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ABSTRACT

Most superpixel algorithms compute a trade-off between spa-
tial and color features at the pixel level. Hence, they may need
fine parameter tuning to balance the two measures, and highly
fail to group pixels with similar local texture properties. In
this paper, we address these issues with a new Texture-Aware
SuperPixel (TASP) method. To accurately segment textured
and smooth areas, TASP automatically adjusts its spatial con-
straint according to the local feature variance. Then, to ensure
texture homogeneity within superpixels, a new pixel to super-
pixel patch-based distance is proposed. TASP outperforms
the segmentation accuracy of the state-of-the-art methods on
texture and also natural color image datasets.

Index Terms— Superpixels, Texture, Patch, Segmentation

1. INTRODUCTION

Superpixel segmentation approaches that locally group pixels
into regions have become very popular in image processing
and computer vision applications. The aim is to exploit the
local redundancy of information to lower the computational
burden and to potentially improve the performances by re-
ducing the noise of a processing at the pixel level. Superpix-
els can also be considered as a multi-resolution approach that
preserves image contours, contrary to standard regular down-
sampling methods. It is thus a very interesting pre-processing
for applications such as visual saliency estimation [1, 2], data
association across views [3], segmentation and classification
[4, 5, 6] and object detection [7, 8, 9] or tracking [10, 11].

For the past years, most superpixel methods have tended
to produce equally-sized regions with homogeneous pixels in
terms of color. This paradigm is usually in line with the seg-
mentation of a natural image objects, whose contours can be
detected by color changes. Hence, to cluster the pixels into
regions, state-of-the-art methods such as [12, 13, 14, 15, 16],
only use distance terms in spatial and color (e.g., CIELab)
spaces. In [17, 18], more advanced feature spaces are defined
to improve the segmentation performances. More recently,
[19] proposes to consider contour information in the cluster-
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ing to ensure the respect of the object boundaries. Never-
theless, such framework requires the need for prior contour
detection, at the expense of a global higher complexity.

Most of these state-of-the-art methods only use the pixel
information as clustering feature. Therefore, they can be
severely impacted by high frequency contrast variations and
fail to produce equally-sized regions having the same tex-
tural properties. The proposed method TASP is compared
in Figure 1 to the state-of-the-art approaches on a synthetic
texture image. While TASP produces a relevant segmenta-
tion, all other methods are highly misleaded by the texture
patterns. We used the regularity parameters recommended
by the authors for tunable methods [14, 15, 20, 18, 19], but
no other setting would enable to capture texture information.
Superpixel methods are indeed generally optimized and eval-
uated on noise-free natural color images, although specific
tasks require to decompose highly textured or low resolution
grayscale images, for instance in medical applications [21].

To overcome the limitations of handcrafted color spaces,
deep learning approaches have been proposed [22, 23]. Nev-
ertheless, the gain obtained with learned features on a training
dataset may come at the expense of usual deep learning lim-
itations, i.e., important learning time, need for a substantial
training database and material resources, and direct applica-
bility limited to similar images. Moreover, these approaches
do not directly extend to supervoxels and prevent from set-
ting the shape regularity, which can highly impact the perfor-
mances of superpixel-based tasks. It is thus still necessary
to increase the robustness of non-deep learning superpixel
methods to textures, while preserving their desired properties:
adaptability, low complexity and limited parameter settings.

Contributions. In this work, we propose a new Texture-
Aware SuperPixel (TASP) clustering method able to accu-
rately segment highly textured images, but also any input im-
age, e.g., natural color ones, using the same parameters.

To be able to generate relevant superpixels on textured
images (see Figure 1), TASP adjusts its spatial constraint, ac-
cording to the feature variance within the superpixel. This
way, TASP also addresses the need for fine manual regularity
setting. Most recent state-of-the-art methods globally set this
parameter according to the image nature, leading default or
sub-optimal settings to highly impact the results [24].
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Initial image ERS [12] SEEDS [13] SLIC [14] ERGC [15]

ETPS [20] LSC [18] SNIC [16] SCALP [19] TASP

Fig. 1. Comparison of the TASP method to state-of-the-art approaches on a synthetic texture image for 100 superpixels. Only
TASP succeeds in capturing the textures while other methods are highly misleaded by high frequency contrast variations.

Then, to ensure the texture homogeneity, we introduce a
new patch-based framework enabling to easily evaluate the
similarity of a pixel neighborhood to a superpixel.

