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Geometrical and appearance quality requirements set the 
limits of the current industrial performance in injection molding. 
To guarantee the product’s quality, it is necessary to adjust the 
process settings in a closed loop. Those adjustments cannot rely 
on the final quality because a part takes days to be geometrically 
stable. Thus, the final part geometry must be predicted from 
measurements on hot parts. In this paper, we use recent success 
of Generative Adversarial Networks (GAN) with the pix2pix 
network architecture to predict the final part geometry, using 
only hot parts thermographic images, measured right after 
production. Our dataset is really small, and the GAN learns to 
translate thermography to geometry. We firstly study prediction 
performances using different image similarity comparison 
algorithms. Moreover, we introduce the innovative use of 
Discrete Modal Decomposition (DMD) to analyze network 
predictions. The DMD is a geometrical parameterization 
technique using a modal space projection to geometrically 
describe surfaces. We study GAN performances to retrieve 
geometrical parameterization of surfaces.  

Keywords— Injection molding; Quality prediction; 
Thermography; Generative Adversarial Networks ; Discrete Modal 
Decomposition. 

I. INTRODUCTION 
Thermoplastics injection molding can produce complex parts 
in large quantities. Quality requirements are increasing to 
guaranty the final product functionality. The final part quality 
depends on multiple settings and external non-controllable 
factors, from raw material hygrometry to in-mold pressure. 
Thus, closed-loop process settings adjustments are needed to 
achieve optimal quality [1]. Moreover, the final part quality 
can only be measured on stabilized parts, days after the 
production. Molded parts need to cool down with internal 
mechanical constraints relaxation. Thus, it is not possible to 
measure part quality just after production. To achieve next 
part process settings adjustment in closed loop, hot parts must 

be measured, and final part quality must be inferred. It is 
interesting to measure the hot part and infer the final part 
quality. Measurements and settings adjustments computation 
must be done in the industrial cycle time (less than thirty 
seconds). Thermographic imagery is a fast and easy to set-up 
measurement, which can be used on the production line. 
Inference of specific final parts quality based on hot parts 
measurements can be achieve using regressive models or 
neural networks. A previously learned model is fast to execute 
for inference on a recent computer. Convolution Neural 
Networks [2] have been used to predict a continuous geometry 
measurement of final part from thermographic images of hot 
parts [3]. However, a unique geometrical value is not 
meaningful for a human operator, and even more information 
could be extract from thermographic images. Recent research 
about Generative Adversarial Networks [4] used as images 
translators are applicable on industrial problems. In this paper, 
we propose the use of a GAN to translate thermographic 
images into final surface geometry (Fig. 1). 
 

 
Fig. 1. Process ajustement based on thermography and GAN. 



We measure the prediction performance with different images 
similarity comparison methods. Furthermore, we introduce the 
Discrete Modal Decomposition analysis [19] as an innovative 
tool to characterize the GAN generation performance to 
retrieve geometric parameterization. With some enhancement, 
this method could be proposed as a real-time tool to inspect 
the future part geometry, even in an augmented reality 
real-time overlay for human operators. 

II. RELATED WORK 
Regulation of injection molding is a productive literature 
subject, using multiple advanced methods. Many works have 
been done using in-mold measurements with good success [5], 
but far lesser proposed to measure hot parts just after 
production. The serious disadvantage of in-mold 
measurements lays on its need of expensive sensors placed 
inside the mold with a custom mold design for wire routing. 
Besides, robotic is now heavily deployed in the industry. 
Thus, hot parts measurements can be done in-situ, in the 
production line and cycle time. If the measurement process is 
fast enough, every part can be measured. A robotic arm can 
move parts on different measurements stands. Thermography 
imagery, 3D scanning, weighing or photography are easy to 
set up. Then, mathematical models must be construct between 
hot parts measurements and final parts quality. Neural 
networks models can benefit from multi modal sensors fusion 
[6]. In this study, we work specifically on thermographic 
images as model input. Generative Adversarial Networks were 
introduced in 2014 and have since shown success in very 
specific image processing applications. Recent research used 
GAN to translate images, after the learning of a transformation 
model on pair images (pix2pix), or even with no pair prior at 
all (Cycle GAN) [7]. 

