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ON ALMOST STABLE CMC HYPERSURFACES IN MANIFOLDS

OF BOUNDED SECTIONAL CURVATURE

JULIEN ROTH AND ABHITOSH UPADHYAY

Abstract. We show that almost stable constant mean curvature hypersur-
faces contained in a sufficiently small ball of a manifold of bounded sectional

curvature are close to geodesic spheres.

1. Introduction and statement of the result

Let φ : (Mn, g) → (Nn+1, g) be an isometric immersion of an oriented closed n-
dimensional Riemannian manifold M in a (n + 1)-dimensional oriented manifold
(N, g). We assume that M is oriented by the global unit normal field ν so that ν
is compatible with the orientations of M and N . We will denote by B the second
fundamental form of φ and its mean curvature by H. Let F : (−ε, ε) ×M −→ N
be a variation of φ so that F (0, .) = φ. The balance volume associated with the
variation F is the function V : (−ε, ε) −→ R defined by∫

[0,t]×M
F ?dvg

where dvg is the volume element associated to the metric g on N . We will denote
simply by dv the volume element of g. It is a classical fact that

V ′(0) =

∫
M

fdv

where f(x) = 〈∂F∂t (0, x), ν〉. Moreover the area function A(t) =

∫
M

dvF?
t h

satisfies

A′(0) = −n
∫
M

Hfdv.

We say that F is preserving the volume if V (t) = V (0) in a neighbourhood of 0 and

in this case we have

∫
M

fdv = 0. Conversely, for all smooth functions f so that∫
M

fdv = 0, there exists a preserving volume variation so that f = 〈∂F∂t (0, x), ν〉.
The following assertions are equivalent

(i) The immersion φ is a critical point of the area (i.e. A′(0) = 0 ) for all
variations with preserving volume.

(ii)

∫
M

Hfdv = 0 for any smooth function so that

∫
M

fdv = 0.
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(iii) There exists a constant H0 so that A′(0) +nH0V
′(0) = 0 for any variation.

(iv) φ is of constant mean curvature H0.

An immersion with constant mean curvature H0 will be said stable if A′′(0) > 0 for
all variations preserving the volume. Now we consider the function J (t) defined by

J (t) = A(t) + nH0V (t).

Then, J ′′(0) depends only on f and we have

J ′′(0) =

∫
M

|df |2dv −
∫
M

(RicN (ν, ν) + |B|2)f2dv

=

∫
M

f∆f −
∫
M

(RicN (ν, ν) + |B|2)f2dv

=

∫
M

fJfdv,

where RicN is the Ricci curvature of N with respect to the metric g and J is the so-
called Jacobi operator defined by Jf = ∆f − (RicN (ν, ν)+ |B|2)f . It is well known
that φ is a stable constant mean curvature immersion if and only if J ′′(0) > 0 for

any smooth function f so that

∫
M

fdv = 0 or equivalently if J is a non-negative

operator.
Barbosa and Do Carmo [1] proved that the only stable closed CMC hypersurfaces
of the Euclidean space are the round spheres. This result was extended later by
Barbosa, Do Carmo and Eschenburg [2] for spheres and hyperbolic spaces. In
[4], Grosjean with the first author considered the stablity of CMC hypersurfaces
in Riemannian manifolds with (non-constant) bounded sectional curvature. After
proving a pinching result for the first eigenvalue of the Laplacian, they were able
to show that a closed stable CMC hypersurface of a Riemannian manifold with
bounded sectional curvature and contained in a geodesic ball of sufficiently small
radius is close to a geodesic sphere. Namely, close means here diffeomorphic and
almost-isometric to a geodesic sphere of appropriate radius (depending upon the
mean curvature).
The aim of this short note is to show that the assumption of being stable can be
relaxed to almost stable in the result of [4]. By almost stable, we mean that the
Jacobi operator J is not supposed to be non-negative but greater than some small
negative constant

(1)

∫
M

fJfdv > −nε
∫
M

h2f2dv,

for any smooth function f so that
∫
M
fdv = 0, where h =

√
‖H‖2∞ + δ. Note that

h2 appears in the right hand side of the almost stablility condition for homogeneity
reasons.

