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Nonparametric estimation of jump rates for a specific class

of Piecewise Deterministic Markov Processes.

N. Krell∗, É. Schmisser†

January 28, 2019

Abstract

In this paper, we consider a piecewise deterministic Markov process (PDMP), with known
flow and deterministic transition measure, and unknown jump rate λ. To estimate nonpara-
metrically the jump rate, we first construct an adaptive estimator of the stationary density,
then we derive a quotient estimator λ̂n of λ. We provide uniform bounds for the risk of
these estimators, and prove that the estimator of the jump rate is nearly minimax (up to a
ln2(n) factor). Simulations illustrate the behavior of our estimator.

Keywords: piecewise deterministic Markov processes, model selection, nonparametric esti-
mation
Subject Classification: 62M05, 62G05, 62G07,62G20, 60J75, 60J25

1 Introduction

The PDMP is a large class of models, they are used to model deterministic phenomenons in
which randomnes appears as point events, such as transmission control protocol (TCP) window
size, the size of a marked bacteria, risk processes in mathematical insurance, stress release in
seismeolegy,. . . . See Rudnicki and Tyran-Kamińska [2015] for a nice presentation of biological
problem in which PDMP appear. In Azäıs et al. [2014], you will find a presentation of the pdmp
with a large field of application.

The TCP protocol (see Dumas et al. [2002], Guillemin et al. [2004] for instance) is one of
the main data transmission protocol in Internet. The maximum number of packets that can be
sent at time tk in a round is a random variable Xtk . If the transmission is successful, then the
maximum number of packets is increased by one: Xtk+1

= Xtk + 1. If the transmission fails,
then we set Xtk+1

= κXtk with κ ∈ (0, 1). A correct scaling of this process leads to a piecewise
deterministic Markov process (Xt). Another example of PDMP is the size of a marked bacteria
(see Doumic et al. [2015], Laurençot and Perthame [2009]). We choose randomly a bacteria, and
follow its growth, until it divides in two. Then we choose randomly one of its daughter, and so
on. Between the jumps, the bacteria grows exponentially.

More generally, we consider a filtered piecewise determistic Markov process (PDMP) (Xt)t≥0

with flow φ, deterministic transition measure Q(x, ·) = 1l{f(x)∈·} (with f a deterministic known
function) and jump rate λ. Starting from initial value x0, the process follows the flow φ until
the first jump time T1 which occurs spontaneously in a Poisson-like fashion with rate λ(φ(x, t)).
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The process restart from f(XT1) as before. For the TCP protocol, f(x) = κx and the flow is
additive (φ(x, t) = x + ct), for the marked bacteria, f(x) = x/2 and the flow is multiplicative
(φ(x, t) = xect). As the process (Xt) is observed without errors, the flow φ and the transition
measure f are known. We denote (T1, . . . , Tn) the times of jump and consider the Markov chain
(Z0 = x0, Zk = f(XTk

), k > 0). The aim of this paper is to construct an adaptive estimatior
of the jump rate λ on the compact interval I. In the meantime, we also provide an adaptive
estimator of νλ.

As far as we know, there exist few results for nonparametric estimation for PDMPs. Fujii
[2013] and Azäıs and Muller-Gueudin [2016] consider a very general model. The process (Xt)
takes values in R

d, and jumps can occur deteministically if the process reaches the boundary of an
open set E. The transition measure is not deterministic (the deterministic case is even excluded):
XT1 |XT1

- is a random variable, its law is a known function of XT−

1
. The process (Zk) is assumed

to be ergodic. Fujii [2013] constructs an estimator of νλ thanks to local times, and pointwise
kernel estimators of the jump rate and the transition measure. He proves the consistency of his
estimators, but do not give any rate of convergence. Azäıs and Muller-Gueudin [2016] construct
kernel pointwise estimators of the stationary density and the jump rate λ. They show that their
estimator is consistent and prove its asymptotic normality. They choose an adaptive estimator of
λ by taking the estimator of the minimal variance and bound its risk. In the contrary of the two
previous works we give some explicit assumptions that ensure that the process (Zk) is strongly
ergodic and has a unique invariant density νλ. In the same setting as ours, Krell [2016] construct
a pointwise kernel estimator of λ and prove its normality, but do not provide a bound for the
risk of the adaptive estimator. To our knowledge, there do not exist results for the L2-risk in
our settings, neither a minimax rate of convergence.

We construct an adaptive estimator of the jump rate λ and bounds its L2 risk uniformely.
For this purpose, as in Krell [2016], we use the equality

λ(x) =
νλ(x)

D(x)

where νλ is the stationary density of the random variables Zk and the function D(x) can be
estimated nearly like a cumulative distribution function, it converges with rate n1/2 (Krell [2016]).
To estimate the density function νλ, we use a projection method. We choose a series of increasing
vectorial subspaces S0, . . . , Sm. On each subspace, we construct a nonparametric estimator
ν̂m of νλ, belonging to Sm and provide a uniform bound for its risk. Then we choose the
”best” estimator by a penalisation method, in the same way as Barron et al. [1999], and give
an oracle inequality for the adaptive estimator ν̂m̂. Afterwards we bound uniformely the risk of
the resulting quotient estimator λ̂ = ν̂m̂/D̂n. We finaly prove that the estimator λ̂ := ν̂m̂/D̂n is
nearly minimax (up to a ln2(n) term) using the methodology of Tsybakov [2004].

In Section 2, we specify the model and its assumptions. We focus on the estimation of the
stationary density on the estimation of the jump rate λ in 3. Section 4 is devoted to simulations
for the TCP protocol and the bacterial growth, with various functions λ. The outcomes are
consistent with the theoretical results. Proofs are gathered in Section 5 and in the Appendix
where we prove a technical result, a Talagrand inequality for exponentially β-mixing variables.

2 PDMP

In general a piecewise deterministic Markov process is defined by its local characteristics, namely,
the jump rate λ, the flow φ and the transition measure Q according to which the location of
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the process is chosen at the jump time. In this article, we consider a specific class of PDMP for
which the transition measure Q is a deterministic kernel Q(x,A) = 1l{f(x)∈A}. More precisely,

Assumption A1.

a. The flow φ : [0,∞) × [0,∞) 7→ [0,∞) is a one-parameter group of homeomorphisms: φ
is C1, φ(., t) is an homeomorphism for each t ∈ [0,∞), satisfying the semigroup property:
φ(., t + s) = φ(φ(., s), t) and φx(.) := φ(x, .) is an C1-diffeormorphism. This implies that
φ(x, 0) = x.

b. The jump rate λ : [0,∞) → R+ is assumed to be a measurable function satisfying

∀x ∈ [0,∞), ∃ ε′ > 0 such that

∫ ε
′

0

λ(φ(x, s))ds <∞

that is, the jump rate does not explode.

c. The Markov kernel Q(x,A) = 1l{f(x)∈A} where f : [0,∞) 7→ [0,∞) is an increasing C1-
diffeomorphism.

For instance, we can take φ(x, t) = x+ ct (linear flow) or φ(x, t) = xect (exponential flow).
Given these three characteristics, it can be shown (Davis [1993, p62-66]), that there exists a

filtered probability space (Ω,F , {Ft}, {Px}) such that the motion of the process {X(t)} starting
from a point x0 ∈ R

+ may be constructed as follows. Consider a random variable T1 with
survival function

P(T1 > t|X0 = x0) = e−Λ(x0,t), where for x ∈ R
+, t ∈ R

+, Λ(x, t) =

∫ t

0

λ(φ(x, s))ds. (1)

If T1 is equal to infinity, then the process X follows the flow, i.e. for t ∈ R+, X(t) = φ(x0, t).
Otherwise let

Z1 = f(φ(x0, T1)). (2)

The trajectory of {X(t)} starting at x0, for t ∈ [0, T1], is given by

X(t) =

{

φ(x0, t) for t < T1,

Z1 for t = T1.

Inductively starting from X(Tn) = Zn, we now select the next inter-jump time Tn+1 − Tn and
post-jump location X(Tn+1) = Zn+1 in a similar way. This construction properly defines a
strong Markov process {X(t)} with jump times {Tk}k∈N (where T0 = 0). A very natural Markov
chain is linked to {X(t)}, namely the jump chain (Zn)n∈N.

To simplify the notations, let us set φx(t) = φ(x, t). By (1) and (2),

P(Z1 ≥ y|Z0 = x0) = P
(

T1 ≥ (f ◦ φx0)
−1(y)|Z0 = x0

)

= exp

(

−
∫ (f◦φx0)

−1(y)

0

λ(φx0(s))ds

)

= exp
(

−Λ((f ◦ φx0)
−1(y)

)

and by the change of variable u = f ◦ φx0(s), we get

P(Z1 ≥ y|Z0 = x0) = exp

(

−
∫ y

f(x0)

λ(f−1(u))gx0(u)du

)

1y≥f(x0) (3)
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Figure 1: Exemples of simulations of processes (Xt) et (Zk)
TCP protocol Bacterial growth
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φ(x, t) = x+ t, f(x) = x/2, λ(x) =
√
x φ(x, t) = xet, f(x) = x/2, λ(x) = x2

• : process Zk − : process Xt

where gx(y) =
[

(f ◦ φx)−1
]′

(y) ≥ 0. By the monotonicity of f ◦ φx, we get the transition

probability of the Markov chain:

Pλ(x, dy) := P(Z1 ∈ dy|Z0 = x) = λ(f−1(y))gx(y)e
−

∫ y
f(x)

λ(f−1(u))gx(u)du1l{y≥f(x)}dy. (4)

We need some assumptions, in particular to ensure that the process is ergodic, which is often a
keystone in statistical inference for Markov process. The Hölder space Hα(I) and the associated
norm would be define in the appendix. We first give an assumption on the known functions f
and φ:

Assumption A2. We suppose that for a compact interval of (0,∞), f : [0,∞) 7→ [0,∞) and
φx : [0,∞) × [0,∞) 7→ [0,∞) are known and follow, for M2 > 0, 0 < κ < 1, α > 0, and two
positive continuous functions m : [0,∞) 7→ (0,∞) and M : [0,∞) 7→ (0,∞) such that for all
x ∈ [0,∞) : M(x) ≥ m(x) > 0,

gx ∈ Hα(I), ‖f‖L∞(I) ≤M2, and f−1 ∈ Hα(I)

∀x > 0, 0 < f(x) ≤ κx, (5)

∀y > 0, ∀x ≥ 0, m(y) ≤ gx(y) ≤ M(y). (6)

To obtain ergodicity and uniform bounds for the estimation of the jump rate λ, we consider
the set of functions:

Definition A3. For b > 0 and a vector of positive constants c = (r, L, a), such that r > i2 and

r ≥ f−1

(

[− ln(1− κb+1)

1− κb+1

]1/(b+1)
)

we introduce the class F(c, b) of continuous functions λ : [0,∞) 7→ [0,∞), such that

a.

∀x ≥ r,
(f(x))b

m(f(x))
≤ λ(x)

a
,
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b.
∫ f(r)

0

M(u)λ(f−1(u))du ≤ L. (7)

Item A3a ensures that the right tail of the distribution of Z1|Z0 is bounded:

∀x ≥ f−1(r), P(Z1 ≥ y|Z0 = x) ≤ exp

(

− a

b+ 1

(

yb+1 − f(x)b+1
)

)

.

