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Nonparametric estimation of jump rates for a specific class
of Piecewise Deterministic Markov Processes.

N. Krell} E. Schmisser'
January 28, 2019

Abstract

In this paper, we consider a piecewise deterministic Markov process (PDMP), with known
flow and deterministic transition measure, and unknown jump rate A. To estimate nonpara-
metrically the jump rate, we first construct an adaptive estimator of the stationary density,
then we derive a quotient estimator An of X\. We provide uniform bounds for the risk of
these estimators, and prove that the estimator of the jump rate is nearly minimax (up to a

In?(n) factor). Simulations illustrate the behavior of our estimator.

Keywords: piecewise deterministic Markov processes, model selection, nonparametric esti-
mation
Subject Classification: 62M05, 62G05, 62G07,62G20, 60J75, 60J25

1 Introduction

The PDMP is a large class of models, they are used to model deterministic phenomenons in
which randomnes appears as point events, such as transmission control protocol (TCP) window
size, the size of a marked bacteria, risk processes in mathematical insurance, stress release in
seismeolegy,... . See Rudnicki and Tyran-Kamiiniska [2015] for a nice presentation of biological
problem in which PDMP appear. In Azais et al. [2014], you will find a presentation of the pdmp
with a large field of application.

The TCP protocol (see Dumas et al. [2002], Guillemin et al. [2004] for instance) is one of
the main data transmission protocol in Internet. The maximum number of packets that can be
sent at time ¢, in a round is a random variable Xy, . If the transmission is successful, then the
maximum number of packets is increased by one: Xy, , = X3, + 1. If the transmission fails,
then we set Xy, , = X, with x € (0,1). A correct scaling of this process leads to a piecewise
deterministic Markov process (X;). Another example of PDMP is the size of a marked bacteria
(see Doumic et al. [2015], Laurencot and Perthame [2009]). We choose randomly a bacteria, and
follow its growth, until it divides in two. Then we choose randomly one of its daughter, and so
on. Between the jumps, the bacteria grows exponentially.

More generally, we consider a filtered piecewise determistic Markov process (PDMP) (X;):>0
with flow ¢, deterministic transition measure Q(z,-) = ly¢(z)e.y (With f a deterministic known
function) and jump rate A. Starting from initial value zp, the process follows the flow ¢ until
the first jump time 77 which occurs spontaneously in a Poisson-like fashion with rate A(¢(z,t)).
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The process restart from f(Xp ) as before. For the TCP protocol, f(z) = kz and the flow is
additive (¢(x,t) = x + ct), for the marked bacteria, f(x) = /2 and the flow is multiplicative
(p(z,t) = wet). As the process (X;) is observed without errors, the flow ¢ and the transition
measure f are known. We denote (T1,...,7T,) the times of jump and consider the Markov chain
(Zo = w0, Zr = f(X1,),k > 0). The aim of this paper is to construct an adaptive estimatior
of the jump rate A on the compact interval Z. In the meantime, we also provide an adaptive
estimator of vy.

As far as we know, there exist few results for nonparametric estimation for PDMPs. Fujii
[2013] and Azais and Muller-Gueudin [2016] consider a very general model. The process (X;)
takes values in R?, and jumps can occur deteministically if the process reaches the boundary of an
open set E. The transition measure is not deterministic (the deterministic case is even excluded):
X1, | X1,- is a random variable, its law is a known function of X7 The process (Z) is assumed
to be ergodic. Fujii [2013] constructs an estimator of vy thanks to local times, and pointwise
kernel estimators of the jump rate and the transition measure. He proves the consistency of his
estimators, but do not give any rate of convergence. Azals and Muller-Gueudin [2016] construct
kernel pointwise estimators of the stationary density and the jump rate A. They show that their
estimator is consistent and prove its asymptotic normality. They choose an adaptive estimator of
A by taking the estimator of the minimal variance and bound its risk. In the contrary of the two
previous works we give some explicit assumptions that ensure that the process (Zy) is strongly
ergodic and has a unique invariant density v,. In the same setting as ours, Krell [2016] construct
a pointwise kernel estimator of A and prove its normality, but do not provide a bound for the
risk of the adaptive estimator. To our knowledge, there do not exist results for the L?-risk in
our settings, neither a minimax rate of convergence.

We construct an adaptive estimator of the jump rate A and bounds its L? risk uniformely.
For this purpose, as in Krell [2016], we use the equality

where vy is the stationary density of the random variables Zj and the function D(x) can be
estimated nearly like a cumulative distribution function, it converges with rate n'/2 (Krell [2016]).
To estimate the density function vy, we use a projection method. We choose a series of increasing
vectorial subspaces Sy,...,S,. On each subspace, we construct a nonparametric estimator
Up of vy, belonging to S, and provide a uniform bound for its risk. Then we choose the
"best” estimator by a penalisation method, in the same way as Barron et al. [1999], and give
an oracle inequality for the adaptive estimator ;. Afterwards we bound uniformely the risk of
the resulting quotient estimator =0y, / D,,. We finaly prove that the estimator A= D / D, is
nearly minimax (up to a In?(n) term) using the methodology of Tsybakov [2004].

In Section 2, we specify the model and its assumptions. We focus on the estimation of the
stationary density on the estimation of the jump rate X in 3. Section 4 is devoted to simulations
for the TCP protocol and the bacterial growth, with various functions A\. The outcomes are
consistent with the theoretical results. Proofs are gathered in Section 5 and in the Appendix
where we prove a technical result, a Talagrand inequality for exponentially S-mixing variables.

2 PDMP

In general a piecewise deterministic Markov process is defined by its local characteristics, namely,
the jump rate A, the flow ¢ and the transition measure () according to which the location of



the process is chosen at the jump time. In this article, we consider a specific class of PDMP for
which the transition measure @ is a deterministic kernel Q(x, A) = ll{¢(;)ca}. More precisely,

Assumption Al.

a. The flow ¢ : [0,00) X [0,00) — [0,00) is a one-parameter group of homeomorphisms: ¢
is Ct, ¢(.,t) is an homeomorphism for each t € [0,00), satisfying the semigroup property:
ot +5) = ¢(o(.,8),t) and ¢, (.) = ¢(x,.) is an Ci-diffeormorphism. This implies that
¢(z,0) = x.

b. The jump rate X : [0,00) — Ry is assumed to be a measurable function satisfying

/

€
Va € [0,00), 3¢ >0 such that / AM@(z, 8))ds < 00
0

that is, the jump rate does not explode.

c. The Markov kernel Q(x,A) = lisyeay where f :[0,00) — [0,00) is an increasing C'-
diffeomorphism.

For instance, we can take ¢(z,t) = z + ct (linear flow) or ¢(z,t) = ze (exponential flow).

Given these three characteristics, it can be shown (Davis [1993, p62-66]), that there exists a
filtered probability space (2, F, {F:}, {Ps}) such that the motion of the process {X (¢)} starting
from a point ¢ € RT may be constructed as follows. Consider a random variable 77 with
survival function

¢
P(T) > t| X = xo) = e 2@ wwhere for z € RT,t e RY, A(z,t) = / Mo(z,s))ds. (1)
0

If T} is equal to infinity, then the process X follows the flow, i.e. for t € Ry, X(t) = ¢(xzo,t).
Otherwise let

Zy = f(d(xo, T1))- (2)
The trajectory of {X ()} starting at zg, for ¢ € [0, T}], is given by

X(t) _ (b(l‘o,t) for t < T1,
Z1 for t = Tl.

Inductively starting from X (7)) = Z,, we now select the next inter-jump time T},41 — T, and
post-jump location X (T,,+1) = Z,+1 in a similar way. This construction properly defines a
strong Markov process { X (t)} with jump times {7 }ren (where Tp = 0). A very natural Markov
chain is linked to {X(¢)}, namely the jump chain (Z,)nen.

To simplify the notations, let us set ¢, (t) = ¢(x,t). By (1) and (2),

(fodzg) ™' (v)
P(Zy > y|Zo = 20) =P (T1 > (f 0 buy) " ()| Z0 = 20) = exp </0 /\(¢xo(5>>d5>

= exp (—A((f 0 ¢20) (1))
and by the change of variable u = f o ¢, (s), we get

P(Zl > y|ZO = :CO) = exp < /fj ))‘(f_l(u))gzo (u)du> ]-ny(aco) (3>



Figure 1: Exemples of simulations of processes (X;) et (Zx)

TCP protocol Bacterial growth
z Ay / // ////
I / Wk /// G e
¢(x,1) = x +1, f(w)‘ =z/2, \z) =z ¢(x,t) = xe’, f(w)l= 2/2, M) = 2
e : process Jj — : process X;

!
where g, (y) = {(f o gbx)*l} (y) > 0. By the monotonicity of f o ¢,, we get the transition
probability of the Markov chain:

Palw, dy) :=P(Zy € dy|Zo = ) = N~ (1)) ga (y)e ™ T X @asduy gy ()

We need some assumptions, in particular to ensure that the process is ergodic, which is often a
keystone in statistical inference for Markov process. The Holder space H*(Z) and the associated
norm would be define in the appendix. We first give an assumption on the known functions f
and ¢:

¢z ¢ [0,00) X [0,00) — [0,00) are known and follow, for M2 > 0,0 < k < 1, a > 0, and two
positive continuous functions m : [0,00) — (0,00) and M : [0,00 0,00) such that for all
x € [0,00) : M(z) > m(z) >0,

Assumptlon A2. We suppose that for a compact interval of (0,00), f :[0,00) — [0,00) and
<
(

9o € HY(D), |fllLe@) < M, and f~' e H(T)
Ve >0, 0< f(r) <k, (5)
Vy>0, Vo=0, m(y)<ga(y) <M(y). (6)

To obtain ergodicity and uniform bounds for the estimation of the jump rate A, we consider
the set of functions:

Definition A3. For b > 0 and a vector of positive constants ¢ = (r, L,a), such that r > iy and

1/(b+1
> ([m(lww] a >>
- 1 — gbtl

we introduce the class F(c,b) of continuous functions A : [0,00) — [0, 00), such that

a.



f(r)
| MG e < L. (7)
0
Item A3a ensures that the right tail of the distribution of Z;|Zy is bounded:

Vo > fﬁl(r), P(Z, > y|Zp = z) < exp (—

. (berl _ f(:L')bJrl)) )

We get the following proposition, which is proved in Krell [2016].
Proposition 1 (Ergodicity).

a. Under A1 - A3, if there exists (c,b) such that A € F(c,b), the Markov chain (Zx)k>o is
reccurrent positive and strongly ergodic. There exists a unique invariant probability measure
of the form

va(dz) = va(z)dz on [0,00).

b. Moreover, for all y € [0,00) we have the relation:

va(f(y))

DY) where  D(y) := B, (92,(f V) L{zo<y<s-1(z0)}) -

Ay) =
Remark. The set F(c,b) is the same as in [Krell, 2016, Definition 3.2]. Indeed, we have that
f;(or) m(u)\(f 1 (u))du > f;(or) u® = oo, moreover, f;(r) M(uA(f L (u))du > f;( M) b — .

