
HAL Id: hal-01996004
https://hal.science/hal-01996004v1

Submitted on 22 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LSTM Path-Maker: a new LSTM-based strategy for the
multi-agent patrolling

Mehdi Othmani-Guibourg, Amal El Fallah-Seghrouchni, Jean-Loup Farges

To cite this version:
Mehdi Othmani-Guibourg, Amal El Fallah-Seghrouchni, Jean-Loup Farges. LSTM Path-Maker: a new
LSTM-based strategy for the multi-agent patrolling. 52nd Annual Hawaii International Conference
on System Sciences (HICSS 2019), Jan 2019, Wailea, HI, United States. pp.616-625. �hal-01996004�

https://hal.science/hal-01996004v1
https://hal.archives-ouvertes.fr

LSTM Path-Maker: a new LSTM-based strategy for the multi-agent
patrolling

Mehdi Othmani-Guibourg
ONERA, Toulouse, France

Sorbonne Université - Faculté des Sciences
Mehdi.Othmani-Guibourg@onera.fr

Amal El Fallah-Seghrouchni
Sorbonne Université - Faculté des Sciences

CNRS, UMR 7606, LIP6,
F-75005, Paris, France
Amal.elfallah@lip6.fr

Jean-Loup Farges
ONERA, Toulouse, France
Jean-Loup.Farges@onera.fr

Abstract

For over a decade, the multi-agent patrol task
has received a growing attention from the multi-agent
community due to its wide range of potential
applications. However, the existing patrolling-specific
algorithms based on deep learning algorithms are still
in preliminary stages. In this paper, we propose
to integrate a recurrent neural network as part of a
multi-agent patrolling strategy. Hence we proposed
a formal model of an LSTM-based agent strategy
named LSTM Path Maker. The LSTM network is
trained over simulation traces of a coordinated strategy,
then embedded on each agent of the new strategy to
patrol efficiently without communicating. Finally this
new LSTM-based strategy is evaluated in simulation
and compared with two representative strategies: a
coordinated one and a reactive one. Preliminary results
indicate that the proposed strategy is better than the
reactive.

1. Introduction

The generic task of patrolling is by nature
conveniently well-suited for being shared in space and
time by several agents. There is a wide variety of
tasks that may be formulated as particular multi-agent
patrolling (MAP) problem. As a concrete example, the
task consisting in monitoring an area by a swarm of
drones faces with the problem of coordinating them to
patrol that area. Area monitoring is useful as part of
crises, for example in order to detect a start of fire in a
forest, but also to provide an alert, either to save people
or to detect the presence of intruders as part of a complex
humanitarian mission in a conflict area.

A fully-fledged feature of patrolling and other
complex systems is the difficulty to derive analytical
results from their system-wide equations. Thereby
it appears that the only method enabling to predict
their behaviour is to simulate the local interactions of
their components: this is exactly the main purpose

of the agent-based simulation. Thus, the quality
of a patrolling strategy is evaluated in simulation
by using different measures, each one measuring a
specific property of distributions of visits generated by
strategies. Informally, it is consensual that a good
strategy is one that minimises the time lag between two
passages on the same place and for all places.

For over fifteen years different types of agent
strategy for the (MAP) were proposed: centralised
[11], emergent [11], idleness-based [11], heuristic
(idleness and distance) with pathfinding [1],
hamiltonian-cycle-based [5], TSP-heuristic-based
[4], reinforcement-learning-based [6] and even
auctions-based [7] strategies. In this context, Almeida
et al. [1] defined two main types of agent: reactive
agents that act only according to their perception, and
cognitive agents that can pursue a goal.

Until now, as part of the cooperative multi-agent
learning, few works concentrate on the problematic
of using Artificial Neural Networks (ANNs) for the
multi-agent patrolling. For example, a few of these
studied non-hierarchical neural network-based methods
for planning a complete coverage patrolling path where
each neuron encodes a specific region of the space, such
as Guo et al. [8] or even a cooperative multi-agent
learning where each robot is endowed with a neural
network directly connected to nodes of others robots’
internal neural network whose weights of connections
are evolved, with D’Ambrosio et al. [2]. However,
none tackles the advantages that may be afforded by the
deep artificial neural networks in order to outperform the
previous strategies. This paper thereupon proposes the
use of the ANN architecture Long Short-Term Memory
(LSTM) for the multi-agent patrolling problem. The
Recurrent Neural Networks (RNN), as machines to learn
temporal series, are well adapted to this problem to the
extent that they can be viewed as a temporal decision
problem. In this way, a new strategy based on the
LSTM architecture is introduced where the ANN is
used as a path generation device by non-communicating
agents to navigate as optimally as possible through the

graph. To that end each neural network architecture
is trained offline over data generated for this purpose,
then embedded in the agents which will use it to select
the next node to visit with respect to the previous ones.
Finally, the performances are evaluated according to the
usual evaluation criteria used until now in this field of
study.

The Section 2 presents the background on the
multi-agent patrolling and the LSTM networks useful
to understand proposed developments as well as the
previous works using the ANNs for the MAP. Then,
Section 3 introduces LSTM Path-Maker (LPM), the
new strategy for the multi-agent patrolling based on the
LSTM architecture. In Section 4 the learning results
are analysed and and the new strategies evaluated.
Finally, Section 5 draws some conclusions, shows
certain boundaries for this new strategy and indicates
directions for further works.