We get the following proposition, which is proved in Krell [2016].

Proposition 1 (Ergodicity).

a. Under A1 - A3, if there exists (c, b) such that λ ∈ F(c, b), the Markov chain (Zk)k≥0 is
reccurrent positive and strongly ergodic. There exists a unique invariant probability measure
of the form

νλ(dx) = νλ(x)dx on [0,∞).

b. Moreover, for all y ∈ [0,∞) we have the relation:

λ(y) =
νλ(f(y))

D(y)
where D(y) := Eνλ

(

gZ0(f(y))1{Z0≤y≤f−1(Z1)}

)

.

Remark. The set F(c, b) is the same as in [Krell, 2016, Definition 3.2]. Indeed, we have that
∫∞

f(r)
m(u)λ(f−1(u))du ≥

∫∞

f(r)
ub = ∞, moreover,

∫ r

f(r)
M(u)λ(f−1(u))du ≥

∫ r

f(r)
M(u)
m(u)u

b =: l.

The jump rate λ is very difficult to estimate directly, but it is related to the stationary density
νλ, which is simpler to estimate. To estimate the jump rate, we construct a quotient estimator,
which is possible only if D(y) > 0 on the interval of estimation I := [i1, i2]. We can remark that
if λ > 0 on the interval [i1,∞), then νλ(y) > 0 on (f(i1),∞) and

D(y) =
νλ(f(y))

λ(y)
> 0 ∀y > i1.

Therefore, as I is compact, there exists D0 > 0 such that ∀y ∈ I, D(y) ≥ D0.

Remark. In Krell [2016], the author bounds uniformely its estimator for any compact set D
included in [d(c),∞[, where d(c) is unknown and depends on the family F(c, b). In this paper,
we want uniform bounds on the chosen compact interval I. By definition A3a, we already know
that ∀x ≥ r, λ(x) > 0, it remains to control what happens between i1 and r.

Definition A4. Let ε > 0 and c̄ = (c, ε). We introduce the set of positive functions E (̄c, b)
λ : [0,∞) 7→ [0,∞) such that λ ∈ F(c, b) and

∀x ∈ [i1, r], λ(x) ≥ ε

Actually we have a precise result on the convergence to the unique invariant probability,
which would be useful for the convergence result.

Proposition 2. Under A1-A3,
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a. Contraction. Let us set

V(x) := exp

(

a

b+ 1
(f(x))b+1

)

∀x ∈ R
+.

There exist 0 < γ < 1 and a constant R ∈ R
+∗such that, for any x ∈ R

+:

sup
λ∈F(c,b)

sup
|ψ|≤V

∣

∣Pkλψ(x)−
∫ ∞

0

ψ(z)νλ(z)dz
∣

∣ ≤ RV(x)γk

where |ψ| ≤ V means: ∀x, |ψ(x)| ≤ V(x). That is, ∀λ ∈ F(c, b), ∀|ψ| ≤ V,

∣

∣

∣

∣

E (ψ(Zk)|Z0 = x)−
∫ ∞

0

ψ(z)νλ(z)dz

∣

∣

∣

∣

≤ RV(x)γk.

The constants R and γ depends explicitly on (c, b). As V ≥ 1, the bound is true for any
function ψ such that ‖ψ‖∞ ≤ 1.

b. The function V(y)νλ(y) is uniformely integrable on F(c, b):

sup
λ∈F(c,b)

∫

νλ(y)V(y)dy <∞.

This proposition is proved in [Krell, 2016, Section 4.1, Proof of Proposition 3.3 and Section
4.2, Speed of convergence for the empirical measure]. The following corollary is a consequence
of Proposition 2 a.

Corollary 3. Under A1-A3, for any bounded function s, if λ ∈ F(c, b):

∣

∣

∣

∣

∣

E

(

1

n

n
∑

k=1

s(Zk)−
∫

s(x)νλ(x)dx

)∣

∣

∣

∣

∣

≤ ‖s‖∞
RV(x0)

n(1− γ)

and

Var

(

1

n

n
∑

k=1

s(Zk)

)

≤ 1

n

∫

s2(z)νλ(z)dz +
‖s‖∞
n

∫

|s(z)|νλ(z)Gλ(z)dz +
cλ ‖s‖2∞
n2

where Gλ(z) =
R

1−γ

(

V(z) +
∫

V(x)νλ(x)dx
)

and cλ are uniformly bounded on F(c, b).

In the bound of the variance, the first term is the same as for i.i.d variables. The second one
is due to covariance terms (we found a similar term for stationary β-mixing sequences), the third
comes from the non-stationarity of the random variables Zk.

The following lemma is proved in Section 5.

Lemma 4. Under A1-A4, there exists η > 0, D0 > 0 such that:

inf
λ∈E(c̄,b)

inf
y∈f(I)

νλ(y) ≥ η and inf
λ∈E(c̄,b)

inf
y∈I

D(y) ≥ D0.

To construct an adaptive estimator of νλ, we need to prove that the Markov chain (Zk) is
weakly dependent. It is the case if the process is β-mixing.
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Definition 5. Let us define the σ-algebra

O
b
a = σ({Zj1 ∈ I1, . . . , Zjn ∈ In}, a ≤ j1 ≤ . . . ≤ jn ≤ b,n ∈ N, Ik ∈ B([0,∞[)).

The β-mixing coefficient of the Markov chain (Zk) is

βZ(t) = sup
k

sup
E∈Ok

0⊗O∞
t+k

|POk
0⊗O∞

t+k
(E)− POk

0
⊗ PO∞

t+k
(E)|.

The β-mixing coefficient caracterizes the dependence between what happens before Tk and what
happens after Tt+k. The process (Zk)k≥0 is β-mixing if limt→∞ βZ(t) = 0. It is exponentially
(or geometrically) β-mixing if there exists c, β such that βZ(t) ≤ ce−βt.

The following corollary is a consequence of Proposition 2. It is proved in Section 5.

Corollary 6. We work under A1-A3, if there exists (c, b) such that λ ∈ F(c, b), the PDMP is
geometrically β-mixing. Moreover, there exists c such that, ∀t > 0:

sup
λ∈F(c,b)

βX(t) ≤ cγt.

3 Estimation of the jump rate

3.1 The observation scheme

As in Krell [2016] the statistical inference is based on the observation scheme (X(t), t ≤ Tn)
and asymptotics are considered when the number of jumps of the process, n, goes to infinity.
Actually the simpler observation scheme: (X(0), X(Ti), 1 ≤ i ≤ n) = (Zi, 0 ≤ i ≤ n) is sufficient,
as one can remark that for all n ≥ 1: Tn = (f ◦ φZn−1)

−1(Zn).

3.2 Methodology

Krell [2016] constructed a pointwise kernel estimator of νλ before deriving an estimator of λ.
Densities are often approximated thanks by kernels methods (see Tsybakov [2004] for instance).
Indeed, if the kernel is positive, the estimator is also a density. However, we want to control
the L2 risk of our estimator (not the pointwise risk), and also to construct an adaptive estima-
tor. Obtaining an adaptive estimator with kernel methods involves a double convolution, and
therefore intensive computations. On the contrary, estimators by projection are well adapted for
L2 estimation: if they are longer to compute at a single point than pointwise estimators, it is
sufficient to know the estimated coefficients to construct the whole function. Furthermore, to
find an adaptive estimator, we minimize a function of the norm of our estimator, that is the sum
of the square of the coefficients, and the dimension.

We first aim at estimating νλ on a compact set A ⊇ f(I) where I is the estimation set of the
jump rate λ. We construct L2 estimators by projection on an orthonormal basis. As usual in
nonparametric estimation, the risk of our estimator can be decomposed in a variance term and a
bias term which depends of the regularity of the density function νλ. We choose to use the Besov
spaces to characterize the regularity, which are well adapted to L2 estimation (particularly for
the wavelets decomposition). See Appendix A for the definition of Besov spaces.

It is quite difficult to estimate a function nonparametrically. To do so, we introduce a sequence
of vectorial subspaces Sm. We construct an estimator ν̂m of νλ on each subspace and then select
the best estimator ν̂m̂.
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Assumption A5.

a. The subspaces Sm are increasing and have finite dimension Dm.

b. The L2-norm and the L∞ norm are connected:

∃ψ1 > 0, ∀m ∈ N, ∀s ∈ Sm, ‖s‖2∞ ≤ ψ1Dm ‖s‖2L2 .

This implies that, for any orthonormal basis (ϕl) of Sm,

∥

∥

∥

∥

Dm
∑

l=1

ϕ2
l

∥

∥

∥

∥

∞

≤ ψ1Dm.

c. There exists a constant ψ2 > 0 such that, for any m ∈ N, there exists an orthonormal basis
ϕl such that:

∥

∥

∥

∥

∥

Dm
∑

l=1

‖ϕl‖∞ |ϕl(x)|
∥

∥

∥

∥

∥

∞

≤ ψ2Dm.

d. There exists r ∈ N, called the regularity of the decomposition, such that:

∃C > 0, ∀α ≤ r, ∀s ∈ Bα
2,∞, ‖s− sm‖L2 ≤ C2−mα ‖s‖

B
α
2,∞

where sm is the orthogonal projection of s on Sm.

The subspaces generated by wavelets, piecewise polynomials or trigonometric polynomials sat-
isfy these assumption (see DeVore and Lorentz [1993] for trigonometric polynomials and Meyer
[1990] for wavelets and piecewise polynomials). Conditions a, b and d are usual (see Comte et al.
[2007, section 2.3] for instance). Condition c is necessary because we are not in the stationary
case: it helps us to control some covariance terms.

3.3 Estimation of the stationary density

Let us now construct an estimator ν̂m of νλ on the vectorial subspace Sm. We consider an
orthonormal basis (ϕl) of Sm satisfying Assumption A5. Let us set

al =< ϕl, νλ >=

∫

A

ϕl(x)νλ(x)dx and νm(x) =

Dm
∑

l=1

alϕl(x).

The function νm is the orthogonal projection of νλ on L2(A). We consider the estimator

ν̂m(x) =

Dm
∑

l=1

âlϕl(x) with âl =
1

n

n
∑

k=1

ϕl(Zk).

Proposition 7. If D2
m ≤ n, under A1-A3 and A5, for any λ ∈ F(c, b),

E

(

‖ν̂m − νλ‖2L2(A)

)

≤ ‖νm − νλ‖2L2(A) + Cc,b
Dm

n
+
cc,b
n

where Cc,b = ψ1 + ψ2

∫

Gλ(z)νλ(z)dz and Gλ(z) = R
1−γ

(

V(z) +
∫

V(z)νλ(z)dz
)

(see Corollary

3).

