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ABSTRACT
Tate algebras, introduced in [Ta71], are fundamental objects in the

context of analytic geometry over the p-adics. Roughly speaking,

they play the same role as polynomial algebras play in classical al-

gebraic geometry. In the present article, we develop the formalism

of Gröbner bases for Tate algebras. We prove an analogue of the

Buchberger criterion in our framework and design a Buchberger-

like and a F4-like algorithm for computingGröbner bases over Tate

algebras. An implementation in SageMath is also discussed.
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1 INTRODUCTION
In complex geometry, the concept of analytic functions is obvi-

ously a notion of �rst importance. They form a class of functions

that exhibit strong rigidity properties as polynomials do but, at the

same time, allow for many analytic constructions such as taking

limits, integrals, etc. For this reason, they often appear as a bridge

between algebra and analysis.

For many arithmetical applications, the completion Qp of Q is

often as relevant as R or C. At the beginning of the 20th century,

mathematicians realized that it would be quite interesting to de-

velop the theory of p-adic analytic functions and eventually that

of p-adic analytic geometry. However doing so is not an easy task

owing to the unpleasant topology on Qp , which is totally discon-

nected.

In [Ta71], Tate proposed to replace the classical p-adic topology

by some well-suited Grothendieck topology and came up with the
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notion ofp-adic rigid variety. Basically, the construction of rigid va-

rieties follows that of schemes in algebraic geometry. They are ob-

tained by gluing pieces — the so-called a�noids — with respect to

the aforementioned Grothendieck topology. As for a�noids, they

are de�ned as the “spectrum” of quotients of some particular alge-

bras, called Tate algebras. Thereby, Tate algebras play the same role

in rigid geometry as polynomial algebras do in classical algebraic

geometry.

From the purely algebraic point of view, Tate algebras have been

widely studied and it has been demonstrated that they share some

properties with polynomial algebras [BGR84]. However, as far as

we know, the computational aspects of Tate algebras have not been

developed yet. This contrastswith the polynomial setting, forwhich

we have at our disposal the theory of Gröbner bases [Bu65, Co15],

which has become over the years a research topic on its own. The

aim of the present article is to extend the notion of Gröbner bases

to Tate algebras.

Some di�culties need to be overcome. The most signi�cant one

is that elements in Tate algebras are, by nature, in�nite convergent

series and so they do not have a degree. This seems to be a serious

obstruction since the degree is the most basic notion on which the

classical theory of Gröbner bases is built. However, analyzing the

de�nition of Tate algebras, we notice that a Tate series de�nes a

sequence of polynomials (of growing degrees) by reduction mod-

ulo pn when n varies. In order to take advantage of this observa-

tion, we introduce an order on the terms taking into account the

p-adic valuation of the coe�cients. This order is not well-founded

as classical term orders are usually. However, we shall prove that

it is topologically well-founded (in the sense that every decreasing

sequence tends to 0) and that this weaker property is enough to

guarantee the termination of our algorithms in the �nite precision

model.

Related works. Gröbner bases over rings — and in particular over

Z and Z/nZ — have also received some attention [AL94, KC09].

These developments are of course related to this article since quo-

tients of Tate algebras are polynomial algebras over Z/pnZ for n

varying. The main di�erence between our point of view and that

of loc. cit. appears in the choice of the term ordering; while, in the

theory of Gröbner bases of rings, only the degree is considered, our

setting forces us to include the valuation of the coe�cients in the

de�nition of the term ordering. It is the “price to pay” to be able

to pass smoothly to the completion and catch inexact bases as Zp
or Qp .

The special term orderingwe use comes from two di�erent sources.

The �rst one is the theory of tropical Gröbner bases by Chan and

Maclagan [CM19] in which, for the �rst time, the valuation of

the coe�cients has been taken into account in the de�nition of
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the term ordering. Later on, Vaccon and his coauthors [Va*, Va15,

VY17, VVY18] observed that tropical orders are relevant for the

computation ofp-adic Gröbner bases as they improve substantially

the numerical accuracy. The de�nition of our term order is the

natural outcome of this observation. Our second source of inspira-

tion is the theory of standard bases, which was designed originally

to “compute” the singularties of algebraic varieties [Mo82, GR95].

This theory introduces the notion of term order of local/mixed

type, onwhich the term orderingwe are using in the present article

is modeled.

Structure of the article. In §2, we introduce Tate algebras and de-

velop the theory of Gröbner bases over them. We prove in particu-

lar the existence of �nite Gröbner bases and study their structure.

§3 is devoted to algorithms. We �rst design a variant of the Buch-

berger algorithm that runs over Tate algebras. Several results to-

wards its numerical stability are also presented. We then move to

F4-like algorithms and show how they could be adapted to �t into

the framework of Tate algebras. Finally, in §4, an implementation

in SageMath is brie�y discussed.

Notations. The notation N will refer to the set of nonnegative inte-

gers (including 0). If A is a ring, we will denote its group of invert-

ible elements by A×. We �x a positive integer n. Let X1, . . . ,Xn be

n variables. We will use the short notationX for (X1, . . . ,Xn). Sim-

ilarly for i = (i1, . . . , in) ∈ Nn , we shall write Xi for X i1
1 · · ·X

in
n .

2 GRÖBNER BASES OVER TATE ALGEBRAS
Throughout this article, we �x a �eld K equipped with a discrete

valuation val : K → Z ⊔ {+∞}, normalized by val(K×) = Z. We

shall always assume thatK is complete with respect to the distance

de�ned by val.We letK◦ be the subring ofK consisting of elements

of nonnegative valuation and π be a uniformizer of K , that is an

element of valuation 1. We set K̄ = K◦/πK◦.
A typical example of K as above is the �eld of p-adic numbers

Qp (equippedwith thep-adic valuation). For this example, we have

K◦ = Zp and K̄ = Fp .

2.1 Tate algebras
We endow Rn with the usual scalar product.

De�nition 2.1. Let r = (r1, . . . , rn ) ∈ Qn . The Tate algebraK {X; r}
is de�ned by:

K {X; r} :=
{

∑

i∈Nn
aiX

i s.t. ai ∈ K and val(ai) − r·i −−−−−−−→
|i |→+∞

+∞
}

The tuple r is called the convergence log-radii of the Tate algebra.

