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Abstract

Quantitative information flow aims to assess and control the leakage of sensitive
information by computer systems. A key insight in this area is that no single
leakage measure is appropriate in all operational scenarios; as a result, many
leakage measures have been proposed, with many different properties. To clarify
this complex situation, this paper studies information leakage axiomatically,
showing important dependencies among different axioms. It also establishes
a completeness result about the g-leakage family, showing that any leakage
measure satisfying certain intuitively-reasonable properties can be expressed
as a g-leakage.

Keywords: information flow, g-vulnerability, information theory,
confidentiality, axioms

1. Introduction

The theory of quantitative information flow has seen rapid development over
the past decade, motivated by the need for rigorous techniques to assess and
control the leakage of sensitive information by computer systems. The starting
point of this theory is the modeling of a secret as something whose value is known
to the adversary only as a prior probability distribution π. This immediately
suggests that the “amount” of secrecy might be quantified based on π, where
intuitively a uniform π would mean “more” secrecy and a biased π would mean
“less” secrecy. But how, precisely, should the quantification be done?

Early work in this area (e.g., [1]) adopted classic information-theoretic mea-
sures like Shannon-entropy [2] and guessing-entropy [3]. But these can be quite
misleading in a security context, because they can be arbitrarily high even if
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π assigns a large probability to one of the secret’s possible values, giving the
adversary a large chance of guessing that secret correctly in just one try. This
led to the introduction of Bayes vulnerability [4], which is simply the maximum
probability that π assigns to any of the possible values of the secret. Bayes
vulnerability indeed measures a basic security threat, but it implicitly assumes
an operational scenario where the adversary must guess the secret exactly, in
one try. There are of course many other possible scenarios, including those
where the adversary benefits by guessing a part or a property of the secret or
by guessing the secret within three tries, or where the adversary is penalized for
making an incorrect guess. This led to the introduction of g-vulnerability [5],
which uses gain functions g to model the operational scenario, enabling specific
g-vulnerabilities to be tailored to each of the above scenarios, and many others
as well.1

This situation may however strike us as a bit of a zoo. We have a multitude of
exotic vulnerability measures, but perhaps no clear sense of what a vulnerability
measure ought to be. Are all the g-vulnerabilities “reasonable”? Are there
“reasonable” vulnerability measures that we are missing?

The situation becomes more complex when we turn our attention to systems.
We model systems as information-theoretic channels, and the crucial insight,
reviewed in Section 2.2 below, is that each possible output of a channel allows
the adversary to update the prior distribution π to a posterior distribution,
where the posterior distribution itself has a probability that depends on the
probability of the output. Hence a channel is a mapping from prior distributions
to distributions on posterior distributions, called hyper-distributions [6].

In assessing posterior vulnerabilities, by which we mean the vulnerability
after the adversary sees the channel output, we have a number of choices. It is
natural to consider the vulnerability of each of the posterior distributions, and
take the average, weighted by the probabilities of the posterior distributions. Or
(if we are pessimistic) we might take the maximum. Next we can define the leak-
age caused by the channel by comparing the posterior vulnerability and prior
vulnerability, either multiplicatively or additively. These choices, together with
the multitude of vulnerability measures, lead us to many different leakage mea-
sures, with many different properties. Is there a systematic way to understand
them? Can we bring order to the zoo?

Such questions motivate the axiomatic study that we undertake in this pa-
per. We consider a set of axioms that characterize intuitively-reasonable prop-
erties that vulnerability measures might satisfy, separately considering axioms
for prior vulnerability (Section 4) and axioms for posterior vulnerability and for
the relationship between prior and posterior vulnerability (Section 5). Address-
ing this relationship is an important novelty of our axiomatization, as compared

1Note that entropies measure secrecy from the point of view of the user (i.e., more entropy
means more secrecy), while vulnerabilities measure secrecy from the point of view of the ad-
versary (i.e., more vulnerability means less secrecy). The two perspectives are complementary,
but to avoid confusion this paper focuses almost always on the vulnerability perspective.
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with previous axiomatizations of entropy (such as [2, 7, 8]), which considered
only prior entropy, or the axiomatization of utility by Kifer and Lin [9], which
considers posterior utility without investigating its relation to prior utility. As
a result, our axiomatization is able to consider properties of leakage, usually de-
fined in terms of comparison between the posterior and prior vulnerabilities. We
should however clarify that we do not view axiomatics as a matter of identifying
“self-evident” truths. A variety of axioms may appear intuitively reasonable,
so while it is sensible to consider intuitive justifications for them, such justifica-
tions should not be considered absolute. Rather we see the value of axiomatics
as consisting more in understanding the logical dependencies among different
properties, so that we might (for instance) identify a minimal set of axioms that
is sufficient to imply all the properties that we care about.

The main contributions of this paper are of two kinds. One kind involves
showing interesting dependencies among the various axioms. For instance, un-
der axiom averaging for posterior vulnerability, we prove in Section 5 that three
other axioms are equivalent: convexity, monotonicity (i.e., non-negativity of
leakage), and the data-processing inequality. Convexity is the property that
vulnerability is a convex function from distributions to reals; what is striking
here is that it is a property that might not be intuitively considered “fundamen-
tal”, yet our equivalence (assuming averaging) shows that it is. We also show an
equivalence under the alternative axiom maximum for posterior vulnerability,
which then involves quasi-convexity.

A second kind of contribution justifies the significance of g-vulnerability.
Focusing on the axioms of convexity and continuity for prior vulnerability,
we consider the class of all functions from distributions to reals that satisfy
them, proving in Section 4 that this class exactly coincides with the class of g-
vulnerabilities. This soundness and completeness result shows that if we accept
averaging, continuity, and convexity (or monotonicity or the data-processing
inequality) then prior vulnerabilities are exactly g-vulnerabilities.

Plan of the paper. The rest of the paper is structured as follows: Section 2
reviews the basic concepts of quantitative information flow, Section 3 sets up the
framework of our axiomatization, and Sections 4 and 5 discuss axioms for prior
and posterior vulnerabilities, respectively. Section 6 provides some discussion,
Section 7 gives a more abstract perspective, Section 8 discusses related work,
and Section 9 concludes.

A preliminary version of this paper appeared in [10]. Additional material
presented here includes: (i) proofs; (ii) a thoroughly revised presentation of
the soundness and completeness of g-vulnerabilities with respect to continuous,
convex functions in Section 4.1, based on a deeper yet simplified characterization
of the geometry of gain functions; and (iii) a more elaborate discussion of our
results and their consequences.
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2. Preliminaries

We now review some basic notions from quantitative information flow. A
secret is something whose value is known to the adversary only as a prior prob-
ability distribution π: there are various ways for measuring what we will call its
vulnerability. A channel models systems with observable behavior that changes
the adversary’s probabilistic knowledge, making the secret more vulnerable and
hence causing information leakage.

2.1. Secrets and vulnerability

The starting point of computer security is information that we wish to keep
secret, such as a user’s password, social security number, or current location.
An adversary typically does not know the value of the secret, but still possesses
some probabilistic information about it, captured by a probability distribution
called the prior. We denote by X the finite set of possible secret values and by
DX the set of probability distributions over X . A prior π ∈ DX could either
reflect a probabilistic procedure for choosing the secret—e.g., the probability of
choosing a certain password—, or it could capture any knowledge the adversary
possesses on the population the user comes from—e.g., a young person is likely
to be located at a popular bar on Saturday night.

The prior π plays a central role at measuring how vulnerable a secret is. For
instance, short passwords are not vulnerable because of their length (prefixing
passwords with a thousand zeroes does not necessarily render them more secure),
but because each password has a high probability of being chosen. To obtain
a concrete vulnerability measure one needs to consider an operational scenario
describing the adversary’s capabilities and goals; vulnerability then measures
the adversary’s expected success in this scenario.

Bayes-vulnerability [4] considers an adversary trying to guess the secret in
one try and measures the threat as the probability of the guess being correct.
Knowing a prior π, a rational adversary will guess a secret to which it assigns
the highest probability: hence Bayes-vulnerability is given by

V b(π) = max
x∈X

πx ,

where we write πx for the probability π assigns to x. Note that Bayes-vulnerability
is called simply “vulnerability” in [4], and is the basic notion behind min-
entropy, defined as H∞(π) = − lg V b(π). It is also the converse of the ad-
versary’s probability of error, also called Bayes-risk in the area of hypothesis
testing [11].

Guessing-entropy [3] considers an adversary trying to guess the secret in
an unlimited number of tries, and measures the adversary’s uncertainty as the
number of guesses needed on average. The best strategy is to try secrets in
non-increasing order of probability: if xi is an indexing of X in such an order,
then guessing-entropy is given by

G(π) =
∑
i i πxi

.
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Shannon-entropy [2] considers an adversary who tries to infer the secret
using Boolean questions (i.e., of the form “does x belong to a certain subset X ′
of X ?”) and measures the adversary’s uncertainty as the number of questions
needed on average. It can be shown that the best strategy is at each step to
split the secret space in sets of equal probability (as far as possible). Under
this strategy, a secret x will be guessed in − lg πx steps, hence on average the
number of questions needed is

H(π) = −
∑
x∈X πx lg πx .

Note that Bayes-vulnerability measures the threat to the secret (the higher
the better for the adversary). On the other hand, guessing- and Shannon-
entropy measure the adversary’s uncertainty about the secret (the lower the
better for the adversary).

Although the operational scenarios described above capture realistic threats
for the secret, one could envision a variety of alternative threats we might also
be worried about. For instance, an adversary might be interested in guessing
only part of the secret, an approximate value of the secret, a property of the
secret, or guessing the secret in a fixed number of tries. It is for this reason that
the more general g-vulnerability framework [5] was proposed: it allows one to
adapt to many different adversarial models.

Its operational scenario is parametrized by a set W of actions (possibly
infinite) that the adversary can make about the secret, and a gain function
g:W×X→R. The gain g(w, x) expresses the adversary’s benefit for having
taken the action w when the actual secret is x. The g-vulnerability function
measures the threat as the adversary’s expected gain for an optimal choice of
action w:

Vg(π) = sup
w∈W

∑
x∈X πxg(w, x) . (1)

Regarding the setW of allowable actions, one might assume that this should
just be X , the set of possible values of the secret. This is in fact too restrictive:
the adversary’s goal might be to guess a piece of the secret, or a value close to the
secret, or some property of the secret. As a consequence we allow an arbitrary
set of actions, possibly infinite, and make (almost) no restrictions on the choice
of g. In particular, a negative value of g(w, x) expresses situations when the
adversary is penalized for making a particular action under a particular secret;
such values are essential for obtaining the results of Section 4.1.3.

However, leaving g unrestricted has two side effects that are undesirable
both conceptually and technically. First, Vg could potentially produce negative
vulnerabilities. Conceptually, since we want to measure how vulnerable a secret
is, it seems reasonable that the minimum possible vulnerability should be 0,
meaning “not vulnerable at all”. Technically, we will consider multiplicative
leakage, which measures leakage as the ratio of two vulnerabilities; but such a
ratio seems mathematically meaningless if one vulnerability is positive and the
other negative.