2. Background

This section presents the background on multi-agent
patrolling and the LSTM architecture.

2.1. Multi-agent patrolling

2.1.1. Formal definition The MAP model consists
formally of a society of agents noted A, able to move
in an environment with the same mobility parameters,
and a graph noted G = (V,E) as an abstraction
representing a discretisation of the area to patrol. Here,
card(V) = N and V = {1, .., N} is the set of nodes
identified by their indexes and standing for the places
to visit. E, which is included in the set of 2-element
subsets of V, is the set of edges of G accounting for
the paths between the places. With each edge {v, w}
corresponds a transit time cv,w representing the travel
time of the edge {v, w}. At the beginning of an instance
of a patrol task, agents are positioned on nodes of G.
To each node is associated a dynamic variable named
idleness, indicating the time elapsed since it has not been
visited by any agent[4]. The idleness of a node v at
time t, noted it(v), is defined as being the amount of
time elapsed since that node has received the visit of an
agent. The idleness of all nodes at the beginning of the
patrolling task is set to 0. Finally, each time an agent
arrives at a node v, it shall decide, among the edges
including v, namely all the edges {v, w}, the next edge
to travel.

2.1.2. Strategies A strategy of agent is an
information processing method, or algorithm, allowing

each agent to take a decision each time it arrives at a
node. In the MAP, whatever the strategy considered,
each agent intends actions based on its appropriated
perceptions from the environment and its knowledge
about idlenesses of nodes. Among the wide family
of strategies, two are relevant for this work as
representative strategies: Conscientious Reactive
(CR) and Heuristic Pathfinder Cognitive Coordinated
(HPCC).

The algorithm of CR is to select the next node
to visit as the one with the highest idleness in its
neighbourhood. There is no communication between
agents: idlenesses are estimated by each agent on the
basis of its own path. CR can be thought of as a good
representative and thereby a comparison strategy for the
reactive and decentralised ones.

For HPCC, there is a perfect communication
between agents: idlenesses are estimated by a
coordinator on the basis of all paths of agents. The
decision process includes two steps:

• selection of a target node that is not necessary in
the neighbourhood,

• computation of a path between the current
position of the agent and the target node
previously selected.

The selection of the target node takes into account
not only the normalised idleness, but also the normalised
time to go of a candidate goal node from the agent’s
current position. The time to go between two nodes of
V corresponds here to the shortest path between these
two nodes. Idleness and time to go are normalised by
scaling them between 0 and 1. A zero normalised value
is attributed to a the maximum idleness (edges with high
idleness values shall be traversed) whereas a value equal
to 1 is attributed to the minimum idleness. Intermediary
values are calculated by means of proportions as shown
in (1):

If minv∈V{it(v)} 6= maxv∈V{it(v)},∀v0 ∈ V

īt(v0) =
maxv∈V{it(v)} − it(v0)

maxv∈V{it(v)} −minv∈V{it(v)}
(1)

where it(v) and īt(v) are the global and normalised
idleness, respectively.

Normalised time to go is calculated similarly. For
that purpose, at the minimum time to go is attributed a
zero normalised value (edges with short distances shall
be traversed) whereas at the maximum time to go is
attributed a value equal to 1. Intermediary values are
calculated by means of proportions as shown in (2) :

∀d(v0, v) a time to go from v0 to v,

d̄(v0, v) =
d(v0, v)−min{d}
max{d} −min{d}

(2)

where max{d} and min{d} are the maximum and
the minimum time to go respectively, over all the v, w ∈
V : v 6= w.

Finally, for an agent at the position v0 at time t, the
values associated to nodes are given by (3):

∀rH ∈ [0,1],∀v ∈ V, valrH (v, t) =

rH × īt(v)) + (1− rH)× d̄(v0, v))
(3)

where the weighting factor rH must be chosen by the
strategy designer. Minimising the node values according
to that expression i.e. selecting the nodes with the
minimum value, allows agents to visit nearby nodes with
higher idleness first and foremost. Moreover, there is a
mechanism forbidding the coordinator to select nodes
that are currently assigned to other agents.

The path computation takes into account the idleness
of the nodes between the current location and the goal to
compute the best path leading there. For that, it weights
the edges as shown in (4) :

∀rP ∈[0, 1],∀e ∈ E : e = {v, w},
crP (e) = rP × īt(w) + (1− rP)× c̄v,w

(4)

where the weighting factor rP must be chosen by
the strategy designer. In that case, it is the normalised
transit time ¯ci,j of edge and not the normalised time to
go d̄(i, j) of path that is used to value edges.

Minimising the edge weights according to that
expression allows agents as well to visit nearby nodes
with higher idleness first and foremost.

HPCC as a communicating, fully-informed,
coordinated, and thereby centralised strategy is one of
the best online - namely without pre-calculation of paths
- strategy. It can be then regarded as a representative
and thereupon a comparison strategy for the coordinated
and centralised ones.