8



When m increases, the bias term decreases whereas the variance term increases. It is impor-
tant to find a good bias-variance compromis. If νλ belongs to the Besov space Bα

2,∞(A), then

‖νm − νλ‖2L2(A) ≤ C(‖νλ‖Bα
2,∞

)D−2α
m . The risk is then minimum for Dmopt ∝ n1/(2α+1) and we

have:
E

(

∥

∥ν̂mopt − νλ
∥

∥

2

L2(A)

)

≤ C ‖νλ‖Bα
2,∞

n−2α/(2α+1).

This is the usual nonparametric convergence rate (see Tsybakov [2004]).
Let us now construct the adaptive estimator. We compute (ν̂0, . . . , ν̂m, . . .) for m ∈ Mn =

{m,D2
m ≤ n}. Our aim is to select automatically m, without knowing the regularity of the

stationary density νλ. Let us introduce the contrast function γn(s) = ‖s‖2L2 − 2
n

∑n
k=1 s(Zk). If

s ∈ Sm, then s =
∑

l blϕl and

γn(s) =
∑

l

b2l −
∑

l

bl
2

n

n
∑

k=1

ϕl(Zk).

The minimum is obtained for âl = 1
n

∑n
k=1 ϕl(Zk). Therefore ν̂m = argmins∈Sm γn(s). As

the subspaces Sm are increasing, the function γn(ν̂m) decreases when m increases. To find an
adaptive estimator, we need to add a penalty term pen(m). Let us set pen(m) = 3CλDm

2n + 3cλ
2n

(or more generally pen(m) = σDm

n + σ′

n , with σ ≥ 3Cλ

2 , σ′ ≥ 3cλ
2 ) and choose

m̂ = arg min
m∈Mn

γn(ν̂m) + pen(m).

We obtain an adaptive estimator ν̂m̂.

Theorem 8 (Risk of the adaptive estimator). Under A1-A3 and A5, for any λ ∈ F(c, b),

∀σ ≥ 3
C λ

2, σ′ ≥ 3cλ
2 , pen(m) = σDm

n + σ′

n ,

E

(

‖νλ − ν̂m̂‖2L2(A)

)

≤ min
m∈Mn

(

3 ‖νm − νλ‖2L2(A) + 4pen(m)
)

+
c

n
.

We recall that Mn = {m,D2
m ≤ n}.

The estimator is adaptive: it realizes the best bias-variance compromise, up to a multiplicative
constant. We have an explicit rate of convergence if νλ belongs to some (unknown) Besov space
Bα
2,∞:

sup
λ∈F(c,b),‖νλ‖Bα

2,∞
≤C

E

(

‖νλ − ν̂m̂‖2L2(A)

)

≤ C′n−2α/(2α+1). (8)

3.4 Estimation of the jump rate

According to Proposition 1b,

λ(y) =
νλ(f(y))

D(y)
where D(y) := Eνλ

(

gZ0(f(y))1Z0≤y1Z1≥f(y)

)

.

To estimate the jump rate, we therefore use a quotient estimator. Unfortunately, the Besov
spaces are not stable by product or convolution (as they are subspaces of L2(A)). To relate the

risk of λ̂, the estimator of the jump rate, to the regularity of λ (and not νλ), we need to consider
a smaller class of functions, the Hölder spaces (see Appendix A).
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With Hölder regularity, we can relate the regularity of νλ to the regularity of λ. By [Krell,
2016, Lemma 3.5], if λ ∈ E (̄c, b) ∩Hα(I,M1), as gx and f−1 belong to the Hölder space Hα(I),
then

‖νλ‖Hα(f(I)) ≤ ψ
(

I, ‖λ‖Hα(I), ‖gx‖Hα(I), ‖f−1‖Hα(I)

)

(9)

for some continuous function ψ. Let us now consider the quantity

D̂n(y) :=
1

n

n
∑

k=1

gZk−1
(f(y))1Zk≥f(y),y≥Zk−1

.

According to Krell [2016, proof of Proposition 3.2], we have that

sup
λ∈E(c̄,b)

sup
y∈I

E

(

(

D̂n(y)−D(y)
)2
)

.
1

n
. (10)

We can now consider the estimator

λ̂n(y) =
ν̂λ(f(y))

D̂n(y)
1ν̂λ(f(y))≥01D̂n(y)≥ln(n)−1 . (11)

Then λ̂n will converge with nearly the same rate of convergence as ν̂λ:

Theorem 9. Under A1-A5, as soon as ln(n)−1 ≤ D0/2, for any λ ∈ E (̄c, b),

E

(

∥

∥

∥λ̂n − λ
∥

∥

∥

2

L2(I)

)

≤ Cc,b ln
2(n)

(

E

(

‖ν̂λ − νλ‖2L2(f(I))

)

+
1

n

)

.

As a consequence, by (8),

sup
λ∈E(c̄,b), ‖νλ‖Bα

2,∞
≤C

E

(

∥

∥

∥λ̂n − λ
∥

∥

∥

2

L2(I)

)

. ln2(n)n−2α/(2α+1).

To obtain a result related to the regularity of λ and not νλ, we assume that λ belong to Hα(M1, I).

sup
λ∈E(c̄,b)∩Hα(M1,I)

E

(

∥

∥

∥λ̂n − λ
∥

∥

∥

2

L2(I)

)

. ln2(n)n−2α/(2α+1).

3.5 Minimax bound for the estimator of the jump rate

We have proved that:

sup
λ∈E(c̄,b)∩Hα(I,M1)

E

(

∥

∥

∥λ̂n − λ
∥

∥

∥

2

L2(I)

)

. ln(n)2n−2α/(2α+1).

We would like to verify that our estimator converges with the best rate of convergence, i.e:

inf
λ̂n

sup
λ∈E(c̄,b)∩Hα(I,M1)

(E

(

∥

∥

∥λ̂n − λ
∥

∥

∥

2

L2(I)

)

≥ C ln2(n)n−2α/(2α+1).

The ln2(n) factor comes from the quotient estimator, we can not expect it will stay in the
minimax bound. Indeed, it is clear that one could replace ln−1(n) in (11) by any function w(n)
smaller than D0/2. The best estimator will be obtained of course by taking w(n) = D0/2 and
the risk of this estimator (unreachable as D0 is unknown) will be proportional to n−2α/(2α+1).

10



Theorem 10 (Minimax bound). If A1-A5 are satisfied, then

inf
λ̂n

sup
λ∈E(c̄,b)∩Hα(I,M1)

E

(

∥

∥

∥
λ̂n − λ

∥

∥

∥

2

L2(I)

)

≥ Cn−2α/(2α+1).

where the infimum is taken among all estimators.

4 Simulations

TCP protocol. We considere the piecewise deterministic Markov process (Xt) with flow
φ(x, t) = x+ ct, f(x) = κx and gx(y) = 1/(κc). By (3), we have:

P(Z1 ≥ y|Z0 = x) = exp

(

−1

c
(Λ(y/κ)− Λ(x))

)

1y≥κx

with Λ a primitive of λ. The function Λ is increasing and therefore invertible and

P(Λ(Z1/κ) ≥ v|Λ(Z0) = u) = exp

(

−1

c
(v − u)

)

1v≥u.

Then Λ(Zj/κ)|Λ(Zj−1) follows an exponential law translated by Λ(Zj−1) and of parameter 1/c.
Therefore, if we can find the reciprocal of the function Λ, we can construct the sequence (Zj) by
recurrence:

Λ(Zj/κ) = Λ(Zj−1) + cEj (12)

where Ej are i.i.d. of law E (1).
If λ(x) = λxδ with δ > −1, then Zδ+1

j /κδ+1 = Zδ+1
j−1 + c(δ + 1)/λEj and we obtain

Zj = κ
δ+1

√

Zδ+1
j−1 +

(δ + 1)c

λ
Ej .

This model satisfies A1, A2 and A4 if δ > −1. A3 is fulfilled only if δ > 0 (indeed, if δ ≤ 0, the
model does not comply with A3a.

In order to have a model with a non-increasing function λ, we also consider the function
λ(x) = (x− a)2 + b with a > 0, b ≥ 0. In that case, by (12),

(Zj/κ− a)3 + 3b(Zj/κ− a) = (Zj−1 − a)3 + 3b(Zj−1 − a) + 3cEj

and, by Cardan’s formula, this equation has a unique real solution, which is

Zj = κ



a+

3

√

Q+
√

4b3 +Q2 + 3

√

Q−
√

4b3 +Q2

2





where Q = 3cEj + (Zj−1 − a)3 + 3b(Zj−1 − a). This model satisfies A1-A4.

Bacterial growth. We consider a PDMP with φ(x, t) = xect and f(x) = x/2. Then gx(y) =
1
cy

and by (3),

P(Z1 ≥ y|Z0 = x) = exp

(

−1

c

∫ 2y

x

λ(s)

s
ds

)

1y≥x/2.

11



We need to find a primitive of λ(x)/x. If λ(x) = λxδ, δ > 0, then:

P(Z1 ≥ y|Z0 = x) = exp

(

−2δλ

δc

(

yδ − xδ

2δ

))

1y≥x/2.

Therefore

P
(

(2Z1)
δ ≥ y|Zδ0 ≥ x

)

= exp

(

− λ

δc
(y − x)

)

1y≥x

and the law of the random variable (2Zj)
δ is an exponential translated by Zδj−1 and of parameter

λ/δc. Then

Zj =
1

2
δ

√

δc

λ
Ej + Zδj−1,

with Ej ∼ E (1) i.i.d. This model satisfies A1, A2 and A4 if δ > 0 and and Assumption A3 only
if δ > 1 (point a is not verified if δ ≤ 1).

Computations The estimator of νλ is computed thanks to a projection on a trigonometric
basis on the interval A = [0, 6]. The constant involved in pen(m) is not easily tractable. To select
it, one could use the dimension jump. Indeed, if the penalty pen(m) = cDm/n is too small, we
will always select the maximal dimension. If the penalty is large enough, we will select smaller
models. We then let the constant c in the penalty vary and we note the dimension selected. For
c smaller than a value cmin, we always select the largest models, and then it decreases rapidly.
We set c = 2cmin. See Arlot and Massart [2009] for instance. However, this method involves
quite a lot of computations. Instead, we always choose pen(m) = 2Dm/n, which is the constant
used for independent random variables (here φ1 = 2/A = 1/3). This choice seems confirmed by
the simulations results: the oracle or remains close to 1.

In figures 2 and 3, for each graph, we realize five simulations of the PDMP with n = 105. For
each simulation, we draw the estimator λ̂, the density ν̂λ(f(x)) and D̂n(x).

In the tables, we realize 50 simulations for each 4-uplet (n, c, κ, λ). The estimation interval
I is chosen such that D is greater than the threshold (ln(n))−1 on I for n = 10−5. For each
set of parameters, we compute the mean of the selected dimension D̂m and the mean of the L2

error on I denoted ”risk”. We also want to prove that our estimator is truly adaptive. As νλ is
unknown, we can not check that m̂ is the better choice for estimating νλ. Instead, let us consider
the estimator

λ̂m =
ν̂mof

D̂n

1ν̂m≥01D̂n≥(ln(n))−1 .