Second, Vg could potentially produce infinite vulnerabilities. Consider, for
instance, the case when W is the set of all integers, X = {x1, x2}, and g is
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given by g(w, x1) = w and g(w, x2) = −w. For this example we find that Vg
becomes not only infinite but also discontinuous: it is 0 on the uniform prior
(for which the gain of one secret is exactly counterbalanced by the loss of the
other), and ∞ for all other priors. Again, such behavior is both conceptually
and technically problematic. Conceptually, it is unnatural for a system to be
“infinitely vulnerable”, and even more so for an adversary to be “infinitely risk-
averse”, perceiving an infinitesimal change in the prior as an infinite change
in the vulnerability of the system. Technically, it is clear that discontinuous,
infinite-valued functions are ill-behaved.

For these reasons, we always restrict to the class of gain functions GX ,
defined as

GX := {g | Vg : DX → R≥0} , (2)

that is, those gain functions that produce non-negative and finite-valued vul-
nerabilities. In Section 4.1.2 we will see that this restriction also implies the
continuity of Vg.

Note that, as its name suggests, Vg is a measure of vulnerability, i.e., of
the threat to the secret. An equally expressive alternative is to define an
“uncertainty” measure similarly, but using a loss function l instead of a gain
function and assuming that the adversary wants to minimize loss. The un-
certainty measure, parametrized by l, can be then defined dually as Ul(π) =
infw∈W

∑
x∈X πxl(w, x), and is often called Bayes-risk in the area of decision

theory.
Due to the flexibility of gain functions, g-vulnerability is a very expressive

framework, one that can capture a great variety of operational scenarios. This
raises the natural question of which other vulnerability measures are expressible
in this framework. Bayes-vulnerability is a straightforward example, captured
by guessing the exact secret, i.e., taking W = X , and using the identity gain
function defined as

gid(w, x) =

{
1, if w = x,

0, if w 6= x.

Guessing-entropy can be also captured in this framework [12, 13], this time
using a loss function since it is an uncertainty measure. The adversary’s action
in this case is to guess a permutation of X , i.e., the order in which secrets are
chosen in the operational scenario of guessing-entropy. We can naturally define
the loss l(w, x) as the index of x in w, i.e. the number of guesses to find x, and
using this loss function we get Ul(π) = G(π).

Similarly, in the case of Shannon-entropy, the adversary tries to guess a
strategy for constructing his questions. Strategies can be described as proba-
bility distributions: at each step questions split the search space into subsets of
as even probability as possible. Hence, actions are W = DX , and the loss can
be defined as l(w, x) = − lgwx (the number of steps needed to find x under the
strategy w). Since the best strategy is to take w = π itself, it can be shown [12]
that under this loss function Ul(π) = H(π).

In Section 4.1.3 we show that g-vulnerability exactly coincides with the
generic class of continuous and convex vulnerability functions.
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2.2. Channels, hypers and leakage

So far we have considered secrets for which a probabilistic prior is known, and
have discussed different ways for measuring their vulnerability. We now turn
our attention to systems, which are programs or protocols processing secret
information and producing some observable behavior. Examples of such sys-
tems are password-checkers, implementations of cryptosystems, and anonymity
protocols.

A system can be modeled as an (information theoretic) channel, a triple
(X ,Y,C), where X ,Y are finite sets of (secret) input values and (observable)
output values respectively and C is a |X |×|Y| channel matrix in which each
entry Cx,y corresponds to the probability of the channel producing output y
when the input is x. Hence each row of C is a probability distribution over Y
(entries are non-negative and sum to 1). A channel is deterministic iff each row
contains a single 1 identifying the only possible output for that input.

It is typically assumed that the adversary knows how the system works, i.e.
knows the channel matrix C. Knowing also the prior distribution π, the adver-
sary can compute the joint distribution p(x, y) = πxCx,y on X×Y, producing
joint random variables X,Y with marginal probabilities p(x) =

∑
y p(x, y) and

p(y) =
∑
x p(x, y), and conditional probabilities p(y|x) = p(x,y)/p(x) (if p(x)

is non-zero) and p(x|y) = p(x,y)/p(y) (if p(y) is non-zero). Note that pXY is
the unique joint distribution that recovers π and C, in that p(x) = πx and
p(y | x) = Cx,y (if p(x) is non-zero).2

For a given y (s.t. p(y) is non-zero), the conditional probabilities p(x|y) for
each x ∈ X form the posterior distribution pX|y, which represents the posterior
knowledge the adversary has about input X after observing output y.

Example 1. Given X = {x1, x2, x3}, Y = {y1, y2, y3, y4}, and the channel
matrix C below, (the uniform) prior π = (1/3, 1/3, 1/3) combined with C leads to
joint matrix J :

C y1 y2 y3 y4

x1 1 0 0 0
x2 0 1/2 1/4 1/4
x3

1/2 1/3 1/6 0

π−→

J y1 y2 y3 y4

x1
1/3 0 0 0

x2 0 1/6 1/12 1/12

x3
1/6 1/9 1/18 0

Summing columns of J gives the marginal distributions pY = (1/2, 5/18, 5/36, 1/12),
and normalizing gives the posterior distributions pX|y1 = (2/3, 0, 1/3), pX|y2 =
(0, 3/5, 2/5), pX|y3 = (0, 3/5, 2/5), and pX|y4 = (0, 1, 0).

The effect of a channel C is to update the adversary’s knowledge from a prior
π to a collection of posteriors pX|y, each occurring with probability p(y), called
a hyper-distribution. A hyper (for short) on the input space X is of type D2X ,
which stands for D(DX ), a distribution on distributions on X . The support of

2When necessary to avoid ambiguity, we write distributions with subscripts, e.g. pXY or
pY .
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a hyper is the set of possible posteriors that the application of channel C on
prior π can produce: we call those posteriors inners. The probability assigned
by the hyper to a particular inner is the marginal probability of the y that
produced that inner. We call those probabilities the outer probabilities. We
use ∆ to denote a hyper, d∆e for its support (the set of posteriors with non-zero
probability), [π] to denote the point-hyper assigning probability 1 to π, and
[πŻC] to denote the hyper obtained by the application of C on π. We say that
[πŻC] is the result of pushing prior π through channel C.

In Example 1, the hyper [πŻC] assigns (outer) probabilities (1/2, 15/36, 1/12)
to the (inner) posteriors (2/3, 0, 1/3), (0, 3/5, 2/5), and (0, 1, 0), respectively.3

Following [6, 14], we can abstract from a concrete channel represented by its
matrix C to an abstract channel C consisting just in the corresponding mapping
from priors to hyper-distributions. Abstract channels ignore aspects of channel
matrices that are irrelevant to leakage (e.g., labels and order of columns, and
columns that are multiples of each other), and concentrate only on the essential
information that affects leakage: the mapping from priors to hyper-distributions.
We will denote concrete channels and channel matrices using a sans-serif font
(C) and abstract channels using a math font (C).

Since the outcome of a channel is a hyper, it is natural to extend vulnerability
measures from priors to hypers, obtaining a posterior vulnerability. For all
measures described in Section 2.1 this has been done in a natural way by taking
the vulnerability of each posterior and averaging them using the outer. Let

EπF :=
∑
x

πxF (x)

denote the expected value of some random variable F :X→R (where R is usually
the reals R but more generally can be a vector space) over a distribution π:DX .
We can then define posterior Bayes-vulnerability V̂ b : D2X → R+ as

V̂ b∆ = E∆V b ,

and similarly for Shannon-entropy, guessing-entropy and g-vulnerability. For
hypers [πŻC] produced by channels, from the above formula we can get an
expression of each posterior vulnerability as a function of π and C, for instance,

V̂ b[πŻC] =
∑
y maxx πxCx,y, for Bayes vulnerability, and

V̂g[πŻC] =
∑
y supw

∑
x πxCx,yg(w, x), for g-vulnerability.

Note that, for point-hypers, we have by construction that V̂ b[π] = V b(π) and
V̂g[π] = Vg(π), and similarly for the other measures.

3There might be fewer posteriors in the support of hyper [πŻC] than there are columns
in the joint distribution pX,Y from which it is derived, because if several columns of pX,Y

normalize to the same posterior then the hyper will automatically coalesce them [14]. Columns
y2 and y3 were coalesced in this case.
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Finally, the execution of a system is expected to disclose information about
the secret to the adversary, and the information leakage of a channel C for a
prior π is defined by comparing the vulnerability of the prior π—the adversary’s
prior knowledge—and that of [πŻC]—the adversary’s posterior knowledge. The
comparison is typically done either additively or multiplicatively, giving rise to
two versions of leakage:

additive: Lb,+(π,C) = V̂ b[πŻC]− V b(π) , and (3)

multiplicative: Lb,×(π,C) =
V̂ b[πŻC]

V b(π)
. (4)

Note that the logarithm of Lb,×(π,C) is usually called min-entropy leakage [4].
Leakage can be similarly defined for all other measures.

3. An axiomatic view of vulnerabilities

In Section 2 we discussed vulnerability measures obtained by quantifying
the threat to the secret in a specific operational scenario. Channels were then
introduced, mapping prior distributions to hypers, and the vulnerability mea-
sures were naturally extended to posterior ones by averaging each posterior
vulnerability over the hyper.

In this paper we shall follow a different approach: we axiomatize the study
of vulnerabilities. We begin by considering generic vulnerability functions of
type

prior vulnerability: V : DX → R≥0, and

posterior vulnerability: V̂ : D2X → R≥0,

and we consider a variety of properties that “reasonable” instantiations of these
generic functions might be expected to have. We then formalize these properties
as a set of axioms for vulnerability functions, and investigate their consequences.

We shall start, in the following section, by focusing on the prior case by
giving axioms for prior vulnerabilities V alone. We then take convexity and
continuity (made precise in Section 4 ahead) as our fundamental properties,
and show that they lead to g-vulnerability exactly. After that, we turn our
attention to axioms considering either both V and V̂, or posterior V̂ alone.

Moreover, we study two ways of constructing V̂ from V: by taking the av-
erage over the hyper, as we have been doing so far, and by considering the
maximum-vulnerability over the hyper. It turns out that, in each case, several
of the axioms become equivalent. An important observation is that the axioms
purely affect the relationship between prior and posterior vulnerabilities, and
are orthogonal to the way V and V̂ are compared when used to measure leak-
age (i.e. multiplicatively or additively). Hence the results we obtain about the
relationship among axioms are valid under both definitions of leakage.
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Axioms for prior vulnerabilities

CNTY ∀π: V is a continuous function of π

CVX ∀
∑
i aiπ

i: V
(∑

i aiπ
i
)
≤
∑
i aiV(πi)

Q-CVX ∀
∑
i aiπ

i: V
(∑

i aiπ
i
)
≤ maxi V(πi)

Axioms for posterior vulnerabilities

NI ∀π: V̂[π] = V(π)

DPI ∀π,C,R: V̂[πŻC] ≥ V̂[πŻCR]

MONO ∀π,C: V̂[πŻC] ≥ V(π)

Possible definitions of posterior vulnerabilities

AVG ∀∆: V̂∆ = E∆V

MAX ∀∆: V̂∆ = maxd∆e V

Table 1: Summary of axioms and their mnemonics for pairs of prior/posterior vulnerabilities

(V, V̂).