2.1.3. Evaluation criteria Sampaio et al. [14]
introduced evaluation criteria, relevant to establish
aggregation measures not based on idleness but on
the intuitive concept of interval between visits to the
node. In this class of evaluation criteria, the size of

intervals between visits at each node is calculated by
registering the value of idleness just before each visit
by an agent. All intervals for all nodes are used to
make an aggregated calculation. The two interval-based
evaluation criteria we selected are the Mean Interval
(MI) and the Quadratic Mean Interval (QMI), the mean
and the root mean square respectively, on all intervals
between visits of a mission execution. QMI as quadratic
mean, takes better into account the difference of time
interval between the nodes and thus, measures the
tendency of nodes to be equitably visited through a
simulation run.

In order to better evaluate the contribution of each
agent when the population size varies, these evaluation
criteria are normalised by multiplying values by the
number of agents.

2.2. LSTMs

Recurrent Neural Networks (RNNs) are neural
networks that process an input sequence one element
at a time, maintaining in their hidden units - neurons
in the hidden layers - a state vector called hidden
state, containing information about the history of the
sequence’s past elements. Each output of the hidden
units ht, depends upon the hidden state ht−1. This
hidden state can be viewed as a memory. Indeed,
adding memory to a neural network allows to process
information of the sequence itself: the sequential
information is preserved in the hidden state that enable
to find correlations between events separated by several
time steps. This memory is contained in the hidden
layers which have a feedback loop, and therefore they
constitute recurrent layers.

LSTM are a special kind of RNN introduced and
designed to take into account long-term dependencies.
They have the same general chain structure as the RNNs
except that the repeating module has a different structure
as shown in Fig. 1. In the first place, as stated by
Hochreiter et al. [10], an LSTM network was a RNN
with one input layer, one fully self-connected hidden
layer containing purpose-built memory cells, gate units,
and an output layer. This memory unit corresponds to
a neuron with a recurrent self-connection. Thereby a
cell referred originally to an object with a single scalar
output. The activations of those neurons within the
memory units constitute the state noted ct, sometimes
called cell state, of the LSTM network.

As stated by Graves et al.[9] an LSTM layer consists
of a set of recurrently connected blocks, known as
memory blocks, which in turn consists of cells. One cell,
as a neuron, outputs one scalar. Originally, each memory
block has contained one or more layered recurrently

Figure 1. Layered LSTM unit: the core composant

of the LSTM architecture.

connected neurons called memory cells and sharing the
same three multiplicative units: it the input gate, ot the
output gate and ft the forget gates, i.e. all the cells of a
memory block are connected to the same gate units. The
gate units provide continuous analogies of write, read
and reset operations for the cells. A memory block of
size 1 is then a simple memory cell[10] connected to
tanh activations. These blocks, can be thought of as a
differentiable version of the memory chips in a digital
computer. In doing so, it follows the network can only
interact with the cells via the gates. Besides, the memory
block and the gates form the LSTM unit as shown in
the Fig. 1, which corresponds to a repeating module.
The state is thereupon, the memory accumulated by the
LSTM through time by using its forget, input and output
gates. However, unlike the base RNN model in which it
cover the same concept, the cell state ct must here not be
confused with the hidden state ht, the former being the
cell output while and the latter the output of the hidden
layers.

Also, it should be emphasised that the hidden state,
respectively the cell state, noted ht, respectively ct, of an
LSTM network, must be distinguished from the hidden
state, respectively the cell state, of the layer l (for a
multi-layer LSTM) noted hlt, respectively clt.

For some years and hitherto, most implemented
LSTM architectures contain only one cell in their LSTM
units. The LSTM units of a same layer can thereupon be
“layered” into only one LSTM unit where for all t a time
step, it, ft, ot and ct, the input gate, forget gate, output
gate and cell activation turn into vectors with the same
size as the hidden vector ht; hence the element-wise
multiplication ∗. In that context, an LSTM layer can
be viewed as a vectorial LSTM unit and thereby the

vectorial cell and gates compose a layer. It follows
that defining the size of a layer’s cell defines that of its
memory cell block and that of its hidden state in cascade.

The hidden state output from an LSTM layer l is then
computed from the following composite function:

ilt = σ(W l
xi x

l
t +W l

hi h
l
t−1 + bli) (5)

f lt = σ(W l
xf x

l
t +W l

hf h
l
t−1 + blf) (6)

olt = σ(W l
xo x

l
t +W l

ho h
l
t−1 + blo) (7)

clt = f lt ∗ clt−1 + ilt ∗ tanh(W l
xc x

l
t +W l

hc h
l
t−1 + blc)

(8)

hlt = olt ∗ tanh(clt) (9)

The parameters of an LSTM layer that must be
learned for a layer l are thereby:

• W l
xi,W

l
hi,W

l
xf ,W

l
hf ,W

l
xo,W

l
ho,W

l
xc and W l

hc

• bli, blf , blo and blc

The structure corresponding to several memory
blocks in a layer l can be derived from its more general
architecture by setting to 0 the elements of W l

hi, W
l
hf ,

W l
ho which are not block-diagonal.
Deep LSTMs combine the multiple levels of

representation that have proved so effective in deep
networks with the flexible use of long-range context that
empowers RNNs. The architecture of the deep LSTMs
is the same as that presented previously apart from the
fact that there are several LSTM layers.