From now on, we assume that the sectional curvature of (N, g) satisfies
µ 6 SectN 6 δ, for µ 6 δ two real constants. Before stating the main result of this
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note, we introduce the following function

sδ(r) =


1√
δ

sin
√
δr if δ > 0

r if δ = 0
1√
|δ|

sinh
√
|δ|r if δ < 0,

as well as the following set: HV (n,N) is the space of all Riemannian compact,
connected and oriented n-dimensional Riemannian manifolds without boundary
isometrically immersed into (Nn+1, g) which satisfy the following hypothesis
on the volume : V (M) 6 cωn

δn/2 if δ > 0 and V (M) 6 cωni(N)n if δ 6 0 for some

constant c. For more convenience we take 1/
√
δ = +∞ if δ 6 0. This condition on

the volume is required to apply the result of [4] (see Theorem 2.1 below) about the
pinching of the first eigenvalue of the Laplacian. This condition comes from the
extrinsic Sobolev inequality of Hoffman and Spruck [6] which is used in the proof
of that pinching result.

The main result of this note is the following:

Theorem 1.1. Let (Nn+1, g) be a (n+1)-dimensional Riemannian manifold whose
sectional curvature SectN satisfies µ 6 SectN 6 δ and i(N) > π√

δ
if δ > 0 and

let M ∈ HV (n,N). Let us assume that φ(M) lies in a convex ball of radius

min
(

π
8
√
δ
, i(N)

2

)
. Let ε < 1

12 , q > n and A > 0. Let assume that V (M)1/n‖B‖q 6
A for δ > 0 (resp. max(Hh , V (M)1/n‖B‖q) 6 A for δ < 0). Then there exist
positive constants α := α(q, n), K := K(n, q,A) and R0(δ, µ, ε) such that if φ is of
constant mean curvature H and almost stable in the sense of (1), εα < 1/K and
φ(M) is contained in a convex ball of radius R0(δ, µ, ε)) then M is diffeomorphic
and Kεα-quasi-isometric to S(p, s−1δ

(
1
h

)
), that is there exists a diffeomorphism F

from M into S(p, s−1δ
(
1
h

)
) so that∣∣|dFx(u)|2 − 1

∣∣ 6 Kεα
for any x ∈M , u ∈ TxM and |u| = 1.

2. Proof of the result

Let M ∈ HV (n,N) and denote by φ the isometric immersion of (M, g) into (N,h).
Moreover, let us assume that φ has constant mean curvature and is almost stable in
the sense of (1) for some positive ε. Let f be an eigenfunction associated with the

first eigenvalue λ1(M) of the Laplacian on (M, g). Since

∫
M

fdv = 0 then condition

(1) gives

λ1(M)

∫
M

f2dv −
∫
M

(RicN (ν, ν) + nH2 + |τ |2)f2dv > −εnh2
∫
M

f2dv
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where τ is traceless part of the second fundamental form B. Since µ 6 SectN , we
deduce that

λ1(M) > n(H2 + µ− εh2)

> nh2 + n(µ− δ − εh2)

> nh2
(

1 +
µ− δ − εh2

h2

)
and so

nh2 6 λ1(M)

1 +
1

h2

δ − µ+ εh2
− 1

 .

Now, we set R1(δ, µ, ε) = s−1δ

(√
1
2 − ε

(δ − µ)
(

1
2ε + 1

)). We recall that the extrinsic

radius of M is defined as the radius of the smallest ball containing φ(M). We have
the following well-known lower bound for the extrinsic radius R(M) (see [3]) for
instance)

sδ(R(M)) >
1

h
,

for compact hypersurfaces of a Riemannian manifold of sectional curvature bounded
from above by δ. Now, if we assume that φ(M) is contained in a ball of radius R1,
then since sδ is an increasing funtion, we get

h2 >
1

s2δ(R(M))
>

1

s2δ(R1)
=

(δ − µ)
(
1
ε + 1

)
1
2 − ε

.

From this, we deduce easily that

1

h2

δ − µ+ εh2
− 1

6 2ε

and so
nh2 6 λ1(M)(1 + 2ε),

that is, (Λ2ε) holds, where we denote by (Λη) the following pinching condition

(Λη) nh2 6 λ1(M)(1 + η)

associated with the following upper bound for the first eigenvalue of the Laplacian
proved by Heintze [5]

λ1(M) 6 nh2.

