riemannian metric k(y)dy? on ¥ and constants cg, ¢; >
0 such that
(15.2)

h(taY) S Clk(y)V b(t’Y)h(ta Y)b(t7Y) S C1, €o S C(ta Y) S C1, (t7Y) € M;
then it follows from [CC| Theorem 2.1] that ¢ : M — R is a Cauchy temporal
function for (M, g), see Definition hence in particular (M, g) is globally hy-
perbolic.

It is natural to use the framework of bounded geometry and to equip X with
a reference Riemannian metric k¥ such that (X, k) is of bounded geometry. The

version of (|15.2)) is then
(15.3) (be) h € C°(R; BTP(%,k)), h~' e C5°(R; BT§ (3, k),
' : be C2(R; BTL(S, k) ¢,¢! € C°(R; BTY (S, k).

A concrete example of (3, k) is R? equipped with the uniform metric.

15.1.1. Asymptotically static spacetimes. Let us consider a Klein-Gordon
operator

P = (V" —igA"(2))(V, — igAu(2)) + V()

135
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on (M,g). We now impose conditions on h,b,c, A,V which mean that (M, g) is
asymptotically static at t = +o00. Let us first introduce a convenient notation.

DEFINITION 15.1.1. Let F be a Fréchet space whose topology is defined by the
semi-norms || - ||, n € N. For I C R an interval, we denote by S°(I;F), 6 € R,
the space of functions I 5t — X (t) € F such that

sup(t) ™7 X (8)]ln < o0, ¥m,n € N,
tel

We introduce two static metrics
Gout/in = —Cout /in (V)AL + Poue/in (y)dy”
and time-independent potentials V,/in and assume the following conditions
h(y) = hout/in(y) € S™"(RE; BTH(S, k),
b(y) € ST (R; BT((%, k),  Aly) € S (R; BTY(Z, k),
c(y) = Cour/in(y) € S™H(R*; BTG (S, k)),
V(y) = Vour/in(y) € S#(R*; BT((2, k),

(as)

for some p > 0, p/ > 1. Here the space S°(R; BTP(%,k)), d € R is defined as in
Definition [5.1.11

The above conditions are standard scattering type conditions, with p, ¢/ mea-
suring the rate of convergence of h, b, etc. to their limits at ¢ = £00. The condition
' > 1 is traditionally called a short-range condition in the scattering theory for
Schrédinger equations, while 1 > 0 corresponds to the weaker long-range condition.

15.2. The in and out vacuum states

15.2.1. The asymptotic Klein-Gordon operators. It follows from condi-
tion (as) that when ¢t — 400, P is asymptotic to the Klein-Gordon operator

Pout/in = *Dgout/m + Vout/ina

associated to the static metric gou¢/in- We can introduce the ultra-static metric

gout/in = c;uZt/ingout/in = —dt? + iLout/in (Y)dy

and obtain from Section [6.3] that
—n/2—1p n/2—1

Pout/in = cout/in OUt/inCout/in ’

where
~ n—2 _o =
Pout/in = 7D§out/in + 4(77/ _ 1) Scalgout/in + Cout/inVZ)ut/in;
and V¢ Jin = Vout/in — 4(';7’_21)Scalgout s+ The ultra-static Klein-Gordon operator

P Jin €quals 02 + Aoy /in(y,0y), and to avoid technical complications coming from
infrared problems we will assume that

n—2 B -
(pos) mScaﬂgm/in + couzt/invout/in > m?, for some m > 0,
which simply means that

dout/in > m2 >0 on L2(27 |Bout/in|%(y)dy)a

7 -2
for hout/in = cout/inhout/in‘
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It follows that P, /in admits a vacuum state wyag Jin> S€€ Subsection [4.10.2
whose Cauchy surface covariances are

1t,vac __ 1 ( g(:-ut/in +1 ) - s

— . = 2 . .
out/in — 9 +1 g(?ult/in €out/in = Toyt fin
By Subsection Pout/in admit the vacuum state wyas Jin whose Cauchy surface

covariances on Lo = {0} x X are

1-n/2
)\:I:,vac _ ( * )71 ° S\i,vac ° U—l U= cout/i/n 0
out/in out/in out/in out/in’ - 0 Cfn/Q .

out/in

15.2.2. The out and in vacuum states. We have seen that ¥, = {s} x 2
are Cauchy surfaces for (M, g). Denoting by g5 : Sols.(P) — C§°(Xs;C?) the
Cauchy data map on X, see and by Usf, f € C5°(2,;C?), the solution of
the Cauchy problem on X, we set

U(t,s) == 0Us : CgO(ES;(C2) — Cgo(Et;Cg).

If w is a quasi-free state for P, with spacetime covariances A*, we will denote by
A its Cauchy surface covariances on Xy, called the time t covariances of the state
w.

From Propositions [5.5.4] [6.1.6] it easily follows that

(15.4) ME=U(t,s)* o XFolU(t,s), s,teR.

We would like to define quasi-free states woyt/in for P, called the out/in vacua
which look like the ‘free” vacua wgi? ; when t — doo. Taking (15.4) into account,
we see that wyye/in should be defined by the time 0 covariances:

+ : * +,va
(15.5) Aout/in(O) = tl}glmu(t7 0)* o Aout/fn oU(t,0),
where the limit above is taken as sesquilinear forms on C§°(%g; C2?). Of course, the
reference time ¢t = 0 is completely arbitrary.

The following theorem is the main result of [GW3].

THEOREM 15.2.1. Assume the conditions (bg), (as) and (pos). Then:

(1) the limits (15.5]) whent — +o0, resp. —oo, exist and are the time 0 covariances
of a quasi-free state for P denoted by wout, Tesp. win, called the out resp. in
vacuum state.

(2) Woutyin are pure Hadamard states.

vac
out/in
translations: if Uy in(t,s) is the Cauchy evolution operator for P,y in, then
Z/lout/in (ta 5) = uout/in (t +T,s+ T) and

)\:i:,vac _ out/in(t75)* o )\:I:,vac (t,S).

out/in out/in © Uout/in
Therefore we can rewrite (15.5)) as
)\(fut/in (0) = t_ljgloo(uout/in (Oa t) © Z/[(t, 0))* o )\i,vac o (uout/in(ov t) o u(tv O))

out/in

15.2.3. Wave operators. The static vacua w are invariant under time

If the exponent p in conditions (as) satisfies u > 1, then one can prove that the
strong limits

(156) Wout/in = 5= tiigloouout/in(ov t) Ou(tv O)
exist on some natural energy spaces. The operators Wy in are called (inverse)
wave operators and (15.5)) takes the more familiar form

)\i (0) = * )\i,vac Wout/in7

out/in out/in‘out/in
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which is often found in the physics literature. Note however that the existence of
Wout/in Tequires g > 1, while the existence of woyt/in only requires p > 0.

15.3. Reduction to a model case

We now give some ideas of the proof of Theoreml@ The existence of Woyg /in,
at least in the short-range case p > 1, is not very difficult, using the arguments
outlined in Subsection [[5.2.31

The Hadamard property is more delicate. For example, the covariances (¢, 0)*o
)xfu’yicn oU(t,0) in the right-hand side of (|15.5)) are not Hadamard for P for finite

t. In fact, the free vacua wyas Jin AT€ Hadamard states for Py /in, but not for P. It

is only after taking the limit ¢ — oo that one obtains a Hadamard state for P.

The proof of Theorem is done by reduction to a model case, similar to
the one considered in Section Since we want to use the time coordinate ¢
and not the Gaussian time, we use the orthogonal decomposition associated to ¢
explained in Subsection [5.4.1]

15.3.1. Orthogonal decomposition. One can identify {0} x ¥ with ¥ and
use the vector field

v=(Vt-gVt) 'Vt =0, + b'(y)0y:
as in Subsection to construct an orthogonal decomposition of g by the diffeo-
morphism
X:Rx X3 (tx)— (t,y(¢0,x)) € R x X,

where y(t,s,-) : © — X is the flow of the time-dependent vector field b*(y)dy: on X.
The metric x*¢g takes the form

X*g = é(t,x)dt> + h(t,x)dx>.