2.3. Related works

Few works addressed the problematic of the use of
ANNs in the context of the MAP. Among related works,
Guo et al. [8] studied the use of ANN-based methods for
planning a complete coverage patrolling path. In that
work, the area to patrol is discretised into fixed radius
disks that can be thought of as nodes to visit. Then, each
neuron, as a state variable, represents a region activated
negatively or positively in function of either the presence
of obstacle, or the absence of a visit by the patrol,
respectively. Finally, the activities of all the neurons
compose a dynamic landscape such that the non-visited
regions globally attract the robot in the entire space, and
the obstacle locally repel the robot to avoid collisions.
Even though being an original and interesting approach,
the type of neural network used in this work is not
relevant to our problematic laid down. Indeed, the
latter consists of learning temporal sequences which

corresponds here to paths in the graph. Also, in that
work only one neural network was used concomitantly
by all agents, while in our current framework agents
do not communicate, and instead, act in a decentralised
way.

D’Ambrosio et al. [2] developed a new
communication scheme they called the hive brain,
as part of the cooperative multi-agent learning. In this
scheme, each robot is endowed with a neural network
directly connected to nodes of others robots’ internal
ANN, whose weights of connections are evolved. As
stated by the authors, this technique is drawn from an
interesting physical phenomenon called odd sympathy
[3], which is the tendency of pendulum clocks to
synchronise when mounted near each other due to
a small amount of physical information transferred
between the pendulums. Thereby they elaborated the
hive brain in an analogical way where the robots learn
to synchronise by training their respective ANN in a
robot simulator; the training is performed here using
an evolutionary algorithm. In our perspective, this
work presents the same problem than the foregoing,
namely the implicit use of communications in the
simulator between agents to feed the brain of one
agent from another one. However, it inspired our new
strategy of agent to the extent that each agent embeds its
individual ANN. Also, although in our work agents are
currently embedded with the same trained ANN whose
the parameters remain unchanged during a mission
execution, in a not too distant future it will bee valuable
to draw from this work to synchronise the agents’
ANNs’ state and thereby improve our new strategy’s
performances.

Finally, the works of Sales et al. [13] is also
related to our problematic to some extent. Indeed, they
developed an autonomous patrolling system composed
of four intelligent robots that can freely move through
an indoor environment and detect intruders. The robots
are endowed with a localisation/navigation system
composed of an ANN used in combination with a Finite
State Machine (FSM), whose the states correspond to
the key features of the environment. The FSM associates
a sequence of actions to execute with a sequence of
states. The ANNs process the sensors data to identify
and classify the FSM states (current and transitions), and
to determine the actions to perform. After being trained
offline to identify the key features of the environment
such as corridors, intersections and turns, they are fed
into data obtained from robots’ sensors, then they output
the FSM states. From this work we retained the method
to train the ANNs offline in order to set them for a
specific mission leading agents to navigate as efficient as
possible without communicating. Lastly, in this work,

each robot calculates the shortest path by using A* to
reach the intruder’s position when detected taking into
account its teammates, while in ours, the network is
used to select the next node in the neighbourhood with
respect, on the one hand, to the previous ones, and on
the other hand, to what was learned during the offline
training stage.

3. An LSTM-based strategy

In this work we specifically created and assessed one
LSTM-based strategy named LPM. The LSTM network
was trained over simulation traces of a fully-informed,
coordinated and communicating strategy: HPCC.
Finally, it was tested and compared to HPCC and CR.

This section presents our contribution, that is LPM, a
new LSTM-network-based decentralised agent strategy,
which learns to navigate the nodes composing the
area to patrol, from series of histories collected upon
numerous simulation executions of a fully-informed and
coordinated strategy: the HPCC strategy. The main
goal of this work as well as our first assumption was
that if agents learn in average, to behave similarly to
the coordinator which have all information over the
area (the shared idleness of nodes and the real position
of agents), by using an LSTM network, then agents
may approach performances reached by the coordinated
strategy.

3.1. Formal definition

The LPM strategy is an ANN-based strategy: the
decision-making process is carried out by means of an
LSTM network which outputs the next node from the
current node provided as input of the network. This
strategy can be thought of as a reactive strategy using
an artefact for guidance through the area to patrol, such
as a compass, which takes implicitly into account the
idleness of nodes and the agents’ positions. In our
context, the temporal series representing the successive
visited nodes by an agent is called a path. Any vertex of
a path, has for subsequent vertex one of its neighbours.

For a given scenario, the LSTM network temporally
learns the next node to visit vt+1 from a model strategy,
according to the previous ones vt, vt−1, ..., v0 in the
path and that for all paths: each path, as a temporal
series accounting for the path of an agent over the graph,
is fed into the network node after node. It follows that,
with defining f as the decision procedure of the model
strategy - and thereby the strategy itself -, the LSTM
network of the scenario that approximates f can be
defined as follows:

Let It = {it(v0), it(v1), ..., it(vN)} being the set of

shared idlenesses at the time t and va the node from
which a next node to visit, noted v̄, must be selected
as a decision process, by an agent a. Then, the next
node to visit v̄ will be selected from the procedure f , the
requesting node at the time t vt ∈ V which corresponds
to the node visited by an agent a at the time t ∈ T, and
the set of shared idlenesses It such as:

∀t ∈ T, v̄ = f(vt, It) (10)

Thus, with considering f̃ the
vertex-purpose-LSTM-network-based decision
procedure as a function approximator of f , and vt
we have:

∀t ∈ T, vt+1 = f̃(vt, ..., v1) (11)

This equation pertains to the formal definition of an
LSTM network: each output depends upon the previous
outputs.