Elements of K {X; r} are the power series converging on the prod-

uct of closed balls B(0, |π |r1 ) × · · · × B(0, |π |rn ) where | · | is the
absolute value on K induced by val. When r = (0, . . . , 0), we will
simply write K {X} instead of K {X; (0, . . . , 0)}.

Example 2.2. Let K = Qp . The series f1 =
1
p +X +pX

2
+p2X 3

+

. . . lies in K {X }. The series f2 = 1 + X + X 2
+ X 3

+ . . . does

not lie in K {X }, because it does not converge when evaluated at 1

(for example). However, it does converge when evaluated at x with

|x | < 1, so it lies in K {X ; (r )} for all negative r .

The Tate algebra K {X; r} is equipped with the Gauss valuation

valr : K {X; r} → Q ⊔ {+∞} de�ned as follows:

valr

(
∑

i∈Nn
aiX

i
)

= min
i∈Nn

val(ai) − r·i.

We observe that the minimum is always reached thanks to the

growth condition imposed in De�nition 2.1. Moreover, the image

of valr is discrete. Geometrically, the Gauss valuation corresponds

to the minimal valuation reached by the series on its domain of

convergence (possibly after a �nite extension of K ).

De�nition 2.3. The integral Tate algebra ring K {X; r}◦ is de�ned
as the subring of K {X; r} consisting of elements with nonnegative

Gauss valuation.

Again we will use the notation K {X}◦ for K {X; (0, . . . , 0)}◦. When

r ∈ Zn , observe that K {X; r} = K {πr1X1, . . . , π
rnXn } and simi-

larly for K {X; r}◦. The case r ∈ Zn then reduces to r = 0 via a

change of variables.

Example 2.4. With the notations of Example 2.2, f1 does not lie

in K {X }◦, but f2 does lie in K {X ;r }◦.
Proposition 2.5. We have K {X; r} = K {X; r}◦

[

1
π

]

.

2.2 About terms
From now on, we �x a log-radii r ∈ Qn .

Monoids of terms. We �rst recall some basic de�nitions.

De�nition 2.6. A monoid is a set equipped with a single associa-

tive binary operation, which has a neutral element.

An ideal of a monoidM is a subset I ⊂ M such that, for all a ∈ M
and x ∈ I , we have ax ∈ I .

We de�ne the monoid of terms T {X; r} as the multiplicative

monoid consisting of the elements aXi witha ∈ K× and i ∈ Nn . We

let also T {X; r}◦ be the submonoid of T {X; r} consisting of terms

aXi for which valr(aXi) ≥ 0. The multiplicative group K× (resp.

(K◦)×) embeds into T {X; r} (resp. T {X; r}◦). We set:

T{X; r} = T {X; r}/K× and T{X; r}◦ = T {X; r}◦/(K◦)×.
The inclusion T {X; r}◦ ⊂ T {X; r} induces a canonical morphism

(which is no longer injective) T{X; r}◦ → T{X; r}. The ideals of

T{X; r} (resp. of T{X; r}◦) are in bijective correspondance with

the ideals of T {X; r} (resp. of T {X; r}◦). Moreover, T{X; r} and
T{X; r}◦ do not contain non trivial invertible elements. In other

words, the divisibility relation de�nes an order on T{X; r} and
T{X; r}◦. The following lemma elucidates the structure of T{X; r}
and T{X; r}◦.

Lemma 2.7. (1) The mapping T{X; r} → Nn , aXi 7→ i is an iso-

morphism of monoids.

(2) The mapping T{X; r}◦ → Q+ × Nn , aXi 7→ (valr(aXi), i) is an
injective morphism of monoids; its image is included in 1

DN × N
n

where D is a common denominator of the coordinates of r.

(3) The natural morphism T{X; r}◦ → T{X; r} corresponds to the

projection onto the factor Nn .

Proposition 2.8. Let I be an ideal of T{X; r} (resp. of T{X; r}◦).
Then there exists a unique subset S of I having the two following prop-

erties: (1) S generates I , and (2) every subset generating I contains S .

Moreover S is �nite.



Proof. The unicity is easy. Indeed if S and S ′ satisfy (1) and (2),
one must have S ⊂ S ′ and S ′ ⊂ S , i.e. S = S ′. In order to prove the

existence, we de�ne S as the set of minimal elements of I for the di-

visibility relation. The fact that S generates I follows from the fact

that divisibility is a well-funded order on T{X; r} (cf Lemma 2.7).

The point (2) is obvious.

It remains to prove that S is �nite. For this, we observe that any

sequence with values in N necessarily has a nondecreasing subse-

quence. Extracting subsequences repeatedly, we �nd that the pre-

vious property also holds for sequences with values in Nm for any

integer m. By Lemma 2.7, it also holds for sequences with values

in T{X; r} (resp. in T{X; r}◦). Therefore, if S were not �nite, we

would be able to extract from S a nondecreasing sequence. This

contradicts the fact that S is composed by minimal elements. �

De�nition 2.9. Let I be an ideal of T{X; r} (resp. of T{X; r}◦). The
subset S of Proposition 2.8 is called the skeleton of I ; it is denoted

by Skel(I ).
The skeleton of an ideal of T {X; r} (resp. of T {X; r}◦) is de�ned

as the skeleton of its image in T{X; r} (resp. in T{X; r}◦); it is de-
noted by Skel(I ).

In what follows, it will sometimes be convenient to work more

generally with fractional ideals. By de�nition a fractional ideal of

T{X; r}◦ is a subset of T{X; r} which is stable by multiplication by

elements in T{X; r}◦. The notion of skeleton can be extended to

fractional ideals I of T{X; r}◦ for which there exists N ∈ N such

that I ⊂ π−N T{X; r}◦. For such ideals, Skel(I ) is a �nite subset of
T {X; r}/(K◦)×. An interesting example of fractional ideal is:

T{X; r}≥v =
{

t ∈ T{X; r} s.t. valr(t) ≥ v
}

. (1)

Remark 2.10. The e�ective computation of Skel(T{X; r}≥v ) is
not an easy problem. It has been solved for n = 1 in [CL14] us-

ing the theory of continued fractions. It would be interesting to

generalize the results of loc. cit. to higher n.

