The "a priori analysis" in the study of the T&S didactical joint action

Florence Ligozat

Comparative didactics, FPSE, Université de Genève

Alain Mercier

INRP, UMR ADEF, Université de Provence

• From the didactical contract (Brousseau's theory, 1997)

<u>Teacher</u> expects the student to learn a targeted topic, meanwhile <u>Student</u> expects to learn « something »... but <u>Student</u> cannot know what it is like, before encountering it. <u>Teacher</u> cannot say directly what he expects

Intention to teach triggers ... intention to learn / intention to teach oneself

Chronogenetic and topogenetic constraints

(Chevallard's theory, 1985/91)

<u>Teacher</u> must organise the successive occurrence of knowledge topics, i.e. managing **the didactical time** and <u>Teacher</u> must also open a thinking space to the student for each topic presented, i.e managing **the student participation** to the teaching process

T&S didactical joint action

- <u>A collective form</u> of action involving overlapping individual participatory intentions
- → A minimalist definition for joint action to be implemented with didactical specificities
- <u>A collective form</u> driven by an **institutional task**
- → The "intention to teach" enacted by the teacher originates itself in an institutional demand, by the mean of the definition of a curriculum (Chevallard, 1985/1991)
- <u>A collective form</u> typified by ways of presenting / understanding knowledge in institutional practices.

Methodological issues

a priori reasoning...

Philosophical

 Examining the possibility of the development of knowledge *independently* of any experiment (E. Kant)

Methodological

 Making hypotheses before realizing an experiment (C. Bernard)

- \rightarrow apriorism VS empiricism
- → hypothetico-deductive approach

Compatibility with theory and practice of research on teaching and learning?

a priori reasoning... applied to research on teaching and/or learning processes (mathematics)

<u>Cognitive</u> : An anticipatory thought on the learning possibilities that may be developed against a given background (P. Cobb et al.) \rightarrow hypothetical learning strategies

<u>Didactical</u> : An analysis of the variables of a mathematical situation in order to keep control of the meaning-making process by the students.

(G. Brousseau) → a priori model of knowledge

A decision-making tool for research design

Observing teaching and learning under ordinary conditions...

Example : Perimeter & Area

"Quinze"

(4th grade- Vaudoise class - Switzerland)

Compare perimeters of equivalent surfaces area

Tâche

 Comparer les périmètres de surfaces d'aires équivalentes.

Nombre d'élèves

• 2

Matériel

LE p. 64.

MC: 15 plaquettes carrées

Papier quadrillé

Mise en commun

 Les élèves comparent leurs solutions et les valident à l'aide des plaquettes ou de leurs dessins. Ils recensent les périmètres obtenus.

Variable

Matériel

Change the number of tiles

Prolongement

Build a rectangle with 2 x 10 tiles

-Ask to remove tiles, but increase perimeter.

-Ask to add tiles but decrease perimeter.

Pair work

Instruction in the student's textbook :

Joining together 2 squared tiles, gives a shape with a perimeter of 6.

-What would be the perimeter of a shape made of 15 squared tiles?

-Find as much different perimeters as you can.

15 squared tiles available + square grid paper

An attempt to solve the task...

From assembling 15 tiles,

- Different perimeter measures
- \rightarrow how can I get all of them?
- • \rightarrow are these values always even nb?
- Different shapes may be found for a given perimeter
- → how can I make sure that I have found all of them?
- Pmax is twice Pmin
- \rightarrow is it always the case?
- • \rightarrow is there a method to calculate them?

What knowledge is at stake in this task?

Magnitudes :

 Area and perimeter are two independent magnitudes

•If area is constant, perimeter may change / if perimeter is constant, area may change.

•Each of these magnitudes are independent of the shape in which they can be measured

•Assembling n tiles : area measures add to each other, but perimeters don't.

•Formula for rectangular shapes may be drawn [A = a *b] and [P = (a+b)*2] What are the conditions for this knowledge to be taught ?

"Area and perimeter are two independent magnitudes"

 \rightarrow It can be disclosed only by **comparing measures** for each of the magnitudes

 \rightarrow Instructions to students have to evolve in order to introduce the variation of area (change number of tiles), with the constraint of keeping perimeter constant

 \rightarrow Student's findings (shapes and measures) will have to organized in order to plot variations against a constant.

 \rightarrow Focusing on rectangular shapes allow to derive the calculation formula for perimeter

"Quinze" : T&S joint action in the classroom

Timing :

- For explaining the task : 10 min
 - Checking that every one knows what a perimeter is.
 - Assembling 3 tiles (\rightarrow a shape) and counting the outer sides.
 - No need to use a ruler.
- For student research of perimeter with 15 tiles : 43 min
- For the overall discussion : 17 min
 - about P values only : 10 min
 - Considering area VS perimeter : 3 min
 - Considering area formula for rectangular shapes : 6 min

"Quinze" : T&S joint action in the classroom

An overview of the overall discussion (17 min) :

- S : Eliciting Pmax = 16 and Pmin = 32
- T: Need to count again for correcting mistakes
- S : Pmax = 2^* pmin / T \rightarrow It is interesting
- S : Perimeters values are always even numbers ? / T → it is not today's goal
- T: What would be Pmin for 20 tiles?
- S : different answers : 21, 22, 24 Counting Pmin with 20 tiles (Pmin = 18) and deducing Pmax = 2 * Pmin = 36 without experimental checking / T acknowledges for this result.
- T : remind some previous work about area she states : 15 tiles is a surface area of 15 units is there a change in area in your shapes?
- S : yes / no always and only 15 tiles \rightarrow T : there is no area change
- T : let's consider the 20 tiles assembled as a rectangle can we find a calculation to give the area straight away?
- S : 4*5 or 4* / also 2*10 \rightarrow T congratulates.

a priori reasoning... adapted to the study of T&S joint action in ordinary conditions

Step 1 : what Knowledge could learnt from the task ?
→ Anticipating learning possibilities and difficulties

Step 2 : What Knowledge can be taught
→ Anticipating teaching acts (the layout of the milieu)

Step 3 : Use "a priori" model as an insight for observing effective joint actions.