) m(u)

The jump rate A is very difficult to estimate directly, but it is related to the stationary density
vy, which is simpler to estimate. To estimate the jump rate, we construct a quotient estimator,
which is possible only if D(y) > 0 on the interval of estimation Z := [i1,i2]. We can remark that
if A > 0 on the interval [i1, 00), then vx(y) > 0 on (f(41),00) and

V)\(f(y))
Ay)

Therefore, as 7 is compact, there exists Dy > 0 such that Vy € Z, D(y) > Dy.

D(y) = >0 Vy> i

Remark. In Krell [2016], the author bounds uniformely its estimator for any compact set D
included in [d(c), oo, where d(c) is unknown and depends on the family F(c,b). In this paper,
we want uniform bounds on the chosen compact interval Z. By definition A3a, we already know
that Vz > r, A(x) > 0, it remains to control what happens between i; and 7.

Definition A4. Let ¢ > 0 and © = (c,e). We introduce the set of positive functions E(t,b)
A :[0,00) — [0,00) such that A € F(c,b) and

Va € [i1, 7], AM(z) > ¢

Actually we have a precise result on the convergence to the unique invariant probability,
which would be useful for the convergence result.

Proposition 2. Under A1-A3,



a. Contraction. Let us set
a
V(z) = — b)) vz e RT.
(@) i=oxp (7)) v
There exist 0 < v < 1 and a constant R € RT*such that, for any x € RT:

sup  sup ’wa(x) —/ z/J(z)uA(z)dz’ < RV(m)Wk
NEF(e,b) |[¥|<V 0

where || <V means: Va, |(z)| < V(). That is, YA € F(c,b), V|| <V,

E (Y(Zk)|Zo = ) — /OOo Y(2)va(z)dz| < RV(x)Vk.

The constants R and v depends explicitly on (¢,b). As V > 1, the bound is true for any
function 1 such that ||| < 1.

b. The function V(y)va(y) is uniformely integrable on F(c,b):

swp [ s )V < .
AEF (c,b)

This proposition is proved in [Krell, 2016, Section 4.1, Proof of Proposition 3.3 and Section

4.2, Speed of convergence for the empirical measure]. The following corollary is a consequence
of Proposition 2 a.

Corollary 3. Under A1-A3, for any bounded function s, if X € F(c,b):

lns — [ s(x)vi(z)dx S M
E(ﬂ; (Zk) /()/\( )d>|§| Hoon(l—’y)

and

n2

Var <% S(Zk>> < —/52(z)uA(z)dz+ %/F(Z)IV,\(Z)G,\(@MJF exllsllse

where Gy (z) = % (V(z) + IV(SC)Z/)\(SC)dSC) and ¢y are uniformly bounded on F(c,b).

Y

In the bound of the variance, the first term is the same as for i.i.d variables. The second one
is due to covariance terms (we found a similar term for stationary S-mixing sequences), the third
comes from the non-stationarity of the random variables Z.

The following lemma is proved in Section 5.

Lemma 4. Under A1-A/, there exists n > 0, Do > 0 such that:

inf inf > d inf inf D > Dy.
sl b ) =mend | inf Cinf D(y) > Do

To construct an adaptive estimator of vy, we need to prove that the Markov chain (Zy) is
weakly dependent. It is the case if the process is S-mixing.



Definition 5. Let us define the o-algebra
0t =0({Z; €li,....Z;, €lh},a<ji <...<jn<bmneN,I € B([0,0]).
The B-mixing coefficient of the Markov chain (Zy) is

t) =su su P, o (E) — Pgr @ Pg~ (E)|.
) =swp s |Pogo, (B) = Fay © For (B)
The B-mizing coefficient caracterizes the dependence between what happens before Ty, and what
happens after Tity. The process (Zi)g>o is S-mizing if lim; o Bz(t) = 0. It is exponentially
(or geometrically) B-mizing if there exists ¢, 3 such that Bz (t) < ce™Pt.

The following corollary is a consequence of Proposition 2. It is proved in Section 5.

Corollary 6. We work under A1-A3, if there exists (c,b) such that A\ € F(c,b), the PDMP is
geometrically B-mizing. Moreover, there exists ¢ such that, ¥Vt > 0:

sup  fx(t) < ey’
AEF (c,b)

3 Estimation of the jump rate

3.1 The observation scheme

As in Krell [2016] the statistical inference is based on the observation scheme (X (¢t),t < Ty,)
and asymptotics are considered when the number of jumps of the process, n, goes to infinity.
Actually the simpler observation scheme: (X (0), X (7;),1 <i <n)=(Z;,0 <i < n) is sufficient,
as one can remark that for alln > 1: T, = (f o ¢z, ) (Zn).

3.2 Methodology

Krell [2016] constructed a pointwise kernel estimator of vy before deriving an estimator of A.
Densities are often approximated thanks by kernels methods (see Tsybakov [2004] for instance).
Indeed, if the kernel is positive, the estimator is also a density. However, we want to control
the L? risk of our estimator (not the pointwise risk), and also to construct an adaptive estima-
tor. Obtaining an adaptive estimator with kernel methods involves a double convolution, and
therefore intensive computations. On the contrary, estimators by projection are well adapted for
L? estimation: if they are longer to compute at a single point than pointwise estimators, it is
sufficient to know the estimated coefficients to construct the whole function. Furthermore, to
find an adaptive estimator, we minimize a function of the norm of our estimator, that is the sum
of the square of the coefficients, and the dimension.

We first aim at estimating vy on a compact set A DO f(Z) where Z is the estimation set of the
jump rate A\. We construct L? estimators by projection on an orthonormal basis. As usual in
nonparametric estimation, the risk of our estimator can be decomposed in a variance term and a
bias term which depends of the regularity of the density function vy. We choose to use the Besov
spaces to characterize the regularity, which are well adapted to L? estimation (particularly for
the wavelets decomposition). See Appendix A for the definition of Besov spaces.

It is quite difficult to estimate a function nonparametrically. To do so, we introduce a sequence
of vectorial subspaces S,,,. We construct an estimator 2, of vy on each subspace and then select
the best estimator y,.



Assumption A5.
a. The subspaces Sy, are increasing and have finite dimension D, .

b. The L?-norm and the L>® norm are connected:

) > 0,Ym € N,Vs € Sy Is[1% < 01D |52 -

This implies that, for any orthonormal basis (¢1) of Sm, < Y1 D,,.

o0

Dy
> ']
=1

c. There exists a constant 1y > 0 such that, for any m € N, there exists an orthonormal basis
1 such that:

S Q/JQDm

o0

D’VTL
> letlls ler(@)]
=1

d. There exists v € N, called the reqularity of the decomposition, such that:
C>0,Ya <r,Vs € By, |Is—sml <C27" 5]l g

where sy, is the orthogonal projection of s on Sy, .

The subspaces generated by wavelets, piecewise polynomials or trigonometric polynomials sat-
isfy these assumption (see DeVore and Lorentz [1993] for trigonometric polynomials and Meyer
[1990] for wavelets and piecewise polynomials). Conditions a, b and d are usual (see Comte et al.
[2007, section 2.3] for instance). Condition ¢ is necessary because we are not in the stationary
case: it helps us to control some covariance terms.

3.3 Estimation of the stationary density

Let us now construct an estimator 7, of vy on the vectorial subspace S,,. We consider an
orthonormal basis (¢;) of S, satisfying Assumption A5. Let us set

Dm,
ap =< p, U\ >= / vi(x)va(z)dr and vp(z) = Zalgal(:c).
A 1=1

The function v, is the orthogonal projection of v, on L?(.A). We consider the estimator

D n

R m . . R 1

U () = g arpr(x) with a = - g oi(Z).
1=1 k=1

Proposition 7. If D2, < n, under A1-A3 and A5, for any A € F(c,b),

~ Dm Ce,b
E (117m = valiec) < lm = valaay + Cop =2 + 222
where Cep = Y1 + 2 [ Ga(2)va(2)dz and Ga(z) = % (V(z) + [ V(2)va(2)dz) (see Corollary



When m increases, the bias term decreases whereas the variance term increases. It is impor-
tant to find a good bias-variance compromis. If vy belongs to the Besov space BS' ., (A), then
lvm — V>\|\iQ(A) < C(||V>\HB§ )D;;2*. The risk is then minimum for D, nt/ et and we

have: 2
E (|mone = ¥l 52y) < C loallg _ n22/E40,

This is the usual nonparametric convergence rate (see Tsybakov [2004]).