After a further conformal transformation, the operator

P = /2yt palin/2
take on the form, see [GW 3], Subsection 5.2]
P =02 +r(t,x)d; + a(t,x, dy),
i.e. is a model Klein-Gordon operator of the type considered in Section

15.3.2. Properties of the model operator. In the sequel the model oper-
ator P will be denoted by P for simplicity.

Let us first introduce classes of time-dependent pseudodifferential operators
on X that are analogs of the classes of time-dependent tensors SE(R;BT;(Z,k))
defined in Subsection I5.1.1] We set

(I, E) == Op(8°(1; BST(E))) + 82 (L W=2(%)),

where BST; (¥) and W™*°(X) are defined in Definitions [10.4.1} [10.4.3} and we use
Definition [5.1.11
One can show that the conditions (bg), (as), (pos) imply the conditions

a(t, %, 0x) = ou/in(x, D) + Vi (R¥; ), 6> 0,
(td) § 7(t) € Vo T (R; 3,

aout/in(xa Ox) € ‘1’2(2) elliptic, aout/in(xa Dy) = aout/in(X7 Dy)* > Cs >0,
for § = min(u, p’ — 1). The asymptotic Klein-Gordon operators are now

Pout/in = 8152 + aout/in(X7 8)()
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The decay conditions (td) lead to an improvement of the properties of the
generator b(t) constructed in Section Indeed, setting €(t) = a(t, =, ;)7 and
1

€out/in = agut/in one can show that b(t) in Proposition [11.3.1| can be chosen so that

e b(t) = e(t) + U O RE D) = ouryin + Uiy 0 (RE; X),
' i0b — b2 +a+irb € U >R ).

15.3.3. Almost diagonalization. In Chapter [II]the microlocal splitting de-
duced from a solution b(t) was used to construct a pure Hadamard state. It is
also possible, see [GOW] Section 6], to use it to diagonalize the evolution U(t, s)
associated to P, modulo smoothing error terms. Let us set

T(t) =it ( bI-L __b]l_ >(b+b)é(t),

where we recall that b (¢) = b(t), b~ (¢t) = —b*(¢). Then one can check that
-~ 1
(e 1)w
We now define

(15.8) Ut,s) = Tt)oU*(t,s) o T(s)"!, t,seR

which is (at least formally) a two-parameter group. Computing the infinitesimal
generator of {U*4(t, s)} ser one obtains

o w= (TS0 )0 R,

where R_o, € U, '"7°(R; ) @ M(C?) and rf € U7 Ry %), ie. H(t)
is diagonal, modulo the regularizing in space and decaying in time error term
R_(t). There is a similar well-known ezact diagonalization of the Cauchy evolu-
tions Uyt /in(t, 8) for Poygin. If

[N

T71t) =i(bT — b))~

1 1

2 2
€ : —€ . 1
— (3 -1 out/in out/in 3
Tout/in - (1\/5) 1 / 1 / »  €out/in = a’out/in’
6out/i]ﬂ 6out/ilﬂ
then
— ad —1
Z/{out/in(ta S) - Tout/in © Z/{out/in (ta 5) oT

out/in’

and the (time-independent) generator H24 . of Y24 (¢, s) equals

out/in out/in
ad _ €out/in 0
The vacua wlat /in A€ pure states associated to the projections
+ _ + o1 +_( 10 - _ +
Cout /in =Tout/in 0T oTout/in, for 77 = ( 0 0 > - =1—7".

Rather straightforward arguments show that the existence of the limits in Theorem
[[5.2.1] follows from the existence of

(1510) t—lg?oo Wout/in(t)oﬂ-ioWout/in(t)_l7 for Wout/in(t) = uad (07 t)ugl(jt/in (t7 0)7
for example in B(L?(X;C?)). Using the properties of H24(¢) one can actually prove
that

(15.11)  s— lim Wou/in(t) 0 75 0 Wout/in(t) 71 = 75 + W(2) @ M(C?).
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This implies not only the existence of the out/in vacuum states, but also their
Hadamard property. Indeed, if ¢t = T(0)7+T(0)~! then A\*(0) = 4q o c¢* are
the Cauchy surface covariances on ¥, of the Hadamard state associated to the
microlocal splitting obtained from b, see Section [11.4] From (15.11]) we obtain that
)\fut /in(O) differ from A*(0) by a smoothing error, which proves that wgy Jin are
Hadamard states.




CHAPTER 16

Feynman propagator on asymptotically Minkowski
spacetimes

We have seen in Section[7-4]that a Klein-Gordon operator P on a globally hyper-
bolic spacetime (M, g) possesses four distinguished parametrices, the retarded/advanced
parametrices éret Jadv and the Feynman/anti-Feynman parametrices GF JF unique
modulo smooth kernels and uniquely characterized by the wavefront set of their
distributional kernels.

One can ask if there exist true inverses of P, corresponding to the above para-
metrices and canonically associated to the spacetime (M, g).

By Lemma there exists true retarded/advanced inverses of P, namely
G'ret/adv see Theorem which are uniquely determined by the causal structure
of (M, g).

The situation is more complicated for the Feynman/anti-Feynman inverses. Of
course, given a Hadamard state w for P, the Feynman inverse associated to w, see
, has the correct wavefront set, but it depends on the choice of the Hadamard
state w, and hence is not canonical.

There are some situations where such a canonical Feynman inverse exists. If
(M, g) is stationary with Killing vector field X and P is invariant under X, one can,
under the conditions in Chapter [9] construct the vacuum state wy,. associated to
X and the corresponding Feynman inverse G is a canonical choice of a Feynman
inverse, respecting the symmetries of (M, g).

In the particular case of the Minkowski spacetime R and P = 82 — A, +
m?, the Feynman inverse obtained from the vacuum state is equal to the Fourier
multiplier by the distribution

~1
72— (k2 +m?) +i0’

In this chapter we will describe the results of [GW4, [GW6], devoted to this
question on spacetimes which are asymptotically Minkowski, and hence have in
general no global symmetries, only asymptotic ones.

It turns out that it is possible in this case to define a canonical Feynman inverse
G, which is the inverse of P between some appropriate Sobolev type spaces.

More concretely, one introduces spaces Y™, X" for m € R, see Section @,
where Y™ is a space of functions decaying fast enough when ¢ — +o0o, while the
functions in A" satisfy asymptotic conditions at ¢ = +-0o which are analogs of the
wavefront set condition which characterizes Feynman parametrices.

One can show that P : X' — Y™ is invertible, and that its inverse G is a
Feynman parametrix in the sense of Subsection [7.4.2]

Vasy [Va] considered the same problem by working directly on the scalar oper-
ator P using microlocal methods. He constructed the Feynman inverse G between
microlocal Sobolev spaces, as the boundary value (P —i0)~! of the resolvent of P.

141



142 16. FEYNMAN PROPAGATOR ON ASYMPTOTICALLY MINKOWSKI SPACETIMES

16.1. Klein-Gordon operators on asymptotically Minkowski spacetimes

In this subsection we recall the framework considered in [GW4].

16.1.1. Asymptotically Minkowski spacetimes. We consider M = R'*¢
equipped with a Lorentzian metric g such that

(aM(D)  gu (@) = M € SEART), 5> 1,
(aM(ii)) (R'*4, g) is globally hyperbolic,
(aM(iii)) (R'*%,g) has a temporal function ¢ with £ — ¢ € S} ;°(R**) for € > 0,

where 7, is the Minkowski metric and S’ ,(R'*9) denotes the class of smooth
functions f such that, for (z) = (14 |z|)2,

9%f € O((x)°~ 1y, o e NI,

Recall that £ is called a temporal function if Vt is a time-like vector field, and is
called a Cauchy temporal function if in addition its level sets are Cauchy surfaces
for (M, g).

It is shown in [GW4] that if (aM(i)) holds, then (aM(ii)) is equivalent to the
familiar non trapping condition for null geodesics of g, and if (aM(i), (ii), (iii)) hold,
then there exists a Cauchy temporal function ¢ such that t —t € C§°(M).

Replacing ¢t by t — ¢, t by t — ¢ for ¢ 3> 1 we can also assume that ¥ := {t =
0} = {t = 0} is a Cauchy surface for (M, g), which can be canonically identified
with R%. In the sequel we will fix such a temporal function £.

16.1.2. Klein-Gordon operator. We fix a real function V € C*(M;R)
such that
(aM(iv)) V(z) —m? € S5(R™Y), for some m >0, § > 1,
and consider the Klein-Gordon operator

P=-0,+V.

16.2. The Feynman inverse of P

We now introduce the Hilbert spaces AR", Y™ between which P will be invert-
ible. The spaces Y™ are standard spaces of right-hand sides for the Klein-Gordon
equations, their essential property being that their elements are L! in ¢, with val-
ues in some Sobolev spaces of order m. The spaces A" incorporate the Feynman
boundary conditions, which are imposed at ¢t = +o0.

