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Abstract 

This paper presents a new elastic time algorithm for adjusting hypermedia document presentation in 
order to avoid temporal inconsistencies. The algorithm explores the flexibility offered by some 
hypermedia models in the definition of media object duration and uses this flexibility for choosing the 
objects to be stretched or shrunk in such a way that the best possible quality of presentation is 
obtained. Our proposal is based on the “out-of-kilter” method for minimum-cost flow problems and it 
seems to offer more flexibility to model real-life applications in comparison with other previous 
proposals based on the simplex method. 

1. Introduction 

This paper focuses on the coupling issues between the specification and presentation phases of 
a hypermedia system. More precisely, it aims at defining tools for elastic time computation. 

Elastic time computation, as formerly named by [KiSo95], tries to adjust document 
presentation in order to guarantee its temporal consistency. The goal is accomplished by 
stretching and shrinking the ideal duration of media objects. Of course, elastic time 
computation is only meaningful when hypermedia systems are based on document models that 
provide flexibility in the definition of media object presentation characteristics. Usually, the 
duration flexibility specification contains some kind of cost information that gives the 
formatter, that is, the machine responsible for controlling the document presentation, a metric 
for maximizing the global quality of the presentation, while obeying other criterion, such as 
trying to minimize the number of objects that will be stretched or shrunk. Besides the 
difficulty of modeling such problem in real-life situations, where a user interaction induces 
non deterministic data or where the definition of the quality measure depends on multi-
criterion analysis, we must also keep in mind that the algorithms should run in very short 
execution time. 

Some proposals for elastic time computation have been addressed in the literature [BuZe93a, 
KiSo95, SaLR99]. However, Firefly [BuZe93a] and Isis [KiSo95] have limited their study to 
simplified academic models which lead to small-scale linear programs solved by the simplex 
method. Furthermore, the algorithms are suitable only for compile time, that is, before the 
beginning of the document presentation. Madeus formatter [SaLR99] presents a solution for 
runtime adjust (adjustments during presentation), but it is based on a greedy approach, 
ignoring any cost specification to improve the document quality. In this paper, we propose a 
new algorithm based on the “out-of-kilter” method for minimum-cost flow problems [Fulk61], 
which allows much more flexibility to model real-life applications. The algorithm is validated 
in the deterministic case with general convex cost functions, being suitable for both compile 
time and runtime. 
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The paper is organized as follows. Sections 2 and 3 present the general ideas about 
specification and formatting of a complex hypermedia document. Then, in Section 4, we 
present the temporal graph and the minimum-cost tension problem which underlies the 
decision model. We describe and justify the use of the out-of-kilter algorithm, focusing on the 
possibility of distributing the computation among the document objects. Indeed, each arc of 
the temporal graph is individually forced to optimality, which induces a high degree of 
flexibility to recover a sub-optimal solution when some unpredictable event affects the 
precompiled presentation. 

2. Temporal specification in hypermedia documents 

The presentation specification of a hypermedia document is accomplished by the definition of 
its basic elements (text, audio, video, etc.) and their spatial and temporal relationships. The 
basic elements, usually called media objects or content nodes, have as main attributes the 
content to be presented (often a reference to the content) and some additional parameters that 
define the object presentation behavior (e.g., duration, spatial characteristics, anchors, etc.). 
Relationships among media objects are usually specified by links, compositions, or both, 
depending on the conceptual model in use. Examples of the use of compositions can be found 
in the parallel and sequential elements of SMIL [W3C98], in Isis primitives [KiSo95] and in 
the parallel and sequential contexts of NCM [Soar00]. Examples of the use of links can be 
found in HTML hyperlinks, NCM spatio-temporal links [Soar00, SoRM00], in timed Petri net 
transitions of OCPN [LiGh90] and TSPN [DiSé94], and in Firefly temporal point nets 
[BuZe93a]. 

In spite of how they are specified, temporal relations can be classified into: causal relations 
and constraint relations. Causal relations, also known as event-based relations, are based on 
conditions and actions. They define actions that must be fired when some conditions are 
satisfied. An example of causal relation is: “when video A presentation finishes, stop playing 
audio B”. Constraint relations specify restrictions that must be satisfied during a presentation, 
without any causality. An example of constraint relation is: “video A and audio B must finish 
their presentations at the same time”. Although similar, the former example (causal relation) 
does not ensure that both media objects will be entirely played. If A finishes its presentation 
first, B presentation will be interrupted. On the other hand, the latter example (constraint 
relation) specifies that the presentations should finish at the same time and in a way that both 
media objects have all their content presented. It is worth mentioning that this constraint must 
be satisfied if and only if both media objects are presented simultaneously (only the 
presentation of A or only the presentation of B also satisfies the constraint relation). 