Let us now construct the adaptive estimator. We compute (2o, ..., 0m,...) for m € 4, =
{m,D? < n}. Our aim is to select automatically m, without knowing the regularity of the
stationary density vy. Let us introduce the contrast function 7y, (s) = [|s[|7. — 2N s(Zy). I
5 € Sy, then s =Y, by and

() = 30 = b S el
l l k=1

The minimum is obtained for a; = >} | ¢i(Zx). Therefore n, = argminges,, n(s). As
the subspaces S,, are increasing, the function ~, (¥,,) decreases when m increases. To find an
adaptive estimator, we need to add a penalty term pen(m). Let us set pen(m) = % + 32%

(or more generally pen(m) = Z2= 4 %, with o > %, o' > 22 and choose
= arg min (Um) + pen(m).

We obtain an adaptive estimator .

Theorem 8 (Risk of the adaptive estimator). Under AI-A3 and A5, for any X € F(c,b),

3 3 Dy, !
Vo > 5,2, 0’ > =3, pen(m) = 7= 4 Z-,

c
E (v — ol ) < min (3 vm = valfagq +4 )+
lvx = PiallT2cay ) < o [vm = vallz2(a) + 4pen(m) ) + -

We recall that My, = {m, D2, < n}.

The estimator is adaptive: it realizes the best bias-variance compromise, up to a multiplicative
constant. We have an explicit rate of convergence if vy belongs to some (unknown) Besov space
B

sup E (HV)\ - l;ﬁ%||2L2(A)) < Cln72o‘/(20‘+1)_ (8)
AEF(e.b)lmallpg  <C

3.4 Estimation of the jump rate

According to Proposition 1b,

V)\(f(y))
D(y)

To estimate the jump rate, we therefore use a quotient estimator. Unfortunately, the Besov
spaces are not stable by product or convolution (as they are subspaces of L?(A)). To relate the
risk of 5\, the estimator of the jump rate, to the regularity of A (and not vy ), we need to consider
a smaller class of functions, the Holder spaces (see Appendix A).

Ay) = where D(y):=E,, (ng(f(y))lZoéyllef(y)) .



With Holder regularity, we can relate the regularity of vy to the regularity of A. By [Krell,
2016, Lemma 3.5, if A € £(¢,b) N H*(Z, M), as g, and f~! belong to the Holder space H(Z),
then

oAl e s @)y < (T Mz @) 1192l e @) 1 e () 9)

for some continuous function 1. Let us now consider the quantity

. 1 <
Do () =~ 92, (FO 2> ) w220 -
k=1
According to Krell [2016, proof of Proposition 3.2], we have that

. 2\ 1
swp swi ((D,) - D)) < 2. (10)
AeE(T,b) yeT n

We can now consider the estimator

Q A (f(y))
An(y) = =5~ ™ Loy (4w 201D, () >1n(n)-1- (11)

Then A, will converge with nearly the same rate of convergence as vj:

Theorem 9. Under A1-A5, as soon as In(n)~t < Dy/2, for any X € £(c,b),

= (]

As a consequence, by (8),

sup E <
AEE(ED), Ivallpg _<C

To obtain a result related to the reqularity of A and not vy, we assume that X belong to H*(M,T).

2 1
2 ~ 2
i) = Cantt) (B (108 = alaggcn) + 7 )

anx‘

X,ﬁA’

2 > < 1n2(n>n—2a/(2a+1).
L*(Z)

X,ﬁA’

2 > < 1n2(n)n72°‘/(2°‘+1)-

sup E ( <
AEE(E,b)NH™ (M;,T) L*(T)

3.5 Minimax bound for the estimator of the jump rate

We have proved that:

X,ﬁA’

2 > < m(n)gn_ga/@aﬂ)_

su E (‘ <
AeE(E,b)NH* (T, M) L2(T)

We would like to verify that our estimator converges with the best rate of convergence, i.e:
2

inf sup (E (‘
An AEE(T,b)NH>(Z,M7)

X,,—A‘

> C'ln?(n)n =20/ ot
L2(1)) —

The ln2(n) factor comes from the quotient estimator, we can not expect it will stay in the
minimax bound. Indeed, it is clear that one could replace In"'(n) in (11) by any function w(n)
smaller than Dg/2. The best estimator will be obtained of course by taking w(n) = Dy/2 and
the risk of this estimator (unreachable as Dy is unknown) will be proportional to n~2¢/(a+1),

10



Theorem 10 (Minimax bound). If A1-A5 are satisfied, then

anx‘

2 ) > Op—2o/(2a+1)

inf sup E <‘ >
An NEE(T,b)NH (T, M) L2(T)

where the infimum is taken among all estimators.

4 Simulations

TCP protocol. We considere the piecewise deterministic Markov process (X;) with flow
oz, t) = +ct, f(x) = ke and g, (y) = 1/(kc). By (3), we have:

(212 1120 = 2) = exp (2 (Au/e) — ) ) Ly

with A a primitive of A. The function A is increasing and therefore invertible and
1
P(A(Z1/k) > v|A(Zy) = u) = exp (— (v— u)> ly>u-
c >

Then A(Z;/k)|A(Z;-1) follows an exponential law translated by A(Z;_1) and of parameter 1/c.
Therefore, if we can find the reciprocal of the function A, we can construct the sequence (Z;) by
recurrence:

MZj/k) = MZj—1) + cE; (12)

where E; are i.i.d. of law &(1).
If A(z) = A’ with § > —1, then ZT!/k0*1 = 22T} + ¢(3 + 1)/AE; and we obtain

1 5—}—10
Zjn‘”\/zjj11+( X ) E;.

This model satisfies Al, A2 and A4 if § > —1. A3 is fulfilled only if § > 0 (indeed, if § < 0, the
model does not comply with A3a.

In order to have a model with a non-increasing function A\, we also consider the function
M) = (x — a)? + b with a > 0, b > 0. In that case, by (12),

(Zj/ﬂ — a)3 + 3b(Zj/Ii — a) = (Zj,1 — a)3 + 3b(Zj,1 — a) =+ 3CE]'

and, by Cardan’s formula, this equation has a unique real solution, which is

§/Q+ 4b3+Q2+\3/Q7\/4b37+Q?
2

Zi=r|a+

where Q = 3¢E; + (Zj—1 — a)® + 3b(Z;—1 — a). This model satisfies A1-A4.

Bacterial growth. We consider a PDMP with ¢(z,t) = ze® and f(z) = /2. Then g,(y) = é
and by (3),

1

P(Zy > y|Zo = z) = exp <E /;y A(s)

S

d8> 1y21/2

11



We need to find a primitive of A\(x)/z. If A(x) = Ax%, § > 0, then:

20\ 0
P(Z1 > y|Zo = =) = exp (_W (96 - §)> Ly>a/2-

Therefore \
IN@%VZyM§Z@=em(—&@—@)%m

and the law of the random variable (2Z;)° is an exponential translated by Zf,l and of parameter
A/de. Then

with Ej ~ &(1) 1.i.d. This model satisfies A1, A2 and A4 if § > 0 and and Assumption A3 only
if 6 > 1 (point a is not verified if § < 1).

Computations The estimator of v, is computed thanks to a projection on a trigonometric
basis on the interval A = [0, 6]. The constant involved in pen(m) is not easily tractable. To select
it, one could use the dimension jump. Indeed, if the penalty pen(m) = ¢D,,/n is too small, we
will always select the maximal dimension. If the penalty is large enough, we will select smaller
models. We then let the constant ¢ in the penalty vary and we note the dimension selected. For
¢ smaller than a value ¢, we always select the largest models, and then it decreases rapidly.
We set ¢ = 2¢min. See Arlot and Massart [2009] for instance. However, this method involves
quite a lot of computations. Instead, we always choose pen(m) = 2D,,, /n, which is the constant
used for independent random variables (here ¢ = 2/A = 1/3). This choice seems confirmed by
the simulations results: the oracle or remains close to 1.

In figures 2 and 3, for each graph, we realize five simulations of the PDMP with n = 10°. For
cach simulation, we draw the estimator A, the density o (f(z)) and D, ().

In the tables, we realize 50 simulations for each 4-uplet (n,c, k,A). The estimation interval
T is chosen such that D is greater than the threshold (In(n))~! on Z for n = 1075. For each
set of parameters, we compute the mean of the selected dimension D,, and the mean of the L2
error on Z denoted "risk”. We also want to prove that our estimator is truly adaptive. As vy is
unknown, we can not check that m is the better choice for estimating v,. Instead, let us consider

the estimator of
N |26
Am = ——1o,.>0lp >@n(n)-1-
n

We have that j\n = 5\m We compute

2

Xm—w

Mopt = Min

me.dy, L2(T)

. 2
and the minimal risk H/\ - /\H . In the tables, we give the empirical means of Dy,, D
L3(T

2
)\>.
L2(1)

AL
L2(I)/H Mopt ’

Mopt Mopt)

the empirical risk and the oracle

or := mean (H;\m — )\’

For the sake of completness, we also give the mean of the computation time, denoted by T

12



Results In Figures 2-3, we can see that A\ is quite close A, at least when x is neither too small
nor too large, that is when there is enough values to compute the estimator. For z too large,
the estimator seems to disconnect before to be constant equal to 0. For x near 0, we can have
a spike if A(0) # 0. The estimators of # and D,, are quite smooth, whereas \ tends to oscillate.
This is due to the division of two estimators. The estimation of \,, is not good for the bacterial
growth when A = /z, the estimator is biased. However, in that case, Assumption A3a is not
satisfied and there can be a problem of convergence toward the stationary measure (or even of
the existence of the stationary measure). On the contrary, for A = x for the bacterial growth
and A =1 for the TCP, the convergence is good, even if Assumption A3a is not fulfilled (but we
are just on the edge). In Tables 2-3, we can observe that the risk decreases when n increases and
seems to tend toward 0. The oracle remains close to 1, our estimator is really adaptive.