It is important to have in mind that, although in this paper we consider
axioms for generic vulnerability, dual axioms can be naturally stated for generic
uncertainty measures.4 In Table 1 we summarize the axioms we shall consider.

4. Axiomatization of prior vulnerabilities

We begin by introducing axioms that deal solely with prior vulnerabilities
V.

The first property we consider is that “small” changes on the prior π have
a “small” effect on V applied to that prior. This intuition is formalized in the
following axiom.

Definition 2 (Axiom of continuity (CNTY)). A vulnerability V is a continuous
function of π (w.r.t. the standard topology5 on DX ).

4Recall that vulnerabilities measure secrecy from the point of view of the adversary (i.e.
more vulnerability means less secrecy), whereas entropies measure uncertainty, that is, se-
crecy from the point of view of the user (i.e. more entropy means more secrecy). The two
perspectives are complementary; in this paper we focus on the vulnerability perspective.

5The one induced by the Euclidean metric, or equivalently the total variation or 1/2-
Manhattan metric used later in this section.
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Intuitively, the CNTY axiom captures adversaries who are not infinitely risk-
averse. For instance, the non-continuous vulnerability function

Vλ(π) =

{
1, if maxx πx ≥ λ,

0, otherwise,
(5)

would correspond to an adversary who requires the probability of guessing cor-
rectly to be above a certain threshold λ in order to consider an attack effective
at all. But this is an arguably unnatural behavior if we assume that the risk of
changing the probability to λ−ε, for an infinitesimal ε, should not be arbitrarily
large. For instance, if λ = 2/3, distribution π1 = (2/3, 1/2) would be consid-
ered “insecure” by the function above, since V2/3(π1) = 1, whereas distribution
π2 = (2/3−ε, 1/3+ε) would be considered “secure”, since V2/3(π2) = 0.

The second property we consider is that Vg is a convex function of the prior.
6 More precisely, a convex combination of priors π1, . . . , πn is a sum

∑
i aiπ

i

where ai’s are non-negative reals adding up to 1. Since DX is a convex set, a
convex combination of priors is itself a prior. The property is then formalized
as the following axiom.

Definition 3 (Axiom of convexity (CVX)). A vulnerability V is a convex function
of π — that is, for all convex combinations

∑
i aiπ

i we have

V
(∑

i aiπ
i
)
≤

∑
i aiV(πi) .

The CVX axiom can be interpreted as follows. Consider a game in which a
secret (say a password) is drawn from two possible distributions π1 or π2. The
choice of distributions is itself random: we first select i ∈ {1, 2} at random, with
i = 1 having probability a1 and i = 2 probability a2 = 1−a1, and then we use
πi to draw the secret.

Now consider the following two scenarios for this game: in the first scenario,
the value of i is conveyed to the adversary, so that the actual prior the se-
cret was drawn from is known. Using information in that πi (whichever one it
was) the adversary performs an attack, the expected success of which is mea-
sured by V(πi). In this scenario the expected measure of success overall will
be
∑
i aiV(πi). In the second scenario, the choice i is not disclosed to the

adversary: she knows only that, on average, secrets are drawn from the prior∑
i aiπ

i. Since to perform an attack the adversary can only use the information
in
∑
i aiπ

i, the expected success of an attack in this case will be measured by
V
(∑

i aiπ
i
)
.

The CVX axiom corresponds to the intuition that, since in the first scenario
the adversary has more information, the effectiveness of an attack can only be
higher. Yet another way of seeing this axiom is to realize that an adversary
should get no less information from a1, π1 and π2, than from

∑
i aiπ

i, since the
last value can be calculated if the first three are known.

6Note that, given the duality between vulnerability and uncertainty measures, for uncer-
tainty measures a reasonable property would be concavity rather than convexity.
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Note that, in the definition of CVX, it is sufficient to use convex combinations
of two priors, i.e., of the form aπ1 + (1−a)π2; indeed we often use such com-
binations in proofs. Note also that CVX actually implies continuity everywhere
except on the boundary of the domain, i.e., on priors having at least one element
with probability exactly 0. The function Vλ from (5), for instance, for λ = 1
is convex but discontinuous. It captures an adversary that is only happy when
knowing the secret with absolute certainty; such an adversary does satisfy CVX,
yet continuity breaks for point priors (note that, for all 1/|X | < λ < 1, Vλ is
neither continuous nor convex ). The CNTY axiom, however, explicitly requires
continuity everywhere.

Since the vulnerabilities V(πi) in the definition of CVX are weighted by the
probabilities ai, we could have cases when the expected vulnerability

∑
i aiV(πi)

is small although some individual V(πi) is large. In such cases, one might
argue that the bound imposed by CVX is too strict and could be loosened by
requiring that V

(∑
i aiπ

i
)

is bounded only by the maximum of the individual
vulnerabilities. This weaker requirement is formalized as the following axiom.

Definition 4 (Axiom of quasi-convexity (Q-CVX)). A vulnerability V is a quasi-
convex function of π — i.e. for all convex combinations

∑
i aiπ

i we have

V
(∑

i aiπ
i
)
≤ maxi V(πi) .

The justifications we have so far provided for the axioms of CVX and Q-CVX

might not strike us as very intuitive at first, but it turns out that these axioms
can in fact be justified as natural consequences of fundamental axioms relating
prior and posterior vulnerabilities, and specific choices for constructing V̂. We
shall address these connections in detail in Section 5 ahead.

4.1. Soundness and completeness of Vg with respect to continuous, convex func-
tions

It turns out that the vulnerability functions satisfying the axioms of CNTY

and CVX are exactly those expressible as Vg for some gain function g. We will
show each direction of this implication now.

4.1.1. A geometric view of gain functions

For our characterization of g-vulnerability, we exploit the geometry of gain
functions together with some fundamental tools from convex analysis. In the
following, x · x′ denotes the dot product of vectors x, x′. A crucial observation
is that an action w can be thought of as a vector in Rn (n = |X |), containing
the gain for each secret, that is wx = g(w, x). Since a prior π is a vector itself,
the expected gain of w can be written as

Eπg(w, ·) = w · π .

It is then clear than w · π is a linear function, as shown in Figure 1.
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Figure 1: Actions w constructed from subgradients on different priors.

A useful tool for the analysis of convex functions is that of subgradients,
which generalize gradients for non-differentiable functions. A vector φ is a sub-
gradient of f : S→ R at x∗ ∈ S iff

f(x)− f(x∗) ≥ φ · (x− x∗) for all x ∈ S . (6)

Note that the function x 7→ φ · (x − x∗) + f(x∗) is linear, always below f and
touches f at x∗, as shown in Figure 1. The set of all subgradients of f at x∗

(called the sub-differential) is denoted by ∂f(x∗).
A norm ‖ · ‖ is the standard tool for reasoning about the length of vectors.

Any norm naturally induces a metric defined as d‖·‖(x, x
′):= ‖x−x′‖. Moreover,

any norm ‖ · ‖ has a dual norm ‖ · ‖∗ given by

‖x‖∗ := max
z: ‖z‖≤1

x · z .

It is well known that the Euclidean norm is its own dual, while the dual of the
Manhattan norm 7 ‖ ·‖1 is the max norm ‖ ·‖∞ (in general the dual of a p-norm
is the q-norm such that 1/p + 1/q = 1). Directly from the definition of ‖ · ‖∗ we
get that

|x · y| ≤ ‖x‖ ‖y‖∗ for all x, y ∈ Rn , (7)

which can be seen as a generalization of the Cauchy-Schwarz inequality.
The interior of a set S ⊆ Rn consists of points x ∈ S such that some

open ball centered at x is contained in S. It is common, however, that S is a
lower dimensional object embedded in Rn. A triangle, for instance, could be
embedded in R3 although it is 2-dimensional. Such objects are “flat”, so do not
have a proper interior; however we can still talk about their relative interior
wrt the lower dimensional space they live in (i.e. their affine hull). For convex
sets, the relative interior relint(S) can be simply defined as the points x ∈ S

7The Manhattan norm of a vector (x1, x2, . . . , xn) is defined as ‖(x1, x2, . . . , xn)‖1 =∑n
i=1 |xi|.
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such that all line segments in S ending in x can be extended beyond x without
leaving S [15, Thm. 6.1]. That is

relint(S) := {x ∈ S | ∀z ∈ S.∃λ > 1 : λx+ (1− λ)z ∈ S} .

Note that the probability simplex DX ⊂ Rn (n = |X |) is an (n−1)-dimensional
object that lies on the hyperplane x · 1 = 1 (probabilities sum up to 1). Hence
its interior is empty, but relint(DX ) is not: it consists exactly of all full-support
distributions.

4.1.2. Every Vg satisfies continuity and convexity

We first show that any g-vulnerability, for g:GX , satisfies the axioms of CNTY
and CVX. Let g be such a gain function with a possibly infinite set of actions
W. Recall that Vg can be expressed as the supremum of the family of functions:

Vg(π) = supw w · π .

Note that w · π is linear on π, hence both (trivially) convex and continuous.
The convexity of Vg then follows from the fact that the supremum of any

family of convex functions is itself a convex function. On the other hand, show-
ing continuity is more challenging, since the supremum of continuous functions
is not necessarily continuous itself. 8

To show that Vg is continuous, we employ the concept of semi-continuity.
Informally speaking, a function is lower (resp. upper) semi-continuous at x0 if,
for values close to x0, the function is either close to f(x0) or greater than f(x0)
(resp. smaller than f(x0)).

Lower semi-continuity of Vg is straightforward from the following proposi-
tion:

Proposition 5. If f is the supremum of a family of continuous functions then
it is lower semi-continuous.

Proof. Let F be a set of continuous functions and let f(x) = supf ′∈F f
′(x). We

show that f is lower semi-continuous.
Fix some α ∈ R. We need to show that A = {x | f(x) > α} is open. Let

x0 ∈ A; we are going to show that there exists a ball around x0 contained in
A. Since α < supf ′∈F f

′(x0), there exists some f ′ ∈ F such that f ′(x0) > α.
Since f ′ is continuous, there exists some ball Bε(x0) such that f ′(x) > α for
all x ∈ Bε(x0). Hence f(x) ≥ f ′(x) > α for all x ∈ Bε(x0) which means that
Bε(x0) ⊆ A.

On the other hand upper semi-continuity is much less straightforward. For
this we appeal to the structure of the probability simplex and the Gale-Klee-
Rockafellar theorem.

8A counter-example would be f(x) = supn>0 −(x−1)n, which is discontinuous at 0.
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Theorem 6 (Gale-Klee-Rockafellar). If f :A→R is convex and A is a polyhe-
dron then f is upper semi-continuous.

Note that the above theorem crucially requires f to be finite-valued, which
the reason why the class GX (2) enforces the finiteness of Vg. Hence, for g:GX ,
Vg is both lower semi-continuous (Prop. 5) and upper semi-continuous (Thm. 6),
and it is trivial that any function satisfying both semi-continuities is (simply)
continuous.

In fact, we can also show that Vg is Lipschitz-continuous, a property stronger
than continuity. Given a metric d on DX , a a function F : DX → R is k·d-
Lipschitz iff

|F (π)− F (π)′| ≤ k · d(π, π′) for all π, π′:DX .

Intuitively, this property limits the steepness of F . Changing π by at most ε
(wrt d) produces a change in F (π) of at most k · ε.