Both kinds of relations are important to hypermedia presentation modeling. Models based only 
on temporal constraints do not capture the causality intrinsic to hypermedia scenarios and can 
lead to specification ambiguities. For instance, let us take the meet constraint relation of Allen 
[Alle83], exemplified in Figure 1. Just specifying that a media object X meets another media 
object Y does not let one know if the end of X causes the start of Y, if the start of Y causes the 
end of X, or if the end of X should coincide with the start of Y, without any causal relationship. 
On the other side, models purely based on causal relations do not allow an author to specify, 
for example, that two media objects should finish their presentation simultaneously, both 
having their content entirely presented, as previously exemplified. 
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Figure 1 – Allen relations. 

Models based only on causal relations cannot generate temporal inconsistencies. However, 
they can lead to spatial inconsistent specifications, for example, resource contention. In these 
models, it is also possible to have actions ignored during the presentation (e.g., to finish a 
media object that is no more being presented), as well as unreachable actions (those whose 
conditions will never be satisfied)1. On the other side, models with constraint relations can 
have temporal inconsistencies. For these models, it is important to verify whether all 
constraints can be satisfied. From now on, this paper always assumes hypermedia models with 
both causal and constraint relations. 

Regarding temporal consistency checking, it is desirable to have models that allow the 
specification of a flexible duration for media object presentation, taking advantage of the fact 
that several media can be temporally stretched or shrunk, without impairing human 
comprehension. Instead of taking an inflexible ideal duration specification that can lead to 
inconsistencies, now it is possible to present a consistent document, even with some loss of 
presentation quality. However, with the introduction of flexibility, besides verifying the 
temporal consistency of a document, it will be necessary to find the best media object duration 
value that satisfies all given temporal constraints and leads to the best possible presentation 
quality of the whole document. Obviously, temporal inconsistent documents may still exist, 
since the range of adjustments is usually limited. 

The basic unit for specifying relationships among media objects defines the hypermedia model 
granularity. We follow the definitions used in Pérez-Luque and Little’s Temporal Reference 
Framework [PéLi96] and call the basic unit for defining relationships an event. An event is an 
occurrence in time that can be instantaneous or can occur over some time period. We classify 
events into three types. A presentation event is defined by the presentation of a media object 
as a whole or some part of its content. Analogously, a selection event is defined by the 
selection of part or the entire content of a media object. Finally, an attribution event is defined 
by the changing of an attribute value of a media object. Note that the start or end of a 
presentation event is also an event, in this case, an instantaneous event. 

Models that support presentation flexibility should define duration as cost functions. The idea 
is to allow an author to specify a function “duration versus cost”, where minimum, ideal and 
maximum values are defined for the duration of each presentation event that constitutes the 
object presentation. Figure 2 shows examples of cost functions. Intuitively, these functions 
give the cost for shrinking or stretching the duration from an ideal value, where the ideal value 

                                                 
1 Some authors consider ignored and unreachable actions kinds of temporal inconsistency. 
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is given by the function minimum point2. It is also important to allow duration to be specified 
not only by real values, but also by unpredictable values. Media objects that are presented 
until some external action interrupt them and media objects that finish their presentations by 
themselves but in some instant not known a priori are examples of events with unpredictable 
duration. 
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(a) (b) (c) (d)  
Figure 2 – Examples of cost functions. a) Continuous linear function with one ideal value (θid). b) Continuous 

non-linear function with one ideal value (θid). c) Continuous linear function with multiple ideal values ([θmin,θ]). 
d) Discrete function with one ideal value (θid). 