5 Proofs

5.1 Proof of Corollary 3

We consider a function s such that ||s|| = 1; we will obtain the expected result by dividing s
by its L°°-norm. We set Zy = Xy = xg. According to Proposition 2a,

E (% ZS(Zk) — /s(z)y,\(z)dz>

k=1

1< RV (xo)
< " ;RV(xo)yk < ”(17—07)

which proves a. Let us set 5(Y) = s(Y) — E (s(Y)). We have:

E <% Z E(Zk)> = % ZE (§Q(Zk)) + % Z E (§(Zk)§(Zk/)) . (13)
k=1 k k<k’
Thanks to Proposition 2a, we can write:
E (5°(Z1)) < E (s*(Z))
< /SQ(z)V,\(x)d:c +E (s*(Zy)) — /SQ(SC)Z/)\(SC)dSC
< /82(1')1/,\(:6)(156 + RV (xo)7".

Therefore

n? n n2(1—~)

k=1
Let us bound the last term of (13). For any (k < k), by Proposition 2a,

|E (3(Zk )| Zk)| = ‘E(S(Zk'ﬂzk) —/S(Z)VA(Z)dZ—E(S(Zk'))+/S(Z)VA(Z)CZZ

< R’yk/_kV(Zk) + RV(zo)'yk/. (15)

13



Figure 2: TCP protocol:

Ax)

Ax)

Ax)

Ax)

Ax)

Ax)

b(a,t) =z +1, f(z) = ke

k=1/2,A(z) =1, =[0.2,4]

n Dy Dm,,, | risk or T
102 | 7.1 10 1.18 1.13 | 0.002
10° | 126 204 | 042 1.07 | 0.019
104 | 198 294 | 0.15 1.05 | 0.20
10° | 285  41.6 | 0.12 1.01 | 341

k=1/2,\(z) =z, =10.2,3]

n Dy D, risk or T |
10% | 8.7 9.9 1.45 1.1 | 0.002
10° | 14.8  21.6 0.45  1.12 | 0.015
10 | 22 25.1 0.069 1.11 | 0.17
10° | 30 27 0.056 1.05 | 2.96

k=1/2,X(x) =z,Z =[0.5,2.5]

n Dy, D, risk or T
10° | 10.3  10.2 151  1.04 | 0.0016
10% | 17 21.9 0.38 1.21 | 0.012
10* | 238 251 0.018 1.1 0.14
10° | 31.6 23 0.024 1.40 2.6

k=1/5Az) =2, =10.1,2.5]

n Dy, Doy risk or T
102 | 11.0 9.1 1.66 1.14 | 0.0017
10° | 34.0 25.3 0.25 1.53 | 0.012
10 | 69.12 53.80 | 0.074 1.38 | 0.14
10° | 106.5 484 | 0.065 1.30 | 2.70

k=1/2,\(z) =2, =[0.5,2]

n Dy Dy, risk or T |
102 | 11.0 107 1.46  1.00 | 0.002
10° | 196 214 | 0.096 1.58 | 0.012
10 | 266 225 0.025 1.90 | 0.16
10° | 35.0 19.8 | 0.016 1.27 | 3.31

k=1/5,\z) = (z —1)° +1/2,Z = [0.1,2.8]

n Dy, D, risk or T
102 | 11.0  10.8 1.82  1.00 | 0.002
10° | 33.0 312 0.23  1.03 | 0.016
10* | 84.8 47 0.093 1.69 | 0.19
10° | 210 44,5 | 0.085 1.55 | 3.71

1

: estimated D,




Figure 3: Bacterial growth

¢(x,1) = wexp(ct), g(z) = 1/(cx), Az) =2’

M) = x,e=1,7 =[0.5,3]

n | Dg mop: | Tisk or T
102 ] 40 396 | 1.11 1.10 | 0.002
10% | 9.1 3.0 0.43 1.91 | 0.016
10* | 16.4 3.0 0.41 1.79 | 0.19
105 | 25.8 3.0 0.40 1.78 | 3.80

AMz)=2,¢c=1,7 =[0.5,2.5]

n | Dhatm Dm,,, risk or T
102 6.5 9.5 0.96 1.74 | 0.003
108 | 124 16.2 0.039  2.67 | 0.014
10* | 20.1 22.4 0.0036  2.18 | 0.17
10° | 28.3 33.3 | 0.00051 1.82 | 3.51

Mz) =2%,c=1,7=10.5,2]

n | Dy Dn,, risk or T
102 1 10.5 10.1 1.32  1.09 | 0.002
103 | 16.7  19.3 0.025 1.89 | 0.012
104 | 24.0 20.8 0.017 197 | 0.16
10° | 31.4 219 | 0.0097 1.27| 3.3

Mz) =2%,¢=3,7T=11,25]

n | Dsw  Dn,, | 1isk or T
102 | 6.2 9.0 14.7  1.00 | 0.002
108 | 9.9 122 | 434 1.01 | 0.013
10* | 13.9 21.0 | 0.13 1.29 | 0.16
10° | 181 206 | 0.11 1.08 | 3.31

0.0 0.5 1.0 15 2.0 2.5 3.0

. estimated \ . . : estimated D,,
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Then by (15),

Ep:= Y [E(3(Z Nl= Z IE (3 5(Zw)|Zk)) |
Y K =ht1
< Y E(8(Z))) (BY" 7FV(Zk) + RV (zo)y™) < %E (I5(ZI) (V(Zk) + 7"V (20))) -
K —k+1

As [5(Zk)| < |s(Zk)| + E (Is(Zi)]),

B < 1o (B (s(2)V(20) + E (s(Z0) E (V(Z) + 428 (s(20).

By Proposition 2a, for any function ) <V, E (¢(Z)|Zo = o) < [, 1(2)va(2)dz+RV (z0)y"
Then

ZEk <Z (/| )V(2)wa(2)dz + RV (z0)y )
+Z (/I Nva(z)dz + RV (xo)y > </V(z)u,\(z)dz+RV(xo)7k)
+ZRV </| )va(z)dz + RV (z0)y >

<ni </|s z)|V(z)y>\(z)dz+/|S(z)|y>\(z)dz/V(z)y,\(z)dz)
R*(

RV (o) (R +2)V(zo)
+ A=) <R+ R/V(z)l/,\(z)dz +(R+2) / |s(z)|y,\(z)dz) + T2

By (13) and (14), we get:

E ((% Iig@k))?) <L ([sem@i+ [seieEmeis) + 5

where C is uniformely bounded on F(c, b).

5.2 Proof of Lemma 4

There exists (¢, b) such that A\ € £(¢,b). As D(y) = V*/g{;;’)) and A(y) is strictly positive on Z by
Al

{Eln, sup va(y) > 77} = {ElDo > 0,supD(y) > DO} .

yef(I) yeT

Therefore, we will just prove the first inequality.

Bound of v(y) on f(Z). By equation (4),

Y

/P(xa y) = )‘(f_l(y))gm (y) e€xp <_/f )‘(f_l(u))gz(u)du> 1y2f(z)- (16)

()

16



By A4, Vy € f(Z), M(f*(y)) > . Moreover, by A3b, for any y € f(Z):

Y fiz)
/ A () ge (u)du < M(u)A(f (u))du < L.
f(=) 0

We replace in (16) and obtain that P(z,y) > em(y)e 1,5 (). Then, for any y € f(Z), as vy
is the stationary density:

)
n@) = [n@Pepiez [ ane b @ds
0
> Ee_Lm(y)/ va(u)du > e Fm(y)va([0,41]).
0
It remains to bound v, ([0,;]) from below.

Bound of v,([0,41]). As vy is the stationary density, va([z,0]) = P,, (Z1 > z). Therefore, by
Markov inequality, as V is an increasing function,

sup va([z,00) = sup Py, (V(Z1) 2 V(2)) V7'(2) sup E,, (V(Z1)).
AeE(c,b) AeE(c,b) AeE(T,b)

By Proposition 2b, as £(c,b) C F(c,b),

sup E,, (V(Z1)) <C.
XEE(&,b)

Therefore, there exists yo > 0, supyc gz p) ¥a([Y0, 0[) < 1 and consequently, infxce e p) YA ([0, yo]) >
0. Now as f(z) < kz, let us consider the sequence

R - - _ —J/2; e o kn/2;
(20 :=i1,21 := 20/ VK, ..., 2j = zj_1/VE =k il W1yeny 2k, (=K n/ i1)
where 2z, 1 < yo < zk,. We can remark that

inf 0, > 0. 17
T IRN(CE) (17)

As vy, is the stationary density, for any z > 0,

([0, 2]) = /OZ va(y)dy = /OZ /OOo Pz, y)va(x)dedy = /000 va(x)P(Zy < 2|Zy € dx)

and by (3),

712 z
v ([0,2]) = /0 va(z) <1 — exp < /f( ))\(fl(u))gz(u)du>> dz.