16.2.1. Hilbert spaces. Using the Cauchy temporal function ¢ we can iden-

tify M with R x X using the flow ¢; of the vector field v = %, and obtain the

diffeomorphism

(16.1) X:Rx X3 (tx)— ¢e(x) € M,
such that

X*g = —CQ(t,X)dtQ —+ h(t, X)dX2.
For m € R we denote by H™(R?) the usual Sobolev spaces on R?. We set, for
$<Y<3+96
V™= {ueD(M):x*uc {t) VL (R; H™"(RY))},

with norm |[v||ym = |[x*u| p2(r;zm®ay)- The exponent v is chosen such that

#)~7L%(R) C L*(R). Similarly we set
X™:={uecD(M):xucC' R H"(RY))NC'(R; H"(R?Y)), Puc Y™}
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We equip ™ with the norm

[ullem = [leoullem + [[Pullym,

it 8,11;[&
Em = H™H(RY)@H™ (RY) is the energy space of order m. From the well-posedness

of the inhomogeneous Cauchy problem for P one easily deduces that X is a Hilbert
space.

where g,u = uls > is the Cauchy data map on ¥, := - !({s}) and

16.2.2. Feynman boundary conditions. Let us set

S| < 1 j:\/—Ax—ka)

Ctree = 9 \ by/=A, +m2 1
Of course, /\ffee =dqo Cfiree for ¢ = ( g)l 0 ) are the Cauchy surface covariances

on X of the free vacuum state wg.ee associated to Pree. We set then
L . . + _ .
At ={ue Xm: tilr;noo Chrec0tt = 0 in E™}.
It is easy to see that A" is a closed subspace of X",

The following theorem is proved in [GW6].

THEOREM 16.2.1. Assume (aM). Then P : X' — Y™ is boundedly invertible
for all m € R. Its inverse Gy is called the Feynman inverse of P. It satisfies

WF(Gr)' = AUCF.

We recall that Cp was defined in Section [7-4] In particular Gy is a Feynman
parametrix for P.

16.3. Proof of Theorem [16.2.1]

We now give some ideas of the proof of Theorem [I6.2.1] As in Section [I5.3]
the first step consists in the reduction to a model Klein-Gordon equation, by using
successively the diffeomorphism y in Subsection and the conformal transfor-
mation x*g — ¢~ 2(t,x)x*g. After this reduction, we work on R'*¢ with elements
x = (t,x) equipped with the Lorentzian metric

g= —dtQ —+ hij(t, X)d}(idxj7

where ¢ — hy = h;;(t,x)dx'dx? is a smooth family of Riemannian metrics on R<.
The Klein-Gordon operator P = —0, + V takes the form

(16.2) P =02 +r(t,x)0; +a(t,x,0y),

where
a(t) = a(t,x,dy) = —|h|~28;h"|n|28; + V(t,x),

r(t) = r(t,x) = [Al =2 :(|h|2)(t,%).
The operator a(t) is formally selfadjoint for the time-dependent scalar product

(ufo), = / aolhFds,
b

and P is formally selfadjoint for the scalar product

(ulv) = / Wo|hy |2 dxdt.
RxX
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Conditions (aM) on the original metric g and potential V' imply similar asymptotic
conditions on a(t,x, 0x) and r(t,x) when ¢ — +00. More precisely, one has
2,—6

a(tv X, 8)() = Qout/in (Xa ax) + qjstd (Riv Rd)a
r(t) € OO TIT(R; RY),
gy O €W R

Goutin (%, ) € W2O(RY) is elliptic,

aout/in<xa ax) = aout/in(x, ax)* > Cy >0,

where \I!:tlc’f (R*;RY) is the class of time-dependent pseudodifferential operators on
R associated to symbols m(t,x, k) such that

80297 m(t,x, k) € O(((t) + (x))° 7= lelym=I8hy " e N, o, 8 € N, t € R*.

Similarly, W7 (R9) is the class of pseudodifferential operators on R¢ associated to
symbols m(x, k) such that

2l m(x, k) € O((x)21l(kym=181) o, g € N7,

We refer the reader to [GW4, Subsection 2.3| for more details.
The Hilbert spaces Y™ and X™ become

= (LR P (RY),
Xm = {u € CO(R; H™T1(R?)) N CH(R; H™(RY)) : Pu € Y™},
equipped with the norm

lulZm = llooullZn + | Pull3m,

u(t)

where o;u = ( i 10,u(t) ) and the energy space £ is defined in Subsection|16.2.1
¢

The subspaces AR" become

Xt i={uex™: t_1>ir_noo Cout Ot = tlgi—noo ctou=01in ™}

where
1
C:t = 1 1 iagut/in
out/in 2 Ztafut/in 1

are the projections for the out/in vacuum state wgyt /in associated to the Klein-
Gordon operator 87 + oyt /in (X, Ox)-

16.3.1. A further reduction. It is convenient to perform a further reduction
to the case r = 0. Namely, setting R = |ho|3|h¢| ™%, we see that

L2(S, |ho|2dx) 3 @ —> Rii € L2(S, |hy|? dx)
is unitary and that
R7'PR=: P =0? +alt,x,8y),
where
a(t)=rR™'0;R+ R (0?R) + R™'a(t)R

is formally selfadjoint for (-|-)o. Clearly, a(t,x,dx) satisfies also (Hstd), with the
same asymptotic aout/in (X, 0x). It is also immediate that the Hilbert spaces Y™,
X™ and Xy introduced in Section are invariant under the map v — Ru and
hence we can assume that r(¢,x) = 0.
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16.3.2. Almost diagonalization. One can then perform the same almost
diagonalization as in Subsection[15.3.3] The stronger spacetime decay in conditions
(Hstd) give stronger decay conditions on the off diagonal terms. More precisely, if

H(t)= ( a?t) g | is the generator of the Cauchy evolution for P and T'(t) is as

in Subsection we have
T YD; — Ht))T = Dy — H*(t) = P™,
where H?4(t) is almost diagonal, i.e.

H(t) = HY(t) + V24 (1),

(16.3) mo=( 0 ).

where e*(t) belong to U10(R; R%), with principal symbols equal to +(kh =1 (¢, x)k) 2,
and V24 (¢) is an off-diagonal matrix of time-dependent operators on R such that

(16.4) () + (O)" VI ((x) + (1) "™ HP(RY) — HP(RY)

is uniformly bounded in ¢ for all m,p € R. Compared with the situation in Section
we obtain extra decay in x and hence compactness properties of V24 .

We denote by U(t, s), resp. U?4(t,s), for t, s € R, the Cauchy evolution gener-
ated by H(t), resp. H*!(t). Recall from that

(16.5) U(t,s) = T(t) oU(t,s) o T(s)~ L.

Moreover, U(t, 5)®d) are unitary with respect to the Hermitian scalar product
F. (ad) _ (| (ad) _ (0 1 ad._ (10

(16.6) fa*Yg=(fla"Vg)no, q <]1 0>7q : (0 1

where #0 = L2(R%, |ho|2 dx; C2), which implies the identity

(16.7) Had (t)*qad _ qadHad(t)’

where the adjoint is computed with respect to the scalar product of H°.
The spaces corresponding to Y™, Xg* with the scalar operator P replaced by
the matrix operator D; — H*4(t) are the following:

yad,m _ <t> —'yLQ (R, 7_[7%)7
Xad,m — {uad € CO(R; erJrl) N Cl (R, /Hm) . Paduad c yadm@}’
equipped with the norm
e = lleou™ e + [Pl

where H™ = H™(RY) @ H™(R?) and ¢?u*d = 4*d(t). The subspace X2"™ is
defined as

padm . ad ¢ padm . iy gt adgad iy e gadgad — g g™
0 0
F t——o0 t t——+oo t ’

10 _ (00
+ —
“loo) (0 1)

Note that 7+ are the spectral projections on R* for the Hamiltonian

where

1

2
Had _ aout/in 0
out/in — 0 1
_aout/in

and we will denote by /29, Jin (t,s) the evolution generated by H?d

out/in"
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PROPOSITION 16.3.1. Assume (aM). Then the operator P : X;d’m = Y™ s
Fredholm of indezx 0.

Proof. Set P4 = D, — HY(t). Then P9 : x24™ — yadm is houndedly invertible,
with inverse G given by

t
Gvrd(t) = i/ Ut 0)xtud(0, s)v*(s)ds
.
i / (1, 0) U (0, )0 (5)ds.
t

It is easy to show, see [GW4l Lemma 3.7], that V% is compact from X*™ to
Y™, hence also from X;fd’m to Y™ since ng’m is closed in A2dm, m]

Now let us prove that P?d : Xsd’m — Y™ is injective, and hence boundedly
invertible by Proposition The proof of Lemma below is inspired by
the work of Vasy [Val Proposition 7], which in turn relies on arguments of Isozaki
[I] from N-body scattering theory.

LEMMA 16.3.2. One has:
Ker Pad|X;d,m = {0} for allm € R.

