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A Mesh Adaptation Strategy to Predict Pressure Losses
in LES of Swirled Flows

Guillaume Daviller1 · Maxence Brebion2 ·
Pradip Xavier2 · Gabriel Staffelbach1 ·
Jens-Dominik Müller3 · Thierry Poinsot2

Abstract Large-Eddy Simulation (LES) has become a potent tool to investigate instabili-
ties in swirl flows even for complex, industrial geometries. However, the accurate prediction 
of pressure losses on these complex flows remains difficult. The paper identifies localised 
near-wall resolution issues as an important factor to improve accuracy and proposes a solu-
tion with an adaptive mesh h-refinement strategy relying on the tetrahedral fully automatic 
MMG3D library of Dapogny et al. (J. Comput. Phys. 262, 358-378, 2014) using a novel sen-
sor based on the dissipation of kinetic energy. Using a joint experimental and numerical LES 
study, the methodology is first validated on a simple diaphragm flow before to be applied 
on a swirler with two counter-rotating passages. The results demonstrate that the new sen-
sor and adaptation approach can effectively produce the desired local mesh refinement to 
match the target losses, measured experimentally. Results shows that the accuracy of pres-
sure losses prediction is mainly controlled by the mesh quality and density in the swirler 
passages. The refinement also improves the computed velocity and turbulence profiles at 
the swirler outlet, compared to PIV results. The significant improvement of results confirms 
that the sensor is able to identify the relevant physics of turbulent flows that is essential for 
the overall accuracy of LES. Finally, in the appendix, an additional comparison of the sensor 
fields on tetrahedral and hexahedral meshes demonstrates that the methodology is broadly 
applicable to all mesh types.
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1 Introduction

The design of swirl injectors used in combustion chambers is often based on multiple pas-
sages and relies on complex geometrical shapes. The swirler controls a large part of the
chamber performances: flame stabilisation, mixing between fuel and air, flame stability,
ignition capabilities, etc. [1] and its optimisation is a crucial part of an engine design. Large-
Eddy Simulation (LES) has become a reference method for the simulation of swirling flows
in the last ten years [2–4]. Nevertheless, the prediction of pressure losses in swirl burn-
ers using LES remains a challenge for most industrial solvers: errors on pressure losses in
swirled systems computed with LES can be surprisingly high as discussed below.

LES have been applied with tremendous success to swirled injectors used in combus-
tion chambers for both non-reacting [5, 6] and reacting flows [4, 7–9]. Velocity profiles at
various positions downstream of the swirled injectors usually match experimental velocity
profiles very well, with and without reaction. What is seldom studied, however, is the capa-
bility of the LES solvers to predict pressure losses through these systems. These losses are
a first order parameter in the design of swirled injectors: excessive pressure losses directly
impact the engine efficiency so that predicting them accurately is as important as predicting
velocity profiles. Unfortunately, recent studies show that while most LES capture velocity
profiles accurately downstream of the swirler, they fail to predict pressure losses through the
swirler itself with precision, usually overestimating them by 20 to 50%. Pressure losses in a
swirling system are mainly induced by sudden expansion within the swirler passages, where
strong flow directional perturbations occur [10]. Of course, increasing the total number of
points inside the swirler helps to improve the accuracy of the prediction of pressure losses,
but refining uniformly in the swirler is not affordable. Only few studies have addressed pre-
diction of losses in combustors with complex geometry [10, 11], whereas the sensitivity
of LE,S to mesh quality is a well-known issue for non-reacting flows [12] as well as for
reacting flows [3, 13].

Three different approaches are commonly used in Adaptive Mesh Refinement (AMR)
strategies in CFD: r-refinement methods where cells of a given mesh are redistributed, p-
refinement methods where the order of discretisation is locally increased and h-refinement
approaches where cells are subdivided isotropically or anisotropically [14]. In this lat-
ter case, a new mesh with a modified density distribution is generated [15, 16]. Whereas
r- and p-refinement are most useful for dynamic mesh refinement as they do not change the
mesh topology, h-refinement and remeshing are very appropriate for static mesh adaptation
as they allow to add cells. While h-refinement is the most costly approach, it is the only
one which can produce a high-quality mesh that is independent of the initial mesh. AMR
methods have been developed for Reynolds Average Navier-Stokes (RANS) methods for a
long time [17, 18] but they remain a challenge in LES: being able to generate LES meshes
on the basis of well-established metrics instead of relying on the intuition of the LES user
is probably the overarching question for future LES.

The objective of the present study focuses on this problem for one specific case: non-
reacting flows in swirlers. Uniform mesh refinement is not an affordable option, so that
adaptive mesh refinement appears as an appropriate tool. In turn, a local mesh refinement
approach based on h-refinement requires a sensor which robustly flags all areas relevant to
pressure loss inside the swirler, but does not use valuable mesh resources in irrelevant areas.
The present work proposes an adaptive h-refinement method to increase the accuracy of the
prediction of pressure losses while keeping the total number of mesh points to a minimum.

The approach employs remeshing which is driven by a sensor based on mean flow
data. The sensor considers as Quantity of Interest (QOI) the dissipation of kinetic energy.