As A(f~%(u)) is bounded by below on (f(i1),00) and g,(u) > m(u), there exists a constant n
such that

inf inf  A(f! 2 (u) > 1.
N (f " (u)gz(u) > n

17



As f(u) < kuand k <1, f~1(zj) > zj/k > 2z;/\/K = zj+1. Therefore

71 (z) zj
AT RE (1 ~ exp (— /f ( )A(f_l(U)gz(U)du» do

> [ T @) (1— exp(—n(z; — (@) de

= /Zj+1 va(x) (1 —exp(—n(z; — K2zj41)) do
> (1= exp(—n(z;(1 = Vk))) vallin, zj11]).
Let us set ¢; = (1 — exp(—n(z;(1 — /k))). We can notice that
va([0, 2] = ¢ (a([0, 2541]) — va([0,41]))

and in particular, vx([0,41])(1 + o) > cova([0, z1]]. By recurrence, we obtain:

kn,—l ] kn_l
1+ > e | woi) = | T & | va(0: 2x.)]
j=0 i=0 j=0

Then by (17)

inf 0,41]) > 0
setf | oall0,]) >

which concludes the proof.

5.3 Proof of Corollary 6

Let G be an event of OF x 07¢,. Then G is a disjoint reunion of events E* N F“J where
Ei - {Zl € ‘]{7 o '7Zk € Jli}a Fi,j = {Zt+k S I(i)ij SRR Zt+k+n € Ilzq’J}

with J; and I; are subsets of RT and 1 < n < oo. Then

D = Pagoos, (G) — Pog © Pore, (G) = S P(E! (1 F) — B(E)P(F™).
0,J
For a vector (a1, ...,ax) € (RT)¥, let us set P(a1,...,ar) = Plai,az)...P(ax—1,a;) where the
transition probability P (z,y) = Px(x,y) is defined in equation (4). Then, as (Zj)ren is a Markov
chain,

P(E' N F") — P(EYP(F") = / P(xo,21,...,2k)

Jix..xJ}

8 / (Pt(zk7y0) o PtJrk(an yO)) ]'yoEI(ng
0

X/__ _,P(yo,-..,yn)dyo...dynd:cl...d:ck.
I{’J X,,,XI;,’]

We regroup the FJ:
> P(E'NFY) — P(E)P(F)
J

= / _ 'P(zo,zl,...,:ck)/ ('Ptz/J(xk)—Pka(zo)) dzq ... dxy
Jix . xJi 0

18



where 9(x) := Zj ].Ielé,j flli,jx___xli_,j P(x,y1,---,Yn)dy1 - .. dyn. We can remark that ¢(z) =

> LeriiPa (21 el .. Zye I}'{j) and by the law of total probability, ¢(z) < 1. We can
apply Proposition 2a to the function v:

|Php(ar) — PHap(0)| = ’th(ﬂ%) - /OOO Y(2)va(z)dz + /OOO P(2)va(2)dz — P HFep(x0)
< Ry (z) + Ry7FV (z0).

Then

IDe| < thz/_ Plo,. .., z1) (V(zr) + V(zo)) dzy . . . day
i 1%

7
XL

< Ry Y By ((V(Z0) + V(@) z,es;,..zves;) < BY (Bay (V(Zi) + V(o).

By Proposition 2,
ey (V(Z) £ [ Vma()dy + 7YV (ao)

and [ V(y)va(y)dy is uniformely bounded on F(c,b) by Proposition 2b. Therefore

sup Bz(t)=swp  swp Dl < R ( / v<ym<y>dy+<1+R>V<xo>).
AEF (c,b) k Ggeolxox,

As vy <1,

sup Bz(t) < ce Pt
AEF (c,b)

with 8 = —1In(y), c=R (supke}—(gb) JV(y)valy)dy + (1 + R)V(mo)).

5.4 Proof of Proposition 7

We have the following bias-variance decomposition:
E (o~ omlac) = /AE (@) — (@) e
= / (va(z) — E (0 (2)))* dz + Var (9, (2)) dz
A
= |[E (#m) — vallZza) + /AVar (D (1)) dez.

The estimator ,, (and therefore its expectation E (i,)) belongs to the subspace S,,. Then, by
orthogonality

~ 2 2 ~ ~
E (HVA - Vm||L2(_A)) = ||V)\ - VmHLZ(.A) + ||E (Vm) - l/mHiz(_A) + /AV&I' (Vm(ZE)) d,ﬁE
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The first terms are two terms of bias, the third is a variance term. Let us first bound the second
term of bias. As the functions (¢;) form an orthonormal basis of S, we have

D

IE () — vy = 3 (B (r) — ar)?

=1
Z( > E(wi(Z) / ()w(x)dsc> :

=1

3|>—‘

By Corollary 3,
RV (z0)

*n(l-7y)
Therefore, thanks to A5b, H‘Pl”io < 1D, and, as D2, < n, we get:

E (@) — ai] < |lnll

R?*V? D? R%*V? 1 R*V?
<o BT o L

Let us now consider the variance term. As the functions (¢;) form an orthonormal basis of S,,,
the integrated variance of 7, is the sum of the variances of the coefficients ay:

Hsazll
sup ||E (D, Vm, E
NEF(ed) H ( ) HLZ(A (1 _ )

D,,

Dy,
/Var (Om(z)) d:c:/ Var (Zdﬂpl ) ZCOV (G, 1) < 1, pr >12 A)—ZVar ar)
A A =1

=1

By Corollary 3,

Var (a;) = Var ( Zcpl (Zy) )

< lAwf(z)u (x) H@l” / |o1() |G (2 (x)d‘H%' (18)

n

&MmmmmMMMQZ&ﬁ@mengMMMMM§%&MMZ&Mﬂi§
wlD?n < ¢1n. Therefore:

D,, c

sup /Var (Om(x))dx = sup ZVar ay) <C,\ - (19)
AEF(c,b) J A AEF (¢,b) ”

where Cx = 91 + 2 [, Ga(2)va(2)dz.

5.5 Proof of Theorem 8

The number of coefficients in the adaptive estimator is random. If we are still able to control
easily the bias term, we can not simply control the variance of our estimator by adding the
variances of its coefficients. For any m € .#,,, we have the following inequality:

mm%@:wﬁwf%ﬁzgq@ymm

\}

3

1251724y < 1vmll22ay + pen(m) = pen(im) + = 05 (Zk) = vin(Zi)- (20)
k=1
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We have that, for any function s € L2(A):

2 2 2
151224y = ls = wallzoay = Iwallzoay + 2AS($)VA($)d$-
We apply this equality to 3 and v,,. Equation (20) becomes:
90 = vallZ2 4y < [Vm = val[72(a) + pen(m) — pen(ii)

2nAA v _ v () — v, () () da
2Dl () 2/,4< 1(2) = Vi ()2 () .

The function 0, — v, belongs to the vectorial subspace Sy, + Sy, Therefore:

X 2 2 .
2 — vallz2(ay < 1Vm — vallz2(a) + pEn(m) — pen(mn)

Z%S(Zk) —/As(:n)uk(x)dx

k=1

+ 205 — vinllp2(a) sup

SEBm,m

where Zy,m: = {s € Sm + Sm, [[S| 12(4) = 1} As the sequence (Sy,) is increasing, Sy, + Sy is
simply the largest of the two subspaces. By the inequality of arithmetic and geometric means,

. 2 2 . L. 2
120 = vallzzay < lvim = vAllz2ay + penim) —pen(in) + 2 1o — vz 4

1« ’
+ sup 4<E;s(Zk)/As(x)l/>\(x)> .

SEBm,m
~ 2 ~ 2 2
As [P = vl 24y < 2110m — vallL2cay + 2 1vm — vallL2 ), we get:

19— w224y < 3l — val22 4 + 2pen(m) — 2pen(in)

+8 sup (%Zs(Zk)—/As(x)u,\(x)> .

SE;@myfn k=1

We can decompose the last term in a bias term and a variance term. Let us set:

1 1<
In(s) = —~ > s(Zk) —E(s(Z1)),  Juls) = - ]; (]E (s(Zk)) — /AS(CU)VA(w)dw) (21)

and p(m,m’) := (pen(m) + pen(m’))/4. We can remark that E (I,,J,,) = 0. Then:

E (||19m - I/,\Hiz(A)) < 3||Vm — V,\||ig(A) + 4pen(m) + 8E ( sup I2(s) + Ji(s)) — 8p(m,m).

SEBm,m
(22)
By Assumption A5b, s € %, implies that ||S||c2>o < P1(Dyn + Dyp,) < 2991012 (we recall that
D, and D,;, are smaller than n'/?). Then by Corollary 3,

R2V? 2 4p2R2V?
sup sup J2(s) < sup 5 (o) HSQHOO < 1/]12 (ZC(;)TL
AEF(c,b) SEBom,m SE€EBm.m T (1-7) n?(1—7)

<

%. (23)
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m,m TN

It remains to bound E (supse@ I2(s) — p(m, ﬁl)) . The unit ball %, ; is random. We can
+

not bound I2(s) on it, we have to control the risk on the fixed balls PBrnm' - We can write:

m,m/

IE( sup Iﬁ(s)—p(m,vﬁ)) < Z IE( sup Iﬁ(s)—p(m,m’)) : (24)
+ +

SEBm,m m,m’ e SER

The following lemma is deduced from the Berbee’s coupling lemma and a Talagrand inequality.
It is proved in the appendix.

Lemma 11 (Talagrand’s inequality for S-mixing variables). The random variables Z1,...,Z,
are exponentially B-mizing. Let us set bg > —1/1n(v). We define ¢, := 2boIn(n), p, =n/(2¢,).
We have that 5(q,) < cy?*0™) < n=2. Let us consider
1 n
In(s) = = > s(Zk) = E (s(Z1)).

n
k=1

If we can find a triplet (Ma, V and H ) such that:

Vi, sup Va 1%Z+i(2) <Y s sl <M and B sup |Lu(s)] | <
1, up I — S s —, up S 0o = an up n\S S —,
g q By ot ? Vn

SEB ,m! Lo n  s€ SEB. m!

mm
then we have:

v H? M2 VP H M3
E I?(s) — 6H?| | <C— —ky—— =2 —ky Y 2—2
<se§;£m/| ate) =6 |>+ = eXP( ' 12v> PO e\ gan) e

n

where C, C', k1 and ko are universal constants.