Proof. We first note that if u® € Ker P*d| aa.m, we have v = —GRV2d u,
F

from which we deduce that u®d € X;dm/ for any m’, using that V4 is smoothing
in x. Therefore, it suffices to prove the lemma for m > 1.
Let us set x(t) = flz_‘oo 1lj; 9)(es)s~"ds for some 0 < r < 1. Note that supp x. C

{|t| < 2¢'}. Let us still denote by x. the operator x, ® lcz. Recalling that ¢* is
defined in ([16.6]), we compute for u € X;d’m:

/R (P (1) g Xe (1) utd(£)) 10 — (xe (O ()™ P (1)), 0 dt
= /R (Dt (1) xe ()u () 4,0 — (W (0)|g* xe () Dy (1)), ot

[ O O O 0) ot

using that H24*(t)g*! = ¢*dH24(t), x(t)*¢*! = ¢ x(t) and u?(t) € Dom H(t)
since m > 1. We have [H*d(t), x.(t)] = 0, and since x. is compactly supported in
t we can integrate by parts in ¢ in the second line and obtain

(16.8)

/R (Paduad(t) ‘qadx6 (t)uad (t))Ho dt — /]R (Xe(t)uad(t) ‘qadpaduad(t))Hodt

= =i [ @O 0)

Note that we used here that the scalar product in H° does not depend on ¢, which
is the reason for the reduction to r = 0 in Subsection [6.3.11
Since P2dy2d = 0, this yields

(16.9) /R (uad(t)|qad5‘txe(t)uad(t))%0dt =0.

We claim that:

(i) ||7Tiuad(t)||,2Ho € O(t'7?), when t — Foo,
(16.10)
(ii) 7wt ()]0 = ¢ + O(t' %), when t — +o0,
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for ¢ = limy,4 |[7*u®d(t)||3,0. The proof of (16.10) is elementary: we have
H2(t) — Hggt/in € O(t7%) in B(H") when t — 400, see e.g. [GW1L Subsection
2.5], which using that § > 1 and the Cook argument yields

Wi urd = limy, U . (0,t)ud(t) exists in HO,

out/in ut/in

W ™ = U2 0 (0, 8w (2) |30 € O(F0).
Since Z/{gljlt/in(O, t) is unitary on HY, this yields (16.10)). We then compute

[ @000 00 0) o

= /8txé(t)|\7r+uad(t)||ilodt— / exe(O)||m~u(t) |Zodt = TT + 1.
R R
Since 0y x.(t) = —sgn(t) N1 2c-11([t])[t| ™", we have, using (16.10):

0 S/ [Oexe(O) |7 u (1) | Fodt < C/ﬂ[s—l,zg—l](Itl)lt\_’”_‘mdt € O(et7?),
R¥F

/ Dexe(t)llm=u (1) |30 dt = 4[/ L1 1) ([t)eT[t]7"dt + O(e072)
R+ R+

= FCcEL 4 0>,

Using (16.9)), this yields Ce"~!(ct + ¢7) € O(e""°~2), hence ¢t = ¢~ = 0, since
§ > 1. Therefore by (16.10) we have lim; 4o ||u®d(¢)|l50 = 0. Since the Cauchy
evolution 24 (t, s) is uniformly bounded in B(H°) we have u*3(0) = 0, hence u = 0.
a

The reduction explained at the beginning of Section [I6.3] shows that Theorem
[16.2.1] follows from

THEOREM 16.3.3. P : A" — V™ is boundedly invertible, with inverse
Gp = —moTG¥T 77,
Moreover, G is a Feynman inverse of P, i.e.
(16.11) WF(Gr) = AUCr.
Proof. It is straightforward using the expression of T" to check that
mT € B(X*3m+z xm) Tzt e B(Y™, Y*mts),
and so Gg : Y™ — X™. Since (D; — H(t))TGM T~ = TGX¥T-1(D, — H(t)) = 1,
we obtain that PGy = GgP = 1. We have also QWOTG%dT_lﬂ = TG%dT_lwfv.
From [GW4l equ. (3.25)] we obtain that moT : Xsd’m+§ — AR, hence oG = 0,
ie. Gg: Y™ — AR,

To prove the second statement, let Gg = —mTGLT 17}, We have G — Gt =:
R_oo = GEV24 G by the resolvent identity. It is shown in [GW1], Lemma 3.7|
that Vfgo : yadm ym/ is bounded for all m’ > m, hence R_o, : Y24™ — xad.m’
for all m’ > m, i.e. is smoothing in the x variables. We use then that D;R_., =
HYt)R_oo + V2L G, R_o Dy = R_oo H¥(t) + GV to gain regularity in the ¢
variable and obtain that R_ ., : &'(R*?; C?) — C>(R'+?; C?). Therefore, G —Gr
is a smoothing operator. R

Let also G et be defined as Gy with U9(t, s) replaced by U?d(t,s). From

(16.4) it follows that U4 (-,-) —U?(-,-), and hence GF ,ef — GF have smooth kernels
in M x M.
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Using ((16.5)), we see that Gy rct is the Feynman inverse associated to a Hadamard
state, see Theorems 11.4.1[, 11.5.1} Therefore, WF(Gp ref) = A U Cp, which com-
pletes the proof of the theorem. O




CHAPTER 17

Dirac fields on curved spacetimes

In this chapter we will give a brief description of quantized Dirac fields on
curved spacetimes. Usually Dirac equations on a Lorentzian manifold are intro-
duced starting from spin structures, see [Di2, [Li2] or [LM) Chaps. 1, 2|. Here
we use the approach through spinor bundles, with which analysts may be more
comfortable. We will follow the exposition by Trautman [T] and refer to [E'T] for
a comparison between the two approaches.

The quantization of Dirac fields on curved spacetimes is due to Dimock [Di2].
The definition of Hadamard states for quantized Dirac fields on globally hyperbolic
spacetimes was given by Hollands [Hol] and Sahlmann and Verch [SV2] and is
completely analogous to the Klein-Gordon case. Another nice reference is [S4].

The massless Dirac equation can be written as a pair of uncoupled Weyl equa-
tions which were for some time supposed to describe neutrinos and anti-neutrinos.
We describe the quantization of the Weyl equation, the corresponding definition of
Hadamard states, and the relationship between Hadamard states for Weyl and for
Dirac fields.

17.1. CAR x-algebras and quasi-free states

The fermionic version of Chapter [4] namely CAR - algebras and quasi-free
states on them, is quite parallel to the bosonic case. A detailed exposition can be
found for example in [DGI, Sections 12.5, 17.2]. The complex case, corresponding
to charged fermions, is the most important in practice, although the real case
corresponding to neutral or Majorana fermions is sometimes also considered. For
simplicity we will only consider the complex case.

DEFINITION 17.1.1. Let (Y, v) be a pre-Hilbert space. The CAR x-algebra over
(X,v), denoted by CAR (Y, v), is the unital complex x-algebra generated by elements
UV(y), v*(y), y € Y, with the relations

Yy + Aya2) = (Y1) + M(ya),

Uy + Ay2) = v(y1) + M7 (y2),  y1,y2 € Y, A€C,
(17.1) [b(y1), Y (y2)]+ = [ (y1), ¥* (y2)]+ =0,

[b(y1), ¥ (y2)l+ =71 -vyel, w1,y2 €0,

b(y)" =¢*(y),
where [A, B]; = AB + BA is the anti-commutator.

Quasi-free states on CAR(Y, v) are defined in a way quite similar to the bosonic
case.

DEFINITION 17.1.2. A state w on CAR(Y,v) is a (gauge invariant) quasi-free
state if

w(Timy ¥* () IT721 ¥ (y;)) =0, if n# m,
W Ty " (W) [T ¥ (45) = Xges, sen(o) [Timy w (@ (4t (Yo(i)))-
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A quasi-free state is again characterized by its covariances \* € Ly (), V"),
defined by

W@ (Y)Y (¥2)) = 71-ATya, @@ (y2)¥(¥1)) = 71-A "y, y1,42 € V.
One has the following analog of Proposition

PROPOSITION 17.1.3. Let \* € Ly, (Y, Y*). Then the following statements are
equivalent:
(1) A\E are the covariances of a gauge invariant quasi-free state on CAR(Y,v);

(2) AE >0 and A\t + 1" =v.

Let us note an important difference with the bosonic case. Since v > 0, one
can always consider the completion (VP! v) of (V,r) and uniquely extend any
quasi-free state w to CAR(Y°P!,v). This is related to the fact that the x-algebra
CAR(Y,v) can be equipped with a unique C*-norm, see e.g. [DG| Proposition
12.50]. Therefore, if necessary, one can assume that (), v) is a Hilbert space.

Let us conclude this subsection with the characterization of pure quasi-free
states, see e.g. [DGI Theorem 17.31].

PROPOSITION 17.1.4. A quasi-free state w on CAR(Y,v) is pure iff there exist
projections ¢t € L(Y) such that

M =voct, ¢F4+ce =1

Note that ¢ are bounded selfadjoint projections on (Y, ).

17.2. Clifford algebras

We now collect some standard facts about Clifford algebras. For simplicity, we
will only discuss the case of Lorentzian signature. Let X be an n-dimensional real
vector space and v € Ly(X,X’) be a symmetric non-degenerate bilinear form of
signature (1, d).

DEFINITION 17.2.1. The Clifford algebra Cliff (X, v) is the abstract real algebra
generated by the elements y(x), x € X, and the relations

Y(z1 + Axg) = y(w1) + Ay(22),
(@) y(w2) +y(w2)y(21) = 201 va2ll, 1,22 € X, X ER.

