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Probabilistic Collision Avoidance for Long-term
Space Encounters via Risk Selection

Romain Serra, Denis Arzelier, Mioara Joldes and Aude Rondepierre

Abstract This paper deals with collision avoidance between two space objects
involved in a long-term encounter, assuming Keplerian linearized dynamics. The
primary object is an active spacecraft - able to perform propulsive maneuvers - orig-
inally set on a reference orbit. The secondary object - typically an orbital debris -
is passive and represents a threat to the primary. The collision avoidance problem
addressed in this paper aims at computing a fuel-optimal, finite sequence of impul-
sive maneuvers performed by the active spacecraft such that instantaneous collision
probability remains below a given threshold over the encounter and that the primary
object goes back to its reference trajectory at the end of the mission. Two succes-
sive relaxations are used to turn the original hard chance-constrained problem into
a deterministic version that can be solved using mixed-integer linear programming
solvers. An additional contribution is to propose a new algorithm to compute prob-
abilities for 3-D Gaussian random variables to lie in Euclidean balls, enabling us to
numerically validate the computed maneuvers by efficiently evaluating the resulting
instantaneous collision probabilities.
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Université de Toulouse, INSA, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse,
e-mail: serra@laas.fr

Denis Arzelier
CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse,
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Introduction

During the last decades, the number of space debris around the Earth has been con-
tinuously and rapidly increasing. It now represents the majority of orbital objects
and is a real threat for operational spacecraft. To prevent potential collisions on an
active satellite, one solution consists in performing one or several evasive maneu-
vers when the predicted risk is too high according to mission requirements. These
requirements also impose to end within given bounds relatively to the reference orbit
by the time the threat is gone. This may call for one or several recovery maneuvers.
In addition, the design of the overall thrust strategy is driven by the need to minimize
fuel consumption in order to preserve the expected lifetime of the satellite.

This study deals with the collision avoidance problem between two orbiting ob-
jects involved in a long-term encounter, assuming a Keplerian linearized relative
motion. One of the object, called the primary object and denoted by p, is an op-
erational satellite initially set on a reference orbit. It is active in the sense that it
is able to perform propulsive maneuvers to change its own trajectory. The second
object, denoted by s, is passive: it is typically an uncontrolled space debris. The
long-term encounter framework means that the time spent by the two space objects
in the encounter region is large enough: it can extend up to a few orbital periods and
corresponds to a relative velocity well below the threshold of the km.s�1.

Due to the lack of precision in measurements, the position and the velocity of
each object are known with a certain amount of uncertainty, so they can be modeled
as random variables. The collision risk is then quantified in terms of probability. The
collision avoidance problem is formulated as a joint chance constrained optimiza-
tion problem: it consists in computing a fuel optimal, finite sequence of impulsive
maneuvers performed by the active spacecraft such that the probability of collision
between the two objects does not exceed a user-defined threshold and that the pri-
mary object goes back to its reference orbit in due time. This paper aims at finding
a practically solvable formulation for this optimization problem.

Since the original joint chance-constrained problem is very difficult to solve, sim-
plifying assumptions are usually made to reduce the size of the optimization space
or even to avoid the probabilistic formulation. In [15] the execution times and the
thrust directions are heuristically fixed a priori so that the collision avoidance ma-
neuvers are only optimized in magnitude. In [11], the avoidance strategy is reduced
to one single maneuver. The maneuver direction is decoupled from its magnitude
which allows to reduce the decision variables from three to one. In the context of
satellites in formation flight, [17] proposes a simple strategy consisting in comput-
ing one velocity correction to achieve a fixed miss distance between the two objects.
Note also the work in [10], where the collision avoidance problem is tackled as a
robust optimization problem and in which safe guidance algorithms are designed for
the PRISMA mission in the form of linear programs. Most of the time, the proposed
strategies do not take any recovery maneuver to the reference orbit into account.

In this paper, the main idea is to relax the initial joint chance constrained opti-
mization problem into a deterministic disjunctive linear program that can be solved
for instance with a mixed-integer linear programming solver. To this end, two mech-
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anisms are used: (i) the collision set, usually modeled as a spherical geometrical
object [5], is outer approximated here by a convex polyhedron; (ii) the so-called
risk selection method, introduced first in [3] for probabilistic path planning. The de-
gree of conservatism of these relaxations will be estimated in the chosen test case
presented in the last section of this paper. The first contribution of this article is to
propose an effective solution to the collision avoidance problem that takes recovery
maneuvers to the reference orbit into account. The second contribution is to propose
a new algorithm to efficiently compute the probability for any 3-D Gaussian random
variable to lie in a Euclidean ball. This is an extension of the 2-D method described
in [16]. This efficient evaluation of the instantaneous probability of collision is used
here to analyze a posteriori the computed maneuvers and to validate on a finer grid
the mitigation of the collision risk.