Our metric of choice for DX is the total variation distance, given by

tv(π, π′) := sup
X⊆X

|π(X)− π′(X)| .

For discrete distributions, expressed as vectors, the total variation is equal to
half of the Manhattan distance, that is tv = 1

2d‖·‖1 .
Finally, the span ‖g‖ of a gain function g is defined as:

‖g‖ := sup
w,x,x′

|g(w, x)− g(w, x′)|

We are now ready to state our soundness result.

Theorem 7 (Soundness). For any g:GX , Vg satisfies CNTY and CVX. Moreover
it is ‖g‖·tv-Lipschitz.

Proof. Continuity is a direct corollary of Prop. 5 and Thm. 6, we here show
the Lipschitz property. Viewing an action w as a vector, we first show that
π 7→ w·π is ‖g‖·tv-Lipschitz. Let ⊥ = minx wx and ∆ = ‖g(w, ·)‖. The elements
of w lie in [⊥,⊥+ ∆]; if we shift it by c = ⊥+ ∆/2 then we get the vector w− c1
whose elements lie in [−∆/2,∆/2], hence ‖w − c1‖∞ = ∆/2. We then reason

|w · π − w · π′|
= |(w − c1) · (π − π′)| “c1 · (π − π′) = c− c = 0”

≤ ‖w − c1‖∞ ‖π − π′‖1 “(7), the dual of ‖ · ‖1 is ‖ · ‖∞”

= ‖w − c1‖∞ 2 tv(π, π′) “tv(π, π′) = 1/2‖π − π′‖1”

≤ ‖g‖·tv(π, π′) . “2‖w − c1‖∞ = ∆ = ‖g(w, ·)‖ ≤ ‖g‖”

Finally, Vg(π) = supw w ·π, and it remains to show that the supremum preserves
the d-Lipschitz property.

So let F be a set of d-Lipschitz functions, we show that F (a) = supf :F f(a)
is also d-Lipschitz. Fixing a, a′:A, assume wlog that F (a)≥F (a′); we have
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|F (a)− F (a′)|
= supf f(a)− supf f(a′) “definition F ; F (a) ≥ F (a′)”

≤ supf (f(a)− f(a′)) “− supf ′ f
′(a′) ≤ −f(a′)”

≤ supf |f(a)− f(a′)|
≤ supf d(a, a′) “f is d-Lipschitz”

= d(a, a′) .

Note that, without the “finite-valued” restriction of GX , Vg might attain +∞
and be discontinuous. As an example, take X = {x1, x2}, W = N, g(w, x1) = w
and g(w, x2) = −w. For this g we compute that Vg(π

u) = 0 for the uniform
prior, and Vg(π) = +∞ for any other π.

4.1.3. Continuity and convexity exactly characterize Vg
Gain functions and g-vulnerability were introduced in order to capture a

variety of operational scenarios. As discussed in Section 2, we can naturally re-
trieve a variety of well-known measures - Bayes-vulnerability, Shannon-entropy,
guessing entropy, etc - using properly constructed gain functions. This suggests
the question of how expressive g-vulnerabilities are in general. Remarkably, it
turns out that g-vulnerabilities are expressive enough to capture any vulnerabil-
ity function V satisfying CNTY and CVX, although in the general case a countably
infinite set W of guesses might be needed.

The geometric view of g, together with the following result from convex
analysis, are fundamental for establishing the completeness of g-vulnerability.

Theorem 8. Let f : S→ R be convex and let x ∈ relint(S). Then ∂f(x) 6= ∅.
Moreover, if f is k · d‖·‖-Lipschitz then ‖φ‖∗ ≤ k for all φ ∈ ∂f(x).

Proof. The part ∂f(x∗) 6= ∅ comes from [15, Theorem 23.4]. The part ‖φ‖∗ ≤ k
comes from [16, Lemma 2.6].

We are now ready to state our completeness result. The main idea is that,
on each full support prior π∗, we will use a subgradient φ ∈ ∂V(π∗) to form an
action vector w, such that w ·π is below V and touches it on π∗. The supremum
of all such function w · π has to coincide with V. Note that this result is a
variant of the well-known fact that convex functions can be expressed as the
sup of linear ones (which has, indeed, already been explored by Boreale and
Pampaloni in the study of metrics for QIF [17, 18]); our proof also establishes
the Lipschitz property and the fact that countably many actions are sufficient.

Theorem 9 (Completeness). Let V : DX → R≥0 satisfy CNTY and CVX. Then
V = Vg for some g:GX with a countable set of actions. Moreover, if V is
k · tv-Lipschitz then ‖g‖ ≤ k.

Proof. Let A be the elements of relint(DX ) (i.e. the full support priors) having
rational coordinates. We will create one action vector wπ for each such π ∈ A.
So fix some π∗ ∈ A, since V is convex and π∗ ∈ relint(DX ), Thm. 8 guarantees

16



that ∂V(π∗) is not empty. Fixing some subgradient φ ∈ ∂V(π∗), define an action
vector

wπ∗ := φ+ (V(π∗)− φ · π∗) 1 ,

where 1 is the “all-ones” vector. Note that π · 1 = 1, hence we have that

wπ∗ · π = φ · (π − π∗) + V(π∗) ,

the function that (from the definition of the subgradient (6)) is always below V
and touches it on π∗. In other words, it holds that

wπ∗ · π∗ = V(π∗) , and

wπ∗ · π ≤ V(π) for all π:DX .

Setting W = {wπ′ | π′:A} (a countable set), we have that for all π ∈ A

Vg(π) = sup
π′:A

wπ′ · π = wπ · π = V(π) ,

that is Vg and V coincide on A. Note that, although we have not yet established
that Vg = V everywhere, we already know that Vg(π) ≤ V(π) for all π ∈ DX ,
hence Vg is finite-valued, so from Prop. 5 and Thm. 6 we conclude that it is
continuous.

As a consequence, since all irrationals are the limit of a sequence of ratio-
nals, from continuity we get that Vg and V coincide on the whole relint(DX ).
Similarly, boundary points are the limit of a sequence of interior points, hence
we conclude that Vg and V coincide everywhere. This also clearly means that
the constructed gain function belongs to GX .

Finally, assume that V is k · tv-Lipschitz. Since tv(π, π′) = 1/2‖π − π′‖1, V
is k/2 · d‖·‖1-Lipschitz. From Thm. 8, and the fact that the dual norm of ‖ · ‖1 is
‖ · ‖∞, we get that for all subgradients φ used in the construction of the action
vectors wπ, it holds that ‖φ‖∞ ≤ k/2. As a consequence

|g(wπ, x)− g(wπ, x
′)| = |φx−φx′ | ≤ |φx|+ |φx′ | ≤ 2‖φ‖∞ ≤ k ,

from which we conclude that ‖g‖ ≤ k.

Note that a consequence of the construction in the above proof is that, for
any full-support prior π with rational probabilities, the supremum in Vg(π) is
in fact attained by the constructed action wπ. If we are not interested in W
being countable, we can extend the construction of wπ to the whole relint(DX ),
hence the supremum will be attainable for all full-support priors. This property
fails for non-full-support priors however, since subgradients are not guaranteed
there; one would need to use gain functions with explicit −∞ values to make
the supremum attainable.
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5. Axiomatization of posterior vulnerabilities

We will now consider axioms for posterior vulnerabilities, and axioms that
relate posterior- and prior vulnerabilities. We consider three of them, and inves-
tigate how different definitions of posterior vulnerabilities shape the interrelation
among those axioms.

The first property we consider states that an adversary who has learned
with certainty, after observing the output of a channel, that the secret has
distribution π will have the same amount of information V(π) she would have
had from the prior distribution π itself.

This is formalized as the following axiom.

Definition 10 (Axiom of non-interference (NI)). The vulnerability of a point-
hyper equals the vulnerability of the unique inner of this hyper:

∀π: V̂[π] = V(π) .

As its name suggests, the NI axiom can be interpreted in terms of nonin-
terference. A channel C is noninterfering if the result of pushing any prior π
through C is the point-hyper [π], meaning that the adversary’s state of knowl-
edge is not changed by the observation of the output of the channel; that is, C
is the channel 1 that leaks nothing. It is well known that a channel matrix C
is noninterfering iff all its rows are the same [19, 20]. The NI axiom, then, is
equivalent to stating that an adversary observing the output of a noninterfering
channel does not gain or lose any information about the secret:

∀π: V̂[πŻ1] = V(π) .

The second axiom we consider is an analogue of the famous data-processing
inequality for mutual information,9 and is formalized as follows.

Definition 11 (Axiom of data-processing inequality (DPI)). Post-processing
does not increase vulnerability:

∀π,C,R: V̂[πŻC] ≥ V̂[πŻCR] ,

where the number of columns in matrix C is the same as the number of rows in
matrix R, and CR is the standard matrix multiplication, here called cascading
of channels.

Note that, since the DPI axiom concerns the operation of cascading—which
demands a matching between the outputs of the first channel matrix and the
inputs of the second one—, it is formalized in terms of (concrete) channels. The
DPI axiom can be interpreted as follows. Consider a secret that is fed into a

9The data processing-inequality for mutual information states that if X→Y→Z forms a
Markov chain, then I(X;Y ) ≥ I(X;Z).
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(concrete) channel C, and then the produced output is post-processed by being
fed into another (concrete) channel R (whose input set must be the same as the
output set of C). Now consider two adversaries A and A′ such that A can only
observe the output of channel C, and A′ can only observe output of the cascading
C′ = CR. For any given prior π on secret values, A’s posterior knowledge about
the secret is given by the hyper [πŻC], whereas that of A′’s is given by [πŻC′].
Note, however, that from A’s knowledge it is always possible to reconstruct A′’s,
but the converse is not necessarily true. To see that, note that A can use π and
C to compute [πŻCR′] for any R′, including the particular R used by A′. On the
other hand, A′ knows only π and C′ and, in general, the decomposition of C′ into
a cascade of two channels is not unique (i.e. there may be several pairs Ci, Ri
of matrices satisfying C′ = CiRi), so it is not always possible for A′ to uniquely
recover C from C′ and compute [πŻC]. Given this asymmetry, DPI formalizes

that a vulnerability V̂ should not evaluate A’s information as any less than A′’s.
The third property we consider is that by observing the output of a channel

an adversary cannot lose information about the secret; in the worst case, the
output can be ignored if it is not useful.10 This property is formalized as the
following axiom.

Definition 12 (Axiom of monotonicity (MONO)). Pushing a prior through a
channel does not decrease vulnerability:

∀π,C: V̂[πŻC] ≥ V(π) .

The MONO axiom has two direct consequences on the additive and multiplica-
tive notions of leakage. Since posterior vulnerabilities are never smaller than
the corresponding prior vulnerabilities, additive leakage is always non-negative,
and multiplicative leakage is never smaller than 1.

5.1. Definitions of posterior vulnerabilities

Having introduced the axioms of NI, DPI and MONO, we now turn our atten-
tion to how posterior vulnerabilities can be defined so to respect them. In con-
trast with the case of prior vulnerabilities, in which the axioms considered (CVX
and CNTY) were satisfied by, and only by, the family of prior g-vulnerabilities, in
the case of posterior vulnerability the axioms considered so far are not satisfied
by, and only by, the family of posterior g-vulnerabilities. For that reason, in
the following we shall consider alternative definitions of posterior vulnerabilities,
and discuss the interrelations of axioms each of them induces.

