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Tate algebras, introduced in [Ta71], are fundamental objects in the context of analytic geometry over the p-adics. Roughly speaking, they play the same role as polynomial algebras play in classical algebraic geometry. In the present article, we develop the formalism of Gröbner bases for Tate algebras. We prove an analogue of the Buchberger criterion in our framework and design a Buchbergerlike and a F4-like algorithm for computing Gröbner bases over Tate algebras. An implementation in S M is also discussed.

In [START_REF] John | Rigid analytic spaces[END_REF], Tate proposed to replace the classical p-adic topology by some well-suited Grothendieck topology and came up with the notion of p-adic rigid variety. Basically, the construction of rigid varieties follow that of schemes in algebraic geometry. They are obtained by gluing pieces -the so-called a noids -with respect to the aforementioned Grothendieck topology. As for a noids, they are de ned as the "spectrum" of quotients of some particular algebras, called Tate algebras. Thereby, Tate algebras play the same role in rigid geometry as polynomial algebras do in classical algebraic geometry.

From the purely algebraic point of view, Tate algebras have been widely studied and it has been demonstrated that they share some properties with polynomial algebras [START_REF] Bosch Siegfried | Non-Archimedean analysis[END_REF]. However, as far as we know, the computational aspects of Tate algebras have not been developed yet. This contrasts with the polynomial setting, for which we have at our disposal the theory of Gröbner bases [START_REF] Bruno | Ein Algorithmus zum Au nden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal)[END_REF][START_REF] Cox | Ideals, varieties, and algorithms[END_REF], which has become over the years a research topic on its own. The aim of the present article is to extend the notion of Gröbner bases to Tate algebras. Some di culties need to be overcome. The most signi cant one is that elements in Tate algebras are, by nature, in nite convergent series and so they do not have a degree. This seems to be a serious obstruction since the degree is the most basic notion on which the classical theory of Gröbner bases is built. However, analyzing the de nition of Tate algebras, we notice that a Tate series de nes a sequence of polynomials (of growing degrees) by reduction modulo p n when n varies. In order to take advantage of this observation, we introduce an order on the terms taking into account the p-adic valuation of the coe cients. This order is not well-founded as classical term orders are usually. However, we shall prove that it is topologically well-founded (in the sense that every decreasing sequence tends to 0) and that this weaker property is enough to guarantee the termination of our algorithms at nite precision. Related works. Gröbner bases over rings -and in particular over Z and Z/nZ -have also received some attention [AL94, [START_REF] Deepak | An Algorithm for Computing a Gröbner Basis of a Polynomial Ideal over a Ring with Zero Divisors[END_REF][START_REF] Norton | Strong Grobner bases and cyclic codes over a nite-chain ring[END_REF]. These developments are of course related to this article since quotients of Tate algebras are polynomial algebras over Z/p n Z. The main di erence between our point of view and that of loc. cit. appears in the choice of the term ordering; while, in the theory of Gröbner bases of rings, only the degree is considered, our setting forces us to include the valuation of the coe cients in the de nition of the term ordering. It is the "price to pay" to be able to pass smoothly to the completion and catch inexact base rings as Q p .

The special term ordering we use comes from two di erent sources. The rst one is the theory of tropical Gröbner bases by Chan and Maclagan [START_REF] Andrew | Gröbner bases over elds with valuations[END_REF] in which, for the rst time, the valuation of the coe cients has been taken into account in the de nition of the term ordering. Later on, Vaccon and his coauthors [START_REF] Vaccon | Précision p-adique[END_REF][START_REF] Vaccon | Matrix-F5 Algorithms and Tropical Gröbner Bases Computation[END_REF][START_REF] Vaccon | A Tropical F5 algorithm[END_REF][START_REF] Vaccon Tristan | On A ne Tropical F5 algorithm[END_REF] observed that tropical orders are relevant for the computation of p-adic Gröbner bases as they improve substantially the numerical accuracy. The de nition of our term order is the natural outcome of this observation. Our second source of inspiration is the theory of standard bases, which was designed originally to "compute" the singularities of algebraic varieties [START_REF] Ferdinando | An algorithm to compute the equations of tangent cones[END_REF][START_REF] Hans-Gert | Algorithms in Local Algebra[END_REF]. This theory introduces the notion of term order of local/mixed type, on which the term ordering we are using in the present article is modeled.

Structure of the article. In §2, we introduce Tate algebras and develop the theory of Gröbner bases over them. We prove in particular the existence of nite Gröbner bases and study their structure. §3 is devoted to algorithms. We rst design a variant of the Buchberger algorithm that runs over Tate algebras. Several results towards its numerical stability are also presented. We then move to F4-like algorithms and show how they could be adapted to t into the framework of Tate algebras. Finally, in §4, an implementation in S M is brie y discussed.

Notation. The notation N will refer to the set of nonnegative integers (including 0). If A is a ring, we will denote its group of invertible elements by A × . We x a positive integer n. Let X 1 , . . . , X n be n variables. We will use the short notation X for (X 1 , . . . ,

X n ). Sim- ilarly for i = (i 1 , . . . , i n ) ∈ N n , we shall write X i for X i 1 1 • • • X i n n .

GRÖBNER BASES OVER TATE ALGEBRAS

Throughout this article, we x a eld K equipped with a discrete valuation val : K → Z ⊔ {+∞}, normalized by val(K × ) = Z. We shall always assume that K is complete with respect to the distance de ned by val. We let K • be the subring of K consisting of elements of nonnegative valuation and π be a uniformizer of K, that is an element of valuation 1. We set K = K • /πK • .