We validate TASP on natural color images from a stan-
dard segmentation dataset [25], and on two new datasets pro-
posed to evaluate texture segmentation performances. TASP
significantly outperforms the state-of-the-art methods on tex-
ture segmentation performances, while performing as well, or
better, on natural images, using the same parameters.

2. TEXTURE-AWARE SUPERPIXELS

The TASP method improves the superpixel decomposition ap-
proach used in [14, 18, 19], that is first presented in this sec-
tion. Then, we propose a method to locally set the spatial
regularity of superpixels, to automatically adapt to the image
content. Finally, we introduce a new pixel to superpixel tex-
ture homogeneity measure to group pixels in terms of texture.

2.1. K-means-based Iterative Clustering

The standard framework of [14] only requires the number
of superpixels to produce and a regularity parameter. The
algorithm is based on an iteratively constrained K-means
clustering of pixels. Superpixels Si are first regularly set over
the image domain as blocks of size s×s, and are described by
their average intensity feature FSi

(CIELab colors for [14])
and their spatial barycenter XSi

= [xi, yi] of pixels in Si.
The clustering relies on a feature dF (Fp, FSi)=‖Fp − FSi‖2,
and a spatial distance term ds(Xp, XSi)=‖Xp −XSi‖2. At
each iteration, each superpixel Si is compared to all pixels
p, of feature Fp at position Xp, within a (2s+1)×(2s+1)
region around its barycenter XSi

. A pixel p is associated to
the superpixel Si minimizing the distance D defined as:

D(p, Si) = dF (Fp, FSi) + ds(Xp, XSi)
m2

s2
, (1)

with m the parameter setting the superpixel shape regularity.
A post-processing step finally ensures region connectivity.

Although this method can accurately gather pixels having
similar colors, m is globally set and cannot adapt to all local
image contours. It also highly fails to capture texture patterns,
as it only considers feature information at the pixel level.

(a) SLIC [14] (b) w/ (2) (c) w/ (2), (3) (d) w/ (2), (3), (4)

Fig. 2. SLIC [14] with optimal regularity for color images
(a) vs TASP contributions (b)-(d), that accurately decomposes
both texture and color images with the same parameters (d).

2.2. Local Adaptation of Superpixel Regularity

For most methods, including [14, 18, 19], the regularity pa-
rameter m must be manually set, according to the dynamic
of the feature term dF . Hence, default parameters for natural
color images may lead model (1) to generate highly irregular
clustering on textures, and the post-processing step enforcing
connectivity to irrelevantly merge regions (see Figure 1). We
address this issue by using for each superpixel Si, a regular-
ity parameter mi defined according to the feature variance
σi(Fp) of all pixels p ∈ Si such that:

mi = m exp

(
σi(Fp)2

β

)
, (2)

with a scaling parameter β. Such regularity term mi is able
to increase the spatial constraint in the TASP model (5) for
superpixels having high feature variances, and to reduce it in
smooth areas, so the superpixel boundaries can capture image
objects that are perceptible from limited feature variations.

This way, without manually adapting m in (2), TASP
can compute relevant superpixels on both highly textured
images (Figure 2(b)-top), and natural color ones (Figure 2(b)-
bottom), since mi (2) automatically adjusts the trade-off be-
tween dF and ds in (5). Nevertheless, the clustering accuracy
still has to be improved to capture texture information.



Fig. 3. Selection of similar patches P (pi) in a superpixel Si

of barycenter XSi
, outside a δ-neighborhood, to compute the

texture homogeneity term (3) for a patch P (p).

2.3. Texture Homogeneity Measure

2.3.1. Pixel to Superpixel Patch-based Distance

In this section, we propose a method to measure the texture
similarity between a pixel neighborhood and the content of
a superpixel, thus between two regions of different sizes. A
texture descriptor at patch and superpixel levels would yield
higher complexity and additional parameter settings. More-
over, texture cannot be preserved as well as for color and spa-
tial information with a global average over the whole super-
pixel. The framework must preserve its limited complexity,
and to be able to adapt to any image content without any prior
information. Such constraints also prevent from using costly
dictionary or learning-based approaches.