10 Note that in this paper we adopt a static perspective of leakage, which considers the
entire hyper-distribution [πŻC]. Since this approach lets us consider all the possible posterior
distributions that the adversary might learn, together with their probabilities, it is reasonable
to assume that the adversary’s information cannot decrease by observing the system. If,
instead, we were to adopt a dynamic perspective of leakage, which considers the effect of the
adversary’s observing a particular channel output y, it might be reasonable to accept that
some particular outputs can decrease the adversary’s information about the secret.
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Figure 2: Equivalence of axioms under AVG. The merging arrows indicate joint implication:
for example, AVG ∧ CVX implies DPI.

5.1.1. Posterior vulnerability as expectation

As we have seen, the posterior versions of Bayes vulnerability and g-vulnerability,
as well as of Shannon entropy and guessing entropy, are all defined as the ex-
pectation of the corresponding prior measures over the (hyper-) distribution of
posterior distribution, i.e. weighted by the probability of each posterior’s being
realized. The definition of posterior vulnerability as expectation is formalized
as the following axiom.

Definition 13 (Axiom of averaging (AVG)). The vulnerability of a hyper is the
expected value, w.r.t. the outer distribution, of the vulnerabilities of its inners:

∀∆: V̂∆ = E∆V ,

where the hyper ∆:DX typically results from ∆ = [πŻC] for some π, C.

We will now consider the consequences of taking AVG as an axiom. As it
turns out, by imposing AVG on a prior/posterior pair (V, V̂) of vulnerabilities,
we can uncover a series of interesting relations among other axioms: if axiom of
AVG holds, then so does the axiom of NI; and the axioms of CVX, DPI and MONO

become equivalent to each other. Figure 2 summarizes these relations, which
we shall now demonstrate.

We begin by showing that AVG implies NI.

Proposition 14 (AVG⇒ NI). If a pair of prior/posterior vulnerabilities (V, V̂)
satisfies AVG, then it also satisfies NI.

Proof. If AVG is assumed then any prior π we have V̂[π] = E[π]V = V(π), since
[π] is a point-hyper.

Second, we show that the axioms of NI and DPI, taken together, imply MONO.

Proposition 15 (NI∧ DPI⇒ MONO). If a pair of prior/posterior vulnerabilities

(V, V̂) satisfies NI and DPI, then it also satisfies MONO.

Proof. For any π, C, let 1 denote the noninterfering channel with only one
column and as many rows as the columns of C. Then
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V̂[πŻC]

≥ V̂[πŻC1] “by DPI”

= V̂[πŻ1] “C1 = 1”

= V̂[π]
= V(π) “by NI”

Third, we show that the axioms AVG and MONO together imply CVX.

Proposition 16 (AVG∧MONO⇒ CVX). If a pair of prior/posterior vulnerabilities

(V, V̂) satisfies AVG and MONO, then it also satisfies CVX.

Proof. Let X = {x1, . . . , xN} be a finite set, and let π1 and π2 be distributions
over X . Let 0<a<1, so that also π3 = aπ1 + (1−a)π2 is a distribution on X .
(In case a = 0 or a = 1 we would have π3 = π1 or π3 = π2, respectively,
and convexity would follow trivially.) Define C∗ to be the two-column channel
matrix

C∗ =



aπ1
1/π3

1
(1−a)π2

1/π3
1

...
...

aπ1
i/π3

n
(1−a)π2

i/π3
n

...
...

aπ1
n/π3

N
(1−a)π2

n/π3
N

 (8)

for every i such that π3
i 6= 0. (Note that if π3

i = 0 for some i, then xi is not
in the support neither of π1 nor of π2 (since 0<a<1), and we can, without loss
of generality, remove element xi from both priors and from channel matrix C∗

above.)
By pushing π3 through C∗ we obtain the hyper [π3ŻC∗] with outer distri-

bution (a, 1−a), and associated inners π1 and π2. Since AVG is assumed, we
have

V̂[π3ŻC∗] = aV(π1) + (1−a)V(π2) . (9)

But note that by MONO, we also have

V̂[π3ŻC∗] ≥ V(π3) = V(aπ1 + (1−a)π2) . (10)

Taking (9) and (10) together, we obtain CVX.

Finally, we show that the axioms AVG and CVX together imply DPI. For that,
we will need the following lemma.

Lemma 17. Let X→Y→Z form a Markov chain with triply joint distribution
p(x, y, z) = p(x)p(y|x)p(z|y) for all (x, y, z) ∈ X×Y×Z. Then

∑
y p(y|z)p(x|y) =

p(x|z) for all x, y, z.
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Proof. First we note that the probability of z depends only on the probability
of y, and not x, so p(z|x, y) = p(z|y) for all x, y, z. Then we can use the fact
that

p(y, z)p(x, y) = p(x, y, z)p(y) (11)

to reason∑
y p(y|z)p(x|y)

=
∑
y (p(y,z)/p(z)))(p(x,y)/p(y)) “by definition of conditional”

=
∑
y
p(x,y,z)p(y)/p(z)p(y) “by Equation (11)”

=
∑
y p(x, y | z) “by definition of conditional”

= p(x|z) . “by marginalization”

Proposition 18 (AVG∧ CVX⇒ DPI). If a pair of prior/posterior vulnerabilities

(V, V̂) satisfies AVG and CVX, then it also satisfies DPI.

Proof. Let X , Y and Z be sets of values. Let be π be a prior on X , C be a
(concrete) channel from X to Y, and R be a (concrete) channel from Y to Z.
Note that the cascade CR of channels C and R is a channel from X to Z.

Let p(x, y, z) be the triply joint distribution defined p(x, y, z) = πxCx,yRy,z
for all (x, y, z) ∈ X×Y×Z. By construction, this distribution has the property
that the probability of z depends only on the probability of y, and not x, that
is that p(z | x, y) = p(z|y).

Note that, by pushing prior π through channel C, we obtain hyper [πŻC], in
which the outer distribution on y is p(y), and the inners are pX|y. Thus we can
reason

V̂[πŻC]
=

∑
y p(y)V(pX|y) “by AVG”

=
∑
y (
∑
z p(z)p(y|z))V(pX|y) “by marginalization”

=
∑
z p(z)

∑
y p(y|z)V(pX|y) “moving constants w.r.t. the sum”

≥
∑
z p(z)V

(∑
y p(y|z)pX|y

)
“by CVX”

=
∑
z p(z)V(pX|z) “by Lemma 17”

= V̂[πŻCR] . “by AVG”

5.1.2. Posterior vulnerability as maximum

An important consequence of AVG is that an observable’s happening with
very small probability will have a negligible effect on V̂, even if it completely
reveals the secret. If this is not acceptable, an alternative approach is to con-
sider the maximum information that can be obtained from any single output
of the channel—produced with non-zero probability—no matter how small that
probability might be. This conservative approach represents a defender who

22



Figure 3: Equivalence of axioms under MAX. The merging arrows indicate joint implication:
for example, MAX ∧ Q-CVX implies DPI. Compare with Figure 2.

worries about the worst possible amount of threat to the secret. The definition
of posterior vulnerability in these terms is formalized as the following axiom.

Definition 19 (Axiom of maximum (MAX)). The vulnerability of a hyper is the
maximum value among the vulnerabilities the inners in the support of its outer
distribution:

∀∆: V̂∆ = max
d∆e

V ,

where the hyper ∆:DX typically results from ∆ = [πŻC] for some π, C.

Note that the definition above takes the support of the outer distribution
because we ignore the vulnerability of inners that cannot happen (i.e. that have
probability zero).

We shall now consider the consequences of taking MAX as an axiom. As it
turns out, by imposing MAX on a prior/posterior pair (V, V̂) of vulnerabilities,
we can derive relations among other axioms, just as we did for AVG. But they
are different.

More precisely, if the axiom of MAX is satisfied, then again the axiom of NI

too is implied; but this time it’s the axioms of Q-CVX, DPI and MONO that become
equivalent to each other. Figure 3 summarizes these relations, which we shall
now demonstrate.

We begin by showing that MAX implies NI.

Proposition 20. [MAX⇒ NI] If a pair of prior/posterior vulnerabilities (V, V̂)
satisfies MAX, then it also satisfies NI.

Proof. If the MAX axiom is assumed, for any prior π we will have V̂[π] =
maxd[π]e V = V(π), since [π] is a point-hyper.

However, in contrast to the case of AVG, the symmetry among CVX, MONO
and DPI is broken under MAX: although the axioms of MONO and DPI are still
equivalent (a result that we shall soon demonstrate), they are weaker than the
axiom of CVX. Indeed, the following example shows a pair of prior/posterior

vulnerabilities (V, V̂) satisfying the axioms of MAX, MONO and DPI, but not the
axiom of CVX.
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Example 21 (MAX ∧ MONO ∧ DPI 6⇒ CVX). Consider the pair (V1, V̂1) such that
for every prior π and channel C:

V1(π) = 1−
(

min
x
πx

)2

, and

V̂1[πŻC] = max
d[πŻC]e

V1.

(Note that [πŻC] denotes the set of inners in the hyper resulting from the
application of C to π.)

We can see that V1 does not satisfy CVX by considering distributions π1 =
(0, 1) and π2 = (1/2, 1/2), and their convex combination π3 = 1/2π1 + 1/2π2 =
(1/4, 3/4). We then calculate V1(π1) = 1−02 = 1, V1(π2) = 1−(1/2)2 = 3/4,
V1(π3) = 1−(1/4)2 = 15/16, and 1/2V1(π1) + 1/2V(π2) = 7/8 to conclude that
V1(π3) > 1/2V1(π1) + 1/2V1(π2) so that indeed CVX is not satisfied.

The pair (V1, V̂1) satisfies MAX by construction. To show that (V1, V̂1) sat-
isfies MONO and DPI, we first notice that V1 is quasi-convex. Using results from
Figure 3 (more precisely, that MAX + Q-CVX ⇒ MONO + DPI, proved later in this
section), we conclude that MONO and DPI are also satisfied.

The vulnerability function used in the counter-example above is quasi-convex.
It turns out that this is not a coincidence: by replacing CVX with Q-CVX (a weaker
property), the symmetry between the axioms can be restored. The remainder
of this section establishes the equivalence of Q-CVX, MONO and DPI under MAX.

We first show that the axioms MAX and MONO together imply Q-CVX

Proposition 22. [MAX∧ MONO⇒ Q-CVX] If a pair of prior/posterior vulnerabil-

ities (V, V̂) satisfies MAX and MONO, then it also satisfies Q-CVX.

Proof. Assume for a contradiction that (V, V̂) satisfy MAX and MONO, but do not
satisfy Q-CVX.