We have that λ̂n = λ̂m̂. We compute

mopt = min
m∈Mn

∥

∥

∥λ̂m − λ
∥

∥

∥

2

L2(I)

and the minimal risk
∥

∥

∥λ̂mopt − λ
∥

∥

∥

2

L2(I)
. In the tables, we give the empirical means of Dm̂, Dmopt ,

the empirical risk and the oracle

or := mean

(

∥

∥

∥λ̂m̂ − λ
∥

∥

∥

2

L2(I)
/
∥

∥

∥λ̂mopt − λ
∥

∥

∥

2

L2(I)

)

.

For the sake of completness, we also give the mean of the computation time, denoted by T .
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Results In Figures 2-3, we can see that λ̂ is quite close λ, at least when x is neither too small
nor too large, that is when there is enough values to compute the estimator. For x too large,
the estimator seems to disconnect before to be constant equal to 0. For x near 0, we can have
a spike if λ(0) 6= 0. The estimators of ν̂ and Dn are quite smooth, whereas λ̂ tends to oscillate.

This is due to the division of two estimators. The estimation of λ̂n is not good for the bacterial
growth when λ =

√
x, the estimator is biased. However, in that case, Assumption A3a is not

satisfied and there can be a problem of convergence toward the stationary measure (or even of
the existence of the stationary measure). On the contrary, for λ = x for the bacterial growth
and λ = 1 for the TCP, the convergence is good, even if Assumption A3a is not fulfilled (but we
are just on the edge). In Tables 2-3, we can observe that the risk decreases when n increases and
seems to tend toward 0. The oracle remains close to 1, our estimator is really adaptive.

5 Proofs

5.1 Proof of Corollary 3

We consider a function s such that ‖s‖∞ = 1; we will obtain the expected result by dividing s
by its L∞-norm. We set Z0 = X0 = x0. According to Proposition 2a,

∣

∣

∣

∣

∣

E

(

1

n

n
∑

k=1

s(Zk)−
∫

s(x)νλ(x)dx

)∣

∣

∣

∣

∣

≤ 1

n

n
∑

k=1

RV(x0)γ
k ≤ RV(x0)

n(1− γ)

which proves a. Let us set s̃(Y ) = s(Y )− E (s(Y )). We have:

E





(

1

n

n
∑

k=1

s̃(Zk)

)2


 =
1

n2

∑

k

E
(

s̃2(Zk)
)

+
2

n2

∑

k<k′

E (s̃(Zk)s̃(Zk′)) . (13)

Thanks to Proposition 2a, we can write:

E
(

s̃2(Zk)
)

≤ E
(

s2(Zk)
)

≤
∫

s2(x)νλ(x)dx + E
(

s2(Zk)
)

−
∫

s2(x)νλ(x)dx

≤
∫

s2(x)νλ(x)dx +RV(x0)γ
k.

Therefore

E

(

1

n2

n
∑

k=1

s̃2(Zk)

)

≤ 1

n

∫

s2(x)νλ(x)dx +
RV(x0)

n2(1− γ)
. (14)

Let us bound the last term of (13). For any (k < k′), by Proposition 2a,

|E (s̃(Zk′)|Zk)| =
∣

∣

∣

∣

E (s(Zk′)|Zk)−
∫

s(z)νλ(z)dz − E (s(Zk′ )) +

∫

s(z)νλ(z)dz

∣

∣

∣

∣

≤ Rγk
′−k

V(Zk) +RV(x0)γ
k′ . (15)
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Figure 2: TCP protocol: φ(x, t) = x+ t, f(x) = κx
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Figure 3: Bacterial growth

φ(x, t) = x exp(ct), g(x) = 1/(cx), λ(x) = xδ
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Then by (15),

Ek :=

n
∑

k′=k+1

|E (s̃(Zk)s̃(Zk′)) | =
n
∑

k′=k+1

|E (s̃(Zk)E (s̃(Zk′ )|Zk)) |

≤
n
∑

k′=k+1

E (|s̃(Zk)|) (Rγk
′−k

V(Zk) +RV(x0)γ
k′) ≤ R

1− γ
E
(

|s̃(Zk)|
(

V(Zk) + γkV(x0)
))

.

As |s̃(Zk)| ≤ |s(Zk)|+ E (|s(Zk)|),

Ek ≤ R

1− γ
(E (|s(Zk)|V(Zk)) + E (|s(Zk)|)E (V(Zk))) +

RV(x0)

1− γ
γk2E (|s(Zk)|) .

By Proposition 2a, for any function ψ ≤ V, E (ψ(Zk)|Z0 = x0) ≤
∫∞

0
ψ(z)νλ(z)dz+RV(x0)γ

k.
Then

∑

k

Ek ≤
∑

k

R

1− γ

(∫

|s(z)|V(z)νλ(z)dz + RV(x0)γ
k

)

+
∑

k

R

1− γ

(
∫

|s(z)|νλ(z)dz + RV(x0)γ
k

)(
∫

V(z)νλ(z)dz +RV(x0)γ
k

)

+
∑

k

RV(x0)

1− γ
2γk

(∫

|s(z)|νλ(z)dz +RV(x0)γ
k

)

≤ n
R

1− γ

(∫

|s(z)|V(z)νλ(z)dz +
∫

|s(z)|νλ(z)dz
∫

V(z)νλ(z)dz

)

+
RV(x0)

(1− γ)2

(

R+R

∫

V(z)νλ(z)dz + (R + 2)

∫

|s(z)|νλ(z)dz
)

+
R2(R + 2)V(x0)

(1 − γ)(1− γ2
.

By (13) and (14), we get:

E





(

1

n

n
∑

k=1

s̃(Zk)

)2


 ≤ 1

n

(∫

s2(z)νλ(z)dz +

∫

|s(z)|Gλ(z)νλ(z)dz
)

+
C

n2

where C is uniformely bounded on F(c, b).

5.2 Proof of Lemma 4

There exists (c̄, b) such that λ ∈ E (̄c, b). As D(y) = νλ(f(y))
λ(y) and λ(y) is strictly positive on I by

A4,
{

∃η, sup
y∈f(I)

νλ(y) ≥ η

}

⇒
{

∃D0 > 0, sup
y∈I

D(y) ≥ D0

}

.

Therefore, we will just prove the first inequality.

Bound of ν(y) on f(I). By equation (4),

P(x, y) = λ(f−1(y))gx(y) exp

(

−
∫ y

f(x)

λ(f−1(u))gx(u)du

)

1y≥f(x). (16)
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By A4, ∀y ∈ f(I), λ(f−1(y)) ≥ ε. Moreover, by A3b, for any y ∈ f(I):
∫ y

f(x)

λ(f−1(u))gx(u)du ≤
∫ f(i2)

0

M(u)λ(f−1(u))du ≤ L.

We replace in (16) and obtain that P(x, y) ≥ εm(y)e−L1y≥f(x). Then, for any y ∈ f(I), as νλ
is the stationary density:

νλ(y) =

∫

νλ(x)P(x, y)dx ≥
∫ f−1(y)

0

εm(y)e−Lνλ(x)dx

≥ εe−Lm(y)

∫ i1

0

νλ(u)du ≥ εe−Lm(y)νλ([0, i1]).

It remains to bound νλ([0, i1]) from below.

Bound of νλ([0, i1]). As νλ is the stationary density, νλ([z,∞]) = Pνλ(Z1 ≥ z). Therefore, by
Markov inequality, as V is an increasing function,

sup
λ∈E(c̄,b)

νλ([z,∞[) = sup
λ∈E(c̄,b)

Pνλ (V(Z1) ≥ V(z)) ≤ V
−1(z) sup

λ∈E(c̄,b)

Eνλ (V(Z1)) .

By Proposition 2b, as E (̄c, b) ⊆ F(c, b),

sup
λ∈E(c̄,b)

Eνλ (V(Z1)) ≤ C.

Therefore, there exists y0 > 0, supλ∈E(c̄,b) νλ([y0,∞[) < 1 and consequently, infλ∈E(c̄,b) νλ([0, y0]) >
0. Now as f(x) ≤ κx, let us consider the sequence

(z0 := i1, z1 := z0/
√
κ, . . . , zj := zj−1/

√
κ = κ−j/2i1, . . . , zkn := κ−kn/2i1)

where zkn−1 < y0 ≤ zkn . We can remark that

inf
λ∈E(c̄,b)

νλ([0, zkn ]) > 0. (17)

As νλ is the stationary density, for any z > 0,

νλ([0, z]) =

∫ z

0

νλ(y)dy =

∫ z

0

∫ ∞

0

P(x, y)νλ(x)dxdy =

∫ ∞

0

νλ(x)P(Z1 ≤ z|Z0 ∈ dx)

and by (3),

νλ([0, z]) =

∫ f−1(z)

0

νλ(x)

(

1− exp

(

−
∫ z

f(x)

λ(f−1(u))gx(u)du

))

dx.

As λ(f−1(u)) is bounded by below on (f(i1),∞) and gx(u) ≥ m(u), there exists a constant η
such that

inf
λ∈E(c̄,b)

inf
u∈[i1,zkn ]

λ(f−1(u))gx(u) ≥ η.

17



As f(u) ≤ κu and κ < 1, f−1(zj) ≥ zj/κ ≥ zj/
√
κ = zj+1. Therefore

νλ([0, zj]) ≥
∫ f−1(zj)

i1

νλ(x)

(

1− exp

(

−
∫ zj

f(x)

λ(f−1(u)gx(u)du

))

dx

≥
∫ zj+1

i1

νλ(x) (1− exp(−η(zj − f(x))) dx

≥
∫ zj+1

i1

νλ(x) (1− exp(−η(zj − κzj+1)) dx

≥
(

1− exp(−η(zj(1−
√
κ))
)

νλ([i1, zj+1]).

Let us set cj = (1− exp(−η(zj(1−
√
κ))). We can notice that

νλ([0, zj ] ≥ cj (νλ([0, zj+1])− νλ([0, i1]))

and in particular, νλ([0, i1])(1 + c0) ≥ c0νλ([0, z1]]. By recurrence, we obtain:


1 +

kn−1
∑

j=0

j
∏

i=0

ci



 νλ([0, i1]) ≥





kn−1
∏

j=0

cj



 νλ([0, zkn)].

Then by (17)
inf

λ∈E(c̄,b)
νλ([0, i1]) > 0

which concludes the proof.

5.3 Proof of Corollary 6

Let G be an event of Ok
0 × O∞

t+k. Then G is a disjoint reunion of events Ei ∩ F i,j where

Ei = {Z1 ∈ J i1, . . . , Zk ∈ J ik}, F i,j = {Zt+k ∈ Ii,j0 , . . . , Zt+k+n ∈ Ii,j
n

}
with Ji and Ii are subsets of R+ and 1 ≤ n <∞. Then

DG := POk
0⊗O∞

t+k
(G)− POk

0
⊗ PO∞

t+k
(G) =

∑

i,j

P(Ei ∩ F i,j)− P(Ei)P(F i,j).