Let N the number of nodes in the graph. With
the aim of feeding the LSTM network with the most
appropriate and relevant information about the nodes,
each node has been encoded as aN -dimensional one-hot
vector: for the vertex vi, all the coordinates of the vector
will be set to 0 except the i-th coordinate which will
be set to 1. The output of the network thereupon is
an N -dimensional vector whose the values are in [0, 1];
these values can be regarded as probabilities. Thus, to
ensure that all values are positive and their sum equal to
one, the output layer of the networks is a softmax layer.
The node represented by the maximum output vector’s
coordinate should be selected as the next one to visit.

Let (L,H) the profile of parameters of an LSTM
architecture so that L and H stand for the number of
layers and the number of hidden units (or memory cells)
per layer respectively, of a given LSTM architecture.
Formally, by defining b : V → Vbin as being the
function mapping all the indices of nodes into their
one-hot representation, the proposed architecture can
then be described with:

x1t = b(vt) (12)

If L > 1,∀l ∈ {1, ..., L− 1} xl+1
t = hlt (13)

Lnet = softmax(W · hLt) (14)

where dim(h) = H and W is a card(V)×H-matrix of
parameters.

Finally, upon training stage’s completion, each LPM
agent will be endowed with the same parametrised
LSTM network.

3.2. Network training

The training of the LSTM network is performed
from logged paths of any high-performance strategy
f . Generally, the high-performance strategies make
use of communications and centralised decision-making
process. The purpose here, is then to approach the
performances of these strategies without communicating
and thereupon distributing and decentralising the
decision-making process. Indeed, for example in the
context of a drones’ reconnaissance mission or even
silent bots penetrating a network, communications may
be impossible or discouraged. Such a strategy to learn
will be called the model strategy or simply the model if
that does not lead to confusion.

For each scenario {f,G, Na}, also called simulation
configuration or simply configuration, with Na the
number of agents, whether it does not cause any
confusion, the LSTM network is first pre-trained with
the purpose of learning the topology i.e. the structure
of the graph representing the area. Thereafter, the
network is trained over all the paths retrieved from the
executions of configuration for {f,G, Na}, so that it
learns to output with the highest probability the next
node to visit in the path. The process described here
can be thought of as performing sequence modelling
where the sequence is a path of nodes; here the sequence
modelling corresponds to a path generation.

As aforementioned in the Subsection 3.1, the
network’s output layer is a softmax layer. It can be
interpreted as a probability distribution. Thus path
generation aims at learning a probability distribution
over paths by minimising the cross-entropy of a model
given a set of N training sequences of length T :

min
θ
−

N∑
n=1

T∑
t=1

log p(vnt |vn1 , ..., vnt−1;θ) (15)

where θ is the set of the model’s parameters, whose the
dimension is dim(H) = 4(2L − 1)H2 + (4L +
5Card(V))H , and p is the predicted probability for the
current element of the observed sequence (vnt).

3.3. Decision

Generally, despite of the pre-training stage, the
network may output the highest probability for a node
that is not in the neighbouring of the one given in input.
In doing so, the decision shall be made only among the
output probabilities standing for the neighbour nodes.
It follows that each time the one-hot vector of the
current vertex is presented to the network, the decision

procedure f̃ concerning the next node to visit consist
of selecting the next node among the neighbours of the
current vertex with the maximum probability. This can
be mathematically rewritten as bellow:

Let:

• Vbin ⊂ {0, 1}card(V) be the set of nodes
formatted into one-hot vectors,

• Lnet : {0, 1}card(V) → [0, 1]card(V) the function
represented by the LSTM network used here,

• Ng : [0, 1]card(V) × V → [0, 1]card(V),
the function setting to zero the values of the
coordinates not corresponding to the neighbours
of a given node’s one-hot vector.

Then,

∀t ∈ T,∀vt ∈Vbin,

vt+1 =argmax(Ng(Lnet(b(vt)), vt))
(16)

It then follows that:

∀t ∈T : vt ∈ V,

f̃(vt, ..., v1) = argmax(Ng(Lnet(b(vt)), vt))

(17)
with f̃ depending upon v1, ..., vt due to their relevant

features being stored in the memory of Lnet.
Finally, the first experiments showed that using

LSTM network as it stands, tends to lead agents to
converge indefinitely towards a small set of nodes,
leaving thereupon others nodes non-visited until
the end of the execution. In doing so, the decision
procedure was slightly improved: henceforth, with the
aim to make the system more robust, the next vertex
to visit from the current one is randomly selected
according to the distribution of probability output by
the LSTM network, normalised over the neighbourhood
of the current vertex using the Bayes’ theorem over
the distribution of neighbours. This new procedure
enables therefore to add a little randomness in the
decision process when selecting the next node in the
neighbourhood, leading to increase the robustness of
the system, and thereby to avoid agents to visit only a
restricted set of nodes. This new resulting strategy was
called Random-Next-Neighbour-LSTM-Path-Maker,
abbreviated RLPM.