As a vector space Cliff (X, v) is isomorphic to AX.

Cliff (X, v) has an involutive automorphism « defined by a(y(z)) = —v(z),
which defines a Zy-grading Cliff (X, v) = Cliffo (X, v)®Cliff; (X, v). The set Cliffo(X, v)
of elements of even degree is a sub-algebra of Cliff (X, v).

The Clifford algebras Cliff(o)(RLd) will be simply denoted by Cliff (1, d).

17.2.1. Volume element. Let (x1,...,2,) be an orthonormal basis of (X, v),
i.e. such that xy - vz = —1, x; - vx; = 1 for 2 < i < n. In particular, this fixes an
orientation of X'. Set
n="y(@1) - y(@n);

7 is called the wvolume element and is independent of the choice of the oriented
orthonormal basis (z1,...,2,). One has

-1, if n € {0,1} mod 4
_ (_1\nt+1 2 __ ’ ) 5
2 n) = = { gt e D el



17.3. CLIFFORD REPRESENTATIONS 151

17.2.2. Pseudo-Euclidean group. Each r € O(X,v) induces an automor-
phism 7 of Cliff (X, v), defined by

F(y(x)) =~v(re), zeX.

The map O(X,v) 3 r — 7 € Aut(Cliff (X, v)) is a group morphism. More generally,
if r : (X,v) — RY is orthogonal, then it induces an isomorphism 7 : Cliff (X, v) —
Cliff (RY?).

17.3. Clifford representations
Let S a complex vector space. A morphism
p: Cliff (X, v) — L(S)

is called a representation of Clff (X,v) in S. Tt is called faithful if it is injective.
It is called drreducible if [B, p(A)] = 0 for all A € Cliff(X,v) implies B = Alg for
A e C. We set v°(x) = p(y(z)) for z € X. Let ¢ € {1,i} such that

2 9n . 1=1, if n € {0,1} mod 4,
(17.3) n® =121, ie. {Z:]L if e {2,3} mod 4.

PROPOSITION 17.3.1. (1) Assume that n = 2m is even.

Then there is a unique up to equivalence, faithful and irreducible represen-
tation of Cliff (X, v), called the Dirac representation in a space S of dimension
2™ whose elements are called Dirac spinors. One has C ® p(Cliff(X,v)) =
End(S).

Setting H = 1p(n), we have H> = 1 and [H, p(Cliffo(X,v))] = 0. Setting
Weso = {0 € S 1 H = £}, the representation p restricted to Cliffo(X,v)
splits as the direct sum py & p_ of two irreducible representations on We /.
The elements of W/, are called even/odd Weyl spinors.

(2) Assume that n =2m + 1 is odd.

Then there is a unique up to equivalence, faithful and irreducible represen-
tation of Cliffo(X, v), called the Pauli representation in a space S of dimension
2™ whose elements are called Pauli spinors.

Setting p(n) = 11, the representation of Cliffo(X,v) extends to an irre-
ducible representation p of Cliff(X,v) in S. One has C @ p(Cliff(X,v)) =
C ® p(Cliffo (X, v)) = End(S).

The representations p o a and p are not equivalent, and none of them is

faithful.

If n is odd then nCliffy(X,v) = Cliffo(X,v)n = Cliff; (X, v), which is used in
(2) of Proposition to extend p from Cliffy (X, v) to Clff(X,v).

In the sequel p will denote a representation of Clff(X,v) as in Proposition
[I7:371] which will be called a spinor representation. We have

(17.4) C ® p(Clff(X,v)) = End(S).

17.3.1. Charge conjugations. Let p a spinor representation.

PROPOSITION 17.3.2. (1) Assume thatn is even. Then there ezists k € End(Sg)
anti-linear such that ky*(x) = v°(z)k and k? = 1ifn € {2,4} mod 8, k% = —1
if n € {0,6} mod 8.

(2) Assume that n is odd. Then there exists k € End(Sgr) anti-linear such that
kyP(z) = (=1 D242 (2)k and k% = 1 if n € {1,3} mod 8, k? = —1 if
n € {5,7} mod 8.
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We refer, e.g. to [DG| Theorem 15.19] for the proof. An anti-linear map & as
above is called a charge conjugation, with some abuse of terminology if 2 = —1 (if
k? = —1, then S becomes a quaternionic vector space).

Later on we will be only interested in the existence of a true charge conjugation,
i.e. with k? = 1, which is the case iff n € {1,2,3,4} mod 8. We have ky(z) = y(z)x
iff n € {1,2,4} mod 8, ky(x) = —y(x)x iff n = 3 mod 8.

If , & are two such charge conjugations, then k1% € Aut(S) (in particular, it
is C-linear) and commutes with 4*(z) for all z € X. Since p is irreducible, we have
k= Ak, A € C and from k2 = &2 we obtain that A\ = 1.

Let us denote by C(p) the set of charge conjugations in Proposition By

the above discussion, we have

(17.5) Clp) ~ ",

or, more pedantically, the group S! acts freely and transitively on C(p).
17.3.2. Positive energy Hermitian forms.

PROPOSITION 17.3.3. Let us equip (X,v) with an orientation and a time ori-
entation, so that (X,v) ~RY. Let p : Cliff(X,v) — End(S) be a spinor represen-
tation. Then there exists a Hermitian form B € Ly (S, S*) such that

V()8 = =pyP(x), x e X, iBy"(e) >0,
for all time-like, future directed e € X.

Hermitian forms (3 as above are called positive energy Hermitian forms.
Proof. Let us fix a positively oriented orthonormal basis (e, e1,...,e,) of (X,v)
with eg time-like and future directed. We set

g0 =i7"(e0), ¢ =7"(ej), 1<j<n
From the ¢; we obtain an irreducible representation of Cliff(R™), defined as in
Definition with v replaced by the Euclidean scalar product on R™. Tt is well
known that one can equip S with a positive definite scalar product A € Ly (S, S*)
such that ¢; = ¢7 for this scalar product. Setting 8 = i\ o 79, we obtain that
v;B = —Bv; and iBy > 0. Let now e € X' be time-like future directed. We can
assume that e-ve = —1, and hence there exists r € SOT(X, v) such that e = req.

It is well known that there exists an element U of the restricted spin group
SpinT (X, v), see Section such that y(rz) = Uy(z)U1L, for x € X.

Denoting by A* the adjoint of A € End(S) for the Hermitian form /3, one
then checks that ~(rz) = U*y(z)(U*)~! hence UU* = £1. Since Spin'(X,v) is
connected, we have UU* = 1. Now we have v*(e) = U~”(xo)U*, hence iBv”(e) > 0.
O

As in Subsection|17.3.1] we denote by B(p) the set of positive energy Hermitian
forms on S. Then the same argument yields

(17.6) B(p) ~ R,

with the same meaning that the group R** acts freely and transitively on B(p).

17.4. Spin groups
The spin group Spin(X,v) is the group
Spin(X,v) := {vy(z1) - - - y(xep) : x;-vx; = £1,p € N} C Clff(X,v).

The restricted spin group Spin' (X, v) is the connected component of 1 in Spin(X, v).
One can show that a = () ---y(x2,) belongs to Spin' (X, v) iff the number of
indices i, 1 < i < p, with z;-vx; = —1 is even.
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The spin groups Spin™ (R14) will be simply denoted by Spin™ (1, d).
If a € Spin'" (X, v), then

(17.7) ay?(z)a™t = ~4P(Ad(a)z), Ad(a) € SO (X,v),
and we have the exact sequence of groups:
1 —s Zy — Spin D (X, ) Ad SO (x,v) — 1.

Let us fix a spinor representation pg : Cliff(1,d) — L(Sp) (recall that Sp is a
complex vector space of dimension 2["/2]). We denote po(7(v)) by vo(v) for v € R4
and identify Spin' (1, d) with its image in L(Sy). We fix a positive energy Hermitian
form 5y and a charge conjugation kg on Sp.

One can show that Spin'(1,d) is the set of elements a € GL(Sp) such that

(i) a*Boa = Po,ako = Koa,

(17.8)
(i) ayo(v)a~! =y0(Ad(a)v), Vv € RY4,

This characterization of Spin'(1,d) inside GL(Sp) is independent on the choice of
Bo, ko-

17.5. Weyl bi-spinors

Let us assume that n = 4, and let p : Cliff(X,v) — End(S) be a spinor
representation, so that dimc .S = 4. To simplify notation, we denote p(A) simply
by A for A € Cliff (X, v).

Let x be a charge conjugation as in Proposition and let 8 € Ly(S,S*)
be a positive energy Hermitian form as in Proposition Recall that

wy(z) =v(@)k, K*=1,

17.9
(179) v (x)B = —Pv(x), iBy(e) >0 for e € X future directed time-like.