For a vector (a1, . . . , ak) ∈ (R+)k, let us set P(a1, . . . , ak) = P(a1, a2) . . .P(ak−1, ak) where the
transition probability P(x, y) = Pλ(x, y) is defined in equation (4). Then, as (Zk)k∈N is a Markov
chain,

P(Ei ∩ F i,j)− P(Ei)P(F i,j) =

∫

Ji
1×...×J

i
k

P(x0, x1, . . . , xk)

×
∫ ∞

0

(

Pt(xk, y0)− Pt+k(x0, y0)
)

1y0∈I
i,j
0

×
∫

Ii,j1 ×...×Ii,jn

P(y0, . . . , yn)dy0 . . . dyndx1 . . . dxk.

We regroup the F i,j :
∑

j

P(Ei ∩ F i,j)− P(Ei)P(F i,j)

=

∫

Ji
1×...×J

i
k

P(x0, x1, . . . , xk)

∫ ∞

0

(

Ptψ(xk)− Pt+kψ(x0)
)

dx1 . . . dxk

18



where ψ(x) :=
∑

j 1x∈Ii,j0

∫

Ii,j1 ×...×Ii,j
n

P(x, y1, . . . , yn)dy1 . . . dyn. We can remark that ψ(x) =
∑

j 1x∈Ii,j0
Px

(

Z1 ∈ Ii,j1 , . . . , Zn ∈ Ii,j
n

)

and by the law of total probability, ψ(x) ≤ 1. We can

apply Proposition 2a to the function ψ:

∣

∣Ptψ(xk)− Pt+kψ(x0)
∣

∣ =

∣

∣

∣

∣

Ptψ(xk)−
∫ ∞

0

ψ(z)νλ(z)dz +

∫ ∞

0

ψ(z)νλ(z)dz − Pt+kψ(x0)
∣

∣

∣

∣

≤ RγtV(xk) +Rγt+kV(x0).

Then

|DG| ≤ Rγt
∑

i

∫

Ji
1×...×J

i
k

P(x0, . . . , xk) (V(xk) + V(x0)) dx1 . . . dxk

≤ Rγt
∑

i

Ex0

(

(V(Zk) + V(x0)) 1Z1∈Ji
1,...,Zk∈Ji

k

)

≤ Rγt (Ex0 (V(Zk)) + V(x0)) .

By Proposition 2,

Ex0 (V(Zk)) ≤
∫

V(y)νλ(y)dy +RγkV(x0)

and
∫

V(y)νλ(y)dy is uniformely bounded on F(c, b) by Proposition 2b. Therefore

sup
λ∈F(c,b)

βZ(t) = sup
k

sup
G∈Ok

0×O∞
t+k

|DG| ≤ Rγt
(∫

V(y)νλ(y)dy + (1 +R)V(x0)

)

.

As γ < 1,
sup

λ∈F(c,b)

βZ(t) ≤ ce−βt

with β = − ln(γ), c = R
(

supλ∈F(c,b)

∫

V(y)νλ(y)dy + (1 +R)V(x0)
)

.

5.4 Proof of Proposition 7

We have the following bias-variance decomposition:

E

(

‖νλ − ν̂m‖2L2(A)

)

=

∫

A

E

(

(νλ(x) − ν̂m(x))
2
)

dx

=

∫

A

(νλ(x) − E (ν̂m(x)))
2
dx+Var (ν̂m(x)) dx

= ‖E (ν̂m)− νλ‖2L2(A) +

∫

A

Var (ν̂m(x)) dx.

The estimator ν̂m (and therefore its expectation E (ν̂m)) belongs to the subspace Sm. Then, by
orthogonality

E

(

‖νλ − ν̂m‖2L2(A)

)

= ‖νλ − νm‖2L2(A) + ‖E (ν̂m)− νm‖2L2(A) +

∫

A

Var (ν̂m(x)) dx.
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The first terms are two terms of bias, the third is a variance term. Let us first bound the second
term of bias. As the functions (ϕl) form an orthonormal basis of Sm, we have

‖E (ν̂m)− νm‖2L2(A) =

Dm
∑

l=1

(E (âl)− al)
2

=

Dm
∑

l=1

(

1

n

n
∑

k=1

E (ϕl(Zk))−
∫

A

ϕl(x)νλ(x)dx

)2

.

By Corollary 3,

|E (âl)− al| ≤ ‖ϕl‖∞
RV(x0)

n(1− γ)
.

Therefore, thanks to A5b, ‖ϕl‖2∞ ≤ ψ1Dm and, as D2
m ≤ n, we get:

sup
λ∈F(c,b)

‖E (ν̂m)− νm‖2L2(A) ≤
Dm
∑

l=1

‖ϕl‖2∞
n2

R2
V

2(x0)

(1− γ)2
≤ ψ1

D2
m

n2

R2
V

2(x0)

(1 − γ)2
≤ ψ1

1

n

R2
V

2(x0)

(1 − γ)2
.

Let us now consider the variance term. As the functions (ϕl) form an orthonormal basis of Sm,
the integrated variance of ν̂m is the sum of the variances of the coefficients âλ:

∫

A

Var (ν̂m(x)) dx =

∫

A

Var

(

Dm
∑

l=1

âlϕl(x)

)

=
∑

k,l

Cov (âk, âl) < ϕl, ϕk >L2(A)=

Dm
∑

l=1

Var (âl) .

By Corollary 3,

Var (âl) = Var

(

1

n

n
∑

k=1

ϕl(Zk)

)

≤ 1

n

∫

A

ϕ2
l (x)νλ(x)dx +

‖ϕl‖∞
n

∫

A

|ϕl(x)|Gλ(x)νλ(x)dx +
c ‖ϕl‖2∞
n2

. (18)

By Assumption A5b and c,
∑Dm

l=1 ϕ
2
l (x) ≤ ψ1Dm,

∑Dm

l=1 ‖ϕl‖∞ |ϕl(x)| ≤ ψ2Dm and
∑Dm

l=1 ‖ϕl‖
2
∞ ≤

ψ1D
2
m ≤ ψ1n. Therefore:

sup
λ∈F(c,b)

∫

A

Var (ν̂m(x)) dx = sup
λ∈F(c,b)

∑

l

Var (âl) ≤ Cλ
Dm

n
+
c

n
(19)

where Cλ = ψ1 + ψ2

∫

A
Gλ(z)νλ(z)dz.

5.5 Proof of Theorem 8

The number of coefficients in the adaptive estimator is random. If we are still able to control
easily the bias term, we can not simply control the variance of our estimator by adding the
variances of its coefficients. For any m ∈ Mn, we have the following inequality:

γn(ν̂m̂) ≤ γn(ν̂m) + pen(m)− pen(m̂) ≤ γn(νm) + pen(m)− pen(m̂),

with γn(s) = ‖s‖2L2(A) − 2n−1
∑n
k=1 s(Zk). Then

‖ν̂m̂‖2L2(A) ≤ ‖νm‖2L2(A) + pen(m)− pen(m̂) +
2

n

n
∑

k=1

ν̂m̂(Zk)− νm(Zk). (20)
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We have that, for any function s ∈ L2(A):

‖s‖2L2(A) = ‖s− νλ‖2L2(A) − ‖νλ‖2L2(A) + 2

∫

A

s(x)νλ(x)dx.

We apply this equality to ν̂m̂ and νm. Equation (20) becomes:

‖ν̂m̂ − νλ‖2L2(A) ≤ ‖νm − νλ‖2L2(A) + pen(m)− pen(m̂)

+
2

n

n
∑

k=1

ν̂m̂(Zk)− νm(Zk)− 2

∫

A

(ν̂m̂(x)− νm(x))νλ(x)dx.

The function ν̂m̂ − νm belongs to the vectorial subspace Sm̂ + Sm. Therefore:

‖ν̂m̂ − νλ‖2L2(A) ≤ ‖νm − νλ‖2L2(A) + pen(m)− pen(m̂)

+ 2 ‖ν̂m̂ − νm‖L2(A) sup
s∈Bm,m̂

∣

∣

∣

∣

∣

n
∑

k=1

1

n
s(Zk)−

∫

A

s(x)νλ(x)dx

∣

∣

∣

∣

∣

where Bm,m′ = {s ∈ Sm + Sm′ , ‖s‖L2(A) = 1}. As the sequence (Sm) is increasing, Sm + Sm′ is
simply the largest of the two subspaces. By the inequality of arithmetic and geometric means,

‖ν̂m̂ − νλ‖2L2(A) ≤ ‖νm − νλ‖2L2(A) + pen(m)− pen(m̂) +
1

4
‖ν̂m̂ − νm‖2L2(A)

+ sup
s∈Bm,m̂

4

(

1

n

n
∑

k=1

s(Zk)−
∫

A

s(x)νλ(x)

)2

.

As ‖ν̂m̂ − νm‖2L2(A) ≤ 2 ‖ν̂m̂ − νλ‖2L2(A) + 2 ‖νm − νλ‖2L2(A), we get:

‖ν̂m̂ − νλ‖2L2(A) ≤ 3 ‖νm − νλ‖2L2(A) + 2pen(m)− 2pen(m̂)

+ 8 sup
s∈Bm,m̂

(

1

n

n
∑

k=1

s(Zk)−
∫

A

s(x)νλ(x)

)2

.

We can decompose the last term in a bias term and a variance term. Let us set:

In(s) :=
1

n

n
∑

k=1

s(Zk)− E (s(Zk)) , Jn(s) :=
1

n

n
∑

k=1

(

E (s(Zk))−
∫

A

s(x)νλ(x)dx

)

(21)

and p(m,m′) := (pen(m) + pen(m′))/4. We can remark that E (InJn) = 0. Then:

E

(

‖ν̂m̂ − νλ‖2L2(A)

)

≤ 3 ‖νm − νλ‖2L2(A) + 4pen(m) + 8E

(

sup
s∈Bm,m̂

I2n(s) + J2
n(s)

)

− 8p(m, m̂).

(22)

By Assumption A5b, s ∈ Bm,m̂ implies that ‖s‖2∞ ≤ ψ1(Dm +Dm̂) ≤ 2ψ1n
1/2 (we recall that

Dm and Dm̂ are smaller than n1/2). Then by Corollary 3,

sup
λ∈F(c,b)

sup
s∈Bm,m̂

J2
n(s) ≤ sup

s∈Bm,m̂

R2
V

2(x0) ‖s‖2∞
n2(1− γ)2

≤ 4ψ2
1R

2
V

2(x0)n

n2(1− γ)2
≤ C

n
. (23)
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It remains to bound E

(

sups∈Bm,m̂
I2n(s)− p(m, m̂)

)

+
. The unit ball Bm,m̂ is random. We can

not bound I2n(s) on it, we have to control the risk on the fixed balls Bm,m′ . We can write:

E

(

sup
s∈Bm,m̂

I2n(s)− p(m, m̂)

)

+

≤
∑

m,m′∈Mn

E

(

sup
s∈Bm,m′

I2n(s)− p(m,m′)

)

+

. (24)

The following lemma is deduced from the Berbee’s coupling lemma and a Talagrand inequality.
It is proved in the appendix.

Lemma 11 (Talagrand’s inequality for β-mixing variables). The random variables Z1, . . . , Zn
are exponentially β-mixing. Let us set b0 ≥ −1/ ln(γ). We define qn := 2b0 ln(n), pn = n/(2qn).
We have that β(qn) ≤ cγ2b0 ln(n) . n−2. Let us consider

In(s) =
1

n

n
∑

k=1

s(Zk)− E (s(Zk)) .