A typical example of K as above is the eld of p-adic numbers Q p (equipped with the p-adic valuation). For this example, we have

K • = Z p and K = F p .

Tate algebras

We endow R n with the usual scalar product (x, ) → x• .

De nition 2.1. Let r = (r 1 , . . . , r n ) ∈ Q n . The Tate algebra K {X; r} is de ned by:

K {X; r} := i∈N n a i X i s.t. a i ∈ K and val(a i ) -r•i -------→ |i|→+∞ +∞
The tuple r is called the convergence log-radii of the Tate algebra. Elements of K {X; r} are the power series converging on the product of closed balls B(0

, |π | r 1 ) × • • • × B(0, |π | r n ) where | • |
is the absolute value on K induced by val. When r = (0, . . . , 0), we will simply write K {X} instead of K {X; (0, . . . , 0)}.

Example 2.2. Let K = Q p . The series f 1 = 1 p + X + pX 2 + p 2 X 3 + . . . lies in K {X }. The series f 2 = 1 + X + X 2 + X 3 + . . . does not lie in K {X }, because it does not converge when evaluated at 1 (for example). However, it does converge when evaluated at x with |x | < 1, so it lies in K {X ; (r )} for all negative r . The Tate algebra K {X; r} is equipped with the Gauss valuation val r : K {X; r} → Q ⊔ {+∞} de ned as follows:

val r i∈N n a i X i = min i∈N n val(a i ) -r•i .
We observe that the minimum is always reached thanks to the growth condition imposed in De nition 2.1. Moreover, the image of val r is discrete. Geometrically, the Gauss valuation corresponds to the minimal valuation reached by the series on its domain of convergence (possibly after a nite extension of K). 

About terms

From now on, we x a log-radii r ∈ Q n .

Monoids of terms. We rst recall some basic de nitions.

De nition 2.6. A monoid is a set equipped with a single associative binary operation, which has a neutral element. An ideal of a monoid M is a subset I ⊂ M such that, for all a ∈ M and x ∈ I , we have ax ∈ I . We de ne the monoid of terms T {X; r} as the multiplicative monoid consisting of the elements aX i with a ∈ K × and i ∈ N n . We let also T {X; r} • be the submonoid of T {X; r} consisting of terms aX i for which val r (aX i ) ≥ 0. The multiplicative group K × (resp. (K • ) × ) embeds into T {X; r} (resp. T {X; r} • ). We set: T{X; r} = T {X; r}/K × and T{X; r}

• = T {X; r} • /(K • ) × .
The inclusion T {X; r} • ⊂ T {X; r} induces a canonical morphism (which is no longer injective) T{X; r} • → T{X; r}. The ideals of T{X; r} (resp. of T{X; r} • ) are in bijective correspondence with the ideals of T {X; r} (resp. of T {X; r} • ). Moreover, T{X; r} and T{X; r} • do not contain non trivial invertible elements. In other words, the divisibility relation de nes an order on T{X; r} and T{X; r} • . The following easy lemma elucidates the structure of T{X; r} and T{X; r}

• L 2.7. (1) The mapping T{X; r} → N n , aX i → i is an iso- morphism of monoids. (2) The mapping T{X; r} • → Q × N n , aX i → (val r (aX i ), i) is an injective morphism of monoids; its image is included in 1 D N × N n
where D is a common denominator of the coordinates of r.

(3) The natural morphism T{X; r} • → T{X; r} corresponds to the projection onto the factor N n . P 2.8. Let I be an ideal of T{X; r} (resp. of T{X; r} • ). Then there exists a unique subset S of I having the two following properties: (1) S generates I , and (2) every subset generating I contains S. Moreover S is nite.

P

. The unicity is easy. Indeed if S and S ′ satisfy (1) and (2), one must have S ⊂ S ′ and S ′ ⊂ S, i.e. S = S ′ . In order to prove the existence, we de ne S as the set of minimal elements of I for the divisibility relation. The fact that S generates I follows from the fact that divisibility is a well-founded order on T{X; r} (cf Lemma 2.7). The point (2) is obvious.

It remains to prove that S is nite. For this, we observe that any sequence with values in N necessarily has a nondecreasing subsequence. Extracting subsequences repeatedly, we nd that the previous property also holds for sequences with values in N m for any integer m. By Lemma 2.7, it also holds for sequences with values in T{X; r} (resp. in T{X; r} • ). Therefore, if S were not nite, we would be able to extract from S a nondecreasing sequence. This contradicts the fact that S is composed by minimal elements.

De nition 2.9. Let I be an ideal of T{X; r} (resp. of T{X; r} • ). The subset S of Proposition 2.8 is called the skeleton of I ; it is denoted by Skel(I ).

The skeleton of an ideal of T {X; r} (resp. of T {X; r} • ) is de ned as the skeleton of its image in T{X; r} (resp. in T{X; r} • ); it is denoted by Skel(I ).

In what follows, it will sometimes be convenient to work more generally with fractional ideals. By de nition a fractional ideal of T{X; r} • is a subset of T{X; r} which is stable by multiplication by elements in T{X; r} • and is contained in π -N T{X; r} • for some N ∈ N. The notion of skeleton can be extended to fractional ideals I of T{X; r} • . For such ideals, Skel(I ) is a nite subset ofT {X; r}/(K • ) × . An interesting example of fractional ideal is:

T{X; r} ≥ = t ∈ T{X; r} s.t. val r (t) ≥ . ( 1 
)
Remark 2.10. The e ective computation of Skel(T{X; r} ≥ ) is not an easy problem. It has been solved for n = 1 in [START_REF] Xavier | Linear Algebra over Z p[END_REF] using the theory of continued fractions. It would be interesting to generalize the results of loc. cit. to higher n.