To address these issues, we propose a new framework
using square patches to naturally capture texture informa-
tion. For a pixel p, of patch P (p), and a superpixel Si, a
nearest neighbor algorithm (see section 2.3.2) is used to find
similar patches P (pi) such that pi ∈ Si, and outside a δ-
neighborhood around p (see Figure 3). The new term dP
computes the average distance to the selected pi ∈ Si:

dP (p, Si) =
1

N

∑
pi∈Kp

dP (p, pi), (3)

with Kp the set of N selected pixels pi ∈ Si, compared with
a patch distance in the feature space, such that dP (p, pi) =
1
n‖FP (p) − FP (pi))‖2, with n the patch size.

Any feature can be used in term (3). This way, we propose
a general model that can easily evaluate the texture compli-
ance of a pixel neighborhood to a superpixel, while leveraging
the need for complex texture classification approaches.

2.3.2. Patch-based Nearest Neighbor Search

The search for similar patches can be performed by any near-
est neighbor (NN) method. We choose to use PatchMatch, a
fast iterative approximate-NN algorithm based on the prop-
agation of good matches from adjacent neighbors [26]. The
computation of dP (p, Si) can be directly performed for all
pixels p in the (2s+ 1)×(2s+ 1) area around the barycenter
XSi

of Si. The algorithm being partly random, N patches in
Si can be selected in parallel for each pixel p, to increase the
robustness of the texture homogeneity term (3).

2.3.3. Texture Unicity within Superpixels

In the texture term (3), the patch similarity is computed re-
gardless of any spatial information. Hence, a pixel p to clus-
ter may find similar local textures in restricted areas, leading a
superpixel to potentially group several textures (Figure 2(c)).

To ensure the texture unicity within a superpixel Si,
we consider in dP the spatial distance between the selected
patches P (pi), at position Xpi

∈ Si, and XSi
, the spatial

barycenter of the superpixel Si such that:

dP (p, pi) =
1

n
‖FP (p) − FP (pi))‖2 +

m2
i

s2
Γ
(
Xpi , XSi

)
, (4)

with Γ, a scaling function defined such that Γ(Xpi
, XSi

) =

2s2(1 − exp (−‖Xpi
−XSi

‖22/s
2)). Such term iteratively

contributes to restrict the search area and the diversity of tex-
tures within Si by highly penalizing similar patches found far
from XSi

. Hence, the barycenter is encouraged to move to
a homogeneous textured area and to be contained within the
superpixel (see Figure 2(d)). This also increases the shape
regularity, which is a desirable property [24].

The clustering distance in TASP is finally computed as:

D(p, Si) = dF (Fp, FSi) + ds(Xp, XSi)
m2

i

s2
+ dP (p, Si). (5)

This way, TASP becomes a very general method, able to han-
dle textures, and efficient on various image types with the ex-
act same parameters, as demonstrated in the next section.

3. RESULTS

3.1. Validation Framework

Similarly to [27], we create two new datasets to evaluate
texture segmentation performances. A highly challenging
synthetic stripe (mix-Stripes) dataset of 10 images of size
300×400 pixels, is created by putting stripes similar to the
ones in Figure 1, in variable shaped regions of minimum
size 1000 pixels. Natural textures with normalized intensity
are also taken from the Brodatz dataset [28], to create 100
composite images (mix-Brodatz), that can contain up to 10
different textures. Finally, we consider the standard Berkeley
Segmentation Dataset (BSD) [25], containing 200 natural
color test images of size 321×481 pixels.

Most parameters are empirically set once and for all, and
their tuning has a moderate impact on performances. For the
patch search, N = 8 patches of size 5×5 pixels are selected
outside a δ = 3 neighborhood. In the clustering model, m is
set to 0.1 and β to 25 in (2). Color features F are computed
as in [19]. Finally, the whole clustering process of TASP is
performed in 10 iterations as in [14].

TASP is compared to the recent state-of-the-art methods
SLIC [14], ERGC [15], ETPS [20], LSC [18], SNIC [16],
and SCALP [19]. Performances are evaluated with standard
Achievable Segmentation Accuracy (ASA), and contour de-
tection metric F-measure (F) as defined in [24], and we report
quantitative results for an average number of 250 superpixels.



Initial image LSC [18] SNIC [16] SCALP [19] TASP

Fig. 4. Comparison between TASP and most recent state-of-the-art methods. TASP produces a more relevant result on a
natural texture composite image (top) and on a natural color image example from the BSD (bottom), for 200 superpixels.