This QOI is averaged during the simulation and provided as field function to the MMG3D
library [19] which carries out the remeshing operations. A new solution is then computed
on the refined mesh, and the process is repeated once or twice during a full simulation. This
is sufficient to reach an accuracy of a few percent on pressure losses while preserving or
improving the quality of all velocity profiles and retaining an appropriate number of cells.

This paper is organised as follows: Section 2 shows why the kinetic energy dissipation
is the right mesh metric to predict pressure losses and presents the mesh adaptation proce-
dure where the LES solver is coupled to the tetrahedral mesh refinement code MMG3D.
The remeshing methodology is then validated on the canonical case of a simple orifice-
plate in Section 3. Section 4 presents first the experimental configuration and the flow
parameters for the swirl fuel injector. LES and PIV results are then compared and analyzed.
Additionally, as the choice between hexahedral and tetrahedral meshes in LES and CFD
is a general CFD topic, a LES on an unstructured fully hexahedral grid for the same swirl
burner is shown in the Appendix, highlighting the universality of the adaptation criteria in
this paper.

2 Mesh Metric for the Prediction of Pressure Losses

As underlined by Mitran [20], the criterion governing grid refinement in CFD should repre-
sent the physics of the problem. Due to the unsteady chaotic nature of turbulence, knowing
where to refine the mesh in an LES is a complicated question which may depend on the
objectives of the simulation: the best mesh to predict far field noise sources is probably not
the best mesh to capture pressure losses. Metrics for CFD have been proposed for RANS
meshes for a long time [15, 21] and are still studied today [22, 23]. Metrics for LES or DNS
have also been derived recently. This can be done either as a dynamic approach, i.e. per-
formed at run time, so that the mesh is adapted to the instantaneous solution (see [24–26]),
but can also be done statically, i.e. performed using mean flow characteristics once or twice
during the whole simulation [11], as proposed here.

The first step to build a proper QOI adapted to the accurate prediction of pressure losses
in swirlers is to identify which physical mechanisms generate these losses. This can be
obtained by considering conservation equations for kinetic energy Ec = (1/2)ρuiui and for
entropy s. The instantaneous equation for kinetic energy Ec can be written in incompressible
flows as:
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where terms (1), (2), (3) and (4) correspond respectively to the temporal variation of the
kinetic energy, the mechanical energy flux, the viscous diffusion and the viscous dissipation.
The instantaneous entropy equation expressed with the same notations is:
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Equations 1 and 2 reveal the importance of the viscous dissipation �:

� = τij
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= μ
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)2

(3)

This term is present in the entropy equation and measures the losses due to fluid friction
irreversibilities [27–29]. Of course, this is not a surprising result and the dissipation � plays



a major role in all turbulence theories where it controls the dissipation to the small scales.
The aerodynamic community [27, 29–32] and the applied mathematicians [33, 34], have
also been using entropy as a quality indicator for a long time. The dissipation � also appears
in the kinetic energy equation and rewriting this equation to introduce the total pressure
Pt = P + Ec shows that the dissipation � is the quantity which controls the dissipation of
total pressure and therefore pressure losses:

∂Ec

∂t
+ ∂

∂xj

(
ujPt

) = ∂
(
τij ui

)
∂xj

+ � (4)

For a steady flow, the integration of Eq. 4 over the whole computational domain of
volume � bounded by a surface �, with the Ostrogradsky’s theorem gives:

∫
�
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∫

�

∂
(
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)
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dV +
∫

�

�dV (5)

Finally, for a case with non-moving walls, the first right-hand side term of Eq. 6, which
corresponds to the power of external viscous forces, cancels. The pressure losses are then
directly expressed by the integral of the volumetric dissipation rate:

Qv�Pt =
∫

�

�dV (6)

where QV is the volume flow rate and �Pt is the pressure loss between inlet and outlet
sections. Equation 6 confirms that errors on pressure losses �Pt in a simulation are due to
the fact that the total dissipation

∫
�

�dV is not computed with sufficient accuracy. The fact
that the dissipation field � controls the irreversible losses in the entropy equation as well
as the pressure losses in the kinetic energy equations suggests that a proper QOI to use in
a metric aiming at adapting meshes to improve pressure losses prediction is the field of �:
this is the QOI chosen in this paper.

An additional complexity introduced by LES is that the equations used in LES are not
Eq. 1. Some differences must be accounted for to construct the QOI to use in an LES:

– Many LES use compressible formulations where additional phenomena (dilatation dis-
sipation for example [35]) contribute to losses. To first order however, it is reasonable
to accept, especially for low speed flows, that � is the simplest quantity to use for mesh
adaptation even if the flow is compressible.

– In the present mesh adaptation strategy, Eq. 1 will be averaged over time to produce
a steady field. Therefore the proper QOI is not the instantaneous field � but its time
averaged field �.