Term order. We x a monomial order ≤ ω on N n . We recall that this means that ≤ ω is a well-order which is compatible with the addition. Usual examples of monomial orders are lex, grevlex, etc.

De nition 2.11. We de ne a preorder ≤ on T {X; r}, T {X; r} • by:

aX i ≤ bX j i val r (aX i ) > val r (bX j )
or val r (aX i ) = val r (bX j ) and i ≤ ω j.

Remark 2.12. The inequality sign is reversed in the rst line: we require that val r (aX i ) > val r (bX j ) and not val r (aX i ) < val r (bX j ). This is not a typo and will be important in the sequel.

We underline that ≤ is not antisymmetric (and so not an order). More precisely, for t 1 , t 2 ∈ T {X; r}, the fact that t 1 ≤ t 2 and t 2 ≤ t 1 is equivalent to the existence of a ∈ (K • ) × such that t 1 = at 2 . As a consequence, ≤ induces an order on T{X; r} • . On the contrary, we underline that ≤ does not factor through T{X; r}.

Example 2.13. Let K = Q p and consider K {X , Y } with the lexicographical order. The preorder ≤ orders terms as follows:

• • • > XY 2 > XY > X > • • • > Y > 1 > • • • • • • > pXY 2 > • • • > p > • • • > p 2 XY 2 > • • •
The terms X i and -X i are "equal" for ≤. So are X i and (1+p)X i .

It is easily seen that the preorder ≤ is total. In turns out that it is not a well-order since the in nite sequence (p n ) n ≥0 is strictly decreasing. Nevertheless, we have: L 2.14. Let (t j ) j ∈N be a strictly decreasing sequence inT {X; r} (resp. in T {X; r} • ). Then lim j→∞ val r (t j ) = +∞.

P

. From the de nition of ≤, it follows that the sequence (val r (t j )) j ∈N is nondecreasing. Moreover it takes its values in 1 D N for some positive integer D. Finally, the fact that ≤ ω is a well-order implies that for each xed ∈ 1 D N, there is only a nite number of indices j for which val r (t j ) = . Combining these inputs, we nd that val r (t j ) must tend to +∞.

We notice that if i j, the terms a i X i and a j X j are never "equal" for ≤. Therefore, any nonzero series f = i∈N n a i X i ∈ K {X; r} has a unique leading term. We denote it LT (f ).

Example 2.15. With the notations of Example 2.13, the leading term of 2 = XY + p + p 2 XY is LT ( 2 ) = (1+p 2 )XY .

Gröbner bases

De nition 2.16. Given an ideal of K {X; r} (resp. of K {X; r} • ), we denote by LT ( ) the subset of T {X; r} (resp. of T {X; r} • ) consisting of elements of the form LT (f ) with f ∈ , f 0.

We check immediately that LT ( ) is an ideal of the monoidT {X; r} (resp. of T {X; r} • ).

De nition 2.17. Let be an ideal of K {X; r} (resp. of K {X; r} • ). A family ( 1 , . . . , s ) ∈ s is a Gröbner basis (in short, GB) of if LT ( ) is generated by the LT ( i )'s in T {X; r} (resp. in T {X; r} • ). P 2.18. Let G = ( 1 , . . . , s ) be a GB of an ideal of K {X; r} (resp. of K {X; r} • ). Then G generates .

P

. Let f ∈ . We de ne inductively a sequence (f j ) j ∈N as follows. Let f 0 = f . Given j, we write LT (f j ) = a j X i j LT ( i j ) and dene f j+1 = f ja j X i j i j . Then LT (f j+1 ) < LT (f j ). By Lemma 2.14, val r (LT (f j )) = val r (f j ) goes to in nity when j goes to in nity. Therefore we can then write f = j a j X i j i j as a converging series. By regrouping terms, we get f ∈ 1 , . . . , s . Proposition 2.8 gives a lot of information about the ideal LT ( ) (where is an ideal of K {X; r} or K {X; r} • ). These results have interesting consequences on Gröbner bases.

T 2.19. Any ideal of K {X; r} or K {X; r} • has a nite GB.

P .

Let t 1 , . . . , t s be the elements of Skel(LT ( )). For all i, let i ∈ be such that LT ( i ) = t i in T{X; r} (resp. in T{X; r} • ). Then ( 1 , . . . , s ) is a GB of .

Remark 2.20. Combining the previous theorem with Proposition 2.18, we obtain that any ideal of K {X; r} (resp. of K {X; r} • ) is nitely generated. In other words, we have proved that the rings K {X; r} and K {X; r} • are Noetherian (which was of course already known for a long time).

Another important consequence of Proposition 2.8 is the notion of minimal GB that we discuss now.

De nition 2.21. Let be an ideal of K {X; r} (resp. of K {X; r} • ). A GB G = ( 1 , . . . , s ) is minimal if the images in T{X; r} (resp. in T{X; r} • ) of the LT ( i )'s are exactly the elements of Skel(LT ( )), with no repetition.

A direct consequence of the de nition is that two minimal GB of a given ideal have the same cardinality, namely the cardinality of Skel(LT ( )).

T 2.22. Let be an ideal of K {X; r} (resp. of K {X; r} • ). Let G be a GB of . Then, there exists a subset G ′ ⊂ G which is a minimal GB of .