Since Q-CVX is not satisfied, there must exist a value 0≤a≤1 and three dis-
tributions π1, π2, π3, such that π3 = aπ1 + (1−a)π2 and

V(π3) > max (V(π1),V(π2)) . (12)

Now consider the (concrete) channel C∗ defined as in (8). Then the hyper-
distribution [π3ŻC∗] has outer distribution (a, 1 − a), and corresponding inner
distributions π1 and π2. Since MAX is assumed, we have that

V̂[π3ŻC∗] = max (V(π1),V(π2)) , (13)

and because we assumed MONO, we also have that

V̂[π3ŻC∗] ≥ V(π3) . (14)

By replacing (13) in (14), we derive that V(π3) ≤ max (V(π1),V(π2)), which
contradicts our assumption in (12).
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We now show that the axioms MAX and Q-CVX together imply DPI.

Proposition 23. [MAX∧Q-CVX⇒ DPI] If a pair of prior/posterior vulnerabilities

(V, V̂) satisfies MAX and Q-CVX, then it also satisfies DPI.

Proof. Let π be a prior on X , and C, R be channels from X to Y and from Y
to Z, respectively, with joint distribution p(x, y, z) defined in the same way as
in the proof of Prop. 18.

Note that, by pushing prior π through channel CR, we obtain hyper [πŻCR]
in which the outer distribution on z is p(z), and the inners are pX|z. Thus we
can derive:

V̂[πŻCR]
= maxz V(pX|z) “by MAX”

= maxz V
(∑

y p(y|z)pX|y
)

“by Lemma 17”

≤ maxz
(
maxy V(pX|y)

)
“by Q-CVX”

= maxy V(pX|y) “z not free”

= V̂[πŻC] . “by MAX”

Finally, note that, although Q-CVX is needed to recover the full equivalence
of the axioms, CVX is strictly stronger than Q-CVX; hence, using a convex vul-
nerability measure (such as any Vg), MONO and DPI are still guaranteed under
MAX.

Corollary 24. [MAX∧CVX⇒ MONO∧DPI] If a pair (V, V̂) satisfies MAX and CVX,
then it also satisfies MONO and DPI.

Proof. Follows from the results of Figure 3 and the fact that CVX⇒ Q-CVX.

5.1.3. Other definitions of posterior vulnerabilities

Defining posterior vulnerabilities using the axioms of AVG or MAX is certainly
reasonable in many scenarios, but we may wonder whether other definitions
might also be meaningful in some context. In this section we discuss the conse-
quences of defining posterior vulnerabilities with something more relaxed than
AVG or MAX. We shall, however, consider that V̂ should be related to V by the
following condition: the vulnerability of a hyper-distribution should be bounded
by the vulnerabilities of the inner distributions in its support. The next axiom
formalizes this restriction.

Definition 25 (Axiom of bounds (BNDS)). The vulnerability of a hyper lies
non-strictly between the vulnerabilities of the inners in its support:

∀∆: min
d∆e

V ≤ V̂∆ ≤ max
d∆e

V ,

where the hyper ∆:DX might result from ∆ = [πŻC] for some π, C.
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Intuitively, the BNDS axiom states that the vulnerability of a hyper resulting
from pushing a prior through a channel can only be as high as the vulnerabil-
ity induced by the “most leaky” observable, and it can only be as low as the
vulnerability induced by the “least leaky” observable.

We shall now consider the consequences of taking BNDS as an axiom. Whereas
BNDS turns out to be strong enough to ensure NI, by replacing MAX with BNDS,
the equivalence among Q-CVX, DPI and MONO no longer holds.

We begin by showing that the axiom of BNDS is sufficient to guarantee NI.

Proposition 26 (BNDS⇒ NI). If a pair of prior/posterior vulnerabilities (V, V̂)
satisfies BNDS, then it also satisfies NI.

Proof. If (V, V̂) satisfies BNDS, then mind∆eV ≤ V̂∆ ≤ maxd∆e V for every hyper
∆. Consider, then, the particular case when ∆ = [π]. Since [π] is a point-hyper
with inner π, we have that mind[π]e V = maxd[π]eV = V(π). This in turn implies

that V(π) ≤ V̂[π] ≤ V(π), which is NI.

The next example shows that under BNDS, not even CVX—which is stronger
than Q-CVX—is sufficient to ensure MONO or DPI.

Example 27 (BNDS ∧ CVX 6⇒ MONO and BNDS ∧ CVX 6⇒ DPI). Consider the pair

(V2, V̂2) such that for every prior π and hyper ∆:

V2(π) = max
x

πx, and

V̂2∆ =
(maxd∆eV2 + mind∆eV2)

2
.

The pair (V2, V̂2) satisfies the axiom of BNDS, since V̂2 is the simple arith-
metic average of maximum and minimum vulnerabilities of the inners. The pair
(V2, V̂2) also satisfies the axiom of CVX, since V2(π) is just the Bayes vulnera-
bility of π.

To see that the pair (V2, V̂2) does not satisfy the axiom of MONO, consider
the prior π2 = (9/10, 1/10) and the (concrete) channel

C2 =
8/9 1/9
0 1

.

We can calculate that V2(π2) = 9/10, and that [π2ŻC2] has outer distribution
(4/5, 1/5), and inner distributions (1, 0) and (1/2, 1/2). Hence

V̂2[π2ŻC2] = (1+1/2)/2 = 3/4 ,

which violates MONO because V̂2[π2ŻC2] < V2(π2).

Now to see that the pair (V2, V̂2) does not satisfy DPI, consider the prior
π3 = (3/7, 4/7) and the (concrete) channels

C3 =
1/3 2/3
1/4 3/4

, and R3 =
1/4 3/4
3/4 1/4

.
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We can calculate that [π3ŻC3] has outer distribution (2/7, 5/7), and inners (1/2, 1/2)
and (2/5, 3/5). Hence

V̂2[π3ŻC3] = (1/2+3/5)/2 = 11/20 = 0.55 .

On the other hand, the cascade C3R3 yields the channel

C3R3 =
7/12 5/12

5/8 3/8
,

and we can calculate [π3ŻC3R3] to have outer distribution (17/28, 11/28), and in-
ners (7/17, 10/17) and (5/11, 6/11). Hence

V̂[π3ŻC3R3] = (10/17+6/11)/2 = 106/187 ≈ 0.567 ,

which makes V̂[π3ŻC3R3] > V̂[π3ŻC3] and violates the axiom of DPI.

6. Applications of axiomatization to understanding leakage measures

The relationships we have uncovered among axioms helps us better under-
stand the multitude of possible leakage measures one can adopt (e.g. what Vg
to use, and what version of leakage—additive or multiplicative—to employ).

A first instance of that concerns the robustness of the refinement relation
v discussed studied in [5, 6, 14]. Given channels C and D, both taking input
X, C is refined by D, written C v D, if D = CR for some “refining” channel
R. As proved in [5, 14], refinement is sound and complete for the strong g-
leakage ordering : we have C v D iff the g-leakage of D never exceeds that
of C, regardless of the prior π or gain function g. Still, we might worry that
refinement implies a leakage ordering only with respect to g-leakage, leaving
open the possibility that the leakage ordering might conceivably fail for some
yet-to-be-defined leakage measure. But Propositions 16 (AVG ∧ MONO ⇒ CVX)
and 18 (AVG ∧ CVX ⇒ DPI) show that if the hypothetical new leakage measure
is defined using AVG, and never gives negative leakage, then it also satisfies the
data-processing inequality DPI. And hence refinement is also sound for the new
leakage measure.

Another application concerns the possibility of negative leakage for some
information measures. As an example, consider Rényi entropy, a family of
entropy measures that has been used in the context of quantitative information
flow. The family is defined by

Hα(π) =
1

1− α
log2

(∑
x∈X π

α
x

)
for 0≤α≤∞ (taking limits in the cases of α = 1, which gives Shannon entropy,
and α =∞, which gives min-entropy). It would be natural to use Rényi entropy

to define a family of leakage measures by defining posterior Rényi entropy Ĥα

using AVG and defining Rényi leakage by

Lα(π,C) = Hα(π)− Ĥα[πŻC] .
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Figure 4: A picture showing how posterior min-entropy can be greater than prior min-entropy.
Pushing prior π = (1/3, 2/3) through channel C gives hyper [πŻC] with outer (1/3, 2/3) and

inners pX|y1 = (0, 1) and pX|y2 = (1/2, 1/2). So H∞(π) = − log2
2/3 ≈ 0.58 and Ĥ∞[πŻC] =

1/3 · 0 + 2/3 · 1 ≈ 0.67.

However, it turns out that Hα is not concave for α > 2. Therefore, by the
dual version of Proposition 16 (AVG+MONO ⇒ CVX), we find that Rényi leakage
Lα for α > 2 would sometimes be negative. As an illustration, Figure 4 shows
how the nonconcavity of min-entropy H∞ can cause posterior min-entropy to
be greater than prior min-entropy, giving negative min-entropy leakage. This
problem is avoided, however, if we do not define posterior min-entropy by using
AVG, but instead by Ĥ∞[πŻC] = − log2 V̂b[πŻC].

7. A more abstract perspective

The axioms relating to Averaging are in fact instances of the general monad
laws proved by Giry for probabilistic computation [21], and in this section we
give details. The benefit of this generality is that it provides immediate access
to well developed mathematical theories extending these results to infinite states
and proper measures [22]. And its broader perspective gives a direct connection
to higher-order reasoning tools that dramatically simplify proofs, thereby lead-
ing directly to practical frameworks for calculating leakage [23]. We now give
details.

The operator D that takes a sample space X to (discrete) distributions DX
on that space is widely recognised as the “probability monad”, that is in effect
a type constructor that obeys a small collection of laws shared by other, similar
constructors like the powerset operator P [21]. Each monad has two polymorphic
functions η, for “unit”, and µ, for “multiply”, that interact with each other in
elegant ways. For example in (the) P (monad), unit has type X→PX and ηx is
{x}, the singleton set containing just x (we sometimes omit function brackets
to reduce clutter); correspondingly in D we have type X→DX and ηx is [x], the
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point-distribution on x. In P, multiply µ is distributed union that takes a set of
sets to the one set that is the union of them all, having thus the type P2X→PX ;
and in D we have (µ∆)x =

∑
δ: d∆e ∆δδx, with µ thus of type D2X→DX and

taking the outer-weighted average of all the inner distributions δ in the support
of hyper ∆: it is the “weighted average” of the hyper, which we sometimes call
“squash”. That means, for example, that µ[πŻC]=π, i.e. that if you squash the
hyper produced by prior π and channel C you get the prior back again.

Furthermore the monadic type-constructors are functors, whose significance
for us is that they can be applied to functions as well as to objects: thus for f
in X→Y the function Pf of type PX→PY is such that for X in PX we have
f(X) = {f(x) | x∈X} in PY. In D instead we get the push forward of f , so
that for π in DX we have (Df)(π)y =

∑
f(x)=y πx.

With these tools, some of our axioms can be expressed in a very general way,
for example

(1) AVG becomes V̂=µ◦DV, the Kleisli lifting or indeed the bind of monadic
functional programming.

(2) NI becomes V̂◦η=V. Assuming (1), that follows from the general monad
laws µ◦η=1 and DV ◦η=η◦V .

(3) CVX becomes V◦µ ≤ µ◦DV.