Notations: Capital letters are dedicated to random variables and small characters
to instances of these variables. Let Y be a random vector: y is an occurrence of
Y , µY the mean vector of Y and SY its variance-covariance matrix. Finally, the d-
dimensional normal (or Gaussian) distribution of a d-dimensional random vector Y
is denoted by: Y ⇠ Nd(µY ,SY ). P({·}) is the probability of the event {·}.

1 Probabilistic model for collision avoidance

Two spherical space objects involved in a long-term encounter over a time horizon
[t0, t f ] are considered. This section addresses the mathematical formulation of the
problem of a long-term encounter between these two orbiting objects. Let us first
introduce the Local Vertical Local Horizontal (LVLH) orbital frame (Op̃,ux,uy,uz)
attached to the nominal orbit of the primary object (see Figure 1):

• Origin Op̃: nominal position of the primary center of mass;
• Z axis (R-bar): radial direction (Nadir-Target), oriented towards the center of the

Earth;
• Y axis (H-bar): perpendicular to the nominal primary orbital plane, pointing

opposite the angular momentum;
• X axis (V-bar): chosen such that ux = uy ⇥uz.

This frame is used for the linearized equations of motion in what follows.

1.1 Model of the linearized dynamics

The long-term encounter assumption means that the time spent by the two objects
in the encounter region is significant. One can then reasonably assume that during
the encounter the relative distances of the two objects to the reference position are
small compared to their distance to the Earth. Under this assumption, the respective
equations of motion for each object may be linearized around the reference orbit.
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Fig. 1 Local Vertical Local Horizontal (LVLH) frame

Assuming unperturbed Keplerian motions, the linearized equations are described
by the standard Tschauner-Hempel equations [18] and its associated Yamanaka-
Ankersen’s state transition matrix [20].

Let xp = [rp vp]
T and xs = [rs vs]

T respectively denote the position and velocity
vectors of the primary and the secondary objects. Unlike the secondary object, the
primary object can use its thrusters to modify its trajectory. These propulsive maneu-
vers are assumed to be impulsive. The impulsive approximation for the thrust means
that instantaneous velocity increments are applied to the primary object instead of
finite-thrust powered phases of finite duration. Let T̂ = {t̂1, t̂2 . . . , t̂N1} be a sorted set
of dates in [t0, t f ] when a maneuver can be performed. For each i 2 {1, . . . ,N1}, the
impulsive assumption could be expressed as:

xp(t̂+i ) = xp(t̂�i )+BDVi, (1)

where B =



03
I3

�

and DVi is the velocity increment applied at t̂i.

Under the previous assumptions and considering that the primary object p is
actuated while s is not, propagation of the state vectors xp and xs follow equations
(2) and (3):

xp(t) = F(t, t0)x0
p + Â

i2{1,...,N1}
t̂it

F(t, t̂i)BDVi (2)

xs(t) = F(t, t0)x0
s , (3)

where x0
p = xp(t0), x0

s = xs(t0) and F(·, ·) is the Yamanaka-Ankersen transition
matrix. The set T̂ of dates is assumed fixed a priori. Its choice can follow from
considerations on heuristics or previous runs of the algorithm. By default, it can
simply be a uniform discretization of [t0, t f ].

It is also assumed that the primary object p is actuated by identical engines rigidly
mounted to the body axes of the spacecraft; consequently the fuel consumption will
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be defined in the sequel as:

J =

N1

Â
i=1

kDVik1. (4)

Note that a second time grid T = {t0 < t1 < t2 < .. . < tN2 = t f }, uniform and thin-
ner than T̂ (i.e. N2 > N1) is introduced to evaluate the instantaneous probability of
collision in the problem of collision avoidance.