III. METHODS 

A. Experimental dataset creation 
Under industrial setting, it is usually difficult to create a big 
dataset. This paper aims to use a GAN network architecture to 
solve this limit. Generative networks are known to require a 
small dataset. We actually have a dataset with ten times fewer 
elements than classical dataset used for GAN. Our study is 
exploratory and aims to study the performance of GAN in 
industrial constraints. 
The dataset creation was done using a Taguchi orthogonal L12 
Design of Experiments [8], with twelve different trials. 
Furthermore, we choose to put two parts of each trial in the 
training dataset. An exception was done for on trial which 
parts are not at all in the training dataset but only in the 
validation dataset. These special not learned parts will be used 
for further validation of the network performance. 
We use a robotic arm to grab the part right after molding and 
to show them in front of a thermographic camera. A still frame 
was acquired for each part 10 seconds after the ejection of the 
part Then, we have been waiting a month before geometrical 
measurements to be sure that parts were geometrically stable. 
Surfaces were scanned on a confocal optical 
profilometer (Altimet AltiSurf 520). The scanning takes one 
hour; this duration is the actual limit to the size of our dataset. 

From the nearly two hundred parts we have produced and 
measured on-line, we have actually only scanned 37 parts: 
23 parts are used as a training dataset and 14 parts are used for 
validation. 

B. Dataset preprocessing 
The robotic arm and the vacuum prehension device were not 
enough repeatable to guarantee pixel to pixel position 
similarity between measurements. Thus, thermographic 
images were stabilized using the Lucas-Kanade optical flow 
tracking algorithm [9]. Images were normalized on the 
minimum and the maximum values of all images. Images were 
then cropped and scaled to 71 by 71 pixels in grayscale, 
without multiple color channels. Finally, images are 
upsampled (bicubic interpolation) to 128x128 to be used as 
networks input. Upsampling the small definition acts as a 
1.8x1.8 pixels Gaussian filter. We voluntary choose small size 
images to simulate industrial constraint where multiple parts 
must be imaged with a unique camera, leading to a small 
image definition peer part. After normalization and reduction 
to 8 bits images the thermographic image has a resolution of 
0.902 degrees Celsius. After normalization and reduction to 
8 bits images, the height map images have a resolution of 
1.57 µm. This is quite low, but it is acceptable to characterize 
low frequency geometric form defects. In our case, better 
results in term of geometry precision could be obtained with 
floating points input instead of 8 bits images, but the network 
size and training time should be far bigger. 

C. Pix2pix Generative Adversarial Networks architecture 
A “Generative Adversarial Network” is composed by a 
generator and a discriminator which are both trained 
sequentially one after the other. The generator is trained to 
produce realistic images from a random normal distribution. 
Then, the discriminator must distinguish the “fake” generated 
images from the real images. At each training loop, the 
generator gets the difference of the output between the 
discriminator and the “fake” generated sample. The generator 
is train to increase the error of the discriminator by producing 
perfect counterfeit image. The discriminator is train on real 
images. The convergence of the network is achieved when the 
generator and the discriminator reach an equilibrium point 
between counterfeit performances and detection. 
The pix2pix framework [7] use a deep convolutional GANs 
(DCGANs) architecture proposed by Radford, Metz and 
Chintala [10]. Pix2pix also proposes the use of conditional 
GAN [11], which learn their loss function from the 
observation of the inputted images. This framework simplifies 
many previous works and propose to use a “U-Net” 
architecture [12]. The U-Net architecture has skip connection 
between each center symmetric layers. Each skip connection 
concatenates channels from layer i with channels from layer 
n – i, with n the total number of layers in the network. Pix2pix 
also use a convolutional classifier, which work on small 
patches of the input image (PatchGAN). Thus, the 
convolutional layer will be only receptive to pattern at the 
patch size scale. The patch size choice must be investigated.



 
Fig. 2. Pix2pix UNet_128 GAN network architecture. 

 

 
Fig. 3. Training loss over epoch. 

 
Fig. 4. Real/generated image comparison during the network training. 

For our problem, the patch size will certainly change the 
prediction performance of various geometrical scale. The 
generator and the discriminator have the same layer 
architecture: each layer has a convolution layer and 
LeakyReLu [14] as an activation function. The augmentation 
part of the generator use Rectified Linear Unit [13]. In our 
study, we do not use any batch training nor normalization 
because we have a small dataset. Finally, pix2pix introduces a 
L1 distance loss between the generated images and the real 
ground truth images. Thus, the generator must fool the 
discriminator and minimize the L1 Manhattan distance with 
the real image. The complete network architecture is show in 
Fig. 2. We have only trained two hundred epochs for now. We 
use Xavier layers initialization [15] based on success in the 
literature. We envisage hyper parameters tuning as a direct 
pursuit of this research. Other architectures must also be 
evaluated, particularly the Perceptual Adversarial Network 
[16], which shows better performance in specific cases. 