If n is the volume element we have n? = —1,7*3 = 7, hence H = in satisfies
H? =1,H*3 = —BH. We recall that S = W, & W, for We/o = Ker(H F 1). Since
kn = nr we have kH = —Hk hence dim¢ W/, = 2 and

(17.10) Kt Wejo— Wo e

We obtain also that

(17.11) Ue/o BVejo =0,  Uesos Vejo € Weso
hence

(17.12) B=Wejo=— W5 /e-

Let 8 = k*fk € Ly (S, 5%), i.e.
61-5112 = Rug-fBrv1, V1,09 €S.
From we obtain that 'y(x)*B = —Bv(m) for x € X. Moreover, we have
iBy(e) = is*Bry(e) = —K*iB(e)r < 0,

if e € X is future directed time-like, using that x and hence * is anti-linear and
that [k,v(e)] = 0. Therefore, by (17.6)), we have 8 = o, a € R™. Using that
%2 = 1 we obtain that o® = 1, hence

(17.13) Ug-Prv1 = —01- PRV, v; € S.
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17.5.1. Weyl bi-spinors. We know that S = W, & W, but we can use § to
obtain a different decomposition. We introduce the space of Weyl spinors:

S:=WwW;,
and identify linearly S with S* @& S’ by the map
SoOYr— Y DK =xDPES DY,

where 1) = 1)e @ 1o With e /o € We/o. We have ¢ = x @ k¢.
The space S is canonically equipped with the symplectic form

1 —1
€:=—(Bk € L(S,s).

wﬂﬁ) (S,8)
The fact that e is anti-symmetric follows from (17.13), and Kere = {0} since
Ker g = {0}.

17.5.2. Another identification. We can identify X with L,(S*,S) as real
vector spaces by

(17.14) X >z By(x) € La(We, WY).

This map is injective, since p is faithful, and since both spaces have the same
dimension, it is bijective. By complexification we obtain an isomorphism

(17.15) T:CX 32+ By(2) € LW, W) ~WE@W. =S®S.

In the next proposition we still denote by v € Ly(CX, (CX)’) the bilinear extension
of v.

ProrosiTION 17.5.1. The map
T:(CX,v)~=(S®S,e®¥?).
is an isomorphism, i.e.
(17.16) T o(c®e)oT =v.

Proof. Let a(z) = ky(x) € L(W,, W,). Since a(z)? = zvx1l, we have (det a(z))? =
(z-vx)?, hence det a(z) = +2-vx, where the sign + is independent on 2 by connect-
edness. Note also that a(z) = v/2¢ o By(x).

Let B = (s1,s2) be a symplectic basis of S with s1-eso = 1. We denote by B’
the dual basis of S’ and by B the basis B considered as a basis of S. Computing the
determinants of a(x), € and S8v(x) in the above bases, we obtain that 2 det Sy(z) =
2det By(z)det e = deta(x) = tx-vz. Since iBvy(e) > 0 for e € X time-like and
future directed, we have det 8y(e) < 0 so deta(e) = e-ve and det a(r) = x-vz for
all z € X.

If [vjx(z)] is the matrix of Bv(x) in B, B, so that T'(z) = 25k Yik(@)3) ® sk,
we check that (T'(z)|(e ® €)T(x)) = 2det[Svy(x)] = det a(z) = z-va. O

17.6. Clifford and spinor bundles

In this subsection and the next two we will use notions on fiber bundles, recalled
in Section 511

Let (M,g) be an orientable and time orientable Lorentzian manifold. After
fixing an orientation and a time orientation of M, we can assume that the transition
maps o;; of T'M, see Subsection take values in SOT(RY?). Equivalently, one
can view o;; as the transition maps of the principal bundle Fr] (TM) of oriented
and time oriented orthonormal frames of T M.
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DEFINITION 17.6.1. The Clifford bundle Cliff (M, g) is the bundle over M with
typical fiber Cliff(RM?) defined by the transition maps 6;; € Aut(Clff(RY?)), where
0ij : Uij — SOT(RY) are the transition maps of TM.

Note that Cliff (M, g) is a bundle of algebras.

DEFINITION 17.6.2. Let (M, g) a Lorentzian manifold. A complex vector bundle
S 5 M s a spinor bundle over (M, g) if there exists a morphism
p: Cliff(M,g) — End(S)
of bundles of algebras over M such that for each x € M the map p, : Cift (T, M, g.) —

End(Sy) is a spinor representation.

Let us fix a spinor representation pg : Cliff(1,d) — L(Sp), a positive energy
Hermitian form Sy and a charge conjugation kg on Sy as at the end of Section|17.4

LEMMA 17.6.3. Let S = M be a spinor bundle over M. Then one can assume
that its transition maps t;; : U;; — GL(So) satisfy:
(17.17) tij o pola) o t;jl = po(6i5(a)), a € Cliff(1,d) on Uj;.
Proof. By Subsections[5.1.2land [5.1.11] we deduce from the existence of the bundle
morphism p that there exist x; : U; — Hom/(Cliff (1, d), L(Sp)) such that

tij o x;(a)o ti_jl = Xi(6;5(a)), a € Cliff(1,d).
By irreducibility of the spinor representation, there exists V; : U; — GL(Sp) such
that
xi(a) = Viopo(a) o V7!, a € Cliff(1, d).

Let us set #;; = V; ' ot;; o V;. We check that f;; satisfy (I7.17) and note that
changing ¢;; to tNij corresponds by Subsection m to a vector bundle isomorphism.
This completes the proof of the lemma. a

17.6.1. The bundles B(p) and C(p). Let B(po), resp. C(po), the sets of
positive energy Hermitian forms, resp. of charge conjugations, associated to pg, see

Subsections [17.3.1] and [[7.3.2

DEFINITION 17.6.4. Let S =5 M be a spinor bundle and p : Cliff(M,g) —
End(S) the associated morphism.
The bundle B(p) = M is the bundle with typical fiber B(po) and transition
maps
Bt Btij, B € B(po).
The bundle C(p) = M is the bundle with typical fiber C(po) and transition maps
K t;jlntij,n € C(po).

Note that using that t;jlvo(v)tij = 7o(0;;v) for v € RV, we obtain that the
transition maps above preserve the fibers. By the definition of B(p) and C(p), we
immediately obtain the following proposition.

PROPOSITION 17.6.5. There exist canonical bundle morphisms
B(p) — End(S,8*), C(p) — End(S,S).

From Subsections [17.3.2| and [L7.3.1] we see that B(p), resp. C(p) are principal
bundles over M with fiber R**, resp. S!. Being principal, these bundles are trivial
iff they admit a global section.

REMARK 17.6.6. Local sections of B(p) can be pieced together using a partition
of unity on M, since the set B(pg) is convex. Therefore B(p) is a trivial bundle.
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17.7. Spin structures

Next, let us explain the relationship between spin structures and spinor bundles,
following [TY.

DEFINITION 17.7.1. A spin structure on M is a Spin' (1, d)-principal bundle
Spin(M) = M
with a bundle map x : Spin(M) — Frl (TM) such that
(17.18) Va € Spin'(1,d), q € Spin(M) one has x(qa) = x(q)Ad(a).

We recall that a principal bundle admits a right action of its structure group,
see Subsection which is used in (I7.18). If s;; : U;; — Spin'(1,d) are the
transition maps of Spin(M) and o;; : U;; — SOT(1,d) are the transition maps of
Frl (TM), (17.18) means that

Oij(.’L‘) = Ad(Sij>(l‘>7 HASS Uij-
THEOREM 17.7.2. Let (M, g) be an orientable and time-orientable Lorentzian

manifold and let Spin(M) = M be a spin structure over (M,g). Then there exists
a canonical spinor bundle S = M with canonical global sections 3, k of the bundles

B(p), C(p).

REMARK 17.7.3. Conversely, one can show that if S = M is a spinor bundle
over (M, g) such that the bundle C(p) is trivial, then M admits a spin structure
Spin(M) = M. The two constructions are inverse to one another, modulo bundle
isomorphisms.

Proof. Recall that s;; : U;; — Spin'(1,d) are the transition maps of Spin(M).
Let S = M be the vector bundle with typical fiber Sy and transition maps
ti]‘ = po(sij) : Uij — GL(S())
We define the bundle morphism p : Cliff (M, g) — End(S) by
pPi = Po - U, — HOW(Cllﬁ(l,d),L(So)),
see Subsection [5.1.2} From (17.8) (ii), we obtain that p is indeed a morphism of
bundles of algebras, ie that S is a spinor bundle over M.

From ([17.8) (i) and the definition of ¢;;, we see that the local sections of B(p),

resp. C(p) defined by B;(x) = By, resp. ki(x) = ko for x € U; can be patched

together as global sections of B(p), resp. C(p). This completes the proof of the
theorem. a

17.8. Spinor connections

Let V be the Levi-Civita connection on (M, g). Since Cliff (M, g) is a vector
sub-bundle of @} _, ®@FTM, V induces a unique connection V¢, defined by

VN (Y) = 4(VxY), X,Y € C(M;TM).
Since V is metric for g, V¢ is adapted to the algebra structure of Cliff (M, g), i.e.
VL ((Y1)1(Y2)) = VY (Y1) (Ya) + (Y1) VY (Ya).