Term order. We �x a monomial order ≤ω on Nn . We recall that

this means that ≤ω is a well-order which is compatible with the

addition. Usual examples of monomial orders are lex, grevlex, etc.

De�nition 2.11. We de�ne a preorder ≤ onT {X; r},T {X; r}◦ by:
aXi ≤ bXj i� valr(aXi) > valr(bXj)

or valr(aXi) = valr(bXj) and i ≤ω j.

Remark 2.12. The inequality sign is reversed in the �rst line: we

require that valr(aXi) > valr(bXj) and not valr(aXi) < valr(bXj).
This is not a typo and will be important in the sequel.

We underline that ≤ is not antisymmetric (and so not an order).

More precisely, for t1, t2 ∈ T {X; r}, the fact that t1 ≤ t2 and t2 ≤ t1
is equivalent to the existence of a ∈ (K◦)× such that t1 = at2. As

a consequence, ≤ induces an order on T{X; r}◦. On the contrary,

we draw the attention of the reader that ≤ does not factor through

T{X; r}.
Example 2.13. Let K = Qp and consider K {X ,Y } with the lexi-

cographical order. The preorder ≤ orders terms as follows:

· · · > XY 2
> XY > X > · · · > Y > 1 > · · ·

· · · > pXY 2
> · · · > p > · · · > p2XY 2

> · · ·

The terms Xi and −Xi are “equal” for ≤. So are Xi and (1+p)Xi.

It is easily seen that the preorder ≤ is total. In turns out that it

is not a well-order since the in�nite sequence (pn)n≥0 is strictly

decreasing. Nevertheless, we have:

Lemma2.14. Let (tj )j∈N be a strictly decreasing sequence inT {X; r}
(resp. in T {X; r}◦). Then limj→∞ valr(tj ) = +∞.

Proof. From the de�nition of ≤, it follows that the sequence

(valr(tj ))j∈N is nondecreasing. Moreover it takes its values in 1
DN

for some positive integer D. Finally, the fact that ≤ω is a well-order

implies that for each �xedv ∈ 1
DN, there is only a �nite number of

indices j for which valr(tj ) = v . Combining these inputs, we �nd

that valr(tj ) must tend to +∞. �

We notice that if i , j, the terms aiX
i and ajX

j are never “equal”

for ≤. Therefore, any nonzero series f =
∑

i∈Nn aiX
i ∈ K {X; r}

has a unique leading term. We denote it LT (f ).

Example 2.15. With the notations of Example 2.13, the leading

term of д2 = XY + p + p2XY is LT (д2) = (1+p2)XY .

2.3 Gröbner bases
De�nition 2.16. Given an ideal J of K {X; r} (resp. of K {X; r}◦),
we denote by LT (J ) the subset of T {X; r} (resp. of T {X; r}◦) con-
sisting of elements of the form LT (f ) with f ∈ J , f , 0.

We check immediately that LT (J ) is an ideal of themonoidT {X; r}
(resp. ofT {X; r}◦).

De�nition 2.17. Let J be an ideal of K {X; r} (resp. of K {X; r}◦).
A family (д1, . . . ,дs ) ∈ J s is a Gröbner basis (in short, GB) of J if

LT (J ) is generated by the LT (дi )’s in T {X; r} (resp. T {X; r}◦).

Proposition 2.18. Let G = (д1, . . . ,дs ) be a GB of an ideal J of

K {X; r} (resp. of K {X; r}◦). ThenG generates J .

Proof. Let f ∈ J . We de�ne inductively a sequence (fj )j∈N as

follows. Let f0 = f . Given j, we writeLT (fj ) = ajX
ij LT (дi j ) and de-

�ne fj+1 = fj − ajXijдi j . Then LT (fj+1) < LT (fj ). By Lemma 2.14,

valr(LT (fj )) = valr(fj ) goes to in�nity when j goes to in�nity.

Therefore we can then write f =
∑

j ajX
ijдi j as a converging se-

ries. By regrouping terms, we get f ∈ 〈д1, . . . ,дs 〉. �

Proposition 2.8 gives a lot of information about the ideal LT (J )
(where J is an ideal of K {X; r} or K {X; r}◦). These results have

interesting consequences on Gröbner bases.

Theorem 2.19. Any ideal of K {X; r} or K {X; r}◦ has a �nite GB.

Proof. Let t1, . . . , ts be the elements of Skel(LT (J )). For all i , let
дi ∈ J be such that LT (дi ) = ti in T{X; r} (resp. in T{X; r}◦). Then
(д1, . . . ,дs ) is a GB of J . �

Remark2.20. Combining the previous theoremwith Proposition 2.18,

we obtain that any ideal of K {X; r} (resp. of K {X; r}◦) is �nitely
generated. In other words, we have proved that the rings K {X; r}
and K {X; r}◦ are Noetherian (which was of course already known

for a long time).

Another important consequence of Proposition 2.8 is the notion of

minimal GB that we discuss now.



De�nition 2.21. Let J be an ideal of K {X; r} (resp. of K {X; r}◦).
A GBG = (д1, . . . ,дs ) is minimal if the images in T{X; r} (resp. in
T{X; r}◦) of the LT (дi )’s are exactly the elements of Skel(LT (J )),
with no repetition.

A direct consequence of the de�nition is that two minimal GB

of a given ideal J have the same cardinality, namely the cardinality

of Skel(LT (J )). Proposition 2.8 also implies the next theorem.

Theorem 2.22. Let J be an ideal of K {X; r} (resp. of K {X; r}◦).
Let G be a GB of J . Then, there exists a subset G ′ ⊂ G which is a

minimal GB of J .

2.4 Comparison results
So far, we have de�ned a notion of GB for ideals of K {X; r} and
K {X; r}◦. The aim of this subsection is to compare them.

Proposition 2.23. Let I be an ideal of K {X; r}◦ and let G be a

GB of I . ThenG is a GB of the ideal J = I
[

1
π

]

of K {X; r}.

