Möbius Stanchion Systems

Lucas Isenmann, Timothée Pecatte

Stanchion system

What are **stanchions**?

Problem: paint both sides of every strips of a stanchion system.

Problem: paint both sides of every strips of a stanchion system.

Problem: paint both sides of every strips of a stanchion system.

Condition: we do not want to lift up the brush.

Solution: twist a strip!

Solution: twist a strip!

The painter can paint without lifting up the brush!

A ribbon graph

A ribbon graph

With twisted strips:

Combinatorial map: ι , α and β are involution on quarter-edges.

Combinatorial map: $\iota,~\alpha$ and β are involution on quarter-edges.

With twisted strips:

Question

For this graph, the walk of the brush makes 2 cycles:

Question

For this graph, the walk of the brush makes 2 cycles:

How to twist strips so that there is only **one** cycle?

A solution = Möbius stanchion system

Your turn!

Can you twist some edges to solve the problem for this graph?

Your turn!

Can you twist some edges to solve the problem for this graph?

Your turn!

Can you twist some edges to solve the problem for this graph?

Claim: 4 twists is the minimum

Dual graph

Here, the minimum number is the number of **interior faces**.

Dual graph

Here, the minimum number is the number of **interior faces**.

Twisted strips **connect** faces \rightarrow subgraph of the dual graph

In a solution, all faces should be connected = connected spanning subgraph of the dual graph

Minimal solutions

A spanning tree of the dual graph gives a solution

Theorem

Spanning trees of the dual are the minimal solutions with f - 1 twisted edges (f is the number of faces).

Therefore the painter needs **at least** to twist as much as there are interior faces.

Are there other solutions?

Are there other solutions?

Yes!

Start with a solution given by a spanning tree

Start with a solution given by a spanning tree and try to modify it using some **preserving rules**.

Start with a solution given by a spanning tree and try to modify it using some **preserving rules**.

Two elementary operations :

• single twist

Start with a solution given by a spanning tree and try to modify it using some **preserving rules**.

Two elementary operations :

- single twist
- double twist

Single twist = twist an edge

Single twist = twist an edge

Some edges are twistable \rightarrow another solution

Single twist = twist an edge

Some edges are twistable \rightarrow another solution

Some others are not \rightarrow not a solution

The good edges are crossed two-ways

Single twist of a good edge \rightarrow still a solution

The good edges are crossed two-ways

Single twist of a good edge \rightarrow still a solution

Example:

Double twist = twist two edges simultaneously

Double twist = twist two edges simultaneously

Some pair of edges seems to be twistable:

Double twist = twist two edges simultaneously

Some pair of edges seems to be twistable:

But some others not:

A good pair of strips need the following connexions:

Elementary operations

A good pair of strips need the following connexions:

When twisted:

This **double twist** still gives a solution.

Elementary operations

A good pair of strips need the following connexions:

Example:

Let's start with this spanning tree solution:

We can **single twist** this strip:

We get a new solution:

We can **single twist** this strip:

Another new solution:

We can **double twist** this pair:

Another solution:

Theorem

From a solution we can **get any other solution** by applying successive single and double twists.

Ok for trees (f - 1 twisted edges).

Take a solution $\geq f$ twisted edges.

Take a solution $\geq f$ twisted edges.

Suppose: no feasible simple twist and double twist

Take a solution $\geq f$ twisted edges.

Suppose: no feasible simple twist and double twist

 \Rightarrow no twisted two-ways edge, no good pair of twisted edges

Take a solution $\geq f$ twisted edges. Suppose: no feasible simple twist and double twist \Rightarrow no twisted two-ways edge, no good pair of twisted edges not a tree $\Rightarrow \exists$ minimal cycle *C*

Take a solution $\geq f$ twisted edges. Suppose: no feasible simple twist and double twist \Rightarrow no twisted two-ways edge, no good pair of twisted edges not a tree $\Rightarrow \exists$ minimal cycle *C* it cannot be odd

Take a solution $\geq f$ twisted edges. Suppose: no feasible simple twist and double twist \Rightarrow no twisted two-ways edge, no good pair of twisted edges not a tree $\Rightarrow \exists$ minimal cycle *C* it cannot be even

cyclic order : $[e_1^+, e_2^+, e_2^-, e_1^-]$, $[e_2^+, e_3^+, e_3^-, e_2^-]$, ... $[e_1^+, \dots, e_4^+, e_1^+, e_1^-, e_4^-, \dots, e_1^-]$ gives a contradiction

Embeddings and paintings

Theorem

Let G be a planar graph. The Möbius stanchions systems of G are independent of the chosen embedding for G in the plane.

Figure: two non-isomorphic embeddings

Sketch of proof

Planar 3-connected \Rightarrow only one embedding.

Sketch of proof

Planar 3-connected \Rightarrow only one embedding.

Not 3-connected : swap and flip operations connect all the embeddings

• diameter of the MSS's graph?

- diameter of the MSS's graph?
- what are the maximal solutions?

- diameter of the MSS's graph?
- what are the maximal solutions?
- solutions are independent from the embedding : combinatorial caracterisation?

- diameter of the MSS's graph?
- what are the maximal solutions?
- solutions are independent from the embedding : combinatorial caracterisation?
- are the results the same on the torus?

- diameter of the MSS's graph?
- what are the maximal solutions?
- solutions are independent from the embedding : combinatorial caracterisation?
- are the results the same on the torus?
- how to generalize to higher dimensions?

- diameter of the MSS's graph?
- what are the maximal solutions?
- solutions are independent from the embedding : combinatorial caracterisation?
- are the results the same on the torus?
- how to generalize to higher dimensions?
- how can it help to understand unicellular embeddings?

Thank you for your attention!