– Finally, LES does not resolve all spatial scales: the LES field corresponds to a filtered
velocity ũi and not the local velocity ui [36, 37]. The filtering operation introduced
by LES leads to an expression for dissipation which contains two parts: the first
one is produced by the fluctuations resolved on the LES grid and can be written

φ = μ
(

∂ũi

∂xj
+ ∂ũj

∂xi

)2
. The second contribution to dissipation corresponds to the unre-

solved part and can be written ϕ = μt

(
∂ũi

∂xj
+ ∂ũj

∂xi

)2
where μt is the local turbulent



viscosity. Therefore a proper expression for the QOI is the time averaged of the sum of

these two contributions: �̃ = φ + ϕ:

�̃ = (μ + μt)

(
∂ũi

∂xj

+ ∂ũj

∂xi

)2

(7)

This is the QOI used in the following sections. It is expected to provide a metric leading

to mesh refinement in zones where �̃ will be large so that the precision of pressure
losses, which are controlled by this field, will improve. Interestingly, results show that
the prediction of the velocity fields is also more accurate and suggest that this metric
improves the quality of all results and not just of pressure losses.

In practice, the implementation of the metric in the LES code AVBP is performed as

follows (Fig. 1). From the time-averaged dissipation field �̃, a dimensionless variable ��

is first defined as:

�� =
[

1 −
(

�̃ − �̃min

�̃max − �̃min

)]α

, �� ∈ [0 : 1] (8)

where the parameter α in Eq. 8 scales the value of �� in order to ensure continuous variation

of QOI and to obtain smoother stretching of the cells size in the new mesh. The values �̃min

and �̃max correspond to the minimum and maximum of the time-averaged dissipation field
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step 0
AVBP simulation on an initial arbitrary mesh

AVBP simulation

Limit metric to [ :1 ] range:

Compute metric:

Fig. 1 Mesh adaptation procedure



�̃ measured in the whole computational domain, respectively. Then the maximum factor to
divide the volume of the tetrahedral cells is imposed by the variable ε in the metric:

metric = ��(1 − ε) + ε (9)

Typical range of values used for these two terms in this study are 0.3 ≤ ε ≤ 0.7 and
30 ≤ α ≤ 100. The value of ε fixes the maximum refinement: no cell with a volume �

is allowed to be reduced to less than ε�. The value of α controls the dilatation of the cells
allowed on the mesh. The MMG3D library [19] then interpolates the mesh size to use from
the prescribed metric on the current mesh. Finally, the MMG3D library is used to gener-
ate an entirely new mesh. The mesh refinement strategy is shown on Fig. 1. No restriction
on the number of tetrahedra is specified but a minimal cell volume is fixed. This param-
eter is simply defined using the maximum of the metric and the minimal cell volume of
the mesh before adaptation. The AVBP code uses a compressible formulation with explicit
time-stepping and is hence subject to a CFL condition based on the fastest acoustic wave.
To maintain an appropriate time-step �t , the local mesh size must not be too small. Only
isotropic subdivisions of the tetrahedra are considered to preserve the mesh quality [38].
While anisotropic remeshing can be very appropriate in producing high-aspect ratio cells
aligned with strong gradients in steady flow [16], the present computations are unsteady
and the extreme element angles found in anisotropic tetrahedral meshes would adversely
affect accuracy. All simulations in Sections 3 and 4 are performed using the compress-
ible cell-vertex Navier-Stokes solver AVBP [39, 40]. The third-order scheme TTGC [41]
is used on a fully tetrahedral mesh. In order to remove spurious numerical oscillations, an
artificial viscosity operator of 2nd and 4th order is also applied according to a local sen-
sor [41]. At the inlet and outlet boundaries, the classical Local One-Dimensional Inviscid
(LODI) Navier-Stokes Characteristic Boundary Conditions (NSCBC) are used [42]. These
boundaries conditions are derived from the time-dependent boundary conditions proposed
by Thompson [43] and are non-reflective, based on the work of Rudy & Strikwerda [44].
An eddy-viscosity approach is considered for the SubGrid-Scale (SGS) stress, based on
the SIGMA model [45]. The choice of SIGMA is motivated by its low computational cost
and its good results compared to the Dynamic Smagorinsky model and experiments [46–
48]. The SIGMA model is computed from the singular values of the local velocity gradient
tensor. No-slip adiabatic conditions are applied at all walls.

3 Validation on a Canonical Test Case: Pressure Losses through
a Diaphragm

The AVBP-MMG3D strategy is first validated for the canonical test case of an orifice plate
in a straight duct (Fig. 2). The evaluation of the pressure losses through a diaphragm is a
usual task in the industry to measure flow rates. Due to the simplicity of the geometry, many
pressure loss correlations derived from experiment are available in the literature [49, 50]. In
order to compare LES and experimental data, a series of experimental measurement were
performed on a diaphragm to make sure that pressure losses were evaluated correctly.

The geometry of the sharp-edged orifice is defined by a single circular hole of diameter
d = 18 mm and thickness t = 2 m, centered in a pipe with an inner diameter of D = 81 mm.
The air stream is controlled with a Brooks mass flow controller for a range of mass flow
rates 0.43 g · s−1 ≤ ṁ ≤ 3.55 g · s−1. Flow rates are measured with an uncertainty of 1%.
The flow is then guided in a 590 mm long tube upstream of the orifice. The latter expands
in a tube having a length of 360 mm which is opened to the atmosphere. Total pressure loss
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through the orifice is measured with an electronic micro-manometer, and with an uncer-
tainty smaller than 0.25%. The experimental pressure drop curve measured with this device
is displayed on Fig. 3. The Idel’Cik correlation [49] for orifice plate and Reynolds number
Re < 105 is in agreement with the LES results.