Remark 2.24. Note that minimality of GB is not preserved when

passing from K {X; r}◦ to K {X; r}. For example, G = (p,X ) is a
minimal GB of the ideal I = (p,X ) of K◦{X }. However it is not a
minimal GB of J = I

[

1
π

]

= K {X } since p divides X in this ring.

Going in the other direction (i.e. from K {X; r} to K {X; r}◦) is
more subtle. First of all, we remark that, if we start with an ideal J

of K {X; r}, there exist many ideals I of K {X; r}◦ with the property
that I

[

1
π

]

= J . However, the set of such ideals I has a unique max-

imal element (for the inclusion); it is the ideal J ◦ = J ∩ K {X; r}◦.
This special ideal J ◦ can also be caracterized by the fact that it is

π -saturated.

Proposition 2.25. Let J be an ideal ofK {X; r} and letG = (д1, . . . ,дs )
be a GB (resp. a minimal GB) of J . We assume that valr(дi ) = 0 for

all i . ThenG is a GB (resp. a minimal GB) of J ◦.

Proof. Let G be a GB of J . Let t ∈ LT (J ◦). Then t is a multiple

of one of the LT (дi )’s inT {X; r}. Since valr(дi ) = 0, we deduce that

LT (дi ) divides t in T {X; r}◦ as well. Consequentlt G is a GB of J ◦.
The fact that minimality is preserved is easy. �

When r ∈ Zn , it is easy to build a GB of J satisfying the assump-

tion of Proposition 2.25 from any GB of J . Indeed if (д1, . . . ,дs )
is a GB of J then valr(дi ) is an integer for all i and the family

(π− valr(д1)д1, . . . ,π− valr(дs )дs ) is a GB of J . On the contrary, when

r < Zn , the problem is more complicated as illustrated by the next

example.

Example 2.26. Choose n = 1 and r = ( 12 ) and let J be ideal of

K {X } generated by X . The ideal J ◦ is then generated by д1 = πX

and д2 = πX 2 . More precisely, one checks that (д1,д2) is a minimal

GB of J ◦. In particular, we observe that the cardinality of a minimal

GB of J does not agree with that of a minimal GB of J ◦.

For a general r ∈ Qn , Proposition 2.25 can be re�ned as follows.

Proposition 2.27. Let J be an ideal of K {X; r}◦ and let G =

(д1, . . . ,дs ) be a GB of J . Then a GB of J ◦ is (ti, j ·дi )’s where, for each
�xed i , the ti, j ’s enumerate the elements of Skel

(

T {X; r}≥− valr(дi )
)

(cf Eq. (1)).

Reduction in the residue field. When r = (0, . . . , 0), the quotient
K {X}◦/πK {X}◦ is isomorphic to the polynomial algebra K̄[X], on
which we have a well-de�ned notion of Gröbner bases.

Proposition 2.28. Let J be an ideal of K {X}. Set J ◦ = J∩K {X}◦
and let J̄ ◦ be the image of J ◦ in K̄[X]. Let д1, . . . ,дs in J be such

that val0(дi ) = 1 and let д̄1, . . . , д̄s be their images in J̄ ◦. Then the

following assertions are equivalent:

(1) (д1, . . . ,дs ) is a GB of J ;

(2) (д1, . . . ,дs ) is a GB of J ◦;
(3) (д̄1, . . . , д̄s ) is a GB of J̄ ◦.

Proof. The equivalence between (1) and (2) has been already

proved.We now prove that (2) implies (3). Let f̄ ∈ J̄ ◦ and let f ∈ J ◦

be a lift of f̄ . We can write LT (f ) = aX iLT (дi ) for some a, i and i .

Then LT ( f̄ ) = āX iLT (д̄i ). Therefore the LT (д̄i )’s generate LT ( J̄ ◦).
We prove �nally that (3) implies (2). Let f ∈ J ◦. Set h = π− val0(f ) f .
Clearly h ∈ J and h ∈ K {X}◦. Thus h ∈ J ◦. By (3), we can write

LT (h̄) = āX iLT (д̄i ) for ā ∈ K̄ and i ∈ Nn . We write LT (h) = h0X
H

with h0 ∈ (K◦)× and similarly, LT (дi ) = b0X
F with b0 ∈ (K◦)×.

Then X F divides XH . Let L be such that XH
= X F · X L . Then

LT (h) = h0b−10 X LLT (дi )

with h0
b0
∈ K◦. This concludes the proof. �

3 ALGORITHMS

3.1 Division and membership test
Not surprisingly, Gröbner bases can be used to test membership

in ideals. Before going further in this direction, we need to adapt

the division algorithm to our setting. We will need two variants

depending on where we are looking for the quotients.

Proposition 3.1. Let f ,h1, . . . ,hm ∈ K {X; r}. Then, there ex-
ist q1, . . . ,qm ∈ K {X; r} (resp. q1, . . . ,qm ∈ K {X; r}◦) and r ∈
K {X; r} such that:

(1) f = q1h1 + · · · + qmhm + r ,

(2) for all i and all terms t of r , LT (hi ) ∤ t in T {X; r} (resp. in
T {X; r}◦),
(3) for all terms ti of qi , we have LT (tihi ) ≤ LT (f ).

Proof. We only give the proof of K {X; r}, the case of K {X; r}◦
being totally similar. We will construct by induction sequences

(fj )j≥0, (qi, j)j≥0 (1 ≤ i ≤ m) and (r j )j≥0 such that:

f = fj + q1, jh1 + · · · + qm, jhj + r j . (2)

We set f0 = f , r0 = 0 and q1,0 = · · · = qm,0 = 0. If LT (fj ) is
divisible by some LT (hi j ), we set fj+1 = fj −

LT (fj )
LT (hi )hi and qi j, j+1 =

qi j, j+
LT (fj )
LT (hi ) , and leave unchanged r and the othersqi ’s. Otherwise,

we set fj+1 = fj − LT (fj ) and r j+1 = r j + LT (fj ).
If follows from the construction that LT (fj+1) < LT (fj ) for all j.