Based on cost minimization, it is important to implement algorithms that compute, for each 
event, the expected duration that offers the best presentation quality for the whole document. 
This computation mechanism is called elastic time computation in [KiSo95] and is the focus 
of this paper. The next section comments issues related to hypermedia formatters, 
emphasizing when the elastic time computation should be done. Before, however, we must 
define some concepts that will be necessary: 

i) An event E1 is said to be predictable in relation to another event E2 when it is possible to 
know, a priori, E1 expected start time in relation to E2 occurrence. Note that a constraint 
relationship between two events does not make them predictable in relation to each other. 

ii)  We define a relatively predictable temporal scenario (RPTS) as a sequence of related event 
occurrences in time. An event E pertains to an RTPS if it is predictable in relation to at least 
one event of the same RTPS, or if there is at least one event in this RTPS that is predictable 
in relation to E. 

3. Hypermedia formatter 

The formatter is responsible for controlling the document presentation based on its 
specification and on the platform (or environment) description. Usually, the formatter builds 
an execution plan (a schedule) to orchestrate the presentation. We can divide the formatter 
into two main phases [BuZe93b], concerning the moments where schedule calculation and 
consistency check can be done: before the document presentation and during the document 
presentation. Considering the first phase, we can further divide it into two other phases: during 
and after the authoring process. Hence, we split the formatter into three main elements. The 
pre-compiler performs formatting tasks during authoring phase. The compiler is responsible 
for building the execution plan from an entire document specification and a platform 
description, before the beginning of its presentation. The executor controls the document 
presentation and updates the execution plan at runtime. Figure 3 illustrates the hypermedia 
formatter architecture formed by these three main elements and places the formatter in a 
hypermedia system environment. 

                                                 
2 As shown in Figure 2c, some cost functions can define several ideal values. 
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As mentioned, the pre-compiler is indeed a support to the authoring environment. Its main 
function is to check the temporal and spatial consistency of each RPTS of a document. The 
pre-compilation is an incremental compilation done during authoring time. It can help the 
author finding errors, giving an instantaneous feedback whenever any inconsistency is 
detected, like mismatched time relationships (temporal inconsistency), or conflicts in a device 
use (spatial inconsistency) in an abstract and ideal platform. Pre-compiler computation can 
also be stored in order to decrease the time spent by the compiler elastic time calculation. 

Pre-Compiler Compiler

Executor

Event
signaling;

Attribute values
report

Execution
plan

Players
Interface

Commands

execution plan
Presentation
specification

Formatter

RuntimeCompile
Time

Pre-Compile
Time

Hypermedia
object
server

Storage
Interface

Platform
specification

Authoring
Interface

Inconsistencies
report

Predictable
Temporal
Scenarios

Players

 

Figure 3 - Hypermedia formatter architecture. 

The compiler is responsible for building the execution plan from a complete document 
presentation specification and a platform description. The compiler should obtain all existent 
RPTSs and compute, for each event in each RPTS, the expected duration that leads to a 
maximum quality of presentation warranting the document temporal and spatial consistency. 
Based on the first media object (presentation event) to be presented, the compiler obtains the 
RPTS that contains this event and transforms it in the document absolutely predictable 
temporal scenario (APTS). This procedure is similar to the Firefly formatter proposal 
[BuZe93a]. 

Another important task that should be done by the compiler is to evaluate, from the platform 
specification, the preparing duration of each presentation event. The idea is to estimate the 
time to pre-fetch the media object content in order to minimize the delay between the start 
action and the effective start of the presentation of a media object content. We will not 
consider pre-fetch computation and heuristics in this paper. 

The executor main functions consist in instantiating players to present media objects, 
interacting with the instantiated players to be notified when event state changes (e.g., start to 
be presented, finish to be presented, start to be selected, finish to be selected, etc.) and issuing 
messages to the instantiated players when actions must be executed (e.g., pause, resume, 
change rate, etc.). When any event state change notification is sent by a player, the executor 
checks if the signalized occurrence starts a new RPTS. If so, the executor merges the RPTS 
with the APTS. In any case, the expected times in the execution plan are checked to see if 
some adjustment is needed. Adjustments may be done through messages sent to controllers, 
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telling them, for example, to increase or decrease the presentation rate. 

Our final goal is to define a method for elastic time computation for pre-compile, compile and 
execution time. We are interested not only in minimizing the cost of shrinking and stretching, 
but also in: 

1. Minimizing the number of objects that will have events with expected duration different 
from ideal duration (if  there is more than one optimal choice). 

2. Choosing the fairest solution that spreads changes in the ideal duration across the objects, 
in the case that there is more than one solution that satisfy the previous goal. 