Now, we recall the following theorem proved by the first author and Grosjean in
[4].

Theorem 2.1 ([4]). Let (Nn+1, g) be a n+1-dimensional Riemannian manifold
whose sectional curvature SectN satisfies µ 6 SectN 6 δ and i(N) > π√

δ
if

δ > 0. Let M ∈ HV (n,N). Let us assume that φ(M) lies in a convex ball of

radius min
(

π
8
√
δ
, i(N)

2

)
. Let p0 be the center of mass of M . Let η < 1/6 ,

q > n and A > 0. Let us assume that max(V (M)1/n‖H‖∞, V (M)1/n‖B‖q) 6 A

for δ > 0 (resp. max(V (M)1/n‖H‖∞, ‖H‖∞h , V (M)1/n‖B‖q) 6 A for δ < 0).
Then there exist positive constants C := C(n, q,A) and α := α(q, n) such that if
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(Λη) holds, ηα < 1/C and φ(M) is contained in the ball B
(
p0, s

−1
δ

(√
η

δ−µ

))
then

M is diffeomorphic and Cηα-quasi-isometric to S(p, s−1δ
(
1
h

)
).

Let ε < 1
12 and η = 2ε < 1

6 . We set

R0(δ, µ, ε) = min

{
s−1δ

(√
2ε

δ − µ

)
, R1(δ, µ, ε)

}
and K(n, q,A) = 2α(n,q)C(n, q,A), where α, C and R are the constants given by
Theorem 2.1 and R1 is defined in the beginning of the proof.
If we assume that φ(M) is contained in a ball of radius R0(δ, µ, ε), by the defini-
tion of R0(δ, µ, ε), we have R0(δ, µ, ε) 6 R1(δ, µ, ε) and so we get from the above
computation that (Λ2ε) holds. Moreover, we also get that φ(M) is contained in

a ball of radius s−1δ

(√
2ε
δ−µ

)
. In addition, if we assume that εα < 1/K, then,

from the definition of K, we get that (2ε)α < 1/C and Theorem 2.1 (applied with
η = 2ε) gives that M is diffeomorphic and Cηα-quasi-isometric to S(p, s−1δ

(
1
h

)
.

Since Cηα = Kεα, by the definition of K, Theorem 1.1 is proven. �

Remark 2.2. In the case of the Euclidean space, the result of Theorem 1.1 was
proven in [7] and in this case, there is no assumption of being contained in a smal
ball. Theorem 1.1 gives an analogue of the result of [7] for the hyperbolic space
as well as the half-sphere. Indeed, if µ = δ, then R0(δ, µ, ε) = +∞ since both

s−1δ

(√
2ε
δ−µ

)
and R1(δ, µ, ε) are +∞.

Acknowledgements

Second author gratefully thanks the support of National Post-doctoral Fellowship
(File no. PDF/2017/001165) from Science and Engineering Research Board,
Government of India.

References

[1] J.L. Barbosa & M.P. do Carmo Stability of Hypersurfaces with Constant Mean Curvature,

Math. Z., 185, No. 3, (1984), 339-353.
[2] J.L. Barbosa, M.P. do Carmo & J. Eschenburg, Stability of hypersurfaces of constant mean

curvature in Riemannian manifolds, Math. Z. 197 (1) (1988), 123-138.
[3] C. Baikoussis & T. Koufogiorgos, The diameter of an immersed Riemannian manifold with

bounded mean curvature, J. Austral. Soc., (Series A), 31 (1981), 189-192.
[4] J.F. Grosjean & J. Roth, Eigenvalue Pinching and Application to the Stability and the Almost

Umbilicity of Hypersurfaces, Math. Z. 271(1) (2012), 469-488.
[5] E. Heintze, Extrinsic upper bound for λ1, Math.Ann., 280, (1988), 389-402.

[6] D. Hoffman & J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds,
Comm. Pure and Appl. Math., 27 (1974), 715-727.

[7] J. Roth & J. Scheuer, Pinching of the first eigenvalue for second order operators on hyper-

surfaces of the Euclidean space, Ann. Glob. Anal. Geom. 51(3) (2017), 287-304.



6 J. ROTH AND A. UPADHYAY

(J. ROTH) Laboratoire d’Analyse et de Mathématiques Appliquées, UPEM-UPEC, CNRS,
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