Let now S = M be a spinor bundle and let us denote p(v(X)) simply by v(X) for
X a vector field on M. One can show, see [T], that there exists a (non unique)
connection V¥ on S such that

VEAY)) =y (VxY ) +4(Y)VEY, X,Y € O°(M;TM), s € O%(M;S).

The following result is shown in [T}, Proposition 9].
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THEOREM 17.8.1. Let S = M a spinor bundle. Assume that the bundle C(p)
is trivial. Then given a section B € C*(M; B(p)) and a section k € C*°(M;C(p)),
there exists a unique connection VS on S such that

(i) VE(Y(Y)9) = v (VxY)p +4(Y)V§ Y,
(17.19) (ii) X((v|B¢)) = (VX¥I8Y) + (¥|BVI ),
(i) V¥ (k) = VS0,
for all X, Y € C°(M;TM) and ¢ € C(M;S).
From Theorem [17.7.2| we see that if Spin(M) = M is a spin structure over M,

then there exists a canonical spinor bundle S =+ M, canonical sections 3, s and
spin connection V<.

17.9. Dirac operators

In the rest of this chapter we will assume that the hypotheses of Theorem
[I7.871] are satisfied. One defines a Dirac operator, acting on smooth sections of S
as follows:

let U C M a chart open set for S and the bundle of frames Fr(TM). Choose
sections e, 1 < p < n of Fr(TM) over U, i.e. (e1(x),---en(z)) is a ordered basis
of T, M for x € M (not necessarily orthogonal). We define

lD = gMV7(6u>nya
D =)+ m(x)

where VS is the connection on S from Theorem [17.8.1|and m € C>(M; End(S))
is such that m*f = Sm where S is the section of B(p) in Theorem [17.8.1} Such an
operator will be called a Dirac operator.

(17.20)

17.9.1. Characteristic manifold. Denoting by X = (z,€) the elements of
T*M \o, the principal symbol d(x, &) of D is the section of C°(T*M \0; End(S)),
homogeneous of degree 1 in &, given by

d(z,€) = (g~ (2)€).
From the Clifford relations we obtain that
(17.21) d?(z,€) = &g ()€
The characteristic manifold of D is
Char(D) := {(z,§) € T*M \o : d(z,£) is not invertible},
and by we have
Char(D) = {(x,&) € T*M \o: &-g M (z)¢ =0} = N

As usual, we denote by N'* the two connected components of N

17.9.2. Charge conjugation. Assume that the charge conjugation « satisfies

k? =1, i.e. that n € {1,2,3,4} mod 8 by Proposition [17.3.2] By (17.19), we have

[k, V&] = 0. Assuming also that m is real, i.e. [m, k] = 0, we obtain that
Dk =rD ifne{1,2,4} mod 8,
Dk = —kD if n =3 mod 8 and m = 0.
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17.9.3. Conserved current. Let ¢1,95 € C>®(M;S). Define the 1-form
J(Y1,1p2) € C(M;T*M) by

J(h1,92)- X 1= 1By (X)hs, X € C(M;TM).
The following lemma follows easily from .
LEMMA 17.9.1. We have
VHJu(1,p2) = =Dy - Bipa + - BDrpg,  1h; € C(M;S).

PROPOSITION 17.9.2. The Dirac operator D is formally selfadjoint on C§°(M;S)
with respect to the Hermitian form

(17.22) (Y1]p2) == /M Py Bpa dVol,,.

Proof. We apply the identity V*.J,Q, = d(J"1Q,), where Qg is the volume form
on (M, g), and the Stokes formula (5.11) [, dw = [, w to w = J",Q,, U € M an
open set with smooth boundary, containing supp ;. O

17.9.4. Decomposition of the Dirac operator. Let us assume that n =4
and that m in (17.20) is scalar, i.e. m(x) = m(z)1 for m € C>°(M;R).

Section ides a section H € C™(M; End(S)) locally defined by H =
iy(e1) - -v(eq), where (ey,...,eq) is an oriented orthonormal frame of TM. We
have

H?>=1, Hy(X)=—(X)H, X ¢cC>M;TM).
Using , the fact that V is metric for g, and the Clifford relations, one can
prove that V¢'H = 0, which implies that PH = —HI).

Using P/, = %(1 + H), we can construct the vector bundles W/, = P, /S and
identify C*°(M;S) with C*(M;W,) ® C>°(M;W,). The Dirac operator becomes

m o 3 174
(17.23) D= ( B, m > , with Dejo = (" v(ep) Ve, e (mw,0) -

By Subsection |17.9.2} there exists a charge conjugation x with k? = 1 and
Dk = kD, k: We/o = Ws /e, and we obtain that

(17.24) Deso = kDo ek.

As in Subsection we identify S = M with S* ® S’ 5 M and a section
Y € C°(M;S) with (x,¢) € C°(M;S*) ® C>°(M;S’). We can rewrite the Dirac

equation

Dy +map =0
as
(17.25) { BPx+ Jse o =0,
K BIDKG + %6’5( =0.

17.10. Dirac equation on globally hyperbolic spacetimes

Assume now that (M, g) is a globally hyperbolic spacetime. We denote by
Sols.(D) the space of smooth, space compact solutions of the Dirac equation

Dy = 0.
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17.10.1. Retarded/advanced inverses. Since (M, g) is globally hyperbolic,
D admits unique retarded/advanced inverses Gie/aav @ C5°(M;S) — Cs2(M;S)
such that

{ DGret/adv = Gret/advD =1,
Supp Gret/aavtt C Jx(suppu), u € C5°(M;S),

see eg [DGl Theorem 19.61]. Using the fact that D is formally selfadjoint with
respect to (+|-)as and the uniqueness of Giet/aqv We obtain that

*
Gret/adv = Gadv/ret7

where the adjoint is computed with respect to (:|-)as. Therefore, the causal
propagator

G:= Gret - Gadv

satisfies
DG =GD =0,

(17.26) supp Gu C J(suppu), u € C§°(M;S),
G* = —-G.

17.10.2. The Cauchy problem. Let ¥ C M be a smooth, space-like Cauchy
surface and denote by n its future directed unit normal and by Sy the restriction
of the spinor bundle S to X, so that

ps : CF(M;8) 3¢ — ¢P[ne CF(X; Sx)
is surjective. The Cauchy problem

{ D =0,
pzw:f7 fecgo(zasz)a

is globally well-posed, the solution being denoted by ¥ = Us, f. From [DG, Theorem
19.63], we obtain that

(17.27) Usf(x) = — / G, y)1(n(y)) £ (4)dVol,

where h is the Riemannian metric induced by g on X.
We equip C§°(X; Sy) with the Hermitian form

(17.28) (hlfe)s = [ 1002 v
b
For g € £'(%; Sx;), we define ptg € D'(M;S) by
/ pEg-BudVoly ::/g-ﬁpgudVolh, u € C™(%;Sy),
M )

i.e. p% is the adjoint of py; with respect to the scalar products (+|-)as and (-|-)x. We

can rewrite (17.27) as
(17.29) Usf=(pG)"v(n)f, feC5(5;8).
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17.11. Quantization of the Dirac equation

For 11,19 € Solg.(D) we set

(17.30) By = /E i, (61, Y2)ndVBly, = (psin[iy(n)pstha)s.

Since V#J,,(¢1,%2) = 0, the right-hand side of (17.28) is independent on the choice
of ¥, and v is a positive definite scalar product on Sols.(D). Setting

frvsfoi= i/ T1-87(n) f2dVoly,
p)
we obtain that
px : (Solge(D),v) = (C5°(X; Sw), vs)

is unitary, with inverse Us,. We also get that G : C5°(M;S) — Sols.(D) is surjective
with kernel DC°(M;S) and, see e.g. [DG| Theorem 19.65], that

G (MS)
G : (W71(|G)M) — (SOISC(D),I/)
is unitary. Summarizing, the maps
> (M; . G ) 00
(17.31) (et 1C1G)ar) =5 (Soluc(D), v) L2 (C3°(3; Ss), vs)

are unitary.

17.12. Hadamard states for the Dirac equation

We denote by CAR(D) the %-algebra CAR(Y, v) for (), v) one of the equivalent
pre-Hilbert spaces in (17.3I). We use the Hermitian form (-]-); in (17.22) to
pair C§°(M;S) with D'(M;S) and to identify continuous sesquilinear forms on
C§°(M;S8) with continuous linear maps from C§°(M;S) to D' (M;S).

Thus, a quasi-free state w on CAR(D) is defined by its spacetime covariances
A* which satisfy

(i) A*:C5(M;S) — D'(M;S) are linear continuous,
(ii) AT >0 with respect to G,
(i) AT +A =iG,

(iv) DoA* =A*oD=0.