3. Minimizing the total cost of shrinking and stretching, given a fixed duration for the whole 
document presentation. 

4. Finding the shortest and longest possible duration for the document. 

5. Evaluating new ranges for which the temporal consistency of the document is valid, when 
a media object begins to be presented. This will be very important to help the executor in 
adjusting object duration on-the-fly. 

During runtime, mismatches3 are detected only when portion of the document has already 
been presented. This delay in detection limits the ability of the executor to smooth out 
mismatches. During compile time the possible mismatches can be smoothed out improving 
the appearance of the resulting document. However, only at runtime, unpredictable behavior 
can be handled. These are the reasons why we need a formatter supporting both compile time 
and runtime adjustments. Another important issue is that when runtime mismatches cause 
adjustments in event duration, the expected duration of the subsequent events should be 
recomputed, since the calculus made at compile time is no more valid. The formatter should 
run again the elastic time algorithm, now considering the exact duration of the already 
presented events and the real-time computation requirement. Thus, we also have as a goal: 

6. Finding an algorithm that can take profit of the results computed before happening the 
mismatch, in order to improve the calculus performance that must be done on-the-fly. 

The real time calculus may require heuristics, since the optimum calculus can be very 
expensive. The study of heuristics for elastic time computation at runtime was left as a future 
work. 

This paper is the first step towards our final goals. Here some simplifications are made, as 
explained in the next section. 

4. Elastic time computation 

This section presents a graph-theoretical model and a specific algorithm to compute the event 
optimal duration with respect to some quality criterion and considering some simplifying 
hypotheses. Our computational approach aims at increasing progressively the sharpness of the 
model to cope with more realistic situations as described as our final goals at the end of 
Section 3. We first define the temporal graph, which is used to model the predictable temporal 

                                                 
3 We say that a mismatch occurs when the expected time for an event occurrence, defined by the formatter, is no 
longer satisfied. 
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scenarios defined in Section 2. Our model was inspired by the early work of Buchanan and 
Zellweger [BuZe93a]. We suppose that all events are predictable so that the model is 
completely deterministic4. Algorithmic issues are then discussed to solve the optimization 
problem as a minimum-cost tension problem in a directed graph with convex arc-separable 
cost functions. We propose here an adaptation of the ‘out-of-kilter’ method to solve real 
instances in reasonable time. 

4.1 The temporal graph 

The basic model is a directed graph ),( UXG = , where X is the set of nodes and U the set of 

arcs (let Xn =  and Um= ). Nodes represent instantaneous events (the start or end of a 

presentation event), and arcs represent the precedence relations between these events. Head 
and tail nodes are added to connect all nodes with no predecessor or successor, respectively, in 
order to represent the start and the end times of the temporal scenario. Except for the head 
outgoing arcs, each arc is assigned a cost function. The function defines a feasibility interval 

[ ]maxmin , uu θθ , containing an ideal length uθ̂  and is supposed to be convex on the feasibility 

interval. 

When two or more arcs are incident to a common node, synchronization constraints occur 
which correspond in terms of graph theory to the existence of cycles made of two directed 
paths. A graph which represents these synchronization constraints will be called a temporal 
graph. 

4.1.1 From the author’s specification to the graph representation 

We must first observe that, with the temporal graph, we do not intend to model the whole 
author’s specification. Only the main part of the temporal constraints will be represented. Here 
are some examples of how to model author’s specification by the temporal graph: 

• Let i be a presentation event, as defined in Section 2 and presented in Figure 4a. In the 
temporal graph, i is modeled by two nodes, si and ei, that represent the start (si) and end 
(ei) of the event i occurrence. Note that some actions, like the preparation (pre-fetch) of the 
event, are not considered here. An arc ui is also created to model the duration of event i. 
The cost function related to this duration is then assigned to ui. 

• Consider now two presentation events, i and j, that must start at the same time, as shown 
in Figure 4b. In the temporal graph, i and j are modeled as above, but the nodes si and sj 
are merged to be a single node sij. 

• Similarly, if i and j are two presentation events that must end at the same time, as 
illustrated in Figure 4c, the nodes ei and ej are merged to be a single node eij. 

Note that the resulting graph can be a multigraph. Indeed, two events specified with the same 
starting and ending time will be represented by two arcs with the same source and target 
nodes. 

                                                 
4 The algorithm we present should be applied in each predictable temporal scenario independently. We left as a 
future work the problem of handling unpredictable events and efficient merging the relatively predictable 
temporal scenarios with the absolutely predictable temporal scenario. 
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Figure 4 –Temporal graph representation for authors’ specification. 