For the sake of simplicity, let us set D = D,,, + D,,,» and B = X, . By Assumption ASb,

1/2 1/2
sup sup ||s||,, < sup i/? D2 I8l L2 0y = Wi/2DY? = M.
AEF (c,b) sEAB SER

By Corollary 3,

Var (i 3 s<zk>> <L [emEi+ B [ e+ 20k

dn P dn n

By Cauchy-Schwarz,

HS2VAHL1(A) < H3HL2(A) HSV/\HLZ(.A) < HSHLZ(A) [E7[ ”V/\HLZ(A)

and
[sAGAll Ly < |Gl ooy 81l p2 [[oall 2 -

By Assumption A5b, ||s||, < ¥1/*DV/? and then

1/2
| & 67DV e (141G e ) exirD
sup sup Var —ZS(Zk) < + =
AEF(e,b),||wall 2 <cs€B In = In In

aDY?2 D 1%
=+ : .

<
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It remains to find H such that E (sup,c g |I5.(s)]) < H//n. Let us introduce (¢;)1<i<p an

orthonormal basis of Sy, + Si/ = Smax(m,m) satisfying Assumption A5
s =Y, bip;. As the function s — I,,(s) is linear

Then we can write

sup I2(s) =

D D
D Ia(s) = sup (Zbﬂ @z) < S <sz> <ZIZ(@1)>ZIZ(%)- (25)
SE€EY 2=1 P=1 =1 =1

We can remark that I, (

¢1) = a; — E (&) (see equation (21)) and by consequence, E (I2(y;)) =
Var (4;) . By (19):
\D H?
sup E(sup]2 > ZIE ]2% _C +_. i
AeF(c,b) s€AB n
where Cy = 91 + 2 fA G (z)va(2)dz. We can now apply Lemma 11 with
My = ¢/*DV?, V= ;DY? 4+ ¢D/g, and H? = CyD.

As 2/(z+y) > min(1l/z, 1/y), for p(m,m’) > 6C\D/n + 6¢cx/n

1% H? M2 D H M2
E I*(s) — N <c— k 12 —hp Y ) 22
<fggp; 2(s) —p(m,m ))+ < Cn exp< 112V> +C = exp( 2 _an2) + -

1/2
(272 (o (52 k)
n ngq

4exp [P
n 12 ¢, D/2 P\ 12 D
C1 D L, CYPD1? 1D
—k /2N 2)
+ 02 exp< 2Py q}/Q w}/2D1/2 n2
D
< = exp(—cD'/?)
n

n D ( )+ D1n*(n) n'/? D
—exp(—caqn) + —5—exp | —c3—— =
n P n? P 3 In(n) n?
where the constants are uniform on the set {A € F(¢,b),[[vallf2(4) < ¢}. The second term can
be made smaller than n=2 for g,(= 2byIn(n)) large enough. The third is also smaller to n
thanks to the exponential term. Then

-2

m/’ Dmm
n eXp(—CQD1/2 ) + Oy ——2—

D
Sup E sup 1721(8) - p(ma m/) <G , m,m’
AE}-(C,b),”V)\”LQSC SEA ’
As 0 ke=*'"? < 50 and Zm’eﬁn, Dy < maxpmre g, D2, .0 < n, by (24),

1
sup E{ sup I3(s)—p(m,m)| <~ (26)
AEF(eb)llvall2aySe  \SE€EBm.m n
Collecting (22), (23) and (26), for any m € #,:
N 2 2 c
sup 170 = vAll3) < 3 l1vim = vall}2 + dpen(m) +
AEF(e,b)llvall 24y <C

which concludes the proof.

23



5.6 Proof of Theorem 9
For n big enough, 1/1n(n) is smaller than Dy/2 and then by Markov inequality and (10),

P(D,(y) < 1/In(n)) < B(Du(y) ~ Dy)| < Do/2) < 7B ((Duly) ~ D)) <~y (21)

D3 ~ nD3’

As vy is a positive function, |[0x(y) —va(¥)[1s, (£(y))=0 < |Pa(y) — va(y)| and therefore, according
to the definition of the estimator A, (11),

15, wy=1/mm) T AWD, ()<1/1mm)-

We can write:
n(fy) (@) _ (@) —unl(fy) | wlfl) g
D.(y) D) D, (y) " B,(,)D(y) (D) = Dulv)
As D > Dy by Lemma 4:
g D (y) — D(y)

By (10) and (27),
i

By A2 and Proposition 1b, va(f(y)) < E., (92,(f(¥))) AMy) < M(f(y))A(y). We obtain:

In?(n) |A]|2.
E <’ ’ > <C <1n(n)2E (Hl?,\Of - V)\O.fH2L2(I)) + M) (28)

L2(T) n
where C' is uniformely bounded on £(¢,b). As f is invertible,

2

*(n) [z v3(f(y))dy

Xn—A‘

In
) < 3In*(n)E (Hf/wf — u,\oinz(I)) +3eDy?

2 fz A (y)dy .

L*(T)

+12¢Dy

X,ﬁA’

2
E (I0s0f = a0 o) =E ([0 =TT, )
_ N 2
< swp (FYWE (19 = wala s
yef(I)
which, with (28), give the first bound.
By Theorem 8,

C,\Dm C

sup E(Hyramni )g min <3|ymw||22 +24 )+—.

ACEGE M Tacs o <O L2(f(x)) = 2 L2(£(2)) n "

If \ belongs to H*(M;,T), as g, and f~! also belongs to H%(M7,Z) by Assumption A2, then
by (9), va € H*(Y(My), f(Z)) € A3 o (¥(My1), f(Z)) and in that case,

2 2 —2a
[vm = vallL2 2y < Al cre D>
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20+1) and therefore

The quantity 3 ||vp, — V)\H2L2(f(z)) +24 Cﬁ?m is minimum when D, o n!/(

C’AD

sup  min (3 |Vm — u,\HLQ(f(I)) +24 ) < Op—20/(2a+1)

NEE(T,b,H) MEAMn

which concludes the proof.

5.7 Proof of Theorem 10

To simplify the notations, we denote by £(c, b, H) the set £(¢,b) N H*(Z, M;) in this proof. We
use the reduction scheme described in Tsybakov [2004, chapter 2]. By Markov inequality,

SRRt

CIQn—Qoz/(Qoz-i-l)E)\ (

_)\H > C'n —oz/(2a+1))

Our aim is to show that

inf sup Py (
An AEE(T,b,H)

_ )\H C”rf”‘/(%‘ﬂ)) > 0.
Instead of searching an infimum on the whole class £(¢, b, H), we can restrain ourselve to the
finite set {Ao,...,Ap,} € E(¢,b, H), such that

A = Ajll 2 > 20 n=/ (ot g, (29)
Then

inf  sup PA(
A AEE(E,b,H)

0‘/(2°‘+1)) inf max Py, (‘ ;\n
An J

/nfa/(2a+1)) .

We note ¥* the predictor

. R
(= arg min ||\, — \;
¥ g0<] <p, 11" J

Lo 2 e = Aglle = H)\w* —An

By the triangular inequality, Hj\n — A . Consequently, as
L
An — A

>
L2

{||3 fAjHLQ > 4.} 2 {{wa ~ A} U = Al = 240}

By (29), [|Ap — A, |\L2 > 20'n~/(2aFD1 . ;. Then setting A,, = C'n~o/(2a+1),
{’ Y H > O'p-el/(20t1) } > {* # j} and therefore:

— A
n wL

L2

inf  sup PA( 5\n

2
! . )\H ) > C/n—a/(2a+1)) > inf max Py, (" £ §).
An AEE(,b,H) L An 7

We denote by Py, the law of (Zo, Z1, ..., Z,) under ;. The following lemma is exactly Theorem
2.5 of Tsybakov [2004].
Lemma 12. Let us consider a series of functions o, ..., Ap, such that:

a. The function \; are sufficiently apart: Vi # j

1A = Ajll 2 > 2C ™o/ GatD),
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b. For all i, the function \; belongs to the subspace E(¢,b, H).

c. Absolute continuity: V1 < j < P, Py, << Py,.

d. The distance between the measures of probabilities is not too large:
1 &
7 > X3Py, Pyy) < cln(Py)

k=1
with 0 < ¢ < 1/8, and x?(.,.) the x-square divergence.
Then

inf  sup C2p~20/(2atDE, (‘
A A€E(e,b,H)

anx‘

? ) > inf max Py, (¢* # j)
j

L‘Z

Step 1: Construction of (X\g,...Ap,). Let

a(f(z))’
m(f(z))
As Ao is constant on Z, this function belongs to the Holder space H%(Z) and [[Ao|| fa(z) = €. The
set £(¢,b, H) is not empty if and only if ¢ < min (Ml, m) In that case, Ao € £(¢,b, H).
0
Moreover, we suppose that the previous inequality is strict such that £(¢, b, H) is not reduced to
a point: there exists ¢ > 0 such that ||[Xo|| o (7 ar,) < M1 — 0 and fof(r) M (u)ro(u)du < L — 6.
We consider a non-negative function K € H*(R), bounded, with support in [0, 1] and such
that ||K||,, < 1. We set h, = n~ /@D p = [1/h,] and, for 0 < k < p, — 1, o} =
i1+ hpk(ia —i1). We consider the functions

orlo) = ang (1)

)\0(56) = 51[0,7«[ + ]-:627"-

with a < 1. The functions ¢, have support in [z, zk+1) C Z. Moreover, by a change of variable
y = (& —a)/hn, lorll = ah§ | K|y < ahy ™ and [lox]|72 = a®h2* || K][72. We consider
the set of functions

pn—1
9, = {)\e = Ao + Z erer, (ex) €10, 1}pn} :
k=0

The cardinal of &, is 2P~. For two vectors (e,7) with values in {0,1}?P~, the distance between
two functions A and A, is:

Pn
e = Mllze = @R IKIT2 Y (e —me)*. (30)
k=1

As the series €, and 7, have values in {0, 1}, the quantity

Pn Pn
/)(€a77) = Z 1€k7577k = Z(ek - nk)Q
k=1 k=1
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is the Hamming distance between 7 and e. To apply Lemma 12, we need that, Vn # e,
[IAe — /\77Hi2 > 4C"?h2* and consequently p(e,n) > Ch,,* .