By Lemma 2.14, limj→∞ valr(fj ) = +∞, i.e. (fj )j≥0 converges to 0
in K {X; r}. Besides, valr

( LT (fj )
LT (hi )

)

tends to in�nity as well, so that

the sequences (qi, j )j≥0 all converge. Combining this with Eq. (2),

we �nd that (r j )j≥0 also converges. The elements qi = limj→∞ qi, j
and r = limj→∞ r j satisfy the requirements of the proposition. �



Algorithm 1: division

input : f ,h1, . . . ,hm ∈ K {X; r}
output :q1, . . . ,qm , r satisfying Prop. 3.1

1 r ,q1, . . . ,qm ← 0;

2 while f , 0 do
3 while ∃i ∈ {1, . . . ,m} such that LT (hi) | LT (f ) do
4 qi ← qi +

LT (f )
LT (hi ) ;

5 f ← f − LT (f )
LT (hi )hi ;

6 r ← r + LT (f );
7 f ← f − LT (f );
8 Return q1, . . . ,qm , r ;

Algorithm 1 below summarizes the proof of Proposition 3.1. In

general, it does not terminate, keeping computing more and more

accurate approximations of the qi ’s and r . However, in the com-

mon case where the coe�cients of the input series are all known

up to �nite precision, i.e.moduloπN for someN , Algorithm 1 does

terminate.

Remark 3.2. When working at �nite precision, it is more intelli-

gent, instead of computing the quotient
LT (f )
LT (hi ) (which would possi-

bly lead to losses of precision), to choose an exact term t such that

the equality LT (f ) = t ·LT (hi) holds at the working precision, and
use it on lines 4 and 5. Doing so, we limit the losses of precision.

In general, the conditions of Proposition 3.1 are not enough to

determine uniquely the qi ’s and r . However, Proposition 3.3 be-

low provides a weak unicity result when (h1, . . . ,hm) is a Gröbner
bases, which can be used to test membership.

Proposition 3.3. Let J be an ideal of K {X; r} (resp. of K {X; r}◦)
and let (д1, . . . ,дs ) be a GB of J . Let f ∈ K {X; r}. We assume that

we are given a decomposition f = q1д1 + · · · + qsдs + r satisfying

the requirements of Proposition 3.1. Then r = 0 if and only if f ∈ J .

Proof. The “only if” is clear. Conversely, assume by contradic-

tion that f ∈ J and r , 0. Then LT (r ) makes sense. From the

conditions of Proposition 3.1, we deduce that LT (r ) is not divisible
by LT (дi ) for all i . Hence LT (r ) < LT (J ). This is contradiction since
r ∈ J . �

Remark 3.4. In the integral Tate algebra setting, it is not true

that the remainder in the division by Gröbner bases is unique. For

example, the division inK {X}◦ of f = 1+p byh = p can bewritten

either f = 0×h+ (1+p) or f = 1×h+1. This is a general limitation

of Gröbner bases over rings, even in the polynomial case [AL94].

3.2 Buchberger’s algorithm
In this subsection, we adapt Buchberger’s algorithm to �t into the

framework of Tate algebras. The adaptation is more or less straight-

forward except on two points. The �rst one is related to �nite pre-

cision, as already encountered previously. The second point is of

di�erent nature; it is related to the fact that, when the log-radii

are not integers, the crucial notion of S-polynomials is not well-

de�ned as the monoid T {X; r}◦ does not admit gcd’s. In what fol-

lows, we will give satisfying answers to these issues.

Buchberger’s criterion. To begin with, we assume r = (0, . . . , 0).
Under this hypothesis, the monoid of termsT {X} admits gcd’s and

lcm’s. Concretely we de�ne:

gcd(aXi
, bXj) = πmin(val(a),val(b ))X inf(i, j)

,

lcm(aXi
, bXj) = πmax(val(a),val(b ))X sup(i, j)

where the inf and the sup over Nn are taken coordinate by coordi-

nate. In what follows, in order to simplify notations, we will write

val instead of val(0, ...,0). If t1 and t2 are two terms, the valuation of

gcd(t1, t2) (resp. of lcm(t1, t2)) is theminimum (resp. themaximum)

of val(t1) and val(t2).

De�nition 3.5. For f ,д in K {X}, we de�ne:

S(f ,д) = LT (д)
gcd(LT (f ),LT (д)) f −

LT (f )
gcd(LT (f ),LT (д))д.

We have the following classical lemma:

Lemma 3.6. Let h1, . . . ,hm ∈ K {X} and t1, . . . , tm ∈ T {X}. We

assume that the LT (tihi )’s all have the same image in T {X}/(K◦)×
and that LT (∑m

i=1 tihi ) < LT (tihi ). Then

m
∑

i=1

tihi =

m−1
∑

i=1

t ′i ·S(hi ,hi+1) + t ′m ·hm

for some t ′1, . . . , t
′
m ∈ T {X} such that val(t ′mhm) > val(t1h1) and

val(t ′i ) +max(val(hi ), val(hi+1)) ≥ val(t1h1) for i ∈ {1, . . . ,m−1}.

Theorem3.7. Leth1, . . . ,hs be elements ofK {X} (resp. ofK {X}◦)
and let I be the ideal of K {X} (resp. of K {X}◦) generated by the hi ’s.
Then (h1, . . . ,hs ) is a GB of I if and only if all S(hi ,hj ), i , j, reduce

to zero after division by (h1, . . . ,hs ) using Algorithm 1.

Proof. The “only if” part follows fromProposition 3.3.We prove

the “if” part. Let us assume by contradiction that there exists some

f ∈ I such that LT (f ) < 〈LT (hi)〉. We can write f =
∑

i qihi with

qi ∈ K {X} (resp. qi ∈ K {X}◦). De�ne t = maxi LT (qihi ). We have

LT (f ) < t because of the hypothesis that LT (f ) < 〈LT (hi)〉. We can

moreover assume that the decomposition f =
∑

i qihi is chosen in

such a way that t is minimal.