1.2 Uncertainty on positions and velocities

Due to the current limitations of orbit acquisition systems, information about the
objects trajectories and velocities is known with a certain amount of uncertainty.
Therefore, positions and velocities of the two objects at initial time t0 are not known
exactly and can be seen as jointly distributed random variables, respectively denoted
by X0

p and X0
s , following independent Gaussian distribution laws:

X0
p ⇠ N6(µX0

p
,SX0

p
), X0

s ⇠ N6(µX0
s
,SX0

s
).

Under these assumptions, the relative position and velocity vector at time t0 is also
a Gaussian random vector, denoted by X0

= X0
p �X0

s :

X0 ⇠ N6(µX0
p
�µX0

s
,SX0

p
+SX0

s
). (5)

Let us now focus on the propagation of uncertainties over the time horizon [t0, t f ].
Let Xk

p and Xk
s be the random state vectors at time tk. Due to the linear setting, the

Gaussian nature of uncertainty is preserved over the time horizon [t0, t f ]. In other
words, at any time tk, k 2 {1, . . . ,N2}, one has:

Xk
p ⇠ N6(µXk

p
,SXk

p
), Xk

s ⇠ N6(µXk
s
,SXk

s
).

Using the propagation equations (2) and (3), the mean and the covariance matrices
can be easily expressed as:

µXk
p
= F(tk, t0)µX0

p
+ Â

i2{1,...,N1}
t̂itk

F(tk, t̂i)BDVi, µXk
s
= F(tk, t0)µX0

s
,

SXk
p
= F(tk, t0)SX0

p
F(tk, t0)T , SXk

s
= F(tk, t0)SX0

s
F(tk, t0)T .

The relative position and velocity random vector Xk
= Xk

p �Xk
s at time tk is then

defined by:
Xk ⇠ N6(µXk ,SXk),

where:
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µXk = F(tk, t0)(µX0
p
�µX0

s
)+ Â

i2{1,...,N1}
t̂itk

F(tk, t̂i)BDVi,

SXk = F(tk, t0)(SX0
p
+SX0

s
)F(tk, t0)T .

Note that the respective probability distributions for position and velocity at any
time - as marginals of Gaussian laws - are Gaussian too. Their respective covariance
matrices can be simply obtained by taking the adequate 3⇥ 3 submatrices of the
6⇥6 matrices describing the complete states.

1.3 Formulation of the collision avoidance problem

The collision avoidance problem considered in this paper, is to compute a fuel-
optimal, finite sequence of impulsive maneuvers performed by the active spacecraft
p such that the instantaneous probability of collision between the two objects does
not exceed some user-defined tolerance threshold d . In addition, the primary object
has to be back on its reference orbit at final time t f .

This very last constraint is a key feature of the proposed approach. To ensure
that the primary object goes back to its reference orbit at final time t f , the following
boundary condition is imposed: µXN

p
= 0, i.e.:

F(t f , t0)µX0
p
+

N1

Â
i=1

F(t f , t̂i)BDVi = 0, (6)

which is a linear constraint in the decision variables DVi, i = 1, . . . ,N1.
In the literature, the orbiting objects are often assumed to have a spherical shape

[5]. This assumption enables to ignore any constraint on the attitude and to give a
rough model of objects whose geometry is not very precisely known. Under this as-
sumption, the collision set in the relative position space, referred to as the combined
object, is defined as:

{r 2 R3 : krk2  R}, (7)

where R is the sum of the radii of the two objects. The collision avoidance problem
can then be formulated as:

min
DVi

N1

Â
i=1

kDVik1 s.t. P(

�

kRkk2  R
 

) d , k = 1, . . . ,N2,

F(t f , t0)µX0
p
+

N1

Â
i=1

F(t f , t̂i)BDVi = 0.
(8)

where: Rk
=

�

I3 0
�

Xk denotes the relative position random vector.

Remark 1. Rigorously speaking, instead of the instantaneous collision probability,
one should consider the probability of collision over the whole time horizon as a
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constraint. However, despite the simplifying assumptions used here, this quantity is
very difficult to manipulate: relative dynamics are still fairly complex and the set of
initial conditions leading to a collision occurring before t f , is difficult to derive.

For any k2 {1, . . . ,N2}, the instantaneous collision probability P(

�

kRkk2  R
 

)

at time tk is the integral of the Gaussian probability density function of Rk over this
ball. This integral can be computed in a fast and efficient way as shown in Section
2, but is hard to handle as a constraint in problem (8) due to its lack of particular
properties with respect to the decision variables.