D. Pix2pix GAN training 
The network was trained using the Adam stochastic gradient 
descent solver [17]. We kept the image augmentation 
techniques used in the pix2pix [7] proposition: random jitter 
and mirroring. The network training takes 3 hours on a Core i7 
CPU. We will investigate multiple hyper parameters tuning as 
soon as we have new GPU computing resources. We observe 
the importance of the Conditional L1 loss in the training 
process (Fig. 3, Fig. 4). The training completion was effective 
after 180 epochs. The training is relatively fast. It can be done 
over a night for industrial applications. 



 
Fig. 5. Vector basis of modals descriptors (DMD) for a plane geometry [18]. 

E. Discrete Modal Decomposition 
In order to describe geometrically the surfaces and check if the 
GAN generation enables to retrieve geometrical features from 
the true images, we introduce here some shape 
parameterization methods, especially the Discrete Modal 
Decomposition (DMD). Global shape parameterization 
techniques lay on the identification of parameters which 
characterize the shape geometrical elements as well as 
possible. In practice, we find descriptors by decomposing the 
surface into a descriptors space, specific to each method. 
The DMD uses a decomposition space based on a vibration 
mechanics problem [19], [20]. Among the other widespread 
methods used for parameterization in the literature:  

i. The Discrete Cosine Transform (DST) 
decomposition [21] uses a cosine harmonics space to 
describe the surface. 

ii. The Fourier series decomposition is based on the 
Discrete Fourier Transform (DFT). This method 
enables to decompose a surface into a sine and cosine 
harmonics space, more general than the DST one.  

iii. The Spherical harmonics decomposition describes 
complex shapes into a spherical harmonics space. 
This technique is especially used to characterize 
3D shapes. 

If we work with a plane geometry, the DMD descriptors are 
the natural vibration eigenmodes of the reference plane 
geometry (Fig 5). Le Goïc [18] has shown that this method 
can be used to characterize global as well as local surfaces 
geometries. We propose to use this method to parameterize the 
geometry of our samples, and to see if this parameterization 
can be retrieved through the GAN image generation. 

IV. PREDICTION PERFORMANCE ANALYSIS 
We use multiple methods to determine the predictive 
performance of the network. We firstly compare real measured 
height map images with images generated by the GAN 
(Fig. 6). The validation is done on a dedicated dataset of 
14 parts (Fig 7). Simple statistical features and histogram 
comparisons with different metrics are used. Then, we 
introduce Discrete Modal parameters as an innovative 
prediction performance tool on specific geometrical features. 

A. Statistical and Haralick features comparisons 
Generated images visually show good similarities with real 
images. In order to validate the similarity, we compute 
different statistical features on each couple of real and 
generated images. We compute the mean, median, kurtosis, 
skewness and multiple quantile of the images. We also 
compute the Haralick features [22] as they are good textural 

descriptors. We study the difference between those values. We 
compute the p-value to validate the result on this really small 
population (14 elements). The standard deviation on all the 
tested results is high and the p-value was superior to 5% on 
most of the metrics. Thus, we cannot reject the null hypothesis 
[23]. We then must increase the test dataset size to be able to 
get significant results with these textural parameters. 
The only features with a p-value superior to 5% are Haralick’s 
difference variance, energy, entropy and homogeneity. The 
energy and the homogeneity metrics indicate the uniformity of 
the image. The entropy measured the presence of random 
patterns. Thus, our real and generated images are similar in 
their variance distribution. 

B. Real vs generated image similarity 
We avoided pixel to pixel comparison because our generated 
images can be slightly translated due to the dataset 
augmentation methods used. Histogram comparisons are 
robust to scaling and movements. We used various distance 
metrics on histograms (Fig. 8):  Bhattacharya [24], 
Khisquared, correlation [25], cosine (similar to Euclidian L2), 
Hellinger, Kullback-Leibler [26], Manhattan L1 and 
Minkowski distances. 
 

 
Fig. 6. Right: real geometry image, center: generated geometry image, left: 

inputed thermographic image (images are normalized between 0-255). 