This is not the case if we take the whole ¢,, (the minimal Hamming distance between two vectors
e and 7 is 1). We need to extract a sub-serie of functions. According to Tsybakov [2004, Lemma
2.7] (bound of Varshamov-Gilbert), it is possible to extract a family (e(),...,€p,)) of the set
Q = {0,1}P such that ¢y = (0,...,0) and

A Ogj <k§P’m p(e(j)ae(k)) an/Sa and Pn22pn/8-

As p, > nl/2atD)

In(P,) > In(2)n'/ 2o+ /g, (31)
We define
>‘j = )\5(],) and %:{Ao,Al,...,APn}.
Figure 4: Example of \; on T
I?(lin(]\417 L)
M+ et
0 i1 % ’ Z;
- Ao

Then, for any \;, \p € 4, if j # k , as p, = [1/h,,], by (30),
1A = Axll7e > a® K172 ot pa/8 > a® | K |72 /8.

This is exactly the expected lower bound if we take C' = a || K| ;2 /(4V/2).

Step 2: Functions )\; belongs to £(c,b, H). We already know that A\g belongs to £(¢, b, H).
Let us first compute the norm of A\; on H*(Z). Let us set r = |a|. We know that (K (./h,))® =
h*K®)(./h,). By the modulus of smoothness linearity,

_ (r) _
w(cp,(:),t)oo = aw (hf{ <K ( hxk>) ,t) = ahyw <han(f) (h—xk> ,t>

t
—ah®Tw | K®
ahs w( ,hn)w

and by the change of variable z = t/h,,,

t
lnl e = sup " w(py” )e = asup ™ *hG W <K(r), —>
t>0 t>0 h” %)

=asup 2" w(K®, 2) = a|K|ge.
z>0
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The functions ¢ have disjoint supports. For any (z,y) € Z, there exists (i,j) such that z €
[i,zi41( and y € [z;,zj41(. Then

A(@) = A0 w) =& (¢ @) = oV W) + 25 (97 @) - 67 ) -

Therefore
WA D)oo < sup (Wl D)oo + @@, e ) < 207, 1)
0.
and [Aj|ge(z) < 2a|K|me. Moreover, |[Ajllpo(z) < [[Mollpoo(z) + ahg 1Ko < Aol ey +
2a||K|| ~ and consequently [|A;l a7y < Aol o (z) + 20 [ K| o Then A; € H*(Z, My) for a
sufficiently small. It remains to check that A\; € £(¢,b). For any 0 < j < P,:

a. As K is nonnegative, Vo > r, \;(x) > alg((;()z;’).

b. In the same way, Vz,i1 <z <7, \j(z) > e.

c. Control of the integral:

f(r) f(r)

| M (u)Aj (f ™ (u))du < A M(u) Ao(f_l(U))+ah$K(f_1(U))Z€j du

f(r)
<L-—6+aho™ M () K (f~ (u))du < L
0

for a small enough.

Therefore A\; € £(¢,b, H) for a small enough.

Step 3: Absolute continuity. We denote by P; the transition densities induced by Py,. As
(Zn)nen is a Markov process,

Py (zo,...,zn) = Pj(zo,21).. Pj(Zn_1,Tn).

By (4), we can rewrite: Po(z,y) = Ay, exp(—A,,,) where

Y

Avy =X W)Wy )y, Any 1=/f Xo(f () g (u)du

and P;(z,y) = (Agy + By.y) exp(— Ay, — B,.,) where B, , = o, ekaﬁy, B, = b ekf}f’y
and ”

By = on(f T W)9e (W) hpyz sy, Bry = /f( )wk(f‘l(U))gm(U)dU-
The probability density P, is null if one of the Py(x;, 2;11) is null. This is the case if and only
if Az, ,,, = 0, which implies either g, (2i11)1z,,,>f(;) = 0 and therefore B, ,,., = 0, either
Ao(fH®@ip1)) = 0, and therefore z;41 € [0, f(i1)] and Bg, 4,,, = 0. Then P, is absolutely
continuous with respect to P, .
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Step 4: The \? divergence. As P, ,P A; are equivalent measures, we have:

dPy 2
Py, P ——/ 2] dP,, — 1.
X“(Px;, Py,) P, dP,

We can write:

XQ(PXJ')PAO) +1 :/

(Pj(zo, z1)..Pj(xn-1,xn)
(R+)™

Po(zo, x1)... Po(Tpn-1,Tn)

Therefore, as [, Po(z,y)dy = [p4 Pj(x,y)dy =1,

j ; 2 , 2
X2(Pk]‘;P)\0) + 1= / (7)] (-TOa-Tl)...P_] (wn—QafL'n—l) d.’I]l...d,an_l/ (PJ (ZCn_l,.’L'n))
(RH)n—t R+ ,PO(xnflazn)

)
Po(xo,z1)... Po(@n—2, Tn-1)
)) dxl...dacn_l

:/ (Pj(xo,501)...7)]'(1'”72,56”71) 2
@®+yn-1 Po(zo,71).. Po(Tn-2,Tn—1

/Pj(xn—laxn) 2
Z3 =) ) Py, )den + 1)
) </R+ (Po(fcnlazn) ) (=1, Zn)don +

This expression of the x? divergence enables us to approximate it more closely. Let us set

DP = /]R+ (% - 1>2P0(:c,y)dy

2
= / <<1 + Bz’y> exp (fBzy) - 1) Ay yexp(—Ag,)dy.
R+ A%’y

We can remark that if y € f(Z)°, Pj(z,y) = Po(z,y). Therefore

2
DP = / <<1 + Bm’y> exp (*Bzy) - 1) Az y exp(f;lx,y)dy-
(@) A

Z,Y

By Assumption A2 and as Ao = € on Z, we get that on f(Z),

1 inf <Ay, < M(y)el > f(a)-
Lzsey fof my) < Azy < sup M)l

Moreover, on R, exp(—A4,,) < 1. We have that
k
By < M) [0k lloe Ly 1) =1 () €lonsonsa
and therefore, as ||pi| . = ahy || K|

By < sup M(y)ahy |K|| 1yerz) < Cahylycp(z)-
yef(T)

By a change of variable,

~ V)
B, :/ or(2)92(f(2))f'(2)dz < sup (M(Z))ilelgf’(Z)HwkllLl

2€f(T)

< ah®t! sup (M(z))sup f'(2)
2€f(T) z€T
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2
) Po(wo, $1)...7)0(.Tn_1, xn)dxldxn

dz,

(32)

(33)



and
Bry <Y BE, < Clap,ht' < C'ahs.
Then
DP<C a2h72f‘ < Ca2hia.
f(T)
Therefore, by (32) and (33), we get by recurrence

. . 2
X2(P,\0,P)\j) 11 / (7)](.%'0,$1)...PJ($n—2a$n—1)) d$1...d$n_1 % (O (agh%a) + 1)
(RF)n-1

Po(xo, z1)... Po(@n—2, Tn-1)

(0 (a®h2*) +1) =1+ a’n0 (h2*).

—-

=1

As hn = n_ﬁ’
XQ(P%’PAJ) <a?0 (nl/(2a+1))

and by (31), In(P,) > In(2)n'/(2+1) /8 and therefore,

=

1
= 3Py, Py) = a0 (/D) = 020 (In(P,)) < In(P,)/3

™ g=1

b
Il

for a small enough, which concludes the proof.

A Besov and Holder spaces

Definition 13 (Modulus of continuity). The modulus of continuity is defined by

w(f,t)= sup |f(z)— f(y)l-

lz—y|<t

If f is Lipschitz, the modulus of continuity is proportional to ¢t. If w(f,t) = o(t), then f is
constant. The modulus of continuity cannot measure higher smoothness.

Definition 14 (Modulus of smoothness). We define the modulus of smoothness by

r

we(fit)p = sup |AF(f Mpoay where Af(f,2) =Y (~1)FCEf(z +kh).
0<h<t =0

We can remark that if f is C*, then t*  w(f ™), t)oo = t*wr(f, )oo and if f*) is Lipschitz, then
wr(f,t)oo = O(t"). The modulus of continuity and the modulus of smoothness are sub-linears:

we(f + g,t)p < wr(f, t)p +wr(9at)p and  we(af, t)p = awr(f, t)p'

Definition 15 (Besov space). The Besov space Bs',(A) is the set of functions:

By (A) ={f¢€ L*(A), supt “wp(f,t)2 < oo}
>0

wherer = |a+1|. The norm is defined by: ||f||B3 = SUpys ot “wrg(fi )2+ || fll 2. We denote
B o0 (A, M) = {f € B5 o, | fll gy < M}
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See DeVore and Lorentz [1993] and Meyer [1990] for more details. We use the Besov space
to control the risk of the estimator of the stationary density vy.