We will now recall some definitions which are useful for the description of the mathematical 
model (all related notions can be found in [AhMO91]). Given a graph: 

i. A cycle is a chain of arcs with a start node coinciding with the end node and an arbitrary 
direction. For instance, an elementary cycle is the one formed by two paths with the same 
source and target nodes. 

ii.  A cocycle is associated with a cutset of the graph that partitions the nodes into two 
disjoint subsets. The cocycle is the set of arcs that connects one subset of nodes to its 
complement. 

iii.  A flow is a vector of values assigned to each arc, such that the flow conservation law is 
satisfied at each node (thus, the algebraic sum of the flow values on a cocycle is 
necessarily zero). 

iv. Potential is a value assigned to a node. 

v. A tension is a vector of values assigned to each arc, such that each tension value of an arc 
is the difference between the potential of its end nodes (thus, the algebraic sum of the 
tension values on a cycle must be necessarily zero). 

Back to the temporal graph, if an initial date 0π is arbitrarily assigned to the head node, we can 

assign a date iπ  to each node i, which we call the potential of the node. The duration of an 

object associated to a given arc u=(i,j)  can be seen to be the difference of the potentials of its 
end points. This is indeed the definition of a tension vector on the graph, i.e. such that 

iju ππθ −= on each arc u. The problem is then a minimum-cost tension problem on the 

temporal graph [BeGh62]. Using vectorial notation and the incidence matrix of the graph, i.e. 
the ( )nm×  matrix A with elements iua  equal to -1 (if u goes out of node i), +1 (if u goes into 

node i) and 0 (for all other rows), the problem is simply: 

 Minimize  )( uu uc θ∑  

 Subject to maxmin, θθθπθ ≤≤= TA  

Note that the problem can be modeled without introducing potential variables, but we need to 
know a priori all the synchronization cycles. If S is the arc-cycle matrix where each column is 
the incidence cycle vector, then 0=⇔= θπθ TT SA . We can thus introduce flow vectors on 
the temporal graph which are indeed orthogonal to the tension vectors, i.e. which are linear 
combinations of the cycle vectors: δϕ S= . The interpretation of these flows comes out of the 



 

SBMídia’2000, VI Brazilian Symposium on Multimedia and Hypermedia Systems 
Natal, Rio Grande do Norte, Brazil, June 14-16, 2000 

55

general optimality conditions for the minimum-cost tension problem: 

( ) uuuc ϕθ =' on each arc, such that maxmin
uuu θθθ <<  

( ) 0' ≥− uuuc ϕθ  on each arc, such that min
uu θθ =  

( ) 0' ≤− uuuc ϕθ  on each arc, such that max
uu θθ =  

Thus, the flow value is the marginal cost of the decision on the arc (positive for stretching, 
negative for shrinking and zero for keeping the object duration with its ideal value). The above 
conditions are often called the kilter conditions for arc u [Fulk61]. An immediate consequence 
is that, if two arcs belong to the same paths in the same cycles, i.e. if they belong to a common 
sequence of presentation with no synchronization constraint between them, they have the same 
marginal cost. 

4.2 Feasibility issues 

In the deterministic case, a feasible schedule is characterized by the following conditions. For 
each synchronization cycle consisting of two paths p and p’, we have: 
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Consequently, the flexibility interval for a given cycle (p,p’) is 
{ } { }[ ]max

'
maxmin

'
min ,min,,max pppp θθθθ , where pθ stands for the total path duration. The above 

conditions guarantee that these intervals are non empty. 

Finding out an initial feasible tension is by itself an interesting issue. It should be used at real-
time presentation when some unspecified event affects the predefined schedule. A very simple 
and efficient algorithm can be used to solve that problem. It starts with a null tension and, for 
each arc u, where θu ≤ au, a cocycle containing u can be found, for which the tension can be 
increased without making any other arc incompatible. The maximum increasing value is 
determined and applied to this cocycle. If θu is still inferior to au, another cocycle is searched 
to increase the tension of u, else it goes on with another incompatible arc. 