The mesh refinement procedure is tested first for a mass flow rate of ṁ = 3.55 g · s−1

where the pipe flow upstream of the orifice-plate is characterised by a bulk velocity
Ub = 0.55 m · s−1 and a Reynolds number ReD = UbD/ν = 3000. The ambient pressure
and temperature of the experiment are P = 101150 Pa and T = 292 K. The computational
domain is shown on Fig. 2. The inlet plenum is truncated at x = −90 mm in the LES. A
semi-hemisphere, defined by a radius of (r = 0.3 m) is added at the duct outlet in order

Fig. 3 Experimental pressure loss evolution across the orifice plate for different mass flow rates. Comparison
of the measured values (�) with the Idel’Cik model [49] ( ) and the LES results for the coarse (�),
AD 1 (�) and AD 2 (�) meshes
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to mimic the atmosphere in the experiment and dissipate free-jet flow fluctuations. Down-
stream of the orifice-plate, centered at x = 0 mm (the upstream inlet edge is at x = −1 mm),
a jet-plume flow develops as expected. This is shown using Q-criterion (as defined by Hunt
et al. [51]) on Fig. 4.

In this test case, the target pressure loss is obtained in two adaptation steps and three
LES. Table 1 summarises the parameters and the cost. From an initial coarse mesh (Fig. 5),
a first adapted mesh “AD 1” is obtained. The central picture in Fig. 5 shows that the mesh

refinement follows the distribution of viscous dissipation �̃ obtained on the coarse mesh.
This first refinement step leads to an overestimation of the pressure drop compared to the
experiment of only 3.8% while it was 6.1% on the coarse mesh. Finally, an acceptable
discretisation is obtained in the second step and the mesh “AD 2”. The error on the predicted
losses is less than 1%. Figure 6 shows radial profiles of the mean and r.m.s. axial velocity
across the orifice at the leading edge (x = −1 mm), the center (x = 0 mm) and the
trailing edge (x = 1 mm), respectively. Only the last mesh “AD 2”, allows the apparition
of the “vena-contracta” effect, with a flow separation zone across the diaphragm. Indeed,
no reverse flow appears downstream the leading edge of the diaphragm at x = 0 mm and
x = 1 mm with the coarse and AD 1 mesh.

Moreover, a remarkable change is observed for the mean kinetic energy dissipation field
between mesh AD 1 and AD 2 on Fig. 5. The solution on mesh AD 1 would suggest that a
persistent shear layer has been captured well at the orifice and is then swept downstream.
AD 2 refinement leads to a mesh which is refined much more close, to the orifice plate:

Table 1 Summary of the mesh
adaptation LES on the
orifice-plate at ṁ = 3.55 g · s−1

Coarse AD 1 AD 2

α — 100 50

ε — 0.3 0.4

Tinit (s) 1.5 0.3 0.3

Tstat (s) 0.5 0.5 0.5

time step (×10−6 s) 1.4 0.41 0.13

number of cells (×106) 0.71 1.55 2.75

number of CPU hours 3h06 5h30 19h

number of cores 256 720 1152

�P error 6.1% 3.8% −0.5%
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Fig. 5 Orifice-plate test case at ṁ = 3.55 g · s−1: zoom on the mesh on the orifice for each LES (top images)

and mean kinetic energy dissipation �̃ (bottom images) in W · m−3

this allows the growth of Kelvin-Helmholtz instabilities and a rapid transition to a fully
developed turbulent jet-plume. This is in agreement with the spectral power density obtained
from the axial velocity signal recorded at x = 2d and r = 0.5d for the three meshes
(Fig. 7). Only the axial velocity spectrum of mesh AD 2 is fully broadband and exhibit a
typical k = −5/3 slope over one decade. Mesh AD 1 allows the development of instabilities,
characterised by a narrow band with a maximum for f = 700 Hz, but no inertial zone is
found in the spectrum. The result for the coarse mesh suggests that the flow remains fully
laminar.

The adaptation approach was repeated at a mass flow rate of ṁ = 2.15 g · s−1 to further
check its validity (cf. Fig. 3). The experimental target is also reached in two mesh refinement
steps with a final error of 1.6%.

4 Pressure Losses in a Swirled Injector

4.1 Description of the swirler

A schematic view of the radial swirl injector used for this study is shown in Fig. 8. The air
entering the swirler is divided into two passages: the primary flow passes through the inner
region of the passages with eight tangential vanes. The secondary flow passes through the
outer passages with the same number of vanes but with counter-rotating swirl direction. No
fuel is injected for these tests: in order to replace the fuel injection system, a plug is inserted
in the primary flow along the centerline of the swirler producing a recess of 14 mm with
respect to the exit plane.