This section is dedicated to the reformulation of (8) into a more tractable op-
timization problem. This is done in two steps. Firstly, a conservative polyhedral
approximation of the spherical combined object is proposed in Paragraph 1.3.1: the
collision set is described by a finite number of equations that are linear in the control
vector, and resulting in linear chance constraints that are jointly defined. Then, the
so-called risk selection method is used in Paragraph 1.3.2 to replace them by indi-
vidual probabilistic constraints. The induced individual chance constrained problem
is then equivalently reformulated as a deterministic optimization problem.

1.3.1 Polyhedral approximation of the collision set

In this section, the collision set {r 2 R3 : krk2  R} is conservatively replaced by
a (convex) polyhedron containing it. Recall that a convex polyhedron in R3 is de-
fined by a finite number of affine inequalities, or equivalently as the intersection of
half-spaces. The simplest example of a convex polyhedron containing the spherical
combined object, is a cube whose faces are tangent to it (see Figure 2).

2R

R

Fig. 2 Combined spherical object included in a cube

More generally, assume that the collision set is included in a given polyhedron:

{r 2 R3 : krk2  R}⇢
(

r 2 R3 :
m
\

j=1

�

aT
j r  b j

�

)

, (9)

where a j 2 R3, b j 2 R, j = 1, . . . ,m. Then:
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P
⇣n

kRkk  R
o⌘

 P

 

m
\

j=1

n

aT
j Rk  b j

o

!

.

Using the polyhedral approximation (9), the collision avoidance problem is then
replaced by:

min
DVi

N1

Â
i=1

kDVik1 s.t. P

 

m
\

j=1

n

aT
j Rk  b j

o

!

 d , k = 1, . . . ,N2,

F(t f , t0)µX0
p
+

N1

Â
i=1

F(t f , t̂i)BDVi = 0.

(10)

The problem (10) is a joint chance constrained optimization problem which is a
relaxation of (8). This approximation is conservative in the sense that any solution
of problem (10) is also a solution of (8).

Note that the degree of conservatism is closely related to the tightness of the geo-
metrical approximation between the collision set (7) and its polyhedral approxima-
tion (9). There is a clear trade-off between increasing the complexity of the chosen
polyhedron by increasing the number of inequalities defining the polyhedron and
the computational complexity of the considered optimization problem.

1.3.2 Towards a deterministic formulation

In this section, the so-called risk selection method is used to replace the joint chance
constraints in (10) by individual chance constraints. This technique was first used in
[3] for probabilistic path planning although the name only appeared later (see e.g.
[4]). Let us focus on the instantaneous probability of collision at a given time step
tk defined by:

Pk
c = P

 

m
\

j=1

n

aT
j Rk  b j

o

!

. (11)

One has:
Pk

c  P
⇣

{aT
j Rk  b j}

⌘

8 j = 1, . . . ,m, (12)

which means that if there exists j 2 {1, . . . ,m} such that P
⇣

{aT
j Rk  b j}

⌘

 d
then Pk

c  d . In other words:

m
_

j=1

⇣

P
⇣

{aT
j Rk  b j}

⌘

 d
⌘

=) Pk
c  d , (13)

where
W

is the disjunction symbol. The original joint chance constraint Pk
c  d

can thus be conservatively replaced by the following disjunctive set of individual
constraints:
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m
_

j=1

⇣

P
⇣

{aT
j Rk  b j}

⌘

 d
⌘

. (14)

This approach is called risk selection because instead of enforcing the chance for
the relative position vector to lie outside the collision set, one enforces it to be in
one of the half-spaces outside the convex polyhedron.

After these two successive relaxations (the polyhedral approximation and the
risk selection method), the collision avoidance problem (10) is cast as the following
individual chance constrained problem:

min
DVi

N1

Â
i=1

kDVik1 s.t.
m
_

j=1

⇣

P
⇣

{aT
j Rk  b j}

⌘

 d
⌘

, k = 1, . . . ,N2,

F(t f , t0)µX0
p
+

N1

Â
i=1

F(t f , t̂i)BDVi = 0.
(15)

The new constraint (14) is an individual chance constraint, but remains proba-
bilistic. It can be equivalently reformulated into a deterministic form following [3].