A consequence of accepting averaging (1) is that V̂(∆1
p+∆2) = V̂(∆1) p+

V̂(∆2), i.e. we have linearity of V̂, where p+ takes the p-weighted sum of its
operands: on the left we sum over hypers; on the right we sum over scalars.
This is more generally V̂(µ∆) = µ((DV̂)∆) where ∆ is in D3X , a distribution

of hypers, another monad law when V̂=µ◦DV.
The space D3X also gives a hyper-formulated definition of the refinement

order v over hypers, i.e., that ∆1v∆2 just when V̂∆1≥V̂∆2 for all V̂ satisfying
the axioms: it is that ∆1v∆2 just when there is a ∆ such that ∆1=µ∆ and
∆2=(Dµ)∆ [22, 24]. This formulation allows soundness of v, i.e. that it can
only decrease g-vulnerability, to be shown even for infinite state-spaces X and
general measures. (See Appendix Appendix A.)

Finally, the monadic structure coupled with the Kantorovich metric gives
us continuity criteria not only for V but also for V̂ [21, 25]. If we give the
underlying X the discrete metric, that dist(x1, x2) = (0 if x1=x2 else 1), then
the Kantorovich-induced distance on DX is equivalent to the total variation
or 1/2-Manhattan metric used in Section 4. But the great generality of these

monads gives us more, for example that AVG, i.e., the axiom V̂ = µ◦DV, makes V̂
continuous as well, this time with respect to the Kantorovich metric on hypers.
That in turn allows higher-order calculations that limit information flow in a
very robust way [12].

In Appendix A we give examples of these general constructions in action:
how they enable more succinct definitions, shorter, more algebraic proofs (if
somewhat denser), and how they improve our chances of further discoveries
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because of the wealth of similar constructions that already exist in this mathe-
matical style.

8. Related work

Our axioms for posterior vulnerabilities can be seen generalizations of key
properties of Shannon entropy [26]. As we mentioned, our axiom of data-
processing inequality (DPI) is a straightforward generalization of of the data-
processing inequality for mutual information, which states that if X→Y→Z
forms a Markov chain, then I(X;Y ) ≥ I(X;Z). Our axiom of monotonicity
(MONO) is a generalization of Shannon entropy’s “information can’t hurt” prop-
erty, which states that for every pair X, Y of random variables, H(X|Y ) ≤
H(X). Finally, our axiom of monotonicity (NI) can be seen as a generalization
of the property that, for every pair of independent random variables X and Y ,
H(X | Y ) = H(X).

The conservative approach represented by the use of the axiom of maxi-
mum (MAX) is employed, for instance, in the original definition of differential
privacy [27].

8.1. Relation with other axiomatizations of entropy measures

Csiszár has surveyed [28] the most commonly used postulates for a function
f of the uncertainty contained in a finite probability distribution (p1, . . . , pN )
for N>0. They are: (P1) positivity : f(p1, . . . , pN ) ≥ 0; (P2) expansibil-
ity : f(p1, . . . , pN , 0) = f(p1, . . . , pN ); (P3) symmetry : f(p1, . . . , pN ) is invari-
ant under permutations of (p1, p2, . . . , pN ); (P4) continuity : f(p1, . . . , pN ) is a
continuous function of (p1, . . . , pN ), for fixed n; (P5) additivity : f(P×Q) =
f(P ) + f(Q), where P×Q is the product-distribution of P and Q (i.e. the dis-
tribution in which events have probability piqj for each pi ∈ P and qj ∈ Q);
(P6) subadditivity : f(A,B) ≤ f(A)+f(B), where A and B are discrete random
variables; (P7) strong additivity : f(A,B) = f(A) + f(B|A); (P8) recursivity :
f(p1, p2, . . . , pN ) = f(p1+p2, p3, . . . , pN )+(p1+p2)f (p1/(p1+p2), p2/(p1+p2)); and

(P9) sum-property : f(p1, . . . , pN ) =
∑N
n=1 g(pn) for some function g.

Shannon entropy is the only uncertainty measure to satisfy all axioms (P1–
9) listed by Csiszár; but in fact various proper subsets of these axioms are
sufficient to characterize Shannon entropy fully. In particular, Shannon himself
showed that continuity, strong additivity, and the property that the uncertainty
of a uniform distribution should not decrease as the number of elements in
the distribution increases, are sufficient to determine entropy up to a constant
factor [2]. Khinchin proved a similar result using strong additivity, expansibility,
and the property that the maximum uncertainty should be realized in a uniform
distribution [7].

Rényi explored ways to relax the axiomatization of Shannon entropy to de-
rive more general uncertainty measures [8]. He showed that Shannon entropy
could be characterized by five postulates: (R1) symmetry; (R2) continuity; (R3)
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f(1/2, 1/2) = 1; (R4) additivity; and (R5) the entropy of the union of two subdis-
tributions is the arithmetic weighted average of each individual subdistribution.
By replacing the weighted average in postulate (R5) with the (more relaxed)
exponential mean, Rényi uniquely determined the family of Rényi entropies for
full probability distributions Hα(p1, p2, . . . , pn) = 1/(1−α) log2(

∑n
k=1 p

α
k ), where

0<α<∞, with α 6=1, is a parameter. In the limit of α tending to 1, Hα co-
incides with Shannon entropy, and in the limit of α tending to infinity, Hα is
min-entropy (i.e. the negated log of Bayes vulnerability).

Following Denning’s seminal work [29], Shannon entropy has been widely
used in the field of quantitative information flow for the leakage of confidential
information [1] [30] [31] [32] [33] [34] [35]. But as the field of quantitative infor-
mation flow continued to evolve, new measures of uncertainty and of information
were proposed. Contrary to Rényi’s motivation, however, most measures were
not derived from mathematical principles, but instead were motivated by specific
operational scenarios. That was the case for guessing entropy, Bayes vulnerabil-
ity, and g-vulnerability, for instance. Although many “healthiness properties”
have been proved after the fact for these measures (e.g. non-negativity, non-
decrease of uncertainty by post-processing, etc.), there has not always been a
derivation of such measures from basic principles, or attempts to verify whether
they can be unified in a more general framework.

Naturally, since measures other than Shannon entropy cannot satisfy all
postulates (P1–9), the axioms for vulnerability considered in this paper differ
from those listed by Csiszár. Some differences are unimportant: they are just
adaptations of axioms of uncertainty to axioms of vulnerability (e.g. conditioning
of random variables reduces uncertainty, but increases vulnerability, so some
inequalities must be reversed).

Other differences are more fundamental, however, as they reflect our depar-
ture from Shannon’s indifference to the meaning of different secret values. The
axiom of symmetry (P3), for instance, assumes that all secret values are equally
informative — and in many scenarios that is false. For instance, not everyone’s
bank account is as worth breaking in to as everyone else’s, and so evidently a
permutation on the probabilities of every particular account being broken into
does not amount to the same vulnerability. The axioms of additivity (P5),
subadditivity (P6) and strong additivity (P7) assume that the uncertainty of a
pair of joint random variables is a function only of the correlation of the ran-
dom variables, which is also not a valid assumption in many security scenarios:
the information of the combination of two secrets may exceed the information
content of each secret separately: for instance, the benefit of knowing some-
one’s PIN and bank-account number at the same time greatly surpasses the
sum of the benefits of knowing each one on its own. Recursivity (P8) and the
sum-property (P9) assume that the probability of each secret value contributes
on equal terms to the overall uncertainty of the probability distribution, which
also is a false assumption for many relevant measures. Bayes vulnerability, for
instance, satisfies neither recursivity nor the sum-property, as the information
of a probability distribution is a function of the maximum probability only.
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8.2. Relation with Kifer and Lin’s work.

Kifer and Lin’s work is the one most closely related to ours. In a series
of papers [36, 37, 38, 9], these authors proposed an axiomatic characterization
of “good” properties that sanitization mechanisms should provide, focusing in
particular on privacy and utility measures. They considered utility as informa-
tion preservation, which captures how “faithful” the output of the mechanism
is to its input,11 and as such is closely related to our notion of vulnerability.
This notion derives from the more general concept of utility used in decision
theory. Kifer and Lin argued that utility has not been studied systematically in
the context of privacy, and that some proposals have led to inconsistencies and
paradoxes.

In the following we summarize the connection between our paper and their
work. We start by briefly recalling their basic concepts and notation. A san-
itization mechanism M is a randomized algorithm from inputs to outputs,12

whose behavior is described by conditional probabilities PM(o|i) of observing
output o when input is i. Such privacy mechanisms correspond exactly to our
channels. Given two mechanismsM1 andM2 and p ∈ [0, 1],M1⊕pM2 denotes
the mechanism that, on input D, returnsM1(D) with probability p andM2(D)
with probability 1−p, and also reveals whether the output was created using
M1 or M2.

A measure of information preservation is a function µ mapping a mechanism
M to a real value. Lin and Kifer [9] describe five axioms that such measures
should satisfy:

(1) Sufficiency : µ(M) ≥ µ(A◦M) for any randomized algorithm A. Here ◦
represents functional composition.

(2) Continuity : µ is continuous in the components of M (viewed as a matrix).

(3) Branching : Given a mechanismM with output space {o1, . . . on} there is a
function G such that µ(M) = G(PM(o1|·), PM(o2|·))+µ(M′), where M′ is
obtained from M by adding together the columns PM(o1|·), PM(o2|·) and
leaving the others unchanged.

(4) Quasi-convexity : µ(M1⊕pM2)≤max (µ(M1), µ(M2)).

(5) Quasi-concavity : µ(M1⊕pM2)≥min (µ(M1), µ(M2)) .

Lin and Kifer analyzed in [9] many popular measures of utility from the liter-
ature of privacy, and showed that almost all of them fail to satisfy the above

11This is in contrast with utility as usability, which expresses how easily the output can be
used. An example of the difference is provided by an encryption mechanism, which perfectly
preserves information, but whose output is not usable except by users who know the decryption
key.

12In Kifer and Lin’s work, the inputs of a mechanism are assumed to be datasets, and
denoted by D. However, the discussion of this section apply to inputs and outputs of any
kind.
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axioms. One exception is the notion of g-vulnerability, as we will see in a mo-
ment.

By observing that our notion of vulnerability is essentially the utility of
the adversary, we can make several connections between Kifer and Lin’s princi-
ples and our own. First, their sufficiency axiom is clearly related to our data-
processing inequality (DPI), since A◦M represents the post-processing ofM by
A. Furthermore, they showed in [9] that Axioms (1)–(3) characterize a measure
based on posterior g-vulnerability. More formally:13

Theorem 28 (Lin and Kifer [9], Theorem 6.2). It is the case that:

(a) ∀g ∀π ∃µ satisfying (1)-(5) : ∀M V̂g[πŻM] = µ(M), and

(b) ∀µ satisfying (1)-(3)∃π ∃g : ∀M V̂g[πŻM] = µ(M).

From previous sections, we know that any function satisfying continuity
(CNTY),14 convexity (CVX), and averaging (AVG) corresponds to a posterior g-
vulnerability for some g. Together with the above result, this suggests a strong
relation between information preservation and the notion of average-based pos-
terior vulnerability explored in this paper.