4.2 Experimental set-up

The flow is guided in a 590 mm plenum (Fig. 8) before reaching the swirl injection system
with an exit diameter of D = 0.018 m which blows into the atmosphere. PIV measurements



Fig. 6 Orifice-plate test case at ṁ = 3.55 g · s−1: Up, radial distribution of axial mean velocity across the
orifice. Down, radial distribution of r.m.s. axial velocity. Coarse mesh ( ); mesh AD 1 ( ) and mesh
AD 2 ( )

Fig. 7 Orifice-plate test case at ṁ = 3.55 g · s−1: power spectral density of the axial velocity in the jet-plume
shear layer at x = 2d and r = 0.5d. Coarse mesh ( ); mesh AD 1 ( ) and mesh AD 2 ( )
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of the velocity field have been performed downstream of the injector, along a longitudinal
(xOr) plane (Fig. 8). A double cavity Nd:YAG laser (Quantel Big Sky) operating at 532 nm
fires two laser beams, with a delay varying between 4 μs and 11 μs according to the
operating conditions. The beam is expanded through a set of fused silica lenses (spher-
ical and diverging). Because of the important out-of-plane velocity component, the laser
sheet was intentionally thickened to approximately 1 mm. Olive oil particles (typical size of
1 − 2 μm) were seeded through the various flow injections systems (by means of venturi
seeders). Mie scattering is collected on a 4 Hz PCO-Sensicam, operating with a resolution
of 1280 × 600 pixels for the longitudinal plane. A f/16 182 mm telecentric lens (TC4M64,
Opto-engineering) is used to reduce parallax displacements occurring with classical lenses.
PIV images are processed with a cross-correlation multi-pass algorithm (Davis 8.2.3),

Fig. 9 Pressure loss evolution through the swirler: experimental data (�), fit function ( ), LES results
for the coarse (�), AD 1 (�) and AD 2 (�) meshes



resulting in a final window of 16 × 16 px2 and a 50% overlap. 1320 images are collected
over a region of 20×32 mm2 with a vector resolution of 0.4 mm. The pressure loss through
the swirler is measured with the differential pressure sensor used for the orifice-plate test
case (see Section 3). The two pressure sensors are located on the wall (flush mounted) of
the plenum and in the atmosphere, respectively, at 90 mm from the swirler exit (Fig. 8).

4.3 Flow parameters

The pressure losses of the swirled injector system are measured over a range of mass
flow rates 0.43 g · s−1 ≤ ṁ ≤ 3.55 g · s−1 (Fig. 9). PIV measurements are performed
at three mass flow rates ṁ = 2.15, 3.22, 4.29 g · s−1 with an ambient temperature and
pressure of T = 298 K and P = 101150 Pa, respectively. First, LES are performed
at ṁ = 4.29 g · s−1. The bulk velocity at the nozzle exit for this case is defined as
Ub = ṁ/ (ρA) = 13.9 m · s−1. The theoretical swirl number is S = 0.76 (estimated from
the definition given by Merkle [52]) and a Reynolds number based on the bulk velocity
and the swirler exit diameter is Re = UbD/μ ∼ 14 × 103. The inlet plenum is truncated
to x = −90 mm in the LES. The experimental mean axial velocity profile at this position
is measured using hot-wire anemometry data (Fig. 10). A fit function is then used as inlet
boundary condition in the LES. Downstream of the swirler exit, the LES domain is bounded
by a semi-hemisphere with a radius r = 0.3 m.

4.4 Pressure losses

Figure 11 shows the time evolution of the instantaneous pressure loss measured in the LES,
for one reference case where the flow rate is 4.29 g · s−1. The pressure loss evolves during
the coarse mesh computation until its average becomes steady with the value overestimated
by 46%, compared to the experiment. As observed by many LES users in recent years [10,
11], the pressure losses error obtained on a first arbitrary mesh can be very large and the 46%
error measured here is not acceptable. The application of the refinement method corrects
this problem: pressure losses change abruptly when the mesh is refined for the first time to
AD 1 and a second one to AD 2. The error on the pressure losses drops to 10% for AD 1 and
finally to less than 1% for AD 2. To investigate mesh convergence, an additional adaptation
step AD 3 was performed. The pressure losses predicted on this mesh are again in agreement

Fig. 10 ṁ = 4.29 g · s−1 case: mean axial velocity profile inside the plenum at x = −90 mm from hot-wire
measurement ( ), fit function ( ) used as inlet condition in the LES



Fig. 11 ṁ = 4.29 g · s−1 case: Evolution of the pressure loss computed with LES as a function of time and
comparison with the target experimental value (straight solid line). The pressure signal is recorded in the
upstream plenum at the wall (x = −50 mm and r = 40.5 mm). The mesh is refined by the AVBP-MMG3D
three times during the whole procedure

with the experiment (less than 1% of error). These results and the values for the parameters
α and ε, used to build the mesh refinement metric (cf. Fig. 1) are summarised in Table 3.

In addition, in order to assess the numerical uncertainty on the pressure losses prediction,
the Grid Convergence Index (GCI) is also computed using the procedure described by Celik
et al. [53]. The GCI is defined as:

GCI = 1.25ea

rp − 1
(10)

where the approximate relative error ea between two meshes is defined using pressure losses
�P as key variable and the grid refinement factor r is defined using the number of cells h

of each mesh. The apparent order p is computed using a fixed point algorithm as suggested
in [53]. The discretisation uncertainty on �P for mesh AD 1, AD 2 and AD 3 are 7.8%, 1%
and 0.05% which corresponds to ±327.2 Pa, ±40.4 Pa and ±2.1 Pa, respectively.