3.2. Influence of Contributions

The visual impact of contributions is shown in Figure 2, and
ASA and F measures are reported in Table 1 on the three con-
sidered datasets. Our new texture homogeneity term (3) and
constraint of texture unicity within superpixels (4) both sig-
nificantly improve performances on each data type.

mix-Stripes mix-Brodatz BSD
Method ASA F ASA F ASA F
TASP w/o (3),(4) 0.8303 0.3498 0.7969 0.4736 0.9484 0.4945
TASP w/o (4) 0.8486 0.3882 0.8112 0.4812 0.9493 0.4961
TASP 0.8706 0.4232 0.8139 0.4824 0.9503 0.4992

Table 1. Influence of contributions in the TASP method.

3.3. Comparison to the State-of-the-Art Methods

TASP is compared to state-of-the-art approaches on an image
similar to the mix-Stripes dataset in Figure 1, and to the most
recent methods on mix-Brodatz and BSD images in Figure 4.

A quantitative evaluation is also performed on the three
datasets in Table 2. TASP significantly increases the per-
formances on the synthetic (mix-Stripes) and natural (mix-
Brodatz) texture datasets, demonstrating its ability to provide
texture-aware superpixels. TASP also obtains the best results
on natural color images (BSD), using the same parameters,
while other methods fail at providing accurate results on the
three data types at the same time. Note that compared meth-
ods are used with parameters recommended by the authors.

Nevertheless, no other approach explicitly captures texture in-
formation, so TASP with default parameters still outperform
state-of-the-art methods manually optimized for each dataset.

mix-Stripes mix-Brodatz BSD
Method ASA F ASA F ASA F
SLIC [14] 0.7256 0.4048 0.7784 0.4607 0.9445 0.4706
ERGC [15] 0.6107 0.3717 0.7796 0.4677 0.9477 0.4571
ETPS [20] 0.7769 0.2953 0.7568 0.4354 0.9433 0.4710
LSC [18] 0.6979 0.3156 0.7908 0.4552 0.9503 0.4421
SNIC [16] 0.6659 0.3529 0.7662 0.4815 0.9410 0.4617
SCALP [19] 0.7307 0.3290 0.7977 0.4759 0.9499 0.4914
TASP 0.8706 0.4232 0.8139 0.4824 0.9503 0.4992

Table 2. TASP compared to the state-of-the-art methods.
Best and second results are respectively bold and underlined.

4. CONCLUSION

In this paper, we address the severe non-robustness of super-
pixel approaches to texture images by proposing a texture-
aware decomposition method. A new patch-based framework
is introduced to gather pixels having both similar color and
local textural properties. The proposed method is general, re-
moves the need for manual setting of regularity constraint,
and also naturally can extend to generate supervoxels.

We outperform the segmentation of state-of-the-art meth-
ods on color, and synthetic and natural texture datasets, by us-
ing the same parameters. This work opens the way for larger
use of superpixels and efficient application of our approach to
medical image segmentation or video object tracking.
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padakis, “SuperPatchMatch: An algorithm for robust
correspondences using superpixel patches,” TIP, vol. 26,
no. 8, pp. 4068–4078, 2017. 1

[7] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Con-
tour detection and hierarchical image segmentation,”
vol. 33, no. 5, pp. 898–916, 2011. 1

[8] G. Shu, A. Dehghan, and M. Shah, “Improving an ob-
ject detector and extracting regions using superpixels,”
in CVPR, pp. 3721–3727, 2013. 1

[9] J. Yan, Y. Yu, X. Zhu, Z. Lei, and S. Z. Li, “Object detec-
tion by labeling superpixels,” in CVPR, pp. 5107–5116,
2015. 1

[10] J. Chang, D. Wei, and J. W. Fisher, “A video represen-
tation using temporal superpixels,” in CVPR, pp. 2051–
2058, 2013. 1

[11] M. Reso, J. Jachalsky, B. Rosenhahn, and J. Ostermann,
“Temporally consistent superpixels,” in ICCV, pp. 385–
392, 2013. 1

[12] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa,
“Entropy rate superpixel segmentation,” in CVPR,
pp. 2097–2104, 2011. 1, 2

[13] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani,
and L. Van Gool, “SEEDS: Superpixels extracted via
energy-driven sampling,” in ECCV, pp. 13–26, 2012. 1,
2

[14] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
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