4. Experiments and results

4.1. Scenarios

In order to align with previous works carried out
in this field [12] and pursue the experiments in a

Figure 2. Graphs used for assessment.

comparative way, three different graphs were selected to
evaluate the strategies CR and HPCC as a benchmark for
the MAP: Islands, Grid and A, as shown in the Figure
2. Considering the different structures of these graphs,
each one can be thought of as the representative of a
class of graphs, hence the choice.

For each graph we tested in simulation the strategies
CR, HPCC with a value of 0.2 for rH and rP , RLPM
was trained from HPCC’s simulation with the same
value for r as well, then tested. To that end we
used Pytrol, a new Python MAP-purpose simulator
that we specially designed for this purpose, while a
MAP-specific training program was coded using the
deep learning library PyTorch to train the ANNs.
These tests were performed over population sizes of
1, 5, 10, 15 and 25 agents and for each size we
selected 100 random starts, also called executions. For
each start, each strategy was tested over 3000 time
steps. For any topology, each execution in simulation
on an high-performance server takes approximately
between 20 seconds and 130 seconds for 1 and 25
agents, respectively. This time complies with real life
applications involving drones equipped with more basic
computers and patrolling an area. Considering that each
move takes exactly one period in the proposed model,
after excluding the moves upon edges, an agent visits in
average 600 nodes during one execution of 3000 time
steps. In doing so, the paths used to train the LSTM
networks have approximately a length of 600 nodes.

4.2. Training results

For each scenario we trained seven architectures
with profiles of parameters: (1, 1), (2, 2), (4, 10),
(1, 50), (2, 50), (3, 50), and (50, 2), with an end-to-end
training i.e. a non truncated back-propagation through
time. For any architecture we trained over 10000 epochs
one LSTM network for each simulation configuration
in two stages using the PyTorch library. First, the
network is pre-trained over 2 × 106 epochs to capture
as far as possible the structure of the topology, with
2-length series which stand for the edges of the graph.
Then, the network is trained over the paths of agents
with parameters initialised with the values learnt during
the pre-training stage, over 10000 epochs. The Figure

3 shows the initial and final values of the cost, that
is the cross-entropy, during the validation stage for
each architecture, averaged over the maps and numbers
of agents. Here the initial cost corresponds to the
validation cost after the first epoch. This figure shows
that the better networks are (2, 50), (1, 50) and (4, 10).
Interestingly, the initial and final cost for the architecture
(50, 2) are almost identical and it has the worst cost
with a value of 3.87. This result tends to show that
the network’s parameters converged very quickly, that
is in 1 epoch. The number of parameters for (1, 1),
(2, 2) and (50, 2) are 258, 564 and 2484 respectively. It
seems that those numbers are too low for a satisfactory
approximation of the sequences. At the opposite, (3, 50)
has 63100 parameters. It is likely that this number
is too large to avoid overfitting and a relatively bad
performance in term of validation cost. Indeed, for
one agent the size of the training data is approximately
50000, that is lower than the number of parameters of
the (3, 50) network.

Figure 3. Costs averaged over the maps and

numbers of agents for each architecture.

Considering the bad final validation costs of (50, 2),
(1, 1) and (2, 2), of 3.87, 3.03, and 2.08 respectively,
we tested and evaluated the four LSTM architectures:
(4, 10), (1, 50), (2, 50), (3, 50). Thus, each architecture
has given rise to four variants of RLPM named
RLPM-L-H .

4.3. Performance results

To evaluate their performances, the RLPMs were
tested and compared with CR, the reactive strategy, and
HPCC, the cognitive one wherefrom they were trained.
We used normalised MI and QMI as evaluation criteria,
also referred to as metrics.

Fig. 4 shows all the results from our experiments
for the normalised MI. For the sake of clarity, we
show the RLPM version with the best value over this
criterion , i.e. with the lowest value of MI, and that
for each configuration. The best corresponding version

for each configuration is denoted upon the graph. Not
surprisingly HPCC always outperformed all the other
strategies (CR, and the RLPMs) on all the maps and for
all the population sizes of agents, except for the map
A where RLPM-3-50 barely outperforms HPCC for 1
agent with a MI of 210 against 212 for HPCC. For all
the maps the RLPMs overwhelmingly outperform the
reactive strategy CR. For all the sizes of agent societies,
the RLPMs are very close from HPCC, especially for 1
agent where their difference over MI ranges from −2,
as previously stated for the map A where RLPM-3-50
is even better than HPCC, to 11 for the map Grid with
a value of 251 for RLPM-1-50 against 240 for HPCC.
Besides, the evolution of RLPMs’ performances over
MI with respect to the number of agents fit rather well
the HPCC’s ones with an average difference of MI over
all the population sizes for the three maps of 15.

Figure 4. Normalised MI of the evaluated strategies

in ordinate for the three maps and the population

sizes of agents in abscissa.

For the maps Islands and A the architecture (2, 50)
is always the best. However, for the map Grid the
architecture (1, 50) is the best for 1, 5, 10 and 25 agents,
but for 15 agents it is (4, 10). Further analyses showed
that the architecture (1, 50) for 15 agents is only worse
than (4, 10) of 1 time step, 297 against 296 for (4, 10).
RLPM-1-50 is thus globally the best strategy for this
map. Also, for the same map the average difference of
performances over the population sizes between the best
architectures previously enumerated and the architecture
(2, 50) is only of 2 time steps. This leads to consider
RLPM-2-50 as being globally the best RLPM strategy
for MI.