P

. By de nition, LT (G) is a generating set of LT ( ). From Proposition 2.8, we deduce that Skel(LT ( )) ⊂ G. For each term t ∈ Skel(LT ( )), let us choose t ∈ G such that LT ( t ) = t. The subset G ′ of G consisting of such t 's is then a minimal GB of .

Comparison results

So far, we have de ned a notion of GB for ideals of K {X; r} and K {X; r} • . The aim of this subsection is to compare them. P 2.23. Let I be an ideal of K {X; r} • and let G be a GB of I . Then G is a GB of the ideal = I 1 π of K {X; r}.

P .

It follows from the fact LT ( ) = LT (I ) 1 π . Remark 2.24. Note that minimality of GB is not preserved when passing from K {X; r} • to K {X; r}. For example, G = (p, X ) is a minimal GB of the ideal I = (p, X ) of K • {X }. However it is not a minimal GB of = I 1 π = K {X } since p divides X in this ring. Going in the other direction (i.e. from K {X; r} to K {X; r} • ) is more subtle. First of all, we remark that, if we start with an ideal of K {X; r}, there exist many ideals I of K {X; r} • with the property that I 1 π = . However, the set of such ideals I has a unique maximal element (for the inclusion); it is the ideal • = ∩ K {X; r} • . This special ideal • can also be caracterized by the fact that it is π -saturated. P 2.25. Let be an ideal of K {X; r} and let G = ( 1 , . . . , s ) be a GB (resp. a minimal GB) of . We assume that val r ( i ) = 0 for all i. Then G is a GB (resp. a minimal GB) of • .

P

. Let G be a GB of . Let t ∈ LT ( • ). Then t is a multiple of one of the LT ( i )'s in T {X; r}. Since val r ( i ) = 0, we deduce that LT ( i ) divides t in T {X; r} • as well. Consequently G is a GB of • . The fact that minimality is preserved is easy.

When r ∈ Z n , it is easy to build a GB of satisfying the assumption of Proposition 2.25 from any GB of . Indeed if ( 1 , . . . , s ) is a GB of then val r ( i ) is an integer for all i and the family (π -val r ( 1 ) 1 , . . . , π -val r ( s ) s ) is a GB of . On the contrary, when r Z n , the problem is more complicated (see example above).

Example 2.26. Choose n = 1 and r = ( 1 2 ) and let be ideal of K {X } generated by X . The ideal • is then generated by 1 = πX and 2 = πX 2 . More precisely, one checks that ( 1 , 2 ) is a minimal GB of • . In particular, we observe that the cardinality of a minimal GB of does not agree with that of a minimal GB of • .

For a general r ∈ Q n , Proposition 2.25 can be generalized as follows. P 2.27. Let be an ideal of K {X; r} and let G = ( 1 , . . . , s ) be a GB of . Then a GB of • is (t i, j i )'s where, for each xed i, the t i, j 's enumerate the elements of Skel T {X; r} ≥-val r ( i ) (cf Eq. (1)).

P

. From val r (t i, j ) ≥ -val r ( i ), we deduce that t i, j i lies in K {X; r} • and hence in • . It remains to prove that the LT (t i, j i )'s generate LT ( • ). Let τ ∈ LT ( • ). Since G is a GB of , there exists an index i such that LT ( i ) divides t. Write τ = tLT ( ). We have val r (τ ) = val r (t) -val r ( ). From τ ∈ K {X; r} • , we deduce that val r (τ ) ≥ 0 and then val r (t) ≥ -val r ( i ). Consequently, t is divisible by some t i, j ∈ Skel T {X; r} ≥-val r ( i ) . We deduce that τ is divisible by t i, j LT ( i ) = LT (t i, j i ), as wanted.

Reduction in the residue field. When r = (0, . . . , 0), the quotient K {X} • /πK {X} • is isomorphic to the polynomial algebra K[X], on which we have a well-de ned notion of Gröbner bases. P 2.28. Let be an ideal of K {X}.

Set • = ∩K {X} • and let ¯ • be the image of • in K[X]
. Let 1 , . . . , s in be such that val 0 ( i ) = 0 and let ¯ 1 , . . . , ¯ s be their images in ¯ • . Then the following assertions are equivalent:

(1) ( 1 , . . . , s ) is a GB of ; (2) ( 1 , . . . , s ) is a GB of • ; (3) ( ¯ 1 , . . . , ¯ s ) is a GB of ¯ • .

P

. The equivalence between (1) and (2) has been already proved. We now prove that (2) implies (3). Let f ∈ ¯ • and let f ∈ • be a lift of f . We can write LT (f ) = aX i LT ( i ) for some a, i and i.

Then LT ( f ) = āX i LT ( ¯ i ). Therefore the LT ( ¯ i )'s generate LT ( ¯ • ). We prove nally that (3) implies (2). Let f ∈ • . Set h = π -val 0 (f ) f . Clearly h ∈ and h ∈ K {X} • . Thus h ∈ • . By (3), we can write LT ( h) = āX i LT ( ¯ i ) for ā ∈ K and i ∈ N n . We write LT (h) = h 0 X H with h 0 ∈ (K • ) × and similarly, LT ( i ) = b 0 X F with b 0 ∈ (K • ) × . Then X F divides X H . Let L be such that X H = X F • X L . Then LT (h) = h 0 b -1 0 X L LT ( i ) with h 0 b 0 ∈ K • .