An important parameter of the LES is the evaluation of the flow characteristic time τF =
D/Ub = 1.3 ms. The simulation time based on this value need to be chosen sufficiently
long for the flow to reach steady state as well as the averaged time needed to gather samples
in the LES.1 Figure 11 shows that the flow adapts to all changes of mesh within 30 τF . All
statistics used in the rest of the paper were gathered over a period of 40 ms corresponding
to 30 flow-through times.

The four meshes (coarse, AD 1, AD 2 and AD 3) are displayed in Fig. 12. As expected,

mesh refinement is performed in regions where the total mean dissipation �̃ is large, allow-

ing to resolve the field of �̃ with precision, thereby increasing the precision of the pressure
loss evaluation. The convergence of the process can be clearly observed: meshes and results
on AD 2 and AD 3 are almost similar.

The automatic refinement procedure AVBP+MMG3D was also applied to an other flow
rate at ṁ = 2.15 g · s−1. Fig. 9 displays the values of the experimental pressure loss vs

1In the experiment, all measurements were performed over 110 mm, corresponding to very long times
compared to τF .
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Table 2 Error on the
experimental mass flow rates
recover from PIV result

Target mass flow rates
( g · s−1)

PIV mass flow rates
( g · s−1)

error (%)

4.29 3.99 7.0

3.22 2.95 8.4

2.15 2.04 5.1

flow rate compared to the values obtained by the LES for each refinement step. All val-
ues of pressure losses correspond to the average pressure loss measured over at least 30
flow-through times (Fig. 11 shows that this time is sufficient for the pressure loss to con-
verge). The procedure appears to be robust for all cases tested here: the refinement procedure
leads systematically to small errors compared to the experiment. Note that the procedure is
unmodified for all cases: this is a fully automatic method determining a sufficiently resolved
mesh in terms of pressure losses, independent of the LES user.

Moreover, in most cases, two refinement steps are sufficient to reach the target so that
the simulation costs remain comparable to a normal simulation where the user would try

-7 -2

027

2 4 6 8 10

-15 -10 -5 0 5 10 15

15

10

5

0

-5

-10

-15

2 4 6 8 10

15

10

5

-5

-10

-15

PIV LES

027

-7 -2

Fig. 13 Comparison of the mean axial velocity from PIV measurement (center) and LES on AD 2 mesh
(right) for the ṁ = 4.29 g · s−1 case. A schematic representation of the swirl injector is depicted on the
left. White lines denotes negative mean velocity contours at −7 and −2 m · s−1. Positive and zero mean
velocity contours of 7, 2 and 0 m · s−1 are shown with black line. Dashed-lines identify the position of the
measurement cross-sections downstream of the exit plane at x = 1, 2, 3, 4 mm



to refine the grid using intuition. Obviously, it is also much cheaper than a brute-force
strategy where the whole mesh would be refined homogeneously: here, the homogeneous
mesh having the same refinement everywhere as mesh AD 2 has in the swirler region would
require 1.4 billion points. The next section shows that the mesh refinement procedure allows
also to better predict the velocity field in the chamber itself.

4.5 Velocity fields

The previous section has shown that the AVBP+MMG3D tool was able to produce an
acceptable mesh for the pressure loss because it allowed a proper resolution of the time-
averaged dissipation field. It is to be expected that with a correct resolution of the mixing
phenomena, not only pressure losses but also velocity fields will be predicted more
accurately.

To assess this aspect, PIV measurements were performed in the experimental setup
(Section 4.2) for the ṁ = 4.29 g · s−1 case and compared to the LES velocity fields on the
coarse, AD 1 and AD 2 meshes (AD 3 gave results which are very similar to AD 2). The
accuracy of the PIV data was carefully checked by investigating the effects of the measure-
ment windows. Results (Table 2) exhibit less than 9% of error on the mass flow rates recover
from PIV compared to the target imposed by the mass flow controller at the plenum inlet
in the experiement. Figure 13 compares the mean axial velocity field from PIV and LES
(on the AD 2 mesh) in the vicinity of the swirl injector. Results are in excellent agreement.
Indeed, in both cases, a strong flow reversal due to vortex breakdown dominates down-
stream of the exhaust of the primary swirler, which is as expected for flows with a swirl
number S > 0.6. This very compact reverse flow zone is associated with high turbulence
levels [54].

x

y

z

U (m/s)

-64.2 -30.5 3.3 37.0 70.8

Fig. 14 LES of the swirler on AD 2 mesh: Q-criterion Q = 1.67 × 104(Ub/D)2 colored by axial velocity
for the ṁ = 4.29 g · s−1 swirler case



Even if the mean PIV data reveal a smooth averaged field, a visualisation of the instan-
taneous structures obtained by LES for the same regime (Fig. 14) shows that the flow is
highly turbulent with multiple structures developing in the breakdown zone.