Let Y be a one-dimensional random variable following a Gaussian distribution
law: Y ⇠ N1(µY ,s2

Y ). Any chance constraint on Y with a fixed variance and a vari-
able mean, can be translated into a deterministic constraint on the mean µY (see [3,
Section III.C]):

P ({Y < 0}) d () µY �
p

2sY erf�1
(1�2d ), (16)

where erf is the error function defined by: erf(z) =
2p
p

Z z

0
e�t2

dt. By applying (16)

to Y = aT
j Rk � b j ⇠ N1(aT

j µRk � b j,aT
j SRk a j), each individual probabilistic con-

straint can be equivalently replaced by an affine inequality on the mean:

P
⇣

{aT
j Rk  b j}

⌘

 d () aT
j µRk � b j + c jk,

where: c jk =
q

2aT
j SRk a jerf�1

(1�2d ). In conclusion, the collision avoidance prob-
lem (15) can be equivalently reformulated as:

min
DVi

N1

Â
i=1

kDVik1 s.t.
m
_

j=1

�

aT
j µRk � b j + c jk

�

, 8k = 1, . . . ,N2,

F(t f , t0)µX0
p
+

N1

Â
i=1

F(t f , t̂i)BDVi = 0.
(17)
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1.4 Towards a Mixed-Integer Linear Programming Problem

In the previous section, a tractable deterministic formulation (17) of the collision
avoidance problem involving disjunctive constraints, has been derived. Let us now
show that the latter is actually a mixed integer linear program which can be solved
using dedicated algorithms.

First, in order to get rid of piecewise linear criterion, usual slack variables
DV�

i ,DV+

i belonging to the positive orthant of R3 are introduced [2]: for all
i 2 {1, . . . ,N1}, the following substitutions are done:

DVi = DV+

i �DV�
i . (18)

Note that the original piecewise linear criterion
N1

Â
i=1

kDVik1 may be equivalently re-

placed by the linear criterion
N1

Â
i=1

�

kDV+

i k1 +kDV�
i k1

�

=

N1

Â
i=1

3

Â
j=1

(DV+ j
i + DV� j

i )

since at the optimum DV+ j
i = 0 or DV� j

i = 0 [2].
The disjunctive constraints are then tackled using the classic big M method [12].

For the clarity of the presentation, this method is recalled on a one-dimensional
example. Let us consider the following two linear disjunctive conditions in the scalar
variable y:

y  ymin or y � ymax.

If the scalar M is chosen to be sufficiently large, i.e. larger than any other quantity
of the problem, the previous conditions are equivalent to the following ones:

y  ymin +qM and � y �ymax +Mq0 and q+q0  1,

where q and q0 are binary variables: q,q0 2 {0,1}. Any linear program involving
such disjunctive constraints, may be recast into a Mixed-Integer Linear Program
(MILP). In our case, it leads to an optimization problem with 2⇥ 3⇥N1 = 6N1
continuous variables and m⇥N2 binary variables:

min
DV±

i ,qk

N1

Â
i=1

�

kDV+

i k1 +kDV�
i k1

�

s.t.
m̂

j=1

⇣

aT
j µRk +Mq j

k � b j + c jk

⌘

, 8k = 1, . . . ,N2,

F(t f , t0)µX0
p
+

N1

Â
i=1

F(t f , t̂i)B(DV+

i �DV�
i ) = 0,

kqkk1  m�1, k = 1, . . . ,N2,
DV±

i � 0, i = 1, . . . ,N1,
qk 2 {0,1}m, k = 1, . . . ,N2.

(19)
Note that in the proposed approach, there is no guarantee for the instantaneous col-
lision probability to be below a given threshold between the points of the time grid
T . To alleviate this limitation, a precise a posteriori analysis of the computed ma-
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neuvers is performed by computing the original instantaneous collision probability
in (8) over a thinner grid than the one used in (19).

2 Computing the instantaneous probability of collision

In the modeling of the collision avoidance problem, the instantaneous probability
of collision P(kRk2  R) has to be smaller than a given threshold d at any instant
tk of a given time discretization of [t0, t f ]. To validate this approach, one needs now
to compute the instantaneous probability of collision at each time t 2 [t0, t f ] to nu-
merically verify that it remains below the threshold d over the whole time interval
[t0, t f ]:

8t 2 [t0, t f ], P({kR(t)k2  R}) d .