4.3 An out-of-kilter algorithm to solve the tension problem 

We will now present an adaptation of the out-of-kilter method [Fulk61], first applied to 
minimum cost tension problems by Pla [Pla71] in the linear case. Polynomial and strongly 
polynomial algorithms have been recently studied [Hadj96], but their performance in the 
convex case are still too slow for our purpose. The out-of-kilter algorithm is a primal-dual 
method which updates tensions and flows, iteratively, until optimality is reached. The main 
advantage is that the computations are distributed among the arcs, allowing much more 
flexibility than direct methods. The key tool is the kilter curve which represents the local 
optimality condition on a specific arc. We consider here two kinds of costs: piecewise linear 
costs (Figure 5a1) and convex smooth costs (Figure 5a2). 
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Figure 5 – a*) Cost functions. b*) Kilter curves. *1) Piecewise linear. *2) Convex smooth. 

Consider now the kilter curve of an arc u relating its tension θu with its flow ϕu. For the linear 
cost, it is represented by Figure 5b1 and for the convex cost, it is shown by Figure 5b2. In both 
cases, it is said that an arc u is in-kilter if the pair (θu ; ϕu) lies on the curve, else the arc is said 
out-of-kilter. We can easily prove that if all the arcs of the graph are in-kilter, then the tension 
is minimum (see the optimality conditions in Section 4.1). So, all the difficulty is to bring all 
arcs on the kilter curve. We first explain how to perform that for piecewise linear costs. Then, 
we detail it for the convex costs. This solution strategy is inspired in [Pla71] and [Hadj96] to 
solve the minimum cost tension problem with linear costs. 

4.3.1 Piecewise-linear costs 

First, we classify the arcs of the graph into 4 categories: 

1. the arcs that are below the kilter curve, 

2. the arcs that are above the kilter curve, 

3. the arcs that are on a horizontal part of the kilter curve, 

4. the arcs that are on a vertical part of the kilter curve. 

For the arcs of category 1, their tension must be increased or their flow must be decreased in 
order to improve their position towards the kilter curve. For the arcs of category 2, their 
tension must be decreased or their flow must be increased. In categories 3 and 4, the arcs are 
in-kilter. For the arcs of category 3, only their flow can be modified without making them out-
of-kilter. For the category 4, only their tension can be modified. 
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Following the seminal work of Fulkerson [Fulk61], we can set that: 

• for an arc u of category 1, we can find either a cycle containing u for which the flow can 
be decreased, or a cocycle containing u for which the tension can be increased; 

• for an arc u of category 2, we can find either a cycle containing u for which the flow can 
be increased, or a cocycle containing u for which the tension can be decreased. 

These statements allow us to present the following algorithm that improves the position of an 
arc to its kilter curve: 

algorithm improveArc: 
 
if ( u is black) then 
 find a cycle γ to decrease the flow of u 
 or a cocycle ϖ to increase the tension of u; 
   
 if (cycle found) then 
  find λ the maximum value the flow on γ can be decreased; 
  ϕ = ϕ – λγ; 
 else (cocycle found) 
  find µ the maximum value the tension on ϖ can be increased; 
  θ = θ + µϖ; 
 end if; 
 
else /* u is blue */ 
 find a cycle γ to increase the flow of u 
 or a cocycle ϖ to decrease the tension of u; 
 
 if (cycle found) then 
  find λ the maximum value the flow on γ can be increased; 
  ϕ = ϕ + λγ; 
 else (cocycle found) 
  find µ the maximum value the tension on ϖ can be decreased; 
  θ = θ - µϖ; 
 end if; 
end if; 

Then we propose the following method to make all the arcs in-kilter, what determines the 
minimum cost tension. It just applies the previous algorithm successively and repeatedly upon 
each arc of the graph until all the arcs are in-kilter: 

algorithm linearInKilter: 
 
make θ compatible; 
ϕ = 0; 
 
while (an arc u is out-of-kilter) do 
 for all arc u do 
  if ( u out-of-kilter) then improveArc( u); 
 end for; 
end while; 

4.3.2 Convex Costs 

The method is a bit different for the case of general convex costs. Indeed, we previously saw 
that, to improve an arc, either the tension or the flow of other arcs are modified, but never both 
of them at the same time, because it is very difficult to manage this case. However, we 
sometimes need to move an already in-kilter arc along the kilter curve. As the kilter curve is 
no more made of horizontal and vertical lines, we should modify at the same time the tension 
and the flow of such arcs. To avoid that, we approximate the kilter curve by a staircase curve. 
We use the method presented for the linear costs to bring all the arcs on their approximate 
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kilter curve and then we improve the approximation of the curve. The procedure is repeated 
until we obtain the desired precision. It is recommended to start with a weak approximation 
and then progressively improve it instead of directly starting with a sharp approximation. We 
outline below the algorithm for this method where p is the precision: 

algorithm convexInKilter: 
 