Figure 15 shows that the precision of the LES, in terms of velocity fields, also increases
with mesh refinement levels defined by the AVBP+MMG3D procedure. This is particularly
obvious on the mean axial velocity profile at x = 1 mm for −5 mm ≤ y ≤ 5 mm. Nev-
ertheless, the differences between simulation and PIV results in the shear regions may be
explained by a limitation of the PIV spatial resolution [55, 56]. The LES results for the radial
profiles of axial velocity on the AD 2 and AD 3 meshes gives similar fields, again confirm-
ing grid convergence for the adaptation for this feature. The swirl number is computed from
these mean values at x = 2 mm using the method given in [57]. The experimental swirl
number is SPIV = 0.77, which is very close to the theoretical values S = 0.76. The simu-
lated swirl number for the mesh coarse, AD 1, AD 2 and AD 3 are SLES = 0.62, 0.88, 0.79
and 0.75, respectively. This means that the swirl motion, which drives the characteristics of

Fig. 15 ṁ = 4.29 g · s−1 case: comparison of the radial distribution of mean axial (top) and tangential
(bottom) velocity at four axial locations (from left to right x = 1, 2, 3, 4 mm). Coarse mesh ( ); mesh
AD 1 ( ); mesh AD 2 ( ) and experiments PIV (�)



Table 3 Summary of the mesh adaptation LES on the swirler

Coarse AD 1 AD 2 AD 3

α — 30 30 30

ε — 0.3 0.3 0.7

Tinit (s) 0.04 0.04 0.04 0.04

Tstat (s) 0.04 0.04 0.04 0.04

time step (×10−7 s) 1.0 1.0 0.35 0.23

number of cells (×106) 1.4 3.1 10.8 14.7

number of CPU hours 6h22 11h44 20h20 33h40

number of cores 240 240 1140 1728

�P error 46% 10% −0.7% 0.8%

error on swirl number S at x = 2 mm 18.5% 15.5% 4.3% 1.0%

errorL2 (
√

u′u′) at x = 3 mm 11.2% 16.1% 5.8% 5.1%

errorL2 (
√

v′v′) at x = 3 mm 11.1% 8.2% 4.6% 4.3%

GCI — 7.8% 1% 0.05%

this type of flow [58], is correctly reproduced by the LES (see error in Table 3) and better
predict with this mesh refinement strategy. A similar conclusion can be drawn for the radial
profiles of turbulence intensities given in Fig. 16. The predictability of these quantities is
clearly improved by refining the mesh (at x = 3 mm and x = 4 mm for example). More
quantitatively, the relative error in the L2 norm is computed on these profiles at x = 3 mm.
This error is defined by:

errorL2(f ) (%) =
√√√√∫ y2

y1
(fexp(y) − fLES(y))2dy∫ y2

y1
(fexp(y))2dy

(11)

where y1 = 0 mm and y2 = 15 mm are the lower and upper limits of the inte-
gral. Results are resumed in Table 3 and show that L2 norm error is clearly reduced
by mesh adaptation. This confirms that capturing the flow features that govern pressure
losses through the swirler passages is sufficient for a good prediction of velocity fields
further downstream in the chamber. This is not an obvious result: most mechanisms con-
trolling pressure losses occur within the swirler passages where separation on the vanes
change the effective sections and directly affect pressure losses. On the other hand, veloc-
ity and temperature profiles in the chamber downstream of the swirler are expected to
be controlled by the local resolution in the chamber itself and not in the swirler. It is
interesting to observe that an improved resolution within the swirler also increases the
quality of the velocity profile far downstream of the swirler passages. This suggests that
the mesh refinement metric for the pressure losses based on the kinetic energy dissipa-
tion provides most if not all of the refinement information needed to predict the flow with
accuracy.

4.6 Evaluation of costs

The previous sections have shown that the AVBP+MMG3D procedure provides accurate
predictions of pressure losses as well as of velocity and turbulence profiles. A natural



Fig. 16 ṁ = 4.29 g · s−1 case: comparison of the radial distribution of turbulence intensities in axial (top)
and tangential (bottom) direction at four axial locations (from left to right x = 1, 2, 3, 4 mm). Coarse mesh
( ); mesh AD 1 ( ); mesh AD 2 ( ) and experiments PIV (�)

question is to determine the cost of this procedure: going from a coarse mesh to refined
meshes increases the number of nodes and therefore the overall cost of the simulation.
Table 3 summarises the number of cells and the CPU cost (number of hours to compute one
flow-through time)2 on all grids used for the ṁ = 4.29 g · s−1 case. Obviously the cost per
flow through time increases when the mesh is refined. The increase is not proportional to
the number of cells as the total time needed on each grid to achieve statistical convergence
decreases because the initial flow is interpolated from the converged-average state on the
previous mesh and hence is close to its own converged-average state. As a result, the cost

2All CPU costs are given on a single processor. Most runs were performed on 500 to 1000 processors but the
parallel efficiency is almost unity for these cases so that the total CPU cost is a good measure of the mesh
efficiency.



of the refined mesh cases remains affordable to improve the capture of physical phenomena
relevant to pressure losses.

Another relevant question is whether the proposed AVBP+MMG3D refinement algo-
rithm is more efficient than a purely intuitive mesh refinement method, as typically
performed manually by the user based on strong gradients in pressure or velocities. Look-
ing at the various meshes created by the AVBP+MMG3D method (Fig. 12) shows that the
method adds points in places which are not obvious to guess: they correspond to regions

where �̃ is large and these regions, and their extent, do not correlate with easily identi-
fied flow-features. For example, not all shear layers are refined to the same extent, but
only those that are highly relevant for pressure losses. As a result, an important aspect
of the present refinement procedure is to offer a systematic and robust, user-independent
method to optimise meshes for swirler computations. It is acknowledged that while cer-
tain users who have very good knowledge of a particular configuration may obtain a
similarly efficient refinement based on their specific experience, a systematic computa-
tion methodology as AVBP+MMG3D allows to retain this efficiency for a large variety of
flows.

