Möbius Stanchion Systems

Lucas Isenmann, Timothée Pecatte

Stanchion system

What are stanchions?

Stanchion painting problem

Problem: paint both sides of every strips of a stanchion system.

Stanchion painting problem

Problem: paint both sides of every strips of a stanchion system.

Stanchion painting problem

Problem: paint both sides of every strips of a stanchion system.

Condition: we do not want to lift up the brush.

Stanchion painting problem

Solution: twist a strip!

Stanchion painting problem

Solution: twist a strip!

The painter can paint without lifting up the brush!

Modelisation

A ribbon graph

Modelisation

A ribbon graph

With twisted strips:

Modelisation

Combinatorial map: ι, α and β are involution on quarter-edges.

Modelisation

Combinatorial map: ι, α and β are involution on quarter-edges.

With twisted strips:

Question

For this graph, the walk of the brush makes 2 cycles:

Question

For this graph, the walk of the brush makes 2 cycles:

How to twist strips so that there is only one cycle?

A solution $=$ Möbius stanchion system

Your turn!

Can you twist some edges to solve the problem for this graph?

Your turn!

Can you twist some edges to solve the problem for this graph?

Your turn!

Can you twist some edges to solve the problem for this graph?

Claim: 4 twists is the minimum

Dual graph

Here, the minimum number is the number of interior faces.

Dual graph

Here, the minimum number is the number of interior faces.

Twisted strips connect faces \rightarrow subgraph of the dual graph

Necessary condition

In a solution, all faces should be connected = connected spanning subgraph of the dual graph

Minimal solutions

A spanning tree of the dual graph gives a solution

Minimal solutions

Theorem

Spanning trees of the dual are the minimal solutions with $f-1$ twisted edges (f is the number of faces).
Therefore the painter needs at least to twist as much as there are interior faces.

Are there other solutions?

Are there other solutions?

How to get other solutions

Start with a solution given by a spanning tree

How to get other solutions

Start with a solution given by a spanning tree and try to modify it using some preserving rules.

How to get other solutions

Start with a solution given by a spanning tree and try to modify it using some preserving rules.

Two elementary operations :

- single twist

How to get other solutions

Start with a solution given by a spanning tree and try to modify it using some preserving rules.

Two elementary operations :

- single twist
- double twist

Elementary operations

Single twist $=$ twist an edge

Elementary operations

Single twist = twist an edge

Some edges are twistable \rightarrow another solution

Elementary operations

Single twist = twist an edge

Some edges are twistable \rightarrow another solution

Some others are not \rightarrow not a solution

Elementary operations

The good edges are crossed two-ways

Single twist of a good edge \rightarrow still a solution

Elementary operations

The good edges are crossed two-ways

Single twist of a good edge \rightarrow still a solution

Example:

Elementary operations

Double twist $=$ twist two edges simultaneously

Elementary operations

Double twist $=$ twist two edges simultaneously

Some pair of edges seems to be twistable:

Elementary operations

Double twist $=$ twist two edges simultaneously

Some pair of edges seems to be twistable:

But some others not:

Elementary operations

A good pair of strips need the following connexions:

Elementary operations

A good pair of strips need the following connexions:

When twisted:

This double twist still gives a solution.

Elementary operations

A good pair of strips need the following connexions:

Example:

Example

Let's start with this spanning tree solution:

Example

We can single twist this strip:

Example

We get a new solution:

Example

We can single twist this strip:

Example

Another new solution:

Example

We can double twist this pair:

Example

Another solution:

Elementary operations

Theorem

From a solution we can get any other solution by applying successive single and double twists.

Sketch of proof by induction

Ok for trees ($f-1$ twisted edges).

Sketch of proof by induction

Take a solution $\geq f$ twisted edges.

Sketch of proof by induction

Take a solution $\geq f$ twisted edges.
Suppose: no feasible simple twist and double twist

Sketch of proof by induction
Take a solution $\geq f$ twisted edges.
Suppose: no feasible simple twist and double twist
\Rightarrow no twisted two-ways edge, no good pair of twisted edges

Sketch of proof by induction

Take a solution $\geq f$ twisted edges.
Suppose: no feasible simple twist and double twist \Rightarrow no twisted two-ways edge, no good pair of twisted edges not a tree $\Rightarrow \exists$ minimal cycle C

Sketch of proof by induction

Take a solution $\geq f$ twisted edges.
Suppose: no feasible simple twist and double twist
\Rightarrow no twisted two-ways edge, no good pair of twisted edges not a tree $\Rightarrow \exists$ minimal cycle C
it cannot be odd

Sketch of proof by induction

Take a solution $\geq f$ twisted edges.
Suppose: no feasible simple twist and double twist
\Rightarrow no twisted two-ways edge, no good pair of twisted edges not a tree $\Rightarrow \exists$ minimal cycle C
it cannot be even

cyclic order: $\left[e_{1}^{+}, e_{2}^{+}, e_{2}^{-}, e_{1}^{-}\right],\left[e_{2}^{+}, e_{3}^{+}, e_{3}^{-}, e_{2}^{-}\right], \ldots$ $\left[e_{1}^{+}, \ldots, e_{4}^{+}, e_{1}^{+}, e_{1}^{-}, e_{4}^{-}, \ldots, e_{1}^{-}\right]$gives a contradiction

Embeddings and paintings

Theorem

Let G be a planar graph. The Möbius stanchions systems of G are independent of the chosen embedding for G in the plane.

Figure: two non-isomorphic embeddings

Sketch of proof

Planar 3-connected \Rightarrow only one embedding.

Sketch of proof

Planar 3-connected \Rightarrow only one embedding.
Not 3-connected : swap and flip operations connect all the embeddings

Open questions

- diameter of the MSS's graph?

Open questions

- diameter of the MSS's graph?
- what are the maximal solutions?

Open questions

- diameter of the MSS's graph?
- what are the maximal solutions?
- solutions are independent from the embedding : combinatorial caracterisation?

Open questions

- diameter of the MSS's graph?
- what are the maximal solutions?
- solutions are independent from the embedding : combinatorial caracterisation?
- are the results the same on the torus?

Open questions

- diameter of the MSS's graph?
- what are the maximal solutions?
- solutions are independent from the embedding : combinatorial caracterisation?
- are the results the same on the torus?
- how to generalize to higher dimensions?

Open questions

- diameter of the MSS's graph?
- what are the maximal solutions?
- solutions are independent from the embedding : combinatorial caracterisation?
- are the results the same on the torus?
- how to generalize to higher dimensions?
- how can it help to understand unicellular embeddings?

Thank you for your attention!