ε = 0.1 x sup { bu – au, u in U}; 
 
while ( ε > p) do 
 make all the arcs in-kilter with the ε precision; /* Uses the linearInKilter algorithm. */ 
 ε = sup{ 0.1ε, p}; 
end while; 

5. Computational results 

We present now computational results obtained by the out-of-kilter algorithm. First, we 
analyze the results for the case of piecewise costs and then for the case of convex costs. In 
both cases, solution times are expressed in seconds. They came from tests on a RISC 6000 166 
MHz biprocessor under an AIX Unix operating system. We used the C++ language and its 
object-oriented facilities to code the algorithms. For the different methods, we consider the 
operation of finding a cycle or a cocycle as a single operation. For the CPLEX software, an 
iteration is one iteration of the SIMPLEX method. Finally, all the results (time and number of 
iterations) are averaged on series of 10 tests upon randomly generated problems. We then 
compare these results with results on more organized graphs called series-parallel graphs. 

Number 
of Nodes 

Number 
of Arcs 

CPLEX 
Iterations 

CPLEX 
Time 

In-Kilter 
Iterations 

In-Kilter 
Time 

50 100 62 0.3 150 0.2 
50 200 135 0.6 271 0.5 
50 300 198 0.9 374 0.8 
50 400 254 1.3 482 1.2 
50 500 277 1.6 595 1.6 
100 200 143 0.6 286 0.7 
100 400 323 1.4 532 1.9 
100 600 424 2.3 749 3.2 
100 800 512 3.1 958 4.3 
100 1000 603 4 1166 5.6 
500 1000 1152 7.6 1365 15 
500 2000 2129 22 2609 45 
500 3000 3034 42 3760 77 
500 4000 3387 57 4831 114 
500 5000 3687 72 5930 152 
1000 2000 2642 30 2601 58 
1000 4000 5012 118 5125 171 
1000 6000 6143 195 7433 309 
1000 8000 7034 269 9690 458 
1000 10000 7407 304 11988 610 

Table 1 - Maximum Tension = 1000 

The results of the algorithm for two-piecewise linear costs are compared with the resolution of 
equivalent linear programs. The software used to solve them was CPLEX 6.0. The time values 
presented gather both the resolution time of CPLEX and the time needed to generate the linear 
program. Table 1 shows the evolution of the resolution time when the graph dimension is 
increasing. Table 2 shows the effect of the tension scale on the resolution time. 
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Maximum 
Tension 

CPLEX 
Iterations 

CPLEX 
Time 

MAC 
Iterations 

MAC 
Time 

100 1542 31 3616 46 
1000 3157 44 3840 90 
10000 3169 43 4261 133 
100000 3209 45 4484 141 

Table 2 - Number of Nodes = 500, Number of Arcs = 1000 

We can observe that cpu times with the out-of-kilter algorithm are roughly twice bigger than 
with CPLEX. This is in fact rather encouraging as our method does not include all the heavy 
data structure machinery which makes CPLEX one of the most efficient LP code on the 
market. Furthermore, our tool is very flexible and easy to implement into the hypermedia 
formatter which is far to be the case of CPLEX. Finally, we have shown that our algorithm is 
able to manage non linear costs functions. We have used CPLEX as a reference to compare 
optimal solutions of the large-scale graphs and to evaluate the numerical behavior of the 
proposed algorithm which appears to be quite competitive. 

We used the convex function ( )2ˆ
uuuk θθ − on each arc u to test the out-of-kilter method on 

convex costs. Table 3 shows the evolution of the resolution time when the graph dimension is 
increasing. Table 4 shows the effect of the precision on the resolution time. We can see that 
when the precision becomes very small, the time to solve the problem grows exponentially. 
We suppose that it is partially due to the computer limitation to represent real numbers. 
However, the number of iterations seems linear when the precision decreases. That means that 
cycles and cocycles are harder to find when the precision is too small. 