However, there are important differences. First of all, the type of µ and
that of posterior vulnerability are different: posterior vulnerability applies to a
hyper-distribution, typically derived from a channel M and a prior π. On the
other hand, µ applies only to a channel M. This means that the prior π is
implicitly encoded into µ, and that the utility µ(M) is the utility of M under
the fixed prior π. A second (related) difference is that, while we can express the
prior vulnerability as a particular case of posterior vulnerability, this is not the
case for µ. In fact, we can express the utility of the distribution π associated
to µ as µ(0̄), but we cannot express the utility of a generic distribution via the
same µ. Indeed, because of Axiom (1), for anyM, µ(M) has an utility greater
than or equal to that of µ(0̄), thus it cannot represent the utility of any π′ that
has less utility than π. As a consequence, it seems that the relation between
prior and posterior measures, which is a major contribution of our paper, cannot
be expressed in Kifer and Lin’s framework. At least, not by using µ alone: one
would need to introduce and axiomatize a new function. In particular, the
averaging axiom (AVG) cannot be formulated by using µ alone. Similarly, the
maximum (MAX) and the bounds (BNDS) axioms cannot be formulated, despite
the resemblance of the latter with the axioms (4) and (5) above.

In summary, a main novelty with respect to the work of Kifer and Lin
is that we investigate the relation between prior and posterior vulnerabilities.
Another novel contribution is the study of the relationships between alternative
sets of axioms. In general, indeed, our focus is different from that of Kifer

13Theorem 28 was actually formulated for the converse functions: the information loss
and the expected error of a Bayesian decision maker, which are converse of the information
preservation and of the posterior g-vulnerability, respectively.

14Note that (CNTY) and (2) refer to different type of arguments.
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and Lin: they focused on finding a collection of axioms for analyzing utility
specifically, and used them to review the current practices in the field of privacy.
In contrast, our main motivation is to establish the scientific principles which
can help in the development or adaptation of new measures in response to novel
situations. Thus, we explored different sets of possible axioms, thereby clarifying
the implications between the principles themselves.

8.3. Relation with Boreale and Pampaloni’s work.

In [17, 18], Boreale and Pampaloni have conducted one of the first studies of
adaptive adversaries in the context of quantitative information flow. They did
not consider explicitly an axiomatic framework, but, in order for their results to
be as general as possible, they adopted a generic notion of entropy, specified by
a few properties which turn out to be our axioms of concavity, continuity, and
averaging. Furthermore, in [18] they pointed out a known theorem in decision
theory, which states that a function H : DX → R+, satisfies concavity and
continuity iff it is of the form H(π) =

∑
x πxS(x, π), where S : X ×DX → R+,

is any function which satisfies the condition that
∑
x πxS(x, π′) is minimal when

π′ = π. Such function S, called Proper Scoring Rule in decision theory, is similar
to the (converse of) gain functions used in g-vulnerability, and therefore the
above definition is related to that of prior g-entropy. Thus this result is similar
to that of the completeness of g-vulnerability with respect to our axiomatization
of the prior vulnerability (Theorem 9).

9. Conclusion

We have presented axioms that might be satisfied by intuitively reasonable
measures of the prior- and posterior vulnerability of a secret as it is being pro-
cessed by a system; this allowed us to derive properties of leakage. Our first
main contribution was (1) the equivalence of the axioms of convexity, mono-
tonicity (i.e. non-negativity of leakage), and data-processing inequality (DPI)
when posterior vulnerability is defined as the average vulnerability of the pos-
teriors, and (2) the equivalence of quasi-convexity, monotonicity and DPI when
posterior vulnerability is defined as the worst-case vulnerability of posterior
distributions. A deep implication of these results is that convexity (and quasi-
convexity) of information measures do not need to be taken as fundamental
properties, but are derivable from more intuitive principles, such as averaging
(or worst-case analysis) and DPI.

The second main contribution was the demonstration of the soundness and
completeness of g-vulnerabilities with respect to the axioms of convexity and
continuity. Moreover, because of the equivalences we established, it follows that
g-vulnerability exactly captures all average-based information measures that
respect DPI or monotonicity.

We now want to further investigate the full family of vulnerabilities under
quasi-convexity and continuity, characterizing all worst-case based vulnerabili-
ties that respect DPI or monotonicity.
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Appendix A. Elementary examples supporting Section 7

Recall that we take our base space to be X , distributions on that to be DX ,
and hypers to be D2X . Typical elements of DX are lower-case Greek letters,
possibly superscripted. Thus πx is the probability π assigns to x and π1

x is
the probability π1 assigns to x and ∆2

δ3 is the probability that hyper ∆2:D2X
assigns to distribution δ3:DX . In ∆δ usually δ will be in the support d∆e of ∆;
if not, then of course the assigned probability is zero.
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We (continue to) write the point, or “singleton” distribution on x as [x], so
that [x]x′ = 1 IF x = x′ ELSE 0 — it is the same as ηx if we are using a monad.
A “doubleton” distribution say δ=x1p⊕x2 is such that δx1

=p and δx2
=1−p. The

p-weighted sum of two values is defined x1 p+ x2 = px1+(1−p)x2, thus not the
same thing as x1 p⊕ x2: for example if X were the reals R, then x1 p+ x2 would
also be a real, but x1 p⊕ x2 would be a (doubleton) distribution in DR. Indeed
we have x1 p⊕ x2 = [x1] p+ [x2]. In both cases the p-factor applies on the left.

In this section we use µ more generally than multiply of a monad, as intro-
duced in Section 7 above: here µ will as well simply average any distribution
taken over a vector space. Thus in particular we have µ(δ1

p⊕δ2) = δ1
p+ δ2

because δ1
p⊕ δ2, a hyper with just two inners, is in D2X = D(DX ) and DX is

a vector space.
We return first return to the higher-order formulation V̂=µ◦DV of AVG. With

a doubleton hyper for illustration, say ∆ = π1
p⊕π2, that gives

V̂∆ = (µ◦DV)∆ “apply AVG to ∆”

⇒ V̂(π1
p⊕π2) = (µ◦DV)(π1

p⊕π2) “∆ = π1
p⊕π2”

iff V̂(π1
p⊕π2) = µ(DV(π1

p⊕π2)) “composition”

iff V̂(π1
p⊕π2) = µ(Vπ1

p⊕Vπ2) “definition functor D”

iff V̂(π1
p⊕π2) = Vπ1

p+Vπ2 , “property of µ”

showing that V̂ indeed takes the weighted sum of V applied to the (two, in this
case) posteriors in ∆. As an illustration of more general reasoning, we give the
proof promised in Section 7, i.e., that applies even when the weighted average
is not necessarily over just two hypers. Note that the resulting proof is less
cluttered than the one immediately above, and also less so than a conventional
presentation would be with summations and subscripts. We have

V̂ ◦ µ
= µ ◦ DV ◦ µ “assumption AVG”

= µ ◦ µ ◦ D2V “µ is natural transformation D2→D”

= µ ◦ Dµ ◦ D2V “monad coherence condition on µ”

= µ ◦ D(µ ◦ DV) “D functor”

= µ ◦ DV̂ , “assumption AVG”

which overall equality says intuitively that applying V̂ to the weighted sum of
some hypers, i.e., V̂(µ∆), is the same as applying V̂ to the hypers separately †
and then taking the weighted sum of the results, i.e., µ(DV̂∆).

The higher-order NI captures its traditional definition via V̂[π]=V̂(ηπ)=(V̂◦η)π=Vπ.
Here is how the higher-order version of NI follows from AVG and the monad laws,
as we claimed in Section 7:

V̂◦η
= µ ◦ DV ◦ η “assumption AVG”

= µ ◦ η ◦ V “η is natural transformation 1→D”

= V . “monad coherence condition µ◦η = 1”
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Applying that to arbitrary π gives V̂(ηπ) = Vπ.
For CVX again we use a doubleton hyper ∆ = π1

p⊕π2 as an example, so that
the traditional formulation of CVX is found in the middle of the following string
of equalities:

(V◦µ)∆
= (V◦µ)(π1

p⊕π2) “definition ∆”

= V(µ(π1
p⊕π2)) “composition”

= V(π1
p+π

2) “property of µ”

≤ Vπ1
p+ Vπ2 “traditional formulation of CVX”

= µ(Vπ1
p⊕ Vπ2) “property of µ”

= µ(DV(π1
p⊕ π2)) “definition functor D”

= (µ◦DV)(π1
p⊕ π2) “composition”

= (µ◦DV)∆ , “defintion ∆ again”

showing how CVX for this particular ∆ agrees with the higher-order formuation
V◦µ ≤ µ◦DV at (3) in Section 7.

Now we return to the formulation of the partial order v on hypers in terms
of the surprising “hyper-hyper” ∆ in D3X . As we did above (at †), we will assist
the intuition by taking a simple case ∆ = ∆1

p⊕∆2, thus a doubleton hyper-
hyper over two hypers ∆1 with probability p and ∆2 with probability 1−p. We
show that the higher-order definition of v implies the V-based definition, in this
case, provided we assume CVX. (The reverse direction is harder, related to the
Coriaceous Conjecture described in [5] and proved in [6, 12].)

We start by setting ∆+=µ∆ and ∆−=(Dµ)∆, as in the higher-order formu-
lation of v from which we would expect to be able to prove that V̂∆+ ≥ V̂∆−.
Then we have

V̂∆+

= V̂(µ∆) “definition ∆+”

= V̂(µ(∆1
p⊕∆2)) “definition ∆”

= V̂(∆1
p+∆2) “property of µ”

= V̂∆1
p+ V̂∆2 “linearity of V̂, implied by AVG”

= (µ◦DV)∆1
p+ (µ◦DV)∆2 “assume AVG”

≥ (V◦µ)∆1
p+ (V◦µ)∆2 “assume CVX”

= µ((V◦µ)∆1
p⊕ (V◦µ)∆2) “property µ”

= µ(D(V◦µ)(∆1
p⊕∆2)) “functor D”

= (µ◦DV◦Dµ)∆ “composition; functor D; defintion ∆”

= V̂(Dµ∆) “assume AVG; composition”

= V̂∆− . “definition ∆−”

As in the earlier examples, once one is familiar with the general monadic
operators, one gains access to a presentation of essentially the same proof but
in a shorter, less cluttered (with no super- or subscripts), more algebraic style.
More significantly, however, is that these operators have general monadic for-
mulations that accommodate infinite state-spaces and proper measures. The
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algebraic proof applies as-is, unchanged. Thus for general ∆, is in effect a
soundness proof for v, that it can only decrease vulnerability (given CVX and
AVG); and because of the great generality of the monad framework [21] it applies
even for infinite state spaces X and measures. It is

V̂ ◦ µ
= µ ◦ DV̂ “linearity of V̂, proved earlier at †”
≥ µ ◦ D(V ◦ µ) “AVG and CVX; see ‡ below”

= µ ◦ DV ◦ Dµ “D functor”

= V̂ ◦ Dµ . “AVG with “the other µ””

The longer proof just above is recovered by applying each line to ∆ = ∆1
p⊕∆2.

The “see below” appeals to the elementary general fact that if two functions ‡
f, f ′:S→R satisfy f(s)≥f ′(s) for all s:S, then also (µ◦Df)(δ) ≥ (µ◦Df ′)(δ) for
all δ in DS, in words that if two random variables over the same distribution
satisfy ≥ everwhere, then so do their expected values. Above we used f=V̂ and
f ′=V◦µ and S=D2X , appealing to AVG and CVX for the inequality.
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