If we can find a triplet (M2, V and H) such that:

∀i, sup
s∈Bm,m′

Var

(

1

qn

qn+i
∑

k=i

s(Zk)

)

≤ V

qn
, sup
s∈Bm,m′

‖s‖∞ ≤M2 and E

(

sup
s∈Bm,m′

|In(s)|
)

≤ H√
n
,

then we have:

E

(

sup
s∈Bm,m′

|I2n(s)− 6H2|
)

+

≤ C
V

n
exp

(

−k1
H2

12V

)

+ C′M
2
2

p2n
exp

(

−k2
√
pnH√
qnM2

)

+ 2
M2

2

n2

where C, C′, k1 and k2 are universal constants.

For the sake of simplicity, let us set D = Dm +Dm′ and B = Bm,m′ . By Assumption A5b,

sup
λ∈F(c,b)

sup
s∈B

‖s‖∞ ≤ sup
s∈B

ψ
1/2
1 D1/2 ‖s‖L2(A) = ψ

1/2
1 D1/2 :=M2.

By Corollary 3,

Var

(

1

qn

qn
∑

k=1

s(Zk)

)

≤ 1

qn

∫

s2(z)νλ(z)dz +
‖s‖∞
qn

∫

|s(z)|νλ(z)Gλ(z)dz +
cλ ‖s‖2∞
q2n

.

By Cauchy-Schwarz,
∥

∥s2νλ
∥

∥

L1(A)
≤ ‖s‖L2(A) ‖sνλ‖L2(A) ≤ ‖s‖L2(A) ‖s‖∞ ‖νλ‖L2(A)

and
‖sνλGλ‖L1 ≤ ‖Gλ‖L∞(A) ‖s‖L2 ‖νλ‖L2 .

By Assumption A5b, ‖s‖∞ ≤ ψ
1/2
1 D1/2 and then

sup
λ∈F(c,b),‖νλ‖L2≤c

sup
s∈B

Var

(

1

qn

qn
∑

k=1

s(Zk)

)

≤
ψ
1/2
1 D1/2 ‖νλ‖L2

(

1 + ‖Gλ‖L∞(A)

)

qn
+
cλψ1D

q2n

≤ c1D
1/2

qn
+ c

D

q2n
:=

V

qn
.
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It remains to find H such that E (sups∈B |In(s)|) ≤ H/
√
n. Let us introduce (ϕl)1≤l≤D an

orthonormal basis of Sm + Sm′ = Smax(m,m′) satisfying Assumption A5. Then we can write
s =

∑

l blϕl. As the function s→ In(s) is linear:

sup
s∈B

I2n(s) = sup
∑
b2l =1

(

D
∑

l=1

blIn(ϕl)

)2

≤ sup
∑
b2l =1

(

D
∑

l=1

b2l

)(

D
∑

l=1

I2n(ϕl)

)

=

D
∑

l=1

I2n(ϕl). (25)

We can remark that In(ϕl) = âl − E (âl) (see equation (21)) and by consequence, E
(

I2n(ϕl)
)

=
Var (âl) . By (19):

sup
λ∈F(c,b)

E

(

sup
s∈B

I2n(s)

)

≤
D
∑

l=1

E
(

I2n(ϕl)
)

≤ CλD

n
+
cλ
n

:=
H2

n

where Cλ = ψ1 + ψ2

∫

A
Gλ(z)νλ(z)dz. We can now apply Lemma 11 with

M2 = ψ
1/2
1 D1/2, V = c1D

1/2 + cD/qn and H2 = CλD.

As 2/(x+ y) ≥ min(1/x, 1/y), for p(m,m′) ≥ 6CλD/n+ 6cλ/n,

E

(

sup
s∈B

I2n(s)− p(m,m′)

)

+

≤ C
V

n
exp

(

−k1
H2

12V

)

+ C′M
2
2

p2n
exp

(

−k2
√
pnH√
qnM2

)

+ 2
M2

2

n2

≤ C

(

c1D
1/2

n
+
cD

nqn

)(

exp

(

−CλD
12

1

c1D1/2

)

+ exp

(

−CλD
12

qn
cD

))

+
Cψ1D

p2n
exp

(

−k2p1/2n

C
1/2
λ D1/2

q
1/2
n

1

ψ
1/2
1 D1/2

)

+ 2
ψ1D

n2

.
D

n
exp(−c0D1/2) +

D

n
exp(−c2qn) +

D ln2(n)

n2
exp

(

−c3
n1/2

ln(n)

)

+
D

n2

where the constants are uniform on the set {λ ∈ F(c, b), ‖νλ‖L2(A) ≤ c}. The second term can

be made smaller than n−2 for qn(= 2b0 ln(n)) large enough. The third is also smaller to n−2

thanks to the exponential term. Then

sup
λ∈F(c,b),‖νλ‖L2≤C

E

(

sup
s∈Bm,m′

I2n(s)− p(m,m′)

)

≤ C1
Dm,m′

n
exp(−c0D1/2

m,m′) + C2
Dm,m′

n2
.

As
∑∞
k=1 ke

−ck1/2 <∞ and
∑

m′∈Mn
Dm,m′ ≤ maxm′∈Mn D

2
m,m′ ≤ n, by (24),

sup
λ∈F(c,b),‖νλ‖L2(A)≤c

E

(

sup
s∈Bm,m̂

I2n(s)− p(m, m̂)

)

.
1

n
. (26)

Collecting (22), (23) and (26), for any m ∈ Mn:

sup
λ∈F(c,b),‖νλ‖L2(A)≤C

E

(

‖ν̂m̂ − νλ‖2L2

)

≤ 3 ‖νm − νλ‖2L2 + 4pen(m) +
c

n

which concludes the proof.
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5.6 Proof of Theorem 9

For n big enough, 1/ ln(n) is smaller than D0/2 and then by Markov inequality and (10),

P(D̂n(y) ≤ 1/ ln(n)) ≤ P(|D̂n(y)−D(y)| ≤ D0/2) ≤
4

D2
0

E

(

(D̂n(y)−D(y))2
)

≤ 4c

nD2
0

. (27)

As νλ is a positive function, |ν̂λ(y)− νλ(y)|1ν̂λ(f(y))≥0 ≤ |ν̂λ(y)− νλ(y)| and therefore, according

to the definition of the estimator λ̂n (11),

|λ̂n(y)− λ(y)| ≤
∣

∣

∣

∣

∣

ν̂λ(f(y))

D̂n(y)
− νλ(f(y))

D(y)

∣

∣

∣

∣

∣

1

D̂n(y)≥1/ ln(n) + λ(y)1
D̂n(y)≤1/ ln(n).

We can write:
∣

∣

∣

∣

∣

ν̂λ(f(y))

D̂n(y)
− νλ(f(y))

D(y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

ν̂λ(f(y))− νλ(f(y))

D̂n(y)
+

νλ(f(y))

D̂n(y)D(y)
(D(y)− D̂n(y))

∣

∣

∣

∣

∣

.

As D ≥ D0 by Lemma 4:

|λ̂n(y)−λ(y)| ≤ ln(n) (|ν̂λ(f(y))− νλ(f(y))|)+ln(n)
|D̂n(y)−D(y)|

D0
νλ(f(y))+λ(y)1D̂n(y)≤1/ ln(n).

By (10) and (27),

E

(

∥

∥

∥λ̂n − λ
∥

∥

∥

2

L2(I)

)

≤ 3 ln2(n)E
(

‖ν̂λof − νλof‖2L2(I)

)

+ 3cD−2
0

ln2(n)
∫

I
ν2λ(f(y))dy

n

+ 12cD−2
0

∫

I λ
2(y)dy

n
.

By A2 and Proposition 1b, νλ(f(y)) ≤ Eνλ (gZ0(f(y)))λ(y) ≤ M(f(y))λ(y). We obtain:

E

(

∥

∥

∥λ̂n − λ
∥

∥

∥

2

L2(I)

)

≤ C

(

ln(n)2E
(

‖ν̂λof − νλof‖2L2(I)

)

+
ln2(n) ‖λ‖2L2(I)

n

)

(28)

where C is uniformely bounded on E (̄c, b). As f is invertible,

E

(

‖ν̂λof − νλof‖2L2(I)

)

= E

(

∥

∥

∥(ν̂λ − νλ)
√

(f−1)′
∥

∥

∥

2

L2(f(I))

)

≤ sup
y∈f(I)

(f−1)′(y)E
(

‖ν̂λ − νλ‖2L2(f(I))

)

which, with (28), give the first bound.
By Theorem 8,

sup
λ∈E(c̄,b),‖νλ‖L2(f(I))≤C

E

(

‖νλ − ν̂m̂‖2L2(f(I))

)

≤ min
m∈Mn

(

3 ‖νm − νλ‖2L2(f(I)) + 24
CλDm

n

)

+
c

n
.

If λ belongs to Hα(M1, I), as gx and f−1 also belongs to Hα(M1, I) by Assumption A2, then
by (9), νλ ∈ Hα(ψ(M1), f(I)) ⊆ Bα

2,∞(ψ(M1), f(I)) and in that case,

‖νm − νλ‖2L2(f(I)) ≤ ‖νλ‖2Bα
2,∞(f(I))D

−2α
m .
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The quantity 3 ‖νm − νλ‖2L2(f(I)) + 24CλDm

n is minimum when Dm ∝ n1/(2α+1) and therefore

sup
λ∈E(c̄,b,H)

min
m∈Mn

(

3 ‖νm − νλ‖2L2(f(I)) + 24
CλDm

n

)

≤ Cn−2α/(2α+1)

which concludes the proof.

5.7 Proof of Theorem 10

To simplify the notations, we denote by E (̄c, b,H) the set E (̄c, b) ∩Hα(I,M1) in this proof. We
use the reduction scheme described in Tsybakov [2004, chapter 2]. By Markov inequality,

C′2n−2α/(2α+1)
Eλ

(

∥

∥

∥λ̂n − λ
∥

∥

∥

2

L2

)

≥ Pλ

(∥

∥

∥λ̂n − λ
∥

∥

∥

L2
≥ C′n−α/(2α+1)

)

.

Our aim is to show that

inf
λ̂n

sup
λ∈E(c̄,b,H)

Pλ

(∥

∥

∥
λ̂n − λ

∥

∥

∥

L2
≥ C′n−α/(2α+1)

)

> 0.

Instead of searching an infimum on the whole class E (̄c, b,H), we can restrain ourselve to the
finite set {λ0, . . . , λPn} ∈ E (̄c, b,H), such that

‖λi − λj‖L2 ≥ 2C′n−α/(2α+1)δi,j . (29)

Then

inf
λ̂n

sup
λ∈E(c̄,b,H)

Pλ

(∥

∥

∥λ̂n − λ
∥

∥

∥

L2
≥ C′n−α/(2α+1)

)

≥ inf
λ̂n

max
j

Pλj

(∥

∥

∥λ̂n − λj

∥

∥

∥

L2
≥ C′n−α/(2α+1)

)

.