Number of 
Nodes 

Number of 
Arcs 

In-Kilter 
Iterations 

In-Kilter 
Time 

50 100 846 2.4 
50 200 2124 7 
50 300 3493 14 
50 400 4796 20 
50 500 6299 31 
100 200 1764 7.7 
100 400 4482 24 
100 600 7376 53 
100 800 10637 95 
100 1000 13216 128 
500 1000 10627 305 
500 2000 28518 1024 
500 3000 47612 2078 
500 4000 69458 3780 
500 5000 60308 1794 
1000 2000 22845 1810 
1000 4000 62956 1111 
1000 6000 105908 1287 
1000 8000 156715 1919 
1000 10000 195051 1981 

Table 3 - Precision = 1/1000 
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Precision 
1/… 

In-Kilter 
Iterations 

In-Kilter 
Time 

1 1782 7.9 
10 2671 12 
100 3544 17 
1000 4450 24 
10000 5444 99 
100000 6436 1031 

Table 4 - Number of Arcs = 100, Number of Nodes = 400 

The previous results were obtained on randomly generated graphs. Beside that, we have 
investigated the class of series-parallel graphs, because they bear many common features with 
the hypermedia temporal graphs. Indeed, these latter graphs get their particularities from the 
existence of parallel paths between synchronization nodes and the cycles formed by these 
paths are nothing but elementary series-parallel graphs. Formally, a series-parallel graph is a 
graph which cannot be reduced to a complete graph of 4 nodes (the K4 clique). More 
intuitively, these are the graphs which can be constructed by iterative applications of the two 
basic operations: 

• Sequential splitting: an arc is separated into two consecutive arcs by the introduction of an 
intermediate node. 

• Parallel splitting: an arc is substituted by two parallel arcs with the same end points. 

The complete numerical study about the method behavior on these graphs cannot be 
reproduced here (see [BaHL00]), but the conclusions are quite promising. We understood that 
the temporal graphs we have to model are some simple extensions of series-parallel graphs. 
For this kind of graphs, the computational times are distinctly lower (by an order of 
magnitude) than for general graphs. Moreover, these graphs seem to be easier to solve when 
discrete objective functions are used. For instance, we may try to minimize the number of 
objects which have to be moved from their ideal status. This problem is in general an NP-
complete problem, which can be approximately solved by relaxation and branch-and-bound 
methods. However, these approaches are still too time-costly to be useful for decisions at 
execution time. On the other hand, they can be composed with the continuous cost function 
when the problem has multiple optimal solutions. That situation typically occurs when the 
cost is piecewise linear while a unique optimum is obtained with strongly convex functions. 

6. Final Remarks 

In order to solve the elastic time computation in hypermedia document formatting, we 
proposed a new algorithm to solve the minimum-cost tension problem. The algorithm appears 
to be competitive, even when the arc costs are piecewise linear. The distribution of 
computation among the arcs of a temporal graph turns the approach attractive for the on-the-
fly readjustments of the schedule. Even if the introduction of unpredictable events turns the 
optimization problem helpless, some simulation tools may try to identify the critical sub-paths 
of the presentation graph. 

Series-parallel graphs appear to be a nice tool to help building and optimizing the temporal 
graphs. These graphs have been widely studied in the graph theory literature [Duff65], but it 
is, to our knowledge, the first time they are analyzed in this context. 
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We can now return to the six goals presented in Section 3 to discuss directions for future 
work. The first goal is an NP-Complete problem, requiring the use of heuristics and 
approximations, which is a research already under development in our group. However, we 
are also investigating a polynomial solution using the series-parallel graph approach. With our 
results we can conclude that the second goal can easily be reached for continuous cost 
functions. However, for discrete functions it is also an NP-Complete problem that must be 
investigated. The third goal is naturally reached by our temporal graph, by adding two nodes 
N1 and N2 and three arcs: the first linking N1 to N2 and having the desired presentation 
duration, and the other two linking the head node to N1 and N2 to the tail node, respectively. 
The fourth goal was also solved by our temporal graph. To obtain the minimum and maximum 
possible duration for a given presentation, the idea is similar to the previous one, but now, 
instead of fixing the N1 to N2 arc duration, one should set its feasibility as indeterminate. From 
our point of view, the fifth and sixth goals present indeed the hardest issues to be solved. As 
aforementioned, the distribution of computation among the arcs of a temporal graph turns the 
approach attractive for the on-the-fly schedule readjustments. The problem solution, however, 
remains as a goal for future work. 
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