The Fig. 5 shows the results for the normalised QMI.
As for MI, for the sake of clarity, it is only showed the
RLPM version with the best value, i.e. with the lowest
value of QMI, that for each configuration. As well,
the best corresponding version for each configuration is
denoted upon the graph. For the map Islands, the QMI
of the best RLPM is worse than HPCC and CR for all
the numbers of agents, except for 25 agents where CR

Figure 5. Normalised QMI of the evaluated

strategies in ordinate for the three maps and the

population sizes of agents in abscissa.

is worse of 28. Also, it must be pointed out that for
1 agent CR is a little better than HPCC, 290 against
320. This result can be explained by the topology of the
map in combination with the HPCC’s decision-making
rule regarding the next node to visit: HPCC takes into
account the distance from the agent’s current node while
CR chooses its next node to visit as the one having the
greatest idleness in its neighbour. The best architectures
are (2, 50) for 1 agent, (1, 50) for 5, 15 and 25 agents
and (4, 10) for 10 agents. In average, over the whole
population sizes and the three maps, for the map Islands
the best RLPMs are worse than HPCC of 256 periods
with a significant difference of 533 for 15 agents. For the
map A, the RLPMs are always better than CR but worse
than HPCC, and except for 25 agents where RLPM-3-50
is the best RLPM strategy, RLPM-1-50 is always the
best one. However, RLPM-2-50 turns out to be the best
strategy for QMI when averaging over the population
sizes with a value of 481 periods. Also, in average
the best RLPMs are worse than HPCC of 152 periods.
Lastly, for the map Grid, the RLPMs are worse than
HPCC, but better than CR except for 1 agent where
CR is better than the RLPMs of 32 periods. The best
architectures are (2, 50) for 1 agent and (1, 50) for 5,
10, 15 and 25 agents. As well as for the A map, in
average over the population sizes, RLPM-2-50 is the
best strategy and the best RLPMs are worse than HPCC
of 105 periods.

Finally, the architecture (2, 50) tends to be the best
RLPM strategy for MI, except for the map Grid where
(1, 50) is slightly better, while for QMI, (1, 50) is
irremediably and globally the best strategy.

The Fig. 6 represents the criterion space for MI
and QMI with the results of RLPM strategies averaged
over the different numbers of agents. Here the different
RLPM strategies and thus the LSTM architectures
makes up the decision space. For the map Islands,
it exists two Pareto optimal solutions in the decision
space: the architectures (2, 50) and (1, 50) where the

Figure 6. Criterion space of MI and QMI.

former is the best for MI with a value of 211, while the
latter is the best for QMI with a value of 629. For the
map A, both are also the only Pareto optimal solutions
where the former is still the best for MI with a value
of 234, while the latter is still the best for QMI with a
value of 480. Finally for the map Grid, the architecture
(2, 50) is the only Pareto optimal solution with a value
of (290, 517). This analysis thereby tends to confirm
our preliminary and foregoing assumption regarding the
architecture (2, 50) and (1, 50) as globally the best ones
pertaining to our problematic, where the former tends to
be better for MI and the latter better for QMI.

As well, the architecture (3, 50) is the worst strategy
for the QMI criterion. QMI as quadratic mean, takes
better into account the difference of time interval
between the nodes and thus measures the tendency of
nodes to be equitably visited through a run. Indeed,
it penalises strategies that leave nodes unvisited (or
which produces wide intervals between visits) during
the simulation run[14]. Therefore, it provides an
additional precision upon the distribution of visits over
the nodes: one node with wide intervals have a little
impact upon MI while it has upon QMI. Similarly, the
architecture (4, 10) is most of the time the worst strategy
for MI. The performances over QMI of these strategies
tends to show that they visit perpetually the same little
set of nodes, whereupon the visits are poorly distributed
over the nodes. It is likely that (4, 10) presents a too
small number of parameters to learn the behaviour of
the HPCC startegy and, conversely, (3, 50) a too large
number of parameters to avoid over-fitting.

5. Conclusion and perspectives

In this paper we proposed and evaluated a new
strategy for the multi-agent patrolling problem,
based on the LSTM network architecture. To
that end, we reminded the model underlying the
multi-agent patrolling problem as well as the LSTM
architecture. Then, we formally defined the new
proposed LSTM-based strategy, wherefore the

LSTM network was trained from the traces of a
high-performance strategy. Seven architectures of
LSTM were analysed in this work. Finally, we
developed a new fully-fledged simulator in Python,
specially designed for the multi-agent patrolling; this
simulator, that we named Pytrol, allowed to gather data
to learn, test and evaluate the new strategies which
were confronted to the reactive and cognitive standard
strategies.

The evaluation demonstrated that RLPM-2-50 and
RLPM-1-50, the strategies set from the LSTM
architectures with 2 layers and 50 neurons, and 1 layers
and 50 neurons respectively, are globally the best.
RLPM-2-50 is the best upon MI - a central tendency
measure - while RLPM-1-50 is the best upon QMI -
measure that tends to emphasise the node with long
times without visits.