We note ψ∗ the predictor

ψ∗ := arg min
0≤j≤Pn

∥

∥

∥λ̂n − λj

∥

∥

∥

L2
.

By the triangular inequality,
∥

∥

∥λ̂n − λj

∥

∥

∥

L2
≥ ‖λψ∗ − λj‖L2 −

∥

∥

∥λψ∗ − λ̂n

∥

∥

∥

L2
. Consequently, as

∥

∥

∥λ̂n − λj

∥

∥

∥

L2
≥
∥

∥

∥λ̂n − λψ∗

∥

∥

∥

L2
,

{∥

∥

∥λ̂n − λj

∥

∥

∥

L2
≥ An

}

⊇
{{∥

∥

∥λψ∗ − λ̂n

∥

∥

∥

L2
≥ An

}

∪
{

‖λψ∗ − λj‖L2 ≥ 2An
}

}

.

By (29), ‖λψ∗ − λj‖L2 ≥ 2C′n−α/(2α+1)
1ψ∗ 6=j . Then setting An = C′n−α/(2α+1),

{∥

∥

∥λ̂n − λj

∥

∥

∥

L2
≥ C′n−α/(2α+1)

}

⊇ {ψ∗ 6= j} and therefore:

inf
λ̂n

sup
λ∈E(c̄,b,H)

Pλ

(

∥

∥

∥λ̂n − λ
∥

∥

∥

2

L2
≥ C′n−α/(2α+1)

)

≥ inf
λ̂n

max
j

Pλj (ψ
∗ 6= j).

We denote by Pλj the law of (Z0, Z1, . . . , Zn) under λj . The following lemma is exactly Theorem
2.5 of Tsybakov [2004].

Lemma 12. Let us consider a series of functions λ0, . . . , λPn such that:

a. The function λi are sufficiently apart: ∀i 6= j

‖λi − λj‖L2 ≥ 2C′n−α/(2α+1).
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b. For all i, the function λi belongs to the subspace E (̄c, b,H).

c. Absolute continuity: ∀1 ≤ j ≤ Pn, Pλj << Pλ0 .

d. The distance between the measures of probabilities is not too large:

1

Pn

Pn
∑

k=1

χ2(Pλj ,Pλ0) ≤ c ln(Pn)

with 0 < c < 1/8, and χ2(., .) the χ-square divergence.

Then

inf
λ̂

sup
λ∈E(c̄,b,H)

C′2n−2α/(2α+1)
Eλ

(

∥

∥

∥λ̂n − λ
∥

∥

∥

2

L2

)

≥ inf
λ̂n

max
j

Pλj (ψ
∗ 6= j)

≥
√
Pn

1 +
√
Pn

(

1− 2c− 2

√

c

ln(Pn)

)

> 0.

Step 1: Construction of (λ0, . . . λPn). Let

λ0(x) = ε1[0,r[ +
a(f(x))b

m(f(x))
1x≥r.

As λ0 is constant on I, this function belongs to the Hölder space Hα(I) and ‖λ0‖Hα(I) = ε. The

set E (̄c, b,H) is not empty if and only if ε ≤ min
(

M1,
L∫

r
0
M(u)du

)

. In that case, λ0 ∈ E (̄c, b,H).

Moreover, we suppose that the previous inequality is strict such that E (̄c, b,H) is not reduced to

a point: there exists δ > 0 such that ‖λ0‖Hα(I,M1)
≤M1 − δ and

∫ f(r)

0 M(u)λ0(u)du ≤ L− δ.

We consider a non-negative function K ∈ Hα(R), bounded, with support in [0, 1[ and such
that ‖K‖L1 ≤ 1. We set hn = n−1/(2α+1), pn = ⌈1/hn⌉ and, for 0 ≤ k ≤ pn − 1, xk =
i1 + hnk(i2 − i1). We consider the functions

ϕk(x) := ahαnK

(

x− xk
hn

)

with a < 1. The functions ϕk have support in [xk, xk+1) ⊂ I. Moreover, by a change of variable

y = (x − xk)/hn, ‖ϕk‖L1 = ahα+1
n ‖K‖L1 ≤ ahα+1

n and ‖ϕk‖2L2 = a2h2α+1
n ‖K‖2L2 . We consider

the set of functions

Gn :=

{

λǫ := λ0 +

pn−1
∑

k=0

ǫkϕk, (ǫk) ∈ {0, 1}pn
}

.

The cardinal of Gn is 2pn . For two vectors (ǫ, η) with values in {0, 1}pn, the distance between
two functions λǫ and λη is:

‖λǫ − λη‖2L2 = a2h2α+1
n ‖K‖2L2

pn
∑

k=1

(ǫk − ηk)
2. (30)

As the series ǫk and ηk have values in {0, 1}, the quantity

ρ(ǫ, η) :=

pn
∑

k=1

1ǫk 6=ηk =

pn
∑

k=1

(ǫk − ηk)
2
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is the Hamming distance between η and ǫ. To apply Lemma 12, we need that, ∀η 6= ǫ,

‖λǫ − λη‖2L2 ≥ 4C′2h2αn and consequently ρ(ǫ, η) ≥ Ch−1
n .

This is not the case if we take the whole Gn (the minimal Hamming distance between two vectors
ǫ and η is 1). We need to extract a sub-serie of functions. According to Tsybakov [2004, Lemma
2.7] (bound of Varshamov-Gilbert), it is possible to extract a family (ǫ(0), . . . , ǫ(Pn)) of the set
Ω = {0, 1}pn such that ǫ(0) = (0, . . . , 0) and

∀ 0 ≤ j < k ≤ Pn, ρ(ǫ(j), ǫ(k)) ≥ pn/8, and Pn ≥ 2pn/8.

As pn ≥ n1/(2α+1),
ln(Pn) ≥ ln(2)n1/(2α+1)/8. (31)

We define
λj := λǫ(j) and Hn = {λ0, λ1, . . . , λPn}.

Figure 4: Example of λj on I

0 i1 i2r

M

min(M1, L)

−: λj - -: λ0

Then, for any λj , λk ∈ Hn, if j 6= k , as pn = ⌈1/hn⌉, by (30),

‖λj − λk‖2L2 ≥ a2 ‖K‖2L2 h
2α+1
n pn/8 ≥ a2 ‖K‖2L2 h

2α
n /8.

This is exactly the expected lower bound if we take C′ = a ‖K‖L2 /(4
√
2).

Step 2: Functions λj belongs to E (̄c, b,H). We already know that λ0 belongs to E (̄c, b,H).
Let us first compute the norm of λj on H

α(I). Let us set r = ⌊α⌋. We know that (K(./hn))
(r) =

h−r

n K(r)(./hn). By the modulus of smoothness linearity,

ω(ϕ
(r)
k , t)∞ = aω

(

hαn

(

K

(

.− xk
hn

))(r)

, t

)

∞

= ahαnω

(

h−r

n K(r)

(

.− xk
hn

)

, t

)

∞

= ahα−r

n ω

(

K(r),
t

hn

)

∞

and by the change of variable z = t/hn,

|ϕk|Hα = sup
t>0

tr−αω(ϕ
(r)
k , t)∞ = a sup

t>0
tr−αhα−r

n ω

(

K(r),
t

hn

)

∞

= a sup
z>0

zr−αω(K(r), z) = a|K|Hα .
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The functions ϕk have disjoint supports. For any (x, y) ∈ I, there exists (i, j) such that x ∈
[xi, xi+1( and y ∈ [xj , xj+1(. Then

λ
(r)
k (x) − λ

(r)
k (y) = εi

(

ϕ
(r)
i (x) − ϕ

(r)
i (y)

)

+ εj

(

ϕ
(r)
j (x) − ϕ

(r)
j (y)

)

.

Therefore
ω(λ

(r)
j , t)∞ ≤ sup

i,j

(

ω(ϕ
(r)
j , t)∞ + ω(ϕ

(r)
i , t)∞

)

≤ 2ω(ϕ
(r)
1 , t)∞

and |λj |Hα(I) ≤ 2a|K|Hα . Moreover, ‖λj‖L∞(I) ≤ ‖λ0‖L∞(I) + ahαn ‖K‖L∞ ≤ ‖λ0‖L∞(I) +

2a ‖K‖L∞ and consequently ‖λj‖Hα(I) ≤ ‖λ0‖Hα(I) + 2a ‖K‖Hα . Then λj ∈ Hα(I,M1) for a

sufficiently small. It remains to check that λj ∈ E (̄c, b). For any 0 ≤ j ≤ Pn:

a. As K is nonnegative, ∀x ≥ r, λj(x) ≥ a
(f(x))b

m(f(x)) .

b. In the same way, ∀x, i1 ≤ x ≤ r, λj(x) ≥ ε.

c. Control of the integral:

∫ f(r)

0

M(u)λj(f
−1(u))du ≤

∫ f(r)

0

M(u)



λ0(f
−1(u)) + ahαnK(f−1(u))

∑

j

εj



 du

≤ L− δ + ahα−1
n

∫ f(r)

0

M(u)K(f−1(u))du ≤ L

for a small enough.

Therefore λj ∈ E (̄c, b,H) for a small enough.

Step 3: Absolute continuity. We denote by Pj the transition densities induced by Pλj . As
(Zn)n∈N is a Markov process,

Pλj (x0, . . . , xn) = Pj(x0, x1)...Pj(xn−1, xn).

By (4), we can rewrite: P0(x, y) = Ax,y exp(−Ãx,y) where

Ax,y := λ0(f
−1(y))gx(y)1l{y≥f(x)}, Ãx,y :=

∫ y

f(x)

λ0(f
−1(u))gx(u)du

and Pj(x, y) = (Ax,y+Bx,y) exp(−Ãx,y− B̃x,y) where Bx,y =
∑m
k=1 ǫkB

k
x,y, B̃x,y =

∑pn
k=1 ǫkB̃

k
x,y

and

Bkx,y := ϕk(f
−1(y))gx(y)1l{y≥f(x)}, B̃kx,y :=

∫ y

f(x)

ϕk(f
−1(u))gx(u)du.

The probability density Pλ0 is null if one of the P0(xi, xi+1) is null. This is the case if and only
if Axi,xi+1 = 0, which implies either gxi(xi+1)1xi+1≥f(xi) = 0 and therefore Bxi,xi+1 = 0, either
λ0(f

−1(xi+1)) = 0, and therefore xi+1 ∈ [0, f(i1)] and Bxi,xi+1 = 0. Then Pλj is absolutely
continuous with respect to Pλ0 .
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Step 4: The χ2 divergence. As Pλ0 ,Pλj are equivalent measures, we have:

χ2(Pλj ,Pλ0) =

∫ (

dPλj

dPλ0

)2

dPλ0 − 1.

We can write:

χ2(Pλj ,Pλ0) + 1 =

∫

(R+)n

(Pj(x0, x1)...Pj(xn−1, xn)

P0(x0, x1)...P0(xn−1, xn)

)2

P0(x0, x1)...P0(xn−1, xn)dx1...dxn.