ALGORITHMS 3.1 Division and membership test

Not surprisingly, Gröbner bases can be used to test membership in ideals. Before going further in this direction, we need to adapt the division algorithm to our setting. We will need two variants depending on where we are looking for the quotients.

P 3.1. Let f , h 1 , . . . , h m ∈ K {X; r}.
Then, there exist q 1 , . . . , q m ∈ K {X; r} (resp. q 1 , . . . , q m ∈ K {X; r} • ) and r ∈ K {X; r} such that:

(1) f = q 1 h 1 + • • • + q m h m + r , ( 2 
) for all i and all terms t of r , LT (h i ) ∤ t in T {X; r} (resp. in T {X; r} • ), (3) for all terms t i of q i , we have LT (t i h i ) ≤ LT (f ).

P

. We only give the proof of K {X; r}, the case of K {X; r} • being totally similar. We will construct by induction sequences (f j ) j ≥0 , (q i, j ) j ≥0 (1 ≤ i ≤ m) and (r j ) j ≥0 such that:

f = f j + q 1, j h 1 + • • • + q m, j h j + r j .
(2)

We set

f 0 = f , r 0 = 0 and q 1, 0 = • • • = q m, 0 = 0. If LT (f j ) is divisible by some LT (h i j ), we set f j+1 = f j - LT (f j )
LT (h i ) h i and q i j , j+1 =

q i j , j + LT (f j )
LT (h i ) , and leave unchanged r and the others q i 's. Otherwise, we set f j+1 = f j -LT (f j ) and r j+1 = r j + LT (f j ).

If follows from the construction that LT (f j+1 ) < LT (f j ) for all j. By Lemma 2.14, lim j→∞ val r (f j ) = +∞, i.e. (f j ) j ≥0 converges to 0 in K {X; r}. Besides, val r LT (f j ) LT (h i ) tends to in nity as well, so that the sequences (q i, j ) j ≥0 all converge. Combining this with Eq. (2), we nd that (r j ) j ≥0 also converges. The elements q i = lim j→∞ q i, j and r = lim j→∞ r j satisfy the requirements of the proposition.

Algorithm 1: division input : f , h 1 , . . . , h m ∈ K {X; r} output :q 1 , . . . , q m , r satisfying Prop. 3.1 1 r, q 1 , . . . , q m ← 0;

2 while f 0 do 3 while ∃i ∈ {1, . . . ,m} such that LT (h i ) | LT (f ) do 4 q i ← q i + LT (f ) LT (h i ) ; f ← f - LT (f ) LT (h i ) h i ; 5 r ← r + LT (f ); f ← f -LT (f );
6 Return q 1 , . . . , q m , r ; Algorithm 1 above summarizes the proof of Proposition 3.1. In general, it does not terminate, keeping computing more and more accurate approximations of the q i 's and r . However, in the common case where the coe cients of the input series are all known up to nite precision, i.e. modulo π N for some N , Algorithm 1 does terminate.

Remark 3.2. When working at nite precision, it is more intelligent, instead of computing the quotient

LT (f )
LT (h i ) (which would possibly lead to losses of precision), to choose an exact term t such that the equality LT (f ) = t • LT (h i ) holds at the working precision, and use it on lines 4 and 5. Doing so, we limit the losses of precision.

In general, the conditions of Proposition 3.1 are not enough to determine uniquely the q i 's and r . However, Proposition 3.3 below provides a weak unicity result when (h 1 , . . . , h m ) is a Gröbner bases, which can be used to test membership. P 3.3. Let be an ideal of K {X; r} (resp. of K {X; r} • ) and let ( 1 , . . . , s ) be a GB of . Let f ∈ K {X; r}. We assume that we are given a decomposition f = q 1 1 + • • • + q s s + r satisfying the requirements of Proposition 3.1. Then r = 0 if and only if f ∈ .

P

. The "only if" is clear. Conversely, assume by contradiction that f ∈ and r 0. Then LT (r ) makes sense. From the conditions of Proposition 3.1, we deduce that, for all i, LT (r ) is not divisible by LT ( i ) Hence LT (r ) LT ( ), contradicting r ∈ .

Remark 3.4. In the integral Tate algebra setting, it is not true that the remainder in the division by Gröbner bases is unique. For example, the division in K {X} • of f = 1+p by h = p can be written either f = 0 ×h + (1+p) or f = 1 ×h + 1. This is a general limitation of Gröbner bases over rings, even in the polynomial case [START_REF] William | An Introduction to Gröbner Bases[END_REF].

Buchberger's algorithm

In this subsection, we adapt Buchberger's algorithm to t into the framework of Tate algebras. The adaptation is more or less straightforward except on two points. The rst one is related to nite precision, as already encountered previously. The second point is of di erent nature; it is related to the fact that, when the log-radii are not integers, the crucial notion of S-polynomials is not wellde ned as the monoid T {X; r} • does not admit gcd's. In what follows, we will give satisfying answers to these issues.

Buchberger's criterion. To begin with, we assume r = (0, . . . , 0). In what follows, in order to simplify notations, we will write val instead of val (0, ..., 0) . Under this hypothesis, the monoid of terms T {X} admits gcd's and lcm's. Concretely we de ne: gcd(aX i , bX j ) = π min(val(a), val(b )) X inf(i, j) , lcm(aX i , bX j ) = π max(val(a), val(b )) X sup (i, j) where the inf and the sup over N n are taken coordinate by coordinate. If t 1 and t 2 are two terms, the valuation of gcd(t 1 , t 2 ) (resp. of lcm(t 1 , t 2 )) is the minimum (resp. the maximum) of val(t 1 ) and val(t 2 ). De nition 3.5. For f , in K {X}, we de ne:

S(f , ) = LT ( ) gcd(LT (f ), LT ( )) f - LT (f ) gcd(LT (f ), LT ( ))
.