Let J be the set of indices i for which LT (qihi ) = a·t for some

a ∈ (K◦)×. Set ti = LT (qi) for i ∈ J and de�ne h =
∑

i ∈J tihi ; we
have LT (h) < t . Applying Lemma 3.6, we �nd j0 ∈ J and terms t ′,
t ′
j,k

(for j,k ∈ J ) such that:

h =
∑

j,k ∈J
t ′j,kS(hj ,hk ) + t

′hj0

and val(t ′hj0 ) > val(h), val(t ′
j,k
) + min(val(hj ), val(hj )) ≥ val(h).

Applying Proposition 3.1 with the S-polynomials, and using the

fact that the leading terms of the summands in an S-polynomial

cancel out, we get b1, . . . ,bm ∈ K {X} such that h =
∑m
i=1 bihi and

LT (bihi ) < t for all i . Therefore, we �nd that f can be written as

f =
∑

i ∈i q
′
ihi with q′1, . . . ,q

′
m ∈ K {X} and LT (q′ihi ) < t for all i .

This contradicts the minimality of t . �



Algorithm 2: Buchberger’s algorithm

input : f1, . . . , fm in K {X} (resp. in K {X}◦)
output :a GB G of the ideal of K {X} (resp. of K {X}◦)

generated by the fi ’s

1 G ← { f1, . . . , fm}; B ← {(fi , fj ), 1 ≤ i < j ≤ m};
2 while B , ∅ do
3 (f ,д) ← element of B; B ← B \ {(f ,д)};
4 h ← S-polynomial of f and д;

5 _, r ← division(h,G);
6 if r , 0 then
7 B ← B ∪ {(д, r ) for д ∈ G}; G ← G ∪ {r }

8 ReturnG

Buchberger’s algorithm. After Theorem 3.7, it is easy to design

a Buchberger type algorithm for computing GB over K {X} and
K {X}◦. It is Algorithm 2. Studying its termination is a bit subtle.

Indeed, we have already seen that Algorithm 1 does not terminate

in general when we are working at in�nite precision. Therefore,

Algorithm 2 does not terminate either (since it calls Algorithm 1

on line 5). Nevertheless, one may observe that if, instead of calling

Algorithm 1, we ask the reduced form of h moduloG to an oracle

that answers instantly, then Algorithm 2 does terminate. In other

terms, the only source of possible in�nite loops in Algorithm 2

comes from Algorithm 1.

Of course, this point of view is purely theoretical and not satisfy-

ing in practice. In practice, the coe�cients of f1, . . . , fm are given

at �nite precision, i.e. modulo πN for some integer N , and all the

computations are carried out at �nite precision. In this setting, we

have seen that Algorithm 1 does terminate, so Algorithm 2 also

terminates. The counterpart is that it is a priori not clear that the

result output by Algorithm 2 is a correct approximation of a GB of

the ideal we started with. Nevertheless, in the case of K {X}◦, this
property holds true as precised by the following theorem.

Theorem 3.8. Let I be an ideal ofK {X}◦ and let (f1, . . . , fm) be a
generating family of I . Let also N be an integer such that N > val(t)
for all t ∈ Skel(LT (I )).

When Algorithm 2 is called with f1 +O(πN ), . . . , fm +O(πN ), it
outputsG = (д1, . . . ,дs ) with the following properties:

(1) each дi is known at precision at least O(πN ), and
(2)G is the approximation of an actual GB of I .

Proof. The fact that the precision on the дi ’s does not decrease

follows from the fact that Algorithm 2 only performs “exact” divi-

sions (cf Remark 3.2).

We now prove (2). Since the дj ’s are obtained as linear combina-

tions of the inputs fi +O(πN ), there exist д̂1, . . . , д̂s ∈ I such that

дi = д̂i + O(πN ) for all i . We set Ĝ = (д̂1, . . . , д̂s ); it is enough to

prove that Ĝ is a GB of I .

Let IN = I + πNK {X}◦ and ĜN = (д̂1, . . . , д̂s ,πN ). We claim

that ĜN is a GB of IN . Since it generates IN , it is enough to check

Buchberger’s criterion. By construction, we know that the reduc-

tion of S(д̂i , д̂j ) modulo Ĝ is a multiple of πN . Hence S(д̂i , д̂j ) re-
duces to zero modulo ĜN . On the other hand, it follows from the

de�nition of S-polynomials that S(д̂i ,πN ) is divisible by πN ; hence

it also reduces to 0 modulo ĜN . The claim is proved.

Let t ∈ LT (IN ). Then t = LT (f +πN h) for some f ∈ I and some

h ∈ K {X}◦. If val(f ) < N , we have t = LT (f ) ∈ LT (I ). Otherwise
t is a multiple of πN . We have then proved that LT (IN ) is the ideal
generated by LT (I ) and the term πN . This implies that, if H is a

GB of I , then HN = H ∪ {πN } is a GB of IN . Moreover by our

assumption on Skel(LT (I )), if H is minimal then HN is also.

Choose now a minimal GB H of I . From what we have done

before and Theorem 2.22, it follows that LT (HN ) ⊂ LT (ĜN ). Be-
sides, since the дi ’s do not vanish at precision O(πN ), we have

val(д̂i ) < N for all i . Consequently, LT (H ) ⊂ LT (Ĝ). In particular

LT (Ĝ) generates LT (I ), and so Ĝ is a GB of I . �

In the case of K {X}, we cannot hope to have similar guarantees.

Indeed, if we ask from the GB of the ideal I generated by f1 =

X +O(πN ) and f2 = X +O(πN ), the answer might be either (X ) if
f1 = f2 = X , or (1) if f1 = X and f2 = X+πN , ormany other results.

The best we can do is to compute a GB of the fractional ideal of

K {X}◦ generated by the fi ’s and answer that the obtained result

is likely a GB of I . In the example considered above, we will end

up with the GB (X +O(πN )), which is certainly the more natural

result we may expect.

General log-radii. We now consider the case of a general r ∈ Qn .
In this situation, the monoid T {X; r}◦ no longer admits gcd’s. As

a basic example, take r = ( 12 ,
1
2 ) and consider the terms t1 = πX1

and t2 = πX2. Then valr(t1) = valr(t2) = 1
2 . So the valuation of

gcd(t1, t2) should be 1
2 as well, implying that gcd(t1, t2) should be√

π , which is not an element of T {X; r}◦. When we are working

over K {X; r}, this issue does not happen since we can freely mul-

tiply by any power of π . Over K {X; r}, Algorithm 2 works and is

correct (althought we have to be careful with the normalization of

gcd’s in order to avoid losses of precision as much as possible).