5 Conclusion

A mesh refinement algorithm has been proposed that improves the prediction of pressure
losses in Large Eddy Simulations of turbulent flow in swirlers at reasonable computational
cost. The method is based on an existing compressible LES code (AVBP) and mesh refine-
ment program (MMG3D). Mesh refinement is done only a few times (1 to 3) during a
complete simulation and it uses only mean flow information. It is performed outside the
LES solver and needs no intrusive modification of the solver itself. The metric that defines
the local mesh size is the time-averaged value of the kinetic energy dissipation �̃. When
this field is sufficiently well resolved, both pressure losses and velocity fields are correctly
predicted.

The method is validated on two cases: (1) the flow through a diaphragm and (2) the
flow through a swirl fuel injector used for helicopter engines. However, the method is not
specific to these flows but may be applied to other flows. Results confirm its power in these
two cases and suggest that it can be used for other LES solvers where it would bring a
systematic, user-independent method to define meshes for LES tools.
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Appendix: Comparison between hexahedral and tetrahedral meshes

This paper focused on automatic mesh adaptation for swirled flows using tetrahedral
meshes. However, the methodology and the refinement sensor are not limited to any
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Fig. 17 ṁ = 4.29 g · s−1 case: meshes (left) and fields of �̃ in W · m−3 (right) for the tetrahedral AD 2 (up)
and hexahedral H 2 (bottom) meshes

particular mesh element type. This appendix compares the LES results obtained with the
same solver (AVBP) on the tetrahedral AD 2 mesh and on an unstructured fully hexahedral
mesh H 2 (Fig. 17). The smallest element size of the hexahedral H 2 mesh is equivalent to
that of the AD 2 mesh, and hence the explicit time-step is also equivalent, see Table 4. All

Table 4 Summary of the results between hexahedral H 2 and tetrahedral AD 2 meshes

Tetrahedral AD 2 Hexahedral H 2

time step (×10−7 s) 0.35 0.33

number of cells (×106) 10.8 6.8

number of CPU hours 20h20 20h48

�P error −0.7% 7.8%

error on swirl number S at x = 2 mm 4.3% 25.0%
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Fig. 18 Comparison of the mean axial velocity from LES on hexahedral H 2 mesh (center) and AD 2 tetra-
hedral mesh (right) for the ṁ = 4.29 g · s−1 case. A schematic representation of the swirl injector is depicted
on the left. White lines denotes negative mean velocity contours at −7 and −2 m · s−1. Positive and zero
mean velocity contours of 7, 2 and 0 m · s−1 are shown with black line

other numerical parameters for the H 2 LES are chosen identical to the ones for AD 2 which
are discussed in Section 2.

As shown on Fig. 17, result on the total mean dissipation field �̃ on the hexahedral mesh
is very close to one obtained on the AD 2 mesh although some differences are naturally
visible. In particular, the boundary layers has been well captured despite some differences
on the plug tip and on the mixing zone downstream the primary nozzle. Fig. 18 shows a
comparison of the mean axial velocity fields downstream of the swirler exit. Results are
similar close to the nozzle exit (x < 3 mm) with some discrepancies downstream (x >

4 mm).
More quantitatively, Figs. 19 and 20 show the first and second order moment statis-

tics at four axial locations (from left to right x = 1, 2, 3, 4 mm, see Fig. 13). For the
mean axial and tangential velocity profiles (Fig. 19) at x = 1 mm and x = 2 mm,
results are very similar between H 2 and AD 2 meshes. The discrepancies observed down-
stream at x = 3 mm and x = 4 mm for the hexahedral H 2 mesh are due to the
local mesh coarsening imposed by the hexahedral mesher to avoid hanging nodes (see



Fig. 19 ṁ = 4.29 g · s−1 case: comparison of the radial distribution of mean axial (top) and tangential
(bottom) velocity at four axial locations (from left to right x = 1, 2, 3, 4 mm). Hexahedral H 2 mesh ( );
mesh AD 2 ( ) and experiments PIV (�)

Fig. 17 left column bottom). The same observations can be made regarding the radial
distribution of turbulence intensities in axial (top) and tangential (bottom) direction on
Fig. 20.

The swirl number obtained at x = 2 mm is 0.57. This is a 25% error compared
to the theoretical value and higher than the one obtained with the tetrahedral meshes.
Comparison of the results between hexahedral and AD 2 tetrahedral meshes is given in
Table 4.

Finally, the QOI (the time averaged total mean dissipation field) in the right column
of Fig. 17 clearly indicate the same regions that need to be refined to improve pressure
loss predictions. Provided an automatic re-mesher is available, the same methodology can
therefore be applied regardless of the mesh element type.



Fig. 20 ṁ = 4.29 g · s−1 case: comparison of the radial distribution of turbulence intensities in axial (top)
and tangential (bottom) direction at four axial locations (from left to right x = 1, 2, 3, 4 mm). Hexahedral
H 2 mesh ( ); mesh AD 2 ( ) and experiments PIV (�)
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