We have the following generalization of [Bu65, Sec. 2.10, Prop. 5]: L 3.6. Let h 1 , . . . , h m ∈ K {X} and t 1 , . . . , t m ∈ T {X}. We assume that the LT (t i h i )'s all have the same image in T {X}/(K • ) × and that LT ( m i =1 t i h i ) < LT (t i h i ). Then

m i =1 t i h i = m-1 i =1 t ′ i •S(h i , h i +1 ) + t ′ m •h m
for some t ′ 1 , . . . , t ′ m ∈ T {X} such that val(t ′ m h m ) > val(t 1 h 1 ) and val(t ′ i ) + max(val(h i ), val(h i +1 )) ≥ val(t 1 h 1 ) for i ∈ {1, . . . , m-1}.

P

. By assumption, there exist i ∈ N n and d 1 , . . . , d n ∈ K × such that LT (t i h i ) = d i X i for all i ∈ {1, . . . ,m}. Moreover all the d i 's have the same valuation, say µ. Then val( i d i ) > µ. We de ne

p i = t i h i d i , so that t i h i = d i p i . Then i t i h i = d 1 (p 1 -p 2 ) + (d 1 + d 2 )(p 2 -p 3 ) + • • • + (d 1 + • • • + d m-1 )(p m-1 -p m ) + (d 1 + • • • + d m )p m . Observing that p i -p i +1 = t ′ i • S(h i , h i +1 ) with t ′ i ∈
T {X}, we get the lemma. T 3.7. Let h 1 , . . . , h s be elements of K {X} (resp. of K {X} • ) and let I be the ideal of K {X} (resp. of K {X} • ) generated by the h i 's. Then (h 1 , . . . , h s ) is a GB of I if and only if all S(h i , h j ), i j, reduce to zero after division by (h 1 , . . . , h s ) using Algorithm 1.

P

. The "only if" part follows from Proposition 3.3. We prove the "if" part. Let us assume by contradiction that there exists some f ∈ I such that LT (f ) LT (h i ) . We can write f = i q i h i with q i ∈ K {X} (resp. q i ∈ K {X} • ). Let t be maximal among the LT (q i h i )'s. We have LT (f ) < t because of the hypothesis that LT (f ) LT (h i ) . We can moreover assume that the decomposition f = i q i h i is chosen in such a way that t is minimal.

Let be the set of indices i for which LT (q i h i ) = a•t for some a ∈ (K • ) × . Set t i = LT (q i ) for i ∈ and de ne h = i ∈ t i h i ; we have LT (h) < t. Applying Lemma 3.6, we nd j 0 ∈ and terms t ′ , t ′ j,k (for j, k ∈ ) such that h = j,k ∈ t ′ j,k S(h j , h k ) + t ′ h j 0 and val(t ′ h j 0 ) > val(h), val(t ′ j,k ) + min(val(h j ), val(h j )) ≥ val(h). Applying Proposition 3.1 with the S-polynomials, and using the fact that the leading terms of the summands in an S-polynomial cancel out, we get b 1 , . . . , b m ∈ K {X} such that h = m i =1 b i h i and LT (b i h i ) < t for all i. Therefore, we nd that f can be written as f = i ∈i q ′ i h i with q ′ 1 , . . . , q ′ m ∈ K {X} and LT (q ′ i h i ) < t for all i. This contradicts the minimality of t.

Buchberger's algorithm. After Theorem 3.7, it is easy to design a Buchberger type algorithm for computing GB over K {X} and

K {X} • . It is Algorithm 2 below. Algorithm 2: Buchberger's algorithm input : f 1 , . . . , f m in K {X} (resp. in K {X} • ) output : a GB G of the ideal of K {X} (resp. of K {X} • ) generated by the f i 's 1 G ← { f 1 , . . . , f m }; B ← {(f i , f j ), 1 ≤ i < j ≤ m}; 2 while B ∅ do 3 (f , ) ← element of B; B ← B \ {(f , )}; 4 h ← S-polynomial of f and ; 5 _, r ← division(h, G); 6 if r 0 then 7 B ← B ∪ {( , r ) for ∈ G}; G ← G ∪ {r } 8 Return G
Studying its termination is a bit subtle. Indeed, we have already seen that Algorithm 1 does not terminate in general when we are working at in nite precision. Therefore, Algorithm 2 does not terminate either (since it calls Algorithm 1 on line 5). Nevertheless, one may observe that if, instead of calling Algorithm 1, we ask the reduced form of h modulo G to an oracle that answers instantly, then Algorithm 2 does terminate. In other terms, the only source of possible in nite loops in Algorithm 2 comes from Algorithm 1.

Of course, this point of view is purely theoretical and not satisfying in practice. In practice, the coe cients of f 1 , . . . , f m are given at nite precision, i.e. modulo π N for some integer N , and all the computations are carried out at nite precision. In what follows, we will often use the classical notation O(π N ) to refer to a multiple of π N . In this setting, we have seen that Algorithm 1 does terminate, so Algorithm 2 also terminates. The counterpart is that it is not a priori clear that the result output by Algorithm 2 is a correct approximation of a GB of the ideal we started with. Nevertheless, in the case of K {X} • , this property holds true as precised by the following theorem. T 3.8. Let I be an ideal of K {X} • and let (f 1 , . . . , f m ) be a generating family of I . Let also N be an integer such that N > val(t) for all t ∈ Skel(LT (I )).