In that purpose, the conservative polyhedral model is not needed any more and
the spherical combined object can be considered again. Under this assumption, the
instantaneous probability of collision can be expressed as the integral of a 3-D Gaus-
sian random variable - representing the current relative position of the two objects -
on a Euclidean ball. Usually, that kind of integral is evaluated using time-consuming
Monte Carlo methods. Here, an analytic formula based on a convergent power series
is introduced. It is a 3-D extension to the 2-D method presented in [16]. It is derived
by use of Laplace techniques originally developed in [9], and properties of D-finite
functions [21, 13]. Computing truncated series should allow for a fast evaluation of
the instantaneous probability of collision.

Assuming that R ⇠ N3(µ,S), the instantaneous probability of collision can be
expressed as:

P =

1
(2p)3/2|S |1/2

Z

B(0,R)

exp
✓

�1
2
(r�µ)T S�1

(r�µ)
◆

dr, (20)

where µ 2 R3 and S is a 3⇥ 3 positive definite matrix. Without loss of generality,
the covariance matrix S is assumed to be diagonal (this can be always achieved by
a classical change of variables). Thus, S can be written as:

S = diag(s2
1 ,s2

2 ,s2
3 ), (21)

where (s1,s2,s3) 2 R+3
⇤ , and: s1 � s2 � s3. Under these assumptions, the proba-

bility P can be rewritten as:

P =

1
(2p)3/2s1s2s3

Z

B(0,R)

exp

 

�1
2

3

Â
i=1

(ri �µi)
2

s2
i

!

dr. (22)

Both level sets of integrand and domain of integration can be visualized in Figure 3.
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r3

r1

r2

µ

level set

ball of integration

R

Fig. 3 Geometry of the integral problem

Proposition 1.

P = exp
✓

�R2

s2
3

◆

+•

Â
k=0

ukR2k, (23)

where the sequence (uk)k�0 is positive and explicitly defined by a linear recurrence
with polynomial coefficients.

Sketch of the proof

Let us introduce an intermediate function called g and defined for all z 2 R+ as
follows:

g(z) =
1

(2p)3/2s1s2s3

Z

B(0,
p

z)

exp

 

�1
2

3

Â
i=1

(ri �µi)
2

s2
i

!

dr,

so that the instantaneous probability of collision is given by: P = g(R2
). Using the

set-indicator function 1, the function g can also be rewritten as:

g(z) =
1

(2p)3/2s1s2s3

Z

R3

1B(0,
p

z)(r)exp

 

�1
2

3

Â
i=1

(ri �µi)
2

s2
i

!

dr. (24)

The main idea of the proof is to compute the Laplace transform of the function g in
closed form, to expand it into a power series in the variable l�1 and to apply the
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inverse Laplace transform term by term. Finally, a preconditioning with an expo-
nential term is performed in order to obtain a series with positive coefficients.

Let us first apply the Laplace transform to the function g: for all l whose real
part ¬(l ) is non-negative, one has:

Lg(l ) =
+•
Z

0

exp(�l z)g(z)dz. (25)

The Laplace transform Lg can be computed in closed form. Starting from:

Lg(l ) =
1

(2p)3/2s1s2s3

+•
Z

0

Z

R3

1B(0,
p

z)(r)exp

 

�l z� 1
2

3

Â
i=1

(ri �µi)
2

s2
i

!

drdz,

(26)
the Fubini theorem enables us to interchange the two integration symbols:

Lg(l ) =
1

(2p)3/2s1s2s3

Z

R3

+•
Z

0

1B(0,
p

z)(r)exp

 

�l z� 1
2

3

Â
i=1

(ri �µi)
2

s2
i

!

dzdr.

Now, the integral in the variable z can be computed analytically, so that:

Lg(l ) =
1

(2p)3/2ls1s2s3

Z

R3

exp

 

3

Â
i=1

✓

�
✓

l +

1
2s2

i

◆

r2
i +

µiri

s2
i
� µ2

i

2s2
i

◆

!

dr.

The next step consists in doing a change of variables aimed at completing the square
in the exponential. More precisely, state:

r0i = ri �
µi

2s2
i

✓

l +

1
2s2

i

◆�1
8i = 1,2,3. (27)

By computation, one finally gets:

Lg(l ) = l�5/2 exp

 

�
3

Â
i=1

µ2
i (2s2

i +l�1
)

�1

!

3

’
i=1

(2s2
i +l�1

)

�1/2.