These first experiments show good results as
far as for each topology the proper architecture is
selected. It has been showed that in an extreme
situation where communications are prohibited, a
learning strategy based on the LSTM architecture
can perform missions in a context of crisis with
good performances, even better than the reactive and
decentralised representative CR. The latter result show
thereupon that a supervised-learning-based strategy with
directed randomness is better than a reactive one and
close to HPCC the cognitive representative for the
criterion MI, although RLPM does not communicate,
given that CR and HPCC are good representatives
for the reactive and cognitive strategies respectively.
Moreover, CR and RLPM are decentralised strategies,
by design. However, RLPM was obtained by adding
randomness in the decision procedure, otherwise the
system being too much rigid tends to lead agents to
converge indefinitely towards a small set of nodes. This
entails that the learning system resting upon the LSTM
architecture used here is not adaptive. A preliminary
avenue to explore would be to use a new cost function
to optimise, instead of the cross-entropy, to train the
models in a different way, what could improve QMI
by increasing the variability of the learned distribution.
Also, in order to exploit the potential of the LSTM
networks for the generation of paths in the multi-agent
patrolling, new deeper and more complex architecture
will be implemented and evaluated in the future, as well
as other ANN architectures to improve the distribution
of agents over the nodes and thereby QMI, but also the
performances more generally.

Finally, in order to bring RLPM in real life, several
steps remain to be performed. First, simulation tests
using a graph constructed from geographical data of an
area to be patrolled shall be conducted. Then validation

in field tests with actual drones will be possible.

References

[1] Almeida A., PM Castro, TR Menezes et GL Ramalho.
Combining idleness and distance to design heuristic
agents for the patrolling task. In II Brazilian Workshop in
Games and Digital Entertainment, pages 33–40, 2003.

[2] David B. D’Ambrosio, Skyler Goodell, Joel Lehman,
Sebastian Risi, Kenneth O. Stanley:Multirobot Behavior
Synchronization through Direct Neural Network
Communication. ICIRA (2) 2012: 603-614

[3] Bennett, M., Schatz, M.F., Rockwood, H., Wiesenfeld,
K.: Huygens’s clocks. Proceedings of the Royal Society
of London. Series A: Mathematical, Physical and
Engineering Sciences 458(2019) (2002) 563–579

[4] Chevaleyre, Y.: Theoretical Analysis of the Multi-agent
Patrolling Problem. In: Proc. of the Int. Conf. On
Intelligent Agent Technology, Beijing, China, pp. 302–308
(2004)

[5] Elmaliach, Y., Agmon, N., Kaminka, G.: Multi-Robot
Area Patrol under Frequency Constraints. In: Int. Conf.
on Robotics and Automation, Rome, Italy, pp. 385–390
(2007)

[6] Santana, H., Ramalho, G., Corruble, V., Ratitch, B.:
Multi-Agent Patrolling with Reinforcement Learning. In:
Proc. of the Third Int. Joint Conf. on Autonomous Agents
and Multiagent Systems, New York, vol. 3, pp. 1122–1129
(2004)

[7] Menezes, T., Tedesco, P., Ramalho, G.: Negotiator Agents
for the Patrolling Task. In: Sichman, J.S., Coelho, H.,
Rezende, S.O. (eds.) IBERAMIA 2006 and SBIA 2006.
LNCS (LNAI), vol. 4140, pp. 48–57. Springer, Heidelberg
(2006)

[8] Guo, Y., Parker, L., Madhavan, R.: 9 Collaborative Robots
for Infrastructure Security Applications. In: Studies in
Computational Intelligence (SCI), April 22, v 2007, vol.
50, pp. 185–200. Springer, Heidelberg (2007)

[9] A. Graves and J. Schmidhuber, ”Framewise phoneme
classification with bidirectional LSTM networks,”
Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005., Montreal, Que., 2005, pp.
2047-2052 vol. 4.

[10] Hochreiter, S. & Schmidhuber, J. Long short-term
memory. Neural Comput. 9, 1735–1780 (1997).

[11] Machado, A., Ramalho, G., Zucker, J., Drogoul,
A.: Multi-Agent Patrolling: an Empirical Analysis of
Alternative Architectures. In: Sichman, J.S., Bousquet,
F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol.
2581, pp. 155–170. Springer, Heidelberg (2003)

[12] Mehdi Othmani-Guibourg, Amal El Fallah-Seghrouchni,
Jean-Loup Farges, Maria Potop-Butucaru. Multi-agent
patrolling in dynamic environments. 2017 IEEE
International Conference on Agents (ICA). 2017.

[13] D. O. Sales, D. Feitosa, F. S. Osorio and D. F. Wolf,
”Multi-agent Autonomous Patrolling System Using ANN
and FSM Control,” 2012 Second Brazilian Conference on
Critical Embedded Systems, Campinas, 2012, pp. 48-53.

[14] P.A. Sampaio, G. Ramalho et P. Tedesco. The
Gravitational Strategy for the Timed Patrolling. In 22nd
IEEE International Conference on Tools with Artificial
Intelligence (ICTAI) 2010, volume 1, pages 113–120.
IEEE, 2010.