When Algorithm 2 is called with f 1 + O(π N ), . . . , f m + O(π N ), it outputs G = ( 1 , . . . , s ) with the following properties:

(1) each i is known at precision at least O(π N ), and (2) G is the approximation of an actual GB of I .

P

. The fact that the precision on the i 's does not decrease follows from the fact that Algorithm 2 only performs "exact" divisions (cf Remark 3.2).

We now prove (2). Since the j 's are obtained as linear combinations of the inputs f i + O(π N ), there exist ˆ 1 , . . . , ˆ s ∈ I such that i = ˆ i + O(π N ) for all i. We set Ĝ = ( ˆ 1 , . . . , ˆ s ); it is enough to prove that Ĝ is a GB of I .

Let I N = I + π N K {X} • and ĜN = ( ˆ 1 , . . . , ˆ s , π N ). We claim that ĜN is a GB of I N . Since it generates I N , it is enough to check Buchberger's criterion. By construction, we know that the reduction of S( ˆ i , ˆ j ) modulo Ĝ is a multiple of π N . Hence S( ˆ i , ˆ j ) reduces to zero modulo ĜN . On the other hand, it follows from the de nition of S-polynomials that S( ˆ i , π N ) is divisible by π N ; hence it also reduces to 0 modulo ĜN . The claim is proved.

Let t ∈ LT (I N ). Then t = LT (f + π N h) for some f ∈ I and some h ∈ K {X} • . If val(f ) < N , we have t = LT (f ) ∈ LT (I ). Otherwise t is a multiple of π N . We have then proved that LT (I N ) is the ideal generated by LT (I ) and the term π N . This implies that, if H is a GB of I , then H N = H ∪ {π N } is a GB of I N . Moreover by our assumption on Skel(LT (I )), if H is minimal then H N is also.

Choose now a minimal GB H of I . From what we have done before and Theorem 2.22, it follows that LT (H N ) ⊂ LT ( ĜN ). Besides, since the i 's do not vanish at precision O(π N ), we have val( ˆ i ) < N for all i. Consequently, LT (H ) ⊂ LT ( Ĝ). In particular LT ( Ĝ) generates LT (I ), and so Ĝ is a GB of I .

  De nition 2.3. The integral Tate algebra ring K {X; r} • is de ned as the subring of K {X; r} consisting of elements with nonnegative Gauss valuation.Again we will use the notation K {X} • for K {X; (0, . . . , 0)} • . When r = (r 1 , . . . , r n ) ∈ Z n , observe that K {X; r} = K {π r 1 X 1 , . . . , π r n X n } and similarly for K {X; r} • . The case r ∈ Z n then reduces to r = 0 via a change of variables.

	Example 2.4. With the notations of Example 2.2, f 1 does not lie in K {X } • , but f 2 does lie in K {X ; (r )} • for all negative r . P 2.5. We have K {X; r} = K {X; r} • 1 π .

Austrian FWF grant F5004.

In the case of K {X}, we cannot hope to have similar guarantees. Indeed, if we ask from the GB of the ideal I generated by f 1 = X + O(π N ) and f 2 = X + O(π N ), the answer might be either (X ) if f 1 = f 2 = X , or (1) if f 1 = X and f 2 = X + π N , or many other results. The best we can do is to compute a GB of the sub-K {X} • -module over K {X} generated by the f i 's and answer that the obtained result is likely a GB of I . In the example considered above, we will end up with the GB (X + O(π N )), which is certainly the more natural result we may expect.

General log-radii. We now consider the case of a general r ∈ Q n . In this situation, the monoid T {X; r} • no longer admits gcd's. As a basic example, take r = ( 1 2 , 1 2 ) and consider the terms t 1 = πX 1 and t 2 = πX 2 . Then val r (t 1 ) = val r (t 2 ) = 1 2 . So the valuation of gcd(t 1 , t 2 ) should be 1 2 as well, implying that gcd(t 1 , t 2 ) should be √ π , which is not an element of T {X; r} • . When we are working over K {X; r}, this issue does not happen since we can freely multiply by any power of π . Over K {X; r}, Algorithm 2 works and is correct (althought we have to be careful with the normalization of gcd's in order to avoid losses of precision as much as possible).

Let us now focus on the case of K {X; r} • which is more complicated. Let D be a common denominator of the coordinates of r, i.e. D•r ∈ Z n . We consider the eld extension L = K[η] with η D = π . The valuation val extends uniquely to L; we have val(η) = 1 D . We de ne L • , L{X} and L{X} • accordingly. Observe that

Moreover the valuation val r over L{X; r} (resp. L{X; r} • ) is transformed into the valuation val 0 over L{Y} (resp. L{Y} • ). The above identi cations show that there is a good notion of gcd's and S-polynomials over L{X; r} and L{X; r} • , so that eventually Algorithm 2 runs and computes GB over L{X; r} and L{X; r} • . Before relating those to GB over K {X; r} and K {X; r} • , we need to examine the shape of the GB output by Algorithm 2.

Let η N K {X; r} be the subset of L{X; r} consisting of elements of the form η f for ∈ N and f ∈ K {X; r}. Clearly, η N K {X; r} is stable by multiplication. Beyond this, one can check that it exhibits additional stability properties:

From Proposition 3.9, we deduce immediately that, when Algorithm 2 is called with inputs f i ∈ K {X; r} ⊂ L{X; r}, the GB it outputs consists of elements of η N K {X; r}. The following proposition shows that, after minimizing this GB, we obtain a GB of the ideal of K {X; r} • we started with. P 3.10. Let I be an ideal of K {X} • . Let G be a minimal GB of I •L{X; r} • . We assume G ⊂ η N K {X; r}. Then G ⊂ K {X; r} and G is a minimal GB of I .