(17.32)

Alternatively, one can define w by its Cauchy surface covariances )\; which satisfy
(i) A :Cge(2;Sx) — D'(%;Sx) are linear continuous,
(17.33) (i) AL >0 for (-])s,
(iil) AL+ Ag =iy(n).
Using one can show as in Proposition that
AE = (p2G)* AL (psG),

A5 = (P57 () A= (p3y(n)).
By the Schwartz kernel theorem, we can identify A* with distributional sections in
D'(M x M;SXS), still denoted by A*.

The wavefront set of such sections is defined in the natural way: choosing a
local trivialization of S X S, one can assume that S XS is trivial with fiber M,(C)
for p = rank S, and the wavefront set of a matrix valued distribution is simply the

union of the wavefront sets of its entries.
We recall that N'* are the two connected components of N, see[17.9.1

(17.34)
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DEFINITION 17.12.1. w is a Hadamard state if
WF(A®) c NE x NE

The following version of Proposition [L1.1.1] gives a sufficient condition for the
Cauchy surface covariances )\3; to generate a Hadamard state. Its proof is analogous,

using (|17.34]).

PROPOSITION 17.12.2. Let A% =:iy(n)c®, where ¢t are linear continuous from
C§°(%; Sx) to C*°(X;Ss) and from £'(X;Sx) to D' (3;Sx). Assume that

WF(Us, o ¢&) ¢ NE x (T*2\o), over U x %,
for some neighborhood U of X2 in M. Then w is a Hadamard state.

The existence of Hadamard states for Dirac equations on globally hyperbolic
spacetimes can be shown by the same deformation argument as in the Klein-Gordon
case, see e.g. [Holl.

17.13. Conformal transformations

Let ¢ € C°(M) with ¢(x) > 0 and § = c*g. If 4(X) are the generators of
Cliff (M, g), we have 4(X) = cy(X).

To define the spinor connection VS on § for the metric g we need to fix a
Hermitian form 3 and a charge conjugation k. It is natural to choose & = k, but
several choices of ,5’ are possible. The choice that we will adopt is

B=c'p

which has the advantage that if n = 4 the isomorphism 7' in Proposition [I7.5.1] is
unchanged. From Theorem [I7.8.] we deduce that

= 1
Vs =Vs + icfly(X)'y(Vc) —c X dcl.

If l~D is the associated Dirac operator, we have
(17.35) D =c 2 pen/2L
Equivalently, if we introduce the map

W C5°(M;8) 3 — ¢**7 1) € C5° (M3 S),

and denote by (-|-);; the Hermitian form (17.22) with 5 and dVol, replaced by B
and dVolg, respectively, we have

(17.36) W1 Wia)ar = W i) gy, Wi = "2y,
and can be rewritten as:

D= W*'DW = ¢ /2Dc"/> " = P4 ¢ 'm.
We have then G = WGW*.

REMARK 17.13.1. The choz’ceB = (3 is often used in the mathematics literature.
It leads to
VS = VS + 3¢y (X)v(Ve) — L7t X - de 1,

lD _ Cf(n+1)/2mc(n71)/2.
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17.13.1. Conformal transformations of phase spaces. Setting
U:C(5;8x) o fr— Uf =c 2 f 5 C5°(5; Sx),
we obtain the following analog of Proposition

PROPOSITION 17.13.2. The following diagram is commutative, with all arrows
unitary:

(pestrigy (G )ar) —F= (Sole(D),v) —=— (C§*(%:Sx),vs)

b - |

(FELEk (G ) ) — T (Soke(D),7) —Z (CF(S: S5), 7m)
17.13.2. Conformal transformations of quasi-free states. Let A* be the
spacetime covariances of a quasi-free state w for D. Then
(17.37) AE = 2\ E /2
are the spacetime covariances of a quasi-free state & for D, and
A = (US)TIAGU T =TGP
if )\jzt, resp. 5\32( are the Cauchy surface covariances of w, resp. @.

17.14. The Weyl equation

We consider now the massless Dirac equation D) = 0 and assume n = 4. Ac-
cording to[17.9.4] the Dirac equation decouples as two independent Weyl equations

(17.38) { BPx =0,
K BIDkd = 0.

Let us set
D := B : C°(M;S*) — C(M;S).
Note that I = D* by Proposition [17.9.2
17.14.1. Characteristic manifold. The characteristic manifold of D is
Char(D) = {(z,&) € T*"M \o : op(D)(x,€) not invertible}.
It is easy to see that
(17.39) Char(D) = N.
Indeed, fix € M and choose a basis (w1, ws) of We,. By (17.23), the matrix of

. . 0 de(z,§)
d(z,€) in the basis (w1, ws, kw1, kwe) of S, equals < do(,€) 0 >7 where

de(z,€&) € My(R). From (17.21) we obtain that do(z,&)? = &-g~(x)€é1y, which
implies (17.39)).

17.14.2. Retarded/advanced inverses. D has the retarded/advanced in-
verses

Gret/adv = C:ret/advﬁ_1 : Cgo(Ma S) — C:co(Mvg*)v
and the causal propagator
G = Gret — Gaay = Gﬂil'
Let us denote by ry : C®(M;S*) — C*°(X;S%) the trace on X, and by r§ :
C>(%;Sy) — C(M;S) its adjoint, so that 75, = Bp%B~1. We also set
['(X) = By(X) : CF(2,S5) — C™(%;8x).
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The Cauchy problem

{ D¢ = 0,

has the unique solution

6=Usf = - [ Glay)Lnw)f)dioh,
b
or equivalently
Us, = (rsG)*T'(n).

We see that (Soly.(D),v) is a pre-Hilbert space, and from (17.31) we obtain the
unitary maps:

C5°(M;S)

(17.40) (m7

iG) % (Solye (D), v) 22 (C§°(5;S%), vs:).

17.14.3. Quasi-free states. As before, we denote by CAR(ID) the *-algebra
CAR(Y,v) for (V,v) one of the equivalent pre-Hilbert spaces in (17.40). A quasi-
free state w on CAR(), v) is defined by its spacetime covariances L=, which satisfy

(i) L*:C0g(M;S) — D'(M;S*) are linear continuous,
(i) L*>0,
(17.41)
(i) Lt +L- =iG,
)

DL* = L*D = 0.

(iv
Alternatively, one can define w by its Cauchy surface covariances l% which satisfy:
(1) IE:05°(2;SE) — D'(X;Sy) are linear continuous,
(17.42) (i) £ >0,
(iil) & +15 =il (n).
One has
L* = (rsG)*I5(rsG),
5 = (rgl(n))"L* (r£T(n)).

Here are the identities corresponding to those in Section obtained by a con-
formal transformation § = c?g:

]]j) — Cflfn/ZDCn/Zflv G _ len/ZGCn/2+l’

LT = Cl—n/2L:tCn/2+l7 % — Cl—n/Qlétcn/Q—l.

(17.43)

(17.44)

DEFINITION 17.14.1. The state w on CAR(D) is a Hadamard state if
WF(LE) c NE x NE.
We have the following version of Proposition [I7.12.2

PROPOSITION 17.14.2. Let l% =:il'(n)c*, where ¢t are linear continuous from
C5(%;8%) to C°°(2;S%) and from £'(X2;SE) to D' (3;S%). Assume that

WF(Ug o ) ¢ NE x (T* \o) over U x X,
for some neighborhood U of 2 in M. Then w is a Hadamard state.
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17.15. Relationship between Dirac and Weyl Hadamard states

Finally, let us describe the relationship between Hadamard states for the Weyl
and Dirac equations.

PRrROPOSITION 17.15.1. Let wp be a quasi-free Hadamard state for D with space-
time covariances L. Then

0 L3
A= ( —kL¥Bk 0 )

are the spacetime covariances of a quasi-free Hadamard state wp for Ip.

Proof. We check (17.32). Condition (i) is obvious. We have (L* +1L7)3 =iGS =
iG on C§°(M;W,), hence k(LT +L7)8k = —ikGr = —iG on C§°(M;W,), since
kG = Gk and « is anti-linear, which proves condition (iii). Condition (iv) is also
immediate. To check the positivity condition (ii), we write using and the
fact that g = 8*:

(¥|BATY)

(Yol BL* Brho) — (ve| BELT Brie)
(Yol BL* o) + (kpe| LT Britfe)
= (Yol BLFBo) + (Brthe[LT Brire) > 0,
as needed. It remains to prove the Hadamard condition. The fact that WF(L*3)’ C

NEXN* follows from the Hadamard property of wp. This implies that WF(kL* k) C
NT x N'¥ since k is anti-linear, and completes the proof that w p is Hadamard. O

The converse of Proposition [17.15.1]is much easier.

PROPOSITION 17.15.2. Let A* be the spacetime covariances of a Hadamard
state for ID. Then setting AT = Ai|cg°(M;wo), the maps

]L:I: _ A:I:ﬁfl

are the covariances of a Hadamard state for D.
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