Let us now focus on the case of K {X; r}◦ which is more compli-

cated. Let D be a common denominator of the coordinates of r, i.e.

D·r ∈ Zn . We consider the �eld extension L = K[η] with ηD = π .

The valuation val extends uniquely to L; we have val(η) = 1
D . We

de�ne L◦, L{X} and L{X}◦ accordingly. Observe that L◦ = K◦[η]. If
D·r = (r1, . . . , rn), we have L{X; r} = L{Y} and L{X; r}◦ = L{Y}◦
with Yi = ηriXi . Moreover the valuation valr over L{X; r} (resp.
L{X; r}◦) is transformed into the valuation val0 over L{Y} (resp.
L{Y}◦). The above identi�cations show that there is a good no-

tion of gcd’s and S-polynomials over L{X; r} and L{X; r}◦, so that
eventually Algorithm 2 runs and computes GB over L{X; r} and
L{X; r}◦. Before relating those to GB over K {X; r} and K {X; r}◦,
we need to examine the shape of the GB output by Algorithm 2.

Let ηNK {X; r} be the subset of L{X; r} consisting of elements

of the form ηv f for v ∈ N and f ∈ K {X; r}. Clearly, ηNK {X; r} is
stable by multiplication. Beyond this, one can check that it exhibits

additional stability properties:

Proposition 3.9. (1)WhenAlgorithm1 is called with inputs f ,h1, . . . ,hm ∈
ηNK {X; r}, it outputs q1, . . . ,qm, r ∈ ηNK {X; r}.
(2) If f ,д ∈ ηNK {X; r}, then S(f ,д) ∈ ηNK {X; r}.

From Proposition 3.9, we deduce immediately that, when Algo-

rithm 2 is called with inputs fi ∈ K {X; r} ⊂ L{X; r}, the GB it



outputs consists of elements of ηNK {X; r}. The following proposi-
tion shows that, after minimizing this GB, we obtain a GB of the

ideal of K {X; r}◦ we started with.

Proposition 3.10. Let I be an ideal ofK {X}◦. LetG be aminimal

GB of I ·L{X; r}◦. We assumeG ⊂ ηNK {X; r}. ThenG ⊂ K {X; r} and
G is a minimal GB of I .

Proof. Write IL = I ·L{X; r}◦. We claim that:

LT (IL) = ηNLT (I ) and I = IL ∩ K {X; r}. (3)

The inclusion ηNLT (I ) ⊂ LT (IL) is clear. As for the reverse inclu-

sion, it follows from the fact that any f ∈ IL can be decomposed

as f = f0 + η f1 + · · · + ηD−1 fD−1 with fi ∈ K {X; r} for all i . Set
J = IL∩K {X; r}. From LT (IL) = ηNLT (I ), we deduceLT (I ) = LT (J ).
Since moreover J obviously contains I , we �nd I = J .

Let д ∈ G. Write LT (д) = ηvaXi with v ∈ N, a ∈ K× and i ∈ Nn .
Since G is a minimal GB of IL , we know that LT (д) is minimal

in LT (IL). From Eq. (3), we deduce that LT (д) ∈ T {X; r}, that is
ηva ∈ K . Thus ηv ∈ K and д ∈ K {X; r} as claimed. The fact thatG

is a minimal GB of I follows again from Eq. (3). �

To conclude this section, we underline that all computations (i.e.

Algorithm 1 and the computation of S-polynomials) can be carried

out within ηNK {X; r}, representing an element of this set as a pair

(v, f ) with v ∈ N and f ∈ K {X; r}. This strategy avoids construct-
ing and working in the �eld L.

3.3 F4 algorithm
In the history of the computation of Gröbner bases, the develop-

ment of Faugère’s F4 algorithm [Fa99] has been a decisive corner-

stone towards faster algorithms. In this section, we adjust its strat-

egy to the computation of Gröbner bases over Tate algebras. We

restrict ourselves to r = 0, keeping in mind that the case of general

log-radii can be reached using the techniques discussed at the end

of §3.2.

Roughly, the F4 algorithm is an adaptation of Buchberger’s algo-

rithm such that all S-polynomials of a given degree are processed

and reduced together in a big matrix of polynomials, along with

their reducers. The algorithm carries on the computationuntil there

is no S-polynomials to reduce. Over Tate algebras, there is no de-

gree as for polynomials. However, we can use instead the degree

of the lcm of the leading terms of an S-pair.

The F4 strategy can be then summed-up as follows:

(1) Collect all S-pairs sharing the smallest degree for the lcm of

their leading terms, and prepare their reduction (Algorithm 4).

(2) Reduce them all together (Algorithm 3).

(3) Update the GB in construction and list of S-pairs according to

the result of the previous reduction.

(4) Carry on the previous steps until there is no S-pair remaining.

The main algorithm is Algorithm 5, with Algorithms 3 and 4 as

subroutines.

Lemma 3.11. At �nite precision, Algorithm 4 terminates in a �nite

number of steps, and the outputM has a �nite number of rows.

Proof. We remark that the sequence formed by the elements

t ’s considered n the while loop is strictly decreasing. Indeed, we

notice �rst that t is added toD on line 6, so it cannot reappear later.