Now l 5/2Lg(l ) can be seen as a function of the variable l�1, which can be

expanded in a power series
+•

Â
k=0

wk(l�1
)

k. This is valid for ¬(l ) > 1
2s2

3
. The se-

quence (wk)k�0 follows a linear recurrence with polynomial terms in the vari-
able k. This recurrence can be obtained from the differential equation satisfied by
l�1 ! l 5/2Lg(l ). Indeed this function is D-finite i.e. is solution of a linear differ-
ential equation with polynomial coefficients. The Maple package Gfun [14](version
3.65) was used to obtain the recurrence formula. One can now write:
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Lg(l ) = l�5/2
+•

Â
k=0

wkl�k
=

+•

Â
k=0

wkl�(k+5/2). (28)

Let us now apply the inverse Laplace transform to the previous expression. On the
left hand side, one gets the function g back. On the right hand side, the inverse
Laplace transform is done term by term via the technique described by Widder [19].
It leads to the introduction of the gamma function:

g(z) =
+•

Â
k=0

wk

G (k+5/2)
zk+3/2

= z3/2
+•

Â
k=0

wk

G (k+5/2)
zk. (29)

In general, this first series is ill-fitted for good numerical results because the terms
wk

G (k+5/2) zk have alternating signs and are much higher in absolute value than the
actual value of g(z). This problem of evaluating entire functions in finite precision
arithmetic was previously addressed in [7, 6] and the same idea is used here. Func-
tion g is multiplied by another function h such that both h and hg have explicit power
series with positive coefficients - which is good from a computational point of view.
Since D-finite functions are closed by multiplication, choosing a D-finite h results in
a D-finite product hg, meaning that their power series coefficients satisfy an explicit
linear recurrence. Let us do the following preconditioning:

exp
✓

z
s2

3

◆

g(z) =
+•

Â
k=0

ukzk, (30)

so that

g(z) = exp
✓

� z
s2

3

◆

+•

Â
k=0

ukzk. (31)

The linear recursive formula for (uk)k�0 can be obtained in closed form using the
recurrence defining (wk)k�0. Is was done once again with Gfun. Getting back to the
original probability, one immediately gets formula (23).

3 Numerical results

In this section, the proposed approach is applied on a test case presented by S.
Alfano in [1, case 9] where he compares several methods to compute collision prob-
abilities (but offers no avoidance strategy). This is not a real case scenario but it is
supposed to be representative of two objects in highly eccentric Earth orbits (HEO).

The reference orbit of the primary object has a mean motion n = 1.4591⇥10�4

s�1 and an eccentricity e = 0.741. The origin of time t = 0 is chosen as the nomi-
nal time of closest approach in the unmitigated case. This time corresponds to the
instant when the mean relative distance reaches its minimal value if no maneuver is
performed. This is typically around this time that the instantaneous collision proba-
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bility is the highest. The history of instantaneous collision probability, when no ma-
neuver is performed, was computed using the method previously introduced. Figure
4 shows a close-up around its peak that looks similar to a plot provided by Alfano
in [1], although a different model was used to propagate uncertainty in his paper.
Clearly, the risk is very high as collision probability reaches near t = 0 a maximum
of 0.2813 (which is also very close to the value 0.2812 found in [1]).

Fig. 4 Instantaneous collision probability as a function of time

For this reason, t = 0 is chosen at the midpoint of the interval [t0, t f ], with t0 =
�35,000 s and t f = +35,000 s. The nominal angular position at initial time t0 is
n0 =�3.071 rad. The mean primary position and velocity are assumed to be equal
to the nominal one at t0. Initial conditions for the relative state in the LVLH frame
are given in Table 1 (mean vector) and Equation 32 (covariance matrix in meters and
seconds). The combined radius of the objects is R= 6 m and the risk threshold is d =

10�4. Both control grid (N1 = 50) and constrained grid (N2 = 200) are uniformly
sampled.

µR0 (1) (m) - 46.830
µR0 (2) (m) 0
µR0 (3) (m) 2.986

µV0 (1) (mm.s�1) -0.643
µV0 (2) (mm.s�1) 0
µV0 (3) (mm.s�1) - 1.922

Table 1 Mean relative state at time t0
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0

B

B

B

B

B

B

@

42.9181 0 2.5144 2.607⇥10�3 0 8.0097⇥10�3

0.0649 0 0 �0.0024⇥10�3 0
0.1549 0.1574⇥10�3 0 0.4794⇥10�3

0.1613⇥10�6 0 0.4928⇥10�6

sym 0.0001⇥10�6 0
1.5083⇥10�6

1

C

C

C

C

C

C

A

(32)
To limit the number of equations used to define the polyhedral approximation of

the collision set and thus the computational time, the spherical combined object is
over-approximated by the following cube:

{(r1,r2,r3) 2 R3 : �ri  R, ri  R 8i = 1,2,3}.