Therefore, as
∫

R+ P0(x, y)dy =
∫

R+ Pj(x, y)dy = 1,

χ2(Pλj ,Pλ0) + 1 =

∫

(R+)n−1

(Pj(x0, x1)...Pj(xn−2, xn−1))
2

P0(x0, x1)...P0(xn−2, xn−1)
dx1...dxn−1

∫

R+

(Pj(xn−1, xn))
2

P0(xn−1, xn)
dxn

=

∫

(R+)n−1

(Pj(x0, x1)...Pj(xn−2, xn−1))
2

P0(x0, x1)...P0(xn−2, xn−1)
dx1...dxn−1

×
(

∫

R+

(Pj(xn−1, xn)

P0(xn−1, xn)
− 1

)2

P0(xn−1, xn)dxn + 1

)

. (32)

This expression of the χ2 divergence enables us to approximate it more closely. Let us set

DP :=

∫

R+

(Pj(x, y)
P0(x, y)

− 1

)2

P0(x, y)dy

=

∫

R+

((

1 +
Bx,y
Ax,y

)

exp
(

−B̃x,y
)

− 1

)2

Ax,y exp(−Ãx,y)dy. (33)

We can remark that if y ∈ f(I)c, Pj(x, y) = P0(x, y). Therefore

DP =

∫

f(I)

((

1 +
Bx,y
Ax,y

)

exp
(

−B̃x,y
)

− 1

)2

Ax,y exp(−Ãx,y)dy.

By Assumption A2 and as λ0 = ε on I, we get that on f(I),

ε1{y≥f(x)} inf
y∈f(I)

m(y) ≤ Ax,y ≤ sup
y∈f(I)

M(y)ε1{y≥f(x)}.

Moreover, on R
+, exp(−Ãx,y) ≤ 1. We have that

Bkx,y ≤ M(y) ‖ϕk‖∞ 1y≥f(x)1f−1(y)∈[xk,xk+1(

and therefore, as ‖ϕk‖∞ = ahαn ‖K‖∞
Bx,y ≤ sup

y∈f(I)

M(y)ahαn ‖K‖∞ 1y∈f(I) ≤ Cahαn1y∈f(I).

By a change of variable,

B̃kx,y =

∫ f−1(y)

x

ϕk(z)gx(f(z))f
′(z)dz ≤ sup

z∈f(I)

(M(z)) sup
z∈I

f ′(z) ‖ϕk‖L1

≤ ahα+1
n sup

z∈f(I)

(M(z)) sup
z∈I

f ′(z)
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and
B̃x,y ≤

∑

B̃kx,y ≤ C′apnh
α+1
n ≤ C′ahαn.

Then

DP ≤ C

∫

f(I)

a2h2αn ≤ Ca2h2αn .

Therefore, by (32) and (33), we get by recurrence

χ2(Pλ0 ,Pλj ) + 1 =

∫

(R+)n−1

(Pj(x0, x1)...Pj(xn−2, xn−1))
2

P0(x0, x1)...P0(xn−2, xn−1)
dx1...dxn−1 ×

(

O
(

a2h2αn
)

+ 1
)

=

n
∏

i=1

(

O
(

a2h2αn
)

+ 1
)

= 1+ a2nO
(

h2αn
)

.

As hn = n− 1
2α+1 ,

χ2(Pλ0 ,Pλj ) ≤ a2O
(

n1/(2α+1)
)

and by (31), ln(Pn) ≥ ln(2)n1/(2α+1)/8 and therefore,

1

Pn

Pn
∑

k=1

χ2(Pλ0 ,Pλj ) = a2O
(

n1/(2α+1)
)

= a2O(ln(Pn)) ≤ ln(Pn)/8

for a small enough, which concludes the proof.

A Besov and Hölder spaces

Definition 13 (Modulus of continuity). The modulus of continuity is defined by

ω(f, t) = sup
|x−y|≤t

|f(x)− f(y)|.

If f is Lipschitz, the modulus of continuity is proportional to t. If ω(f, t) = o(t), then f is
constant. The modulus of continuity cannot measure higher smoothness.

Definition 14 (Modulus of smoothness). We define the modulus of smoothness by

ωr(f, t)p = sup
0<h≤t

‖∆r

h(f, .)‖Lp(A) where ∆r

h(f, x) =

r
∑

k=0

(−1)kCk
r
f(x+ kh).

We can remark that if f is Cr, then tα−rω(f (r), t)∞ = tαωr(f, t)∞ and if f (r) is Lipschitz, then
ωr(f, t)∞ = O(tr). The modulus of continuity and the modulus of smoothness are sub-linears:

ωr(f + g, t)p ≤ ωr(f, t)p + ωr(g, t)p and ωr(af, t)p = aωr(f, t)p.

Definition 15 (Besov space). The Besov space Bα
2,∞(A) is the set of functions:

Bα
2,∞(A) = {f ∈ L2(A), sup

t>0
t−αωr(f, t)2 <∞}

where r = ⌊α+1⌋. The norm is defined by: ‖f‖Bα
2,∞

:= supt>0 t
−αωrg(f, t)2+‖f‖L2 . We denote

Bα
2,∞(A,M1) = {f ∈ Bα

2,∞, ‖f‖Bα
2,∞

≤M1}.
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See DeVore and Lorentz [1993] and Meyer [1990] for more details. We use the Besov space
to control the risk of the estimator of the stationary density νλ.

Definition 16 (Hölder space). The Hölder space is the set of functions:

Hα(I) = {f ∈ C
r(I), tr−αω(f (r), t)∞ <∞ ∀ t > 0}

where r = ⌊α⌋. We note |f |Hα := supt>0 t
r−αω(f (r), t)∞ and define the norm of the Hölder

space ‖f‖Hα(I) = |f |Hα(I) + ‖f‖L∞(I) and H
α(I,M1) = {f ∈ Hα(I), ‖f‖Hα(I) ≤M1}.

As noted before, tr−αω(f (r), t)∞ = t−αωr(f, t)∞: the Hölder space Hα(I) is included in
Bα
∞,∞ which itself is included in Bα

2,∞(I).

B Proof of Lemma 11

The following lemma is very usefull to replace weak dependent variables by independent variables.
It is proved by Viennet [1997, proof of Proposition 5.1].

Lemma 17 (Berbee’s coupling lemma). The random variables Zk∆ are exponentially β-mixing.
Let qn = ⌊(r + 1) ln(n)/β⌋ where β caracterizes the β-mixing coefficient (see Definition 5). We
have that β(qn) ≤ 1/nr+1. We set pn = n/(2qn). There exist random variables (Z∗

1 , . . . , Z
∗
n)

such that:

• Zi et Z
∗
i have same law.

• (Z∗
1 , . . . , Z

∗
qn), (Z

∗
2qn+1, . . . , Z

∗
3qn), . . . are independent, as the random variables

(Z∗
qn+1, . . . , Z

∗
2qn), (Z

∗
3qn+1, . . . , Z

∗
4qn), . . ..

• P

(

Zkqn+1, . . . , Z(k+1)qn) 6= (Z∗
kqn+1, . . . , Z

∗
(k+1)qn

)
)

≤ β(qn) ≤ n−(r+1).

Let us set Ω∗ = {ω, ∀k, Zk = Z∗
k}. Then

P(Ω∗c) ≤ nβ(qn) ≤
1

nr
.

This following inequality comes from Bernstein inequalities (see Birgé and Massart [1998,
Corollary 2 p354]).

Lemma 18 (Talagrand’s inequality). Let Y1, . . . , Yn be independent random variables and S a
vectorial subspace of finite dimension D satisfying Assumption 5. We denote by F a countable
family of S. Let us set

Fn(u) =
1

n

n
∑

k=1

u(Yk)− E (u(Yk))

with u ∈ L2. If

sup
u∈F

‖u‖∞ ≤M2, E

(

sup
u∈F

|Fn(u)|
)

≤ H, sup
u∈F

Var (u(Yk))) ≤ V,

then

E

(

sup
u∈F

F 2
n(u)− 6H2

)

+

≤ C

(

V

n
exp

(

−nH
2

6V

)

+
M2

2

n2
exp

(

−k2
nH

M2

))

where C is a universal constant and k2 = (
√
2− 1)/(21

√
2).
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Proof. We apply Theorem 1.1 of Klein and Rio [2005] to the functions si(x) = u(x)−E(u(Yi))
2M2

. We
obtain that

P

(

sup
u∈F

|Fn(u)| ≥ H + x

)

≤ exp

(

− nx2

2(V + 4HM2) + 6M2x

)

.

We modify this inequality following Corollary 2 of Birgé and Massart [1998]. It gives:

P

(

sup
u∈F

|Fn(u)| ≥ (1 + η)H + x

)

≤ exp

(

−n
3
min

(

x2

2V
,
min(η, 1)x

7M2

))

.

The end of the proof is done in Comte and Merlevède [2002, p222-223].

To deduce lemma 11, we simply apply the Berbee’s coupling lemma to exponential β-mixing
variables, and then the Talagrand’s inequality. Indeed, by Berbee’s coupling lemma, as Z∗

k and
Zk have same law:

In(s) =
1

n

n
∑

k=1

s(Z∗
k)− E (s(Z∗

k)) + s(Zk)− s(Z∗
k).

We first bound the second part of the sum I2(s) :=
1
n

∑n
k=1 s(Zk)− s(Z∗

k). We have:

I22 (s) =
1

n2

(

n
∑

k=1

(s(Zk)− s(Z∗
k))1Zk 6=Z∗

k

)2

≤ 4M2
2

n2

(

n
∑

k=1

1Zk 6=Z∗
k

)2

By Cauchy-Schwartz, I22 (s) ≤
4M2

2

n

∑n
k=1 1Zk 6=Z∗

k
and by Berbee’s coupling lemma, E (sups∈B I2(s)) ≤

4M2
2

n2 .
Let us now bound the first term I1(s) :=

1
n

∑n
k=1 s(Z

∗
k)− E (s(Z∗

k)). We have

I1 =
1

pn

pn−1
∑

j=0

us(Yj,0)− E (us(Yj,0) +
1

pn

pn−1
∑

j=0

us(Yj,1)− E (us(Yj,1))

where Yj,i :=
(

Z∗
2(j+i)qn+1, . . . , Z

∗
(2(j+i)+1)qn

)

and us(x1, . . . , xqn) := 1
qn

∑qn
k=1 s(xk). The ran-

dom variables Yj,0 are independent, the same can be said for Yj,1. Moreover, |Yj,i| ≤ M2 and
Var (Yj,i) ≤ V . Let us set

I∗n,i :=
1

pn

pn−1
∑

j=0

us(Yj,i)− E (us(Yj,i)) .

We have: I1(s) := (I∗n,0(s) + I∗n,1(s))/2. Then,

E

(

sup
s∈B

I21 (s)− 6H2

)

+

≤ E

(

sup
s∈B

1

4

(

2(I∗n,0(s))
2 + 2(I∗n,1(s))

2
)

− 6H2

)

≤
1
∑

i=0

E

(

sup
s∈B

(I∗n,i(s))
2 − 6H2

)

+

.

As the dimension of S is finite, we can find a countable family F dense in B and we can
then apply the Talagrand’s inequality to I∗n,0 and I∗n,1 which concludes the proof.
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