Algorithm 3: TateRowReduction

input :a matrixM ,

a list of monomials mon indexing the col. ofM

output : the U -part of the Tate LUP-form ofM

1 if M has no non-zero entry then ReturnM ;

2 Find i, j s.t.Mi, j has the greatest termMi, jx
monj for ≤;

3 Swap the columns 1 and j ofM ;

4 Swap the entries 1 and j of mon;

5 Swap the rows 1 and i ofM ;

6 By pivoting with the �rst row, eliminates the coe�cients of

the other rows on the �rst column;

7 Proceed recursively on the submatrixMi≥2, j≥2;
8 ReturnM ;

Algorithm 4: Symbolic-Preprocessing

input :a list P of pairs of elements of K {X} (resp. of K {X}◦),
a listG of elements in K {X} (resp. in K {X}◦).

output :a matrixM

1 U ← the series in P ;

2 C ← ⋃

f ∈U {terms of f };
3 A ← K (resp. A ← K◦); D ← ∅;
4 while A·C , A·D do
5 t ← max {t ∈ C, t < A·D};
6 D ← D ∪ {t};
7 V ←

{(

д, t
LT (д)

)

for д ∈ G s.t. LT (д) | t
}

;

8 if V , ∅ then
9 (д, δ ) ← the element (д,δ ) ofV with maximal LT (δ ·д),

with tie-breaking by taking minimal δ (for degree

then for ≤ω );
10 U ← U ∪ {δ ·д};
11 C ← C ∪ {terms of δ ·д};

12 M ← the series ofU , written in a matrix of series;

13 ReturnM ;

Algorithm 5: F4 algorithm

input : f1, . . . , fm in K {X} (resp. in K {X}◦)
output :a GB G of the ideal of K {X} (resp. of K {X}◦)

generated by the fi ’s

1 G ← (f1, . . . , fm );
2 B ← {(fi , fj ), 1 ≤ i < j ≤ m};
3 while B , ∅ do
4 d ← min(u,v)∈B deg lcm(LT (u),LT (v));
5 P receives the pop of the pairs of degree d in B;

6 M ← Symbolic-Preprocessing(P ,G);
7 M ← TateRowReduction(M);
8 Add toG all the polynomials obtained fromM that

provide leading terms not in 〈{LT (д) for д ∈ G}〉;
9 Add to B the corresponding new pairs;

10 ReturnG;



Then, if V is not empty, all the terms of δ ·д on line 11 are strictly

smaller than t , except its leading termwhich is t . At �nite precision,

there is no in�nite strictly decreasing sequence by Lemma 2.14.

Consequently, Algorithm 4 terminates in a �nite number of steps.

�

Proposition 3.12. Under the same hypotheses as in Theorem 3.8,

Algorithm 5 outputsG satisfying the same conclusions.

Proof. Thanks to Lemma 3.11, it is clear that Algorithms 3 and 4

terminate. Termination of Algorithm 5 can then be proved along

the following lines. If the algorithm did not terminate for some

given input, then it would mean that B (the list of pairs) is never

empty. Hence, there would be an in�nite number of times when

new polynomials are added toG. From them, we would be able to

construct a strictly increasing sequence of monomial ideals inside

T {X} which are nonzero at the precision O(πN ). This contradicts
Lemma 2.14. Finally, thanks to the Buchberger criterion for Tate

algebras (cf Theorem 3.7), the correctness follows along the same

lines as in the proof of Theorem 3.8. �

4 IMPLEMENTATION
We have implemented in SageMath all the algorithms presented

in this paper, together with an interface for workingwith Tate alge-

bras. Our implementation of Buchberger algorithm (cf §3.2) is now

part of the standard distribution of SageMath since version 8.5. It

is fairly optimized but it is clear that more work need to be done

in this direction: the timings we obtain are far from the average

timings reached by other softwares (as singular) for the computa-

tion of Gröbner bases over Z/pnZ, whereas we could expect them
to match, even if the context is a bit di�erent. Our implementation

of the F4 algorithm (cf §3.3) is still a toy implementation, which

does not exhibit good performances yet; we plan to improve it in

a near future. It is available at:

https://gist.github.com/TristanVaccon

Short demo. Our implementation provides a constructor for cre-

ating Tate algebras, called TateAlgebra:

In: K = Qp(2, prec=5, print_mode='digits')

A.<x,y> = TateAlgebra(K); A

Out: Q2 {x, y }
We observe that, by default, the log-radii are all zero; the keyword

log_radii can be use to pass in other values. Similarly the de-

fault order is the one attached to ω = grevlex, but any other order

known by SageMath can be speci�ed via the keyword order.

The ring of integers of the Tate algebras can be built as follows:

In: Ao = A.integer_ring(); Ao

Out: Q2 {x, y }◦

We can now create and manipulate elements:

In: f = 2*x^2 + 5*x*y^2

g = 4 + 2*x^2*y

f + g

Out: . . .00101xy2
+ . . .000010x 2y + . . .000010x 2

+ . . .0000100

In: (1+g).inverse_of_unit()

Out: . . .01101 + . . .01110x 2y + . . .10100x 4y2
+

. . .11000x 6y3
+ . . .10000x 8y4

+O (25 Q2 {x, y }◦)

We observe that, in the outputs, terms are ordered with respect to

the term order on T {X}, the greatest one coming �rst. The big-oh

appearing on the last line hides terms which are multiple of 25.

Classical transcendantal functions are also implemented, e.g.:

In: log(1+g)

Out: . . .01110x 4y2
+ . . .11010x 2y + . . .11100x 8y4

+

. . .11100 + . . .11000x 6y3
+O (25 Q2 {x, y }◦)

Ideals of K {X} can be de�ned and manipulated as follows:

In: J = A.ideal([f,g])

J.groebner_basis()

Out: [ . . .0001x 3
+ . . .1011y +O (24 Q2 {x, y }◦),

. . .00001x 2y + . . .00010 +O (25 Q2 {x, y }◦),

. . .0001y2
+ . . .1010x +O (24 Q2 {x, y }◦) ]

In: A.random_element()*f + A.random_element()*g in J

Out: True

In: log(1+g) in J

Out: True

And similarly for ideals of K {X}◦ (observe that no losses of preci-

sion occur this time, in accordance with Theorem 3.8):

In: Jo = Ao.ideal([f,g])

Jo.groebner_basis()

Out: [ . . .00001xy2
+ . . .11010x 2

+O (25 Q2 {x, y }◦),
. . .000010x 2y + . . .000100 +O (26 Q2 {x, y }◦),
. . .000100x 3

+ . . .101100y +O (26 Q2 {x, y }◦),
. . .000100y2

+ . . .101000x +O (26 Q2 {x, y }◦) ]

In: g/2 in Jo

Out: False
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