The overall implementation was done with Matlab c� R2014a on an Intelr Xeonr
at 3.60GHz. The mixed-integer linear program has been solved using Gurobi 5.6.0
[8] with a big-M of 104 m.

The solution is detailed in Table 2 and was obtained after 1.6 s. It consists in
only 4 non-negligible impulses. It is noticeable that - except for the first one - ev-
ery maneuver has only one non-zero component and that there is no out-of-plane
maneuvers. The corresponding fuel-cost is J⇤1 = 4.4 mm/s.

Number Instant (s) LVLH components (mm/s)
1 -35,000 0.0167 0 -3.0360
2 22,143 0.5167 0 0
3 23,571 0.2777 0 0
4 30,714 -0.5493 0 0

Table 2 Optimal impulses

Next Figures 5, 6, 7 and 8 illustrate the effects of the thrusting strategy. The
primary mean position and velocity and the nonzero optimal impulses can be seen
in Figures 5 and 6: as expected, the primary mean vector goes back to its nominal
state at the end of the time horizon.

The history of instantaneous collision probability was also computed in the con-
trolled case, on a tighter grid of 300 points (recall that it was 200 for the optimiza-
tion algorithm) in 558.9 s. It appears that the maximum risk is very close to the
authorized d -threshold since the highest probability is 1.004⇥ 10�4. Note that if
the chance constraints are not satisfied on a thinner grid than the one used for the
optimization, the algorithm could be run with a bigger value for N2. Figure 7 depicts
one hundred occurrences - randomly sampled - of the uncontrolled relative motion
while Figure 8 shows the same trajectories when performing the maneuvers. One
can see that the impulses allow to safely avoid the secondary object (in black) for
all the trials whereas 33 of them lead to a collision when there is no control.
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Fig. 5 Primary mean position, mean velocity and optimal impulses along the first LVLH axis
versus time

Fig. 6 Primary mean position, mean velocity and optimal impulses along the third LVLH axis
versus time
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Fig. 7 Examples of uncontrolled relative trajectories of the primary over the encounter. The sec-
ondary object is in black.

Fig. 8 Examples of controlled relative trajectories of the primary over the encounter. The sec-
ondary object is in black.
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4 Conclusion

This paper proposes a probabilistic formulation of the collision avoidance problem
between an active spacecraft and an orbital debris as a joint chance constrained
optimization problem. The framework of this study is restricted to long-term en-
counters, enabling the linearization of the equations of the relative dynamics. Since
the original problem is not tractable, two relaxations are proposed: first the colli-
sion set is conservatively approximated by a convex polyhedron containing it, and
then the joint chance constrained optimization problem is replaced by an individual
chance constrained problem. The latter is equivalently reformulated as a determin-
istic disjunctive linear program which can be solved using a classical mixed-integer
solver. To validate the proposed approach, a new method to efficiently compute 3-D
Gaussian integrals on Euclidean balls is presented. It is then used to evaluate the
instantaneous probability of collision for a spherical collision set at any time of the
mission. The efficiency of the proposed approach is illustrated on a test case by
computing the instantaneous probabilities of collision over the whole time horizon.
It is numerically checked that the risk remains below the required tolerance thresh-
old. The main limitation of the approach is that the probability of collision over the
entire encounter is not directly dealt with in the proposed optimization process. So,
there is no theoretical guarantee that the probability of collision remains below the
required threshold all along the mission.

As far as the computation of the maneuvers is concerned, improvements can be
obtained depending on mission requirements. For instance, an upper bound on the
magnitude of the velocity increments can easily be added as linear constraints. The
control law could also be restricted to in-plane maneuvers. Another perspective is
to extend the collision avoidance problem to multiple active spacecraft (formation
flying) and/or multiple debris (orbit safety). This could only be done for a reasonable
number of additional objects as complexity would rise accordingly. Concerning the
computation of the probability of collision, some improvements will be considered
in short term. One perspective will be to find upper bounds on the truncation error
and lower bounds on the probability when uncertainty varies. Such results should
be of a great interest to retrieve valuable information from a mission point of view
on collision probabilities for any type of space encounter.
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