 

 

Fig. 7. Complete test dataset for the trained network after 200 epoch 



 

Fig. 8. Histogram comparison for test01: left is real, right is generated image 

We used the p-value test to test for the null hypothesis and 
only the cosine and correlation distances were kept. We also 
compute the Structural Similarity [27] and the Peak Signal to 
Noise Ratio (PSNR), two widespread measures for image 
comparison. Results on the test dataset are shown in Table I. 
test06 and test06-bis are images obtained for the same settings 
in the design of experiment: no part with similar settings were 
present in the train dataset. Results on the test06 and test06-bis 
are used to study the generalization capability of this 
predictive method. Although test06 results are good, test06-bis 
is not on the same level of prediction quality based on cosine 
and correlation distances on histograms. The median value on 
the 14 parts shows the overall good predicting performance of 
the methods. Further analysis is done with the Discrete Modal 
Decompositions. 

TABLE I.  IMAGES SIMILARITIES 

Part name 
Similarity between real and generated images 
Cosine 

distance 
Correlation 

distance PSNR SSIM 

test01 0.95 0.92 14.24 0.79 

test06 0.90 0.83 17.91 0.84 

test06-bis 0.60 0.40 13.59 0.81 

MEDIAN 14 parts 0.90 0.84 18.35 0.86 

STD 14 parts 0.10 0.15 3.95 0.07 

C. Discrete Modal Decomposition analysis 
We introduce here a new performance indicator for the GAN 
predictions: the DMD analysis. The objective is to study if the 
GAN is able to retrieve the surfaces in the DMD geometrical 
parameterization. DMD analysis is especially interesting in the 
case of plastic parts deformation. Our objective is to anticipate 
deformation on the real part. The firsts DMD coefficients give 
the global part geometry. The last DMD coefficients concern 
the roughness and very local deformation. 
In plastic molding, we particularly have to anticipate the 
global part geometry, so, the first modal coefficients are 
especially appropriate. 
The real pictures modal spectrums are calculated and 
compared with the generated images ones (Fig. 9). Similarity 
between the 2 spectrums vectors for the 14 pairs of images 
have been calculated thanks to correlation coefficient and 
cosine similarity (Table II). The results of the spectrums 
comparison study show a very good similarity between the  

TABLE II.  SPECTRUMS SIMILARITY 

Part name 

Similarity between real and generated 
images’ spectrums vectors 

Cosine distance Correlation 
coefficient R² 

test01 0.94 0.88 

test06 0.98 0.96 

test06-bis 0.99 0.99 

MEDIAN 14 parts 0.99 0.98 

STD 14 parts 0.08 0.04 

 
spectrums with a median R² coefficient value of 0.98 and a 
median cosine distance value of 0.99 (very close to 1). 
Moreover, standard deviations are very low for both 
measurements, which shows a strong consistency for the 14 
tested parts results. These measures bring to light the good 
performances of the GAN to retrieve the geometric 
parameterization of the parts’ surfaces. It also shows the 
opportunity of using DMD analysis as an innovative 
performance indicator for neural network image generation. 
This paper illustrates a preliminary study for the use of GAN 
to predict geometry parameters through DMD. For further 
developments, we also propose to study these results from 
“the modes viewpoint”. Instead of analyzing the correlation 
between images global modal spectrums, we want to 
investigate each mode independently to see which ones are 
best predicted by the network. Through this work, we hope to 
show what types of shapes and deformations the network is 
able to generate the best. As explained in III.E., DMD is not 
the only method to geometrically characterize surfaces. It 
could be also interesting to apply other type of decompositions 
and compare with the DMD analysis. 
 

 

 
Fig. 9. DMD modal spectrum real/generated images comparison 



V. CONCLUSION 
In this study, we have shown the possibility of using 
Generative Adversarial Networks pix2pix on a very small 
dataset, to comply with industrial constraints. Based on the 
measured similarity between final image and generate image, 
we show that the prediction is acceptable in the context of our 
very limited learning study. Quantities of information 
contained in the thermal image seem sufficient to predict our 
geometry in our specific application case. We introduce 
Discrete Modal Decomposition (DMD) to analyze the 
prediction performance from a geometrical parameterization 
side. The DMD presents a clear meaning to analyze 
geometrical properties but it could also further be used to 
analyze any generative network performance. In thermoplastic 
injection molding, we don’t need to predict the rugosity (high 
modes in DMD) but only geometric form defects (low modes 
in DMD). Our problematic is to anticipate the global cold part 
geometry, so, the first modal coefficients are appropriate. 
Performance evaluation and hyperparameters tuning must be 
done on a larger dataset. Further studies can also be designed 
to analyze more precisely the GAN performances to retrieve 
independent modes to show what shapes can be best predicted. 
Finally, further research needs to be done on the complete 3D 
model generation based on thermographic prior, as literature 
shows encouraging result in 2D images to 3D shapes 
transformation [28]. 
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