Definition 16 (Holder space). The Holder space is the set of functions:
HYT) ={f € €"(T),t" “w(fW t)oe <0 V t >0}

where v = |a). We note |f|ge = sup;oot* *w(f,t)s and define the norm of the Hélder
space | flyez) = Ul + | fl ez, and BT, M) = 1 € HOD), | fllgoz) < Mi}-

As noted before, t*w(f®) t)s = t~ %Wy (f,t)oo: the Holder space H*(Z) is included in
B o, which itself is included in BS' ().

0,00

B Proof of Lemma 11

The following lemma is very usefull to replace weak dependent variables by independent variables.
It is proved by Viennet [1997, proof of Proposition 5.1].

Lemma 17 (Berbee’s coupling lemma). The random variables Zia are exponentially S-mizing.
Let g, = [(r + 1)In(n)/B] where 8 caracterizes the B-mizing coefficient (see Definition 5). We
have that B(qn) < 1/n"t1. We set p, = n/(2q,). There exist random variables (Z3,...,Z})
such that:

o Z; et Z7 have same law.

o (Z3,.... 25 ), (Z3g, 4155 Z3q,), - - are independent, as the random variables
(Z; 1 qun) (qunJrl, cee ijqn), e

o P (qunﬂ, o Disnygn) # (D ars .,Z(*kﬂ)qn)) B(gn) < n= D),
Let us set Q* = {w,Vk, Z;, = Z;}. Then
1

n”’

(Q*C) < nﬁ(qn) < —

This following inequality comes from Bernstein inequalities (see Birgé and Massart [1998,
Corollary 2 p354]).

Lemma 18 (Talagrand’s inequality). Let Y1,...,Y,, be independent random variables and S a
vectorial subspace of finite dimension D satisfying Assumption 5. We denote by % a countable

family of S. Let us set

u(Y))

:I»—*
NE
ﬁ

with u € L2, If

sup lull o < M2, E <sup |Fn(u)|) < H, sup Var (u(Yy))) <V,
ueEF ueF ueF

% nH? M?2 nH
E F2(u)—6H?) <C (= - =2 —ky—
(s Fze o) <0 (e (g ) + 7 e (kT

where C'is a universal constant and ko = (v/2 —1)/(21v/2).

then
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Proof. We apply Theorem 1.1 of Klein and Rio [2005] to the functions si(x) = w@)Bul)) vy

2Mo
obtain that
P sup |Fp(u)| > H+xz) <e na”
u n(u x xp [ — .
s = = P\ TV 1+ 4HM) + 6Moz

We modify this inequality following Corollary 2 of Birgé and Massart [1998]. It gives:

2 M 1
P (s 170 > (0 +2) < exp (3 min (3, 22 ),

The end of the proof is done in Comte and Merlevede [2002, p222-223]. O

To deduce lemma 11, we simply apply the Berbee’s coupling lemma to exponential S-mixing
variables, and then the Talagrand’s inequality. Indeed, by Berbee’s coupling lemma, as Z; and
71 have same law:

1 n
In(s) =~ > s(Zy) = E (s(Z0) + s(Zx) — 5(Z5).
k=1

We first bound the second part of the sum Ir(s) := L 3" s(Z;) — s(Z};). We have:

n 2
()

k=1

B(s) = (Z<s<zk> - s<z;>>1zkﬂ;> < 40

n
k=1

AM; > k=1 lz,#2: and by Berbee’s coupling lemma, E (sup,¢ 5 l2(s)) <

By Cauchy-Schwartz, I3(s) <
4M2

Let us now bound the first term I1(s) := £ >0 | s(Z;) — E (s(Z};)). We have

n

1 pn—1 1 pn—1
Li=— u(Yj0) —E (us(Yi0) + — Y us(Vj1) —E (us(¥j1))
Pn =0 e
where Y ; = (Zg(j-i-i)qn-i-l’ cey Z(*Q(j-l-i)-l-l)qn,) and us(x1,...,2q,) = an >t s(zg). The ran-

dom variables Yj o are independent, the same can be said for Y; ;. Moreover, |Y;;| < M and
Var (Y;,;) < V. Let us set

Ihi=— Z us(Yji) — B (us(Y,0)) -

Pn =

We have: I (s) := (I; o(s) + I; 1(s))/2. Then,

E <f£§ I?(s) — 6H2> . <E <§£i (2027 0(s))* + 2(I;; 1 (5))%) — 6H2)

< ZE (sup(rz.9° - 6H2)+ .

As the dimension of S is finite, we can find a countable family .%# dense in % and we can
then apply the Talagrand’s inequality to I} ; and I, ; which concludes the proof.

32



Acknowledgements

N. Krell was partly supported by the Agence Nationale de la Recherche PIECE 12-JS01-0006-01.
The research of E. Schmisser was supported in part by the Labex CEMPI (ANR-11-LABX-0007-
01)

References

S. Arlot and P. Massart. Data-driven calibration of penalties for least-squares regression. Journal
of Machine Learning Research, 10:245-279, 2009.

R. Azais and A. Muller-Gueudin. Optimal choice among a class of nonparametric estimators
of the jump rate for piecewise-deterministic Markov processes. Electron. J. Stat., 10(2):3648—
3692, 2016. ISSN 1935-7524. doi: 10.1214/16-EJS1207.

R. Azais, J.-B. Bardet, A. Génadot, N. Krell, and P.-A. Zitt. Piecewise deterministic Markov
process—recent results. In Journées MAS 2012, volume 44 of ESAIM Proc., pages 276-290.
EDP Sci., Les Ulis, 2014. doi: 10.1051/proc/201444017.

A. Barron, L. Birgé, and P. Massart. Risk bounds for model selection via penalization. Probab.
Theory Related Fields, 113(3):301-413, 1999. ISSN 0178-8051.

L. Birgé and P. Massart. Minimum contrast estimators on sieves: exponential bounds and rates
of convergence. Bernoulli, 4(3):329-375, 1998. ISSN 1350-7265.

F. Comte and F. Merlevede. Adaptive estimation of the stationary density of discrete and
continuous time mixing processes. ESAIM Probab. Statist., 6:211-238 (electronic), 2002. New
directions in time series analysis (Luminy, 2001).

F. Comte, V. Genon-Catalot, and Y. Rozenholc. Penalized nonparametric mean square estima-
tion of the coefficients of diffusion processes. Bernoulli, 13(2):514-543, 2007.

M. H. A. Davis. Markov models and optimization, volume 49 of Monographs on Statistics and
Applied Probability. Chapman & Hall, London, 1993. ISBN 0-412-31410-X. doi: 10.1007/
978-1-4899-4483-2.

R. A. DeVore and G. G. Lorentz. Constructive approximation, volume 303 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, 1993. ISBN 3-540-50627-6.

M. Doumic, M. Hoffmann, N. Krell, and L. Robert. Statistical estimation of a growth-
fragmentation model observed on a genealogical tree. Bernoulli, 21(3):1760-1799, 2015. ISSN
1350-7265. doi: 10.3150/14-BEJ623.

V. Dumas, F. Guillemin, and P. Robert. A Markovian analysis of additive-increase multiplicative-
decrease algorithms. Adv. in Appl. Probab., 34(1):85-111, 2002. ISSN 0001-8678.

T. Fujii. Nonparametric estimation for a class of piecewise-deterministic Markov processes. J.
Appl. Probab., 50(4):931-942, 2013. ISSN 0021-9002. doi: 10.1239/jap/1389370091.

F. Guillemin, P. Robert, and B. Zwart. AIMD algorithms and exponential functionals. Ann.
Appl. Probab., 14(1):90-117, 2004. ISSN 1050-5164. doi: 10.1214/aoap/1075828048. URL
http://dx.doi.org/10.1214/a0ap/1075828048.

33


http://dx.doi.org/10.1214/aoap/1075828048

T. Klein and E. Rio. Concentration around the mean for maxima of empirical processes. Ann.
Probab., 33(3):1060-1077, 2005. ISSN 0091-1798. doi: 10.1214/009117905000000044.

N. Krell. Statistical estimation of jump rates for a piecewise deterministic Markov processes
with deterministic increasing motion and jump mechanism. ESAIM Probab. Stat., 20:196-216,
2016. ISSN 1292-8100. doi: 10.1051/ps/2016013.

P. Laurencot and B. Perthame. Exponential decay for the growth-fragmentation/cell-division
equation. Commun. Math. Sci., 7(2):503-510, 2009. ISSN 1539-6746.

Y. Meyer. Ondelettes et opérateurs. I. Actualités Mathématiques. [Current Mathematical Topics].
Hermann, Paris, 1990. ISBN 2-7056-6125-0. Ondelettes. [Wavelets].

R. Rudnicki and M. Tyran-Kaminska. Piecewise deterministic Markov processes in biological
models. In Semigroups of operators—theory and applications, volume 113 of Springer Proc.
Math. Stat., pages 235-255. Springer, Cham, 2015. doi: 10.1007/978-3-319-12145-115.

A. B. Tsybakov. Introduction a [’estimation non-paramétrique, volume 41 of Mathématiques
& Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, 2004. ISBN
3-540-40592-5.

G. Viennet. Inequalities for absolutely regular sequences: application to density estimation.
Probab. Theory Related Fields, 1997.

34



	Introduction
	PDMP
	Estimation of the jump rate
	The observation scheme
	Methodology
	Estimation of the stationary density
	Estimation of the jump rate
	Minimax bound for the estimator of the jump rate

	Simulations
	Proofs
	Proof of Corollary 3
	Proof of Lemma 4
	Proof of Corollary 6
	Proof of Proposition 7
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10

	Besov and Hölder spaces
	Proof of Lemma 11