P

. Write I L = I •L{X; r} • . We claim that:

The inclusion η N LT (I ) ⊂ LT (I L ) is clear, while the reverse inclusion follows from the fact that any f ∈ I L can be decomposed as

Since moreover obviously contains I , we nd I = .

Let ∈ G. Write LT ( ) = η aX i with ∈ N, a ∈ K × and i ∈ N n . Since G is a minimal GB of I L , we know that LT ( ) is minimal in LT (I L ). From Eq. (3), we deduce that LT ( ) ∈ T {X; r}, that is η a ∈ K. Thus η ∈ K and ∈ K {X; r} as claimed. The fact that G is a minimal GB of I follows again from Eq. (3).

To conclude this section, we underline that all computations (i.e. Algorithm 1 and the computation of S-polynomials) can be carried out within η N K {X; r}, representing an element of this set as a pair ( , f ) with ∈ N and f ∈ K {X; r}. This strategy avoids constructing and working in the eld L.

F4 algorithm

In the history of the computation of Gröbner bases, the development of Faugère's F4 algorithm [START_REF] Jean-Charles | A new e cient algorithm for computing Gröbner bases (F4)[END_REF] has been a decisive cornerstone towards faster algorithms. In this section, we adjust its strategy to the computation of Gröbner bases over Tate algebras. We restrict ourselves to r = 0, keeping in mind that the case of general log-radii can be reached using the techniques discussed at the end of §3.2.

Roughly, the F4 algorithm is an adaptation of Buchberger's algorithm such that all S-polynomials of a given degree are processed and reduced together in a big matrix of polynomials, along with their reducers. The algorithm carries on the computation until there is no S-polynomials to reduce. Over Tate algebras, as there is no degree, we use instead the degree of the lcm of the leading terms of an S-pair.

The F4 strategy can be then summed up as follows:

(1) Collect all S-pairs sharing the smallest degree for the lcm of their leading terms, and prepare their reduction (Algorithm 3).

(2) Reduce them all together (see Remark 3.11).

(3) Update the GB in construction and list of S-pairs according to the result of the previous reduction. (4) Carry on the previous steps until there is no S-pair remaining. The main algorithm is Algorithm 4, with Algorithm 3 as subroutine.

Algorithm 3: Symbolic-Preprocessing input : a list P of pairs of elements of K {X} (resp. of Remark 3.11. On Line 6 of Algorithm 4, the algorithm called TateRowReduction is a simple Smith-Normal-Form-like algorithm: it takes as pivot the not-yet-used series M i with biggest leading term LT (M i ), reduces the other series with this pivot, and proceed until either all remaining series are zeros or all series have served as pivot.

L 3.12. At nite precision, Algorithm 3 terminates in a nite number of steps, and the output U has a nite length.

P

. We remark that the sequence formed by the elements t's considered in the while loop is strictly decreasing. Indeed, we notice rst that t is added to D on line 6, so it cannot reappear later. Then, if V is not empty, all the terms of δ • on line 11 are strictly smaller than t, except its leading term which is t. At nite precision, there is no in nite strictly decreasing sequence by Lemma 2.14. Consequently, Algorithm 3 terminates in a nite number of steps. P 3.13. Under the same hypotheses as in Theorem 3.8, Algorithm 4 outputs G satisfying the same conclusions.

P

. Thanks to Lemma 3.12, it is clear that Algorithm 3 and then the call for TateRowReduction terminate. Termination of Algorithm 4 can then be proved along the following lines. If the algorithm did not terminate for some given input, then it would mean that B (the list of pairs) is never empty. Hence, there would be an in nite number of times when new polynomials are added to G. From them, we would be able to construct a strictly increasing sequence of monomial ideals inside T {X} which are nonzero at the precision O(π N ). This contradicts Lemma 2.14. Finally, thanks to the Buchberger criterion for Tate algebras (cf Theorem 3.7), the correctness follows along the same lines as in the proof of Theorem 3.8.

IMPLEMENTATION

We have implemented in S M all the algorithms presented in this paper, together with an interface for working with Tate algebras. Our implementation of Buchberger algorithm (cf §3.2) is now part of the standard distribution of S M since version 8.5. It is fairly optimized but it is clear that more work need to be done in this direction: the timings we obtain are far from the average timings reached by other softwares (as ) for the computation of Gröbner bases over Z/p n Z, whereas we could expect them to match, even if the context is a bit di erent. Our implementation of the F4 algorithm (cf §3.3) is still a toy implementation, which does not exhibit good performances yet; we plan to improve it in a near future. It is available at https://gist.github.com/TristanVaccon. Short demo. Our implementation provides a constructor for creating Tate algebras, called TateAlgebra:

We observe that, by default, the log-radii are all zero; the keyword log_radii can be use to pass in other values. Similarly the default order is the one attached to ω = grevlex, but any other order known by S M can be speci ed via the keyword order. The ring of integers of the Tate algebras can be built as follows:

We can now create and manipulate elements: We observe that, in the outputs, terms are ordered with respect to the term order on T {X}, the greatest one coming rst. The big-oh appearing on the last line hides terms which are multiple of 2 5 .

Classical transcendantal functions are also implemented, e.g.:

In: log